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Interlineage communication within a cancer microenvironment
can augment cancer cell behaviour and impact response to ther-
apy. Patient-derived cancer organoids provide an opportunity
to explore cancer cell biology, however it is a major challenge to
generate a complex cancer microenvironment in vitro. Here, we
established a stromal tumoroid culture system modeling pan-
creatic ductal adenocarcinoma (PDAC) that reconstitutes mul-
tilineage interactions between cancer, endothelial, and fibrob-
last cells and recapitulates several aspects of primary tumors.
Whole-mount immunohistochemistry on cleared tumoroids re-
veals organized vessel, desmoplastic fibroblast, and glandular
cancer cell phenotypes that emerge over time. Time-course
scRNA-seq measurements show that tumoroid formation acti-
vates fibroblasts, altering the extracellular matrix (ECM) com-
position and inducing cancer cell signal-response signatures and
metabolic state change. Comparison between tumoroids with
normal or cancer associated fibroblasts (CAFs) reveals different
ECM compositions, as well as differential effects on cancer cell
behaviors and metabolism. We identify Syndecan 1 (SDC1) and
Peroxisome proliferator-activated receptor gamma (PPARG) as
receptor and metabolic nodes involved in cancer cell response
to CAF signals, and blocking SDC1 disrupts cancer cell growth
within the tumoroid. Tumoroids from multiple PDAC patients
revealed co-existence of subpopulations associated with classical
and basal phenotypes, and CAF-induced migration behaviors
emerged in certain patient tumoroids. Comparisons between
patient tumoroids revealed a multigene migration signature that
develops over time reflecting a stress response mechanism that
correlates with worse clinical outcome. Altogether, stromal tu-
moroids can be used to explore dynamic and reciprocal inter-
actions between cancer, CAF and endothelial cell states, and
our data provides new inroads into the discovery of personal-
ized pancreatic cancer therapies.
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Main text

Pancreatic ductal adenocarcinoma (PDAC) is one of the most
aggressive and intractable forms of cancer [1]. PDAC tu-
mors are characterized by stark intra-tumoral heterogeneity
with a dense stroma component which can constitute over
70% of the tumor mass. Intratumoral heterogeneity in the
tumor microenvironment (TME) originates in definable re-
gional tissue states, and underlying sub-tumor microenviron-
ments shape cancer phenotypes and can influence key clin-
ical metrics of disease progression [2,3]. Cancer associated
fibroblasts (CAFs) are central PDAC stroma components and
coordinate diverse features of the TME including secreting
cytokines that regulate cancer growth and shape evolutionary
pressures that support malignancy [4].
Microenvironmental pressures within the primary tumor can
lead individual cancer cells to acquire specific metabolic and
other cell state signatures that support cancer cell adapta-
tion to current conditions, and also provide the ability for
future colonization into other organ niches [5–7]. These di-
verse pressures within the tumor are spatially and temporally
dynamic, and it has been difficult to understand how CAF-
cancer cell interactions generate a diversity of cell states.
Cancer cystic organoids (CCOs) can be established from pa-
tients and provide extraordinary opportunities to study can-
cer cell biology [8,9]. Co-culturing cancer cells and CAFs
in vitro is starting to provide new insights into how fibrob-
lasts and cancer cells interact [10,11]. Single-cell sequenc-
ing enables the reconstruction of cell state continuums within
complex developing tissues [12], and provides predictions for
how cells interact based on analysis of receptor and ligand ex-
pression patterns between cell types [13]. Here, we set out to
establish a stroma-rich tumoroid co-culture system to under-
stand PDAC cancer-CAF interactions in controlled environ-
ments, and to explore developmental processes within tumor-
oids using single-cell transcriptome sequencing. By doing so,
we learn about principles associated with intratumoral het-
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Fig. 1. Reconstruction of cell state development within multilineage PDAC tumoroids using single-cell transcriptomics. a) Long-term cancer cyst organoid (CCO)
cultures established from patients with pancreatic adenocarcinoma (PDAC) can be co-cultured in a 3D collagen/matrigel matrix with endothelial cells (EC) and cancer
associated fibroblasts (CAF), which self-assemble a complex tumoroid microenvironment. Over 14 days, fibrous connective tissue forms, vessels sprout and organize, and
cancer cells form 3D glandular structures within multilineage tumoroids. b) Day 14 tumoroid with cancer cells and ECs stably transformed with EGFP and TdT expression
cassettes, respectively. Scale bar:250um. c) scRNA-seq was performed on the input cells in mono-culture (Day 0) and on tumoroids after 7 and 14 days in co-culture. UMAP
cell embedding of scRNA-seq data is colored by time point (left) and by cluster (right). d) heatmap showing normalized expression of cluster marker genes. e) Expression
of extracellular matrix protein encoding and other genes in CAFs ordered based on pseudotime reconstruction. Inset shows a CAF activation score based on primary PDAC
cancer tissues15. f) Distributions of CAF activation score in mono-culture CAFs and tumoroid CAFs in 5 pseudotemporal bins (top) and UMAP with cells colored by Moffit
et al. CAF activation score (bottom). g) Whole-mount immunohistochemistry on cleared tumoroids stained for extracellular matrix proteins (Fibronectin, Collagen 1). Scale
bar:100um. Cancer cells stably express GFP, DAPI marks nuclei (white). h) Pseudotemporal expression profile of genes differentially expressed (DE) between tumoroid
cancer cells at day 7 and 14. Inset shows cumulative expression profiles of the DE genes. i) Hallmark enrichment analysis on day 7 and 14 cancer cells. j) Whole-mount
immunohistochemistry on cleared PCOs stained for cancer cell markers (CK17 and CK19, teal) and tumoroid-upregulated gene PPARG (red). Cancer cells stably express
GFP, DAPI marks nuclei (white). Scale bar:100um.

erogeneity that might be leveraged for therapy development
in PDAC and other cancers.

We generated cancer cyst organoids (CCOs) from PDAC pa-
tient primary biopsies, which we stably cultured according to
previously published protocols [14] (Supplementary Table 1).
Single-cell RNA sequencing (scRNA-seq) revealed that cell
cycle state heterogeneity was a predominant source of varia-
tion in CCO cultures (Extended Data Fig. 1a-h). Comparison
of CCO gene expression to matched bulk healthy and can-
cerous pancreatic tissue, revealed low correlation to healthy
tissue, high correlation to pancreatic cancer tissue, and de-
tection of PDAC-associated expression signatures within the
CCOs (Extended Data Fig. 1i-l). To explore the develop-
mental dynamics that underlie PDAC heterogeneity, we es-
tablished a stroma-rich PDAC tumoroid co-culture system
that combines cancer cells, endothelial cells (ECs) and CAFs
grown in a three-dimensional matrix (Fig. 1a). We note that
the CAFs and ECs were not derived from the same patient,
and the same CAF and EC lines were used throughout our
study. Over 48 hours, the cells form a spherical culture (Ex-
tended Data Fig. 2a), and over a 14 day period we observed

substantial cellular organization that emerged within the tu-
moroid. Cancer cells form glandular structures, endothelial
cells assemble into vessel networks, and CAFs produce ex-
tracellular matrix (Fig. 1b, Extended Data Fig. 2b-c). We
used scRNA-seq to analyze heterogeneity in the tumoroids
at day 7 and 14 of co-culture and compared the cell states
with CCO, EC, and CAF mono-cultures (day 0) (Fig. 1c-
d). The cells could be grouped into 12 clusters, representing
CAF (clusters 1-5), EC (cluster 6,7), and cancer cell (clus-
ters 8-12) states, and we provide marker genes for each clus-
ter (Supplementary Table 2). Differential expression analysis
between the 2D mono-culture and 3D tumoroid counterparts
at day 7 and day 14 revealed diverse changes that emerged in
the tumoroid over time (Extended Data Fig. 2d-g). There was
a general hypoxia response for all cell types within the day
7 tumoroid, followed by angiogenic induction, extracellular
component modulation, and metabolic adaptation signatures
for the different cell types by day 14 (Supplementary Table
3). Strikingly, we found that tumoroid CAFs induced a con-
sortium of extracellular matrix proteins (Collagens COL3A1,
COL6A2, COL1A2, COL1A1; Fibronectin 1, FN1; Decorin,
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Fig. 2. CAFs provide distinct signals from normal fibroblasts and promote cancer cell state change in tumoroids. a) Tumoroids containing normal or cancer associated
fibroblasts were generated and analysed by scRNA-seq. b) UMAP embedding colored and numbered by cluster, with cancer and fibroblast cells encircled and noted. c) UMAP
with cells colored by tumoroid type (top). Stacked barplot shows proportion of cancer or fibroblast cells per cluster and colored by tumoroid type. Clusters are significantly
enriched for tumoroid type (chi-squared p-value < 2.2e-16). d) Heatmap shows expression of genes differentially expressed (DE) by NF and CAF in the tumoroids. e) Gene
ontology enrimentments for NF and CAF DE genes. f) Density plots showing proportion of cancer cells along an inferred pseudotime in the NF and CAF tumoroids. Day
14 cancer cells have altered profiles only in CAF tumoroids. g-h) Expression profiles of genes over cancer cell pseudotime that are DE between day 7 and day 14. Day 14
DE genes are also DE between cancer cells in NF and CAF tumoroids. i-k) Immunofluorescence of AKAP12 (i), TFF3 (j), and LCN2 (k) protein expression in NF and CAF
tumoroids. Cancer cells stably express GFP, DAPI marks nuclei (white). Scale bar:100um.

DCN) compared to the 2D CAFs, and tumorid CAF-enriched
genes had gene ontology (GO) enrichments for transform-
ing growth factor beta (TGF-β) signaling, inflammatory re-
sponse, angiogenesis, and hypoxia. These data show that
the multilineage tumoroid microenvironment induces strong
morphological and molecular cell state changes across differ-
ent cell types.

To explore the effect of CAF signals on cell state dynamics
within the tumoroid, we first established a pseudotemporal
trajectory for each cell type and identified genes that vary
over the trajectory (Fig. 1e-f, Extended Data Fig. 2h-j). We
observed that there were cells from both time points that cov-
ered the entire range of the trajectory, and for CAF we ob-
served similar proportions of day 7 and day 14 CAFs along
the CAF trajectory. In contrast, for cancer and endothelial
cells there was a strong relationship between time point and
position on the trajectory for both cell types. We observed
that the CAF pseudotemporal ordering reflected activation
status, such that induction of collagens and cytokines could
be observed along pseudotime (Fig. 1e). Comparison to data
from primary PDAC tissue revealed that the CAF temporal
trajectory strongly resembles a transition from “normal” to
“activated” stroma signatures [15] (Fig. 1f). This activated
stroma signature has previously been shown to be prognostic,
associating with worse clinical outcomes, and is character-
ized by the expression of genes that point to the role of CAF
activation in tumor promotion. The CAF activation signature
includes Secreted protein acidic and cysteine rich (SPARC),
Wnt pathway family members (WNT5A and WNT5B), Ma-
trix metalloproteinases (MMP2, MMP11 and MMP14), and
Fibroblast Activation Protein (FAP)[15]. (Extended Data Fig.

2). Regulome analysis using SCENIC [16] suggests Early
Growth Response 1 (EGR1) as a central transcriptional reg-
ulator that likely coordinates CAF activation (Extended Data
Fig. 3a-c), that is upstream of several growth factor signaling
pathways (BMP2, NOTCH3, LIF, VEGFC) and ECM regula-
tors (COL5A3, COL12A1, LAMA4, HAS2) (Extended Data
Fig. 3d-e). Whole-mount immunohistochemistry on cleared
tumoroids stained for Collagen 1 and Fibronectin which re-
vealed substantial ECM deposition surrounding cancer cells
(Fig. 1g, Extended Data Video 1).

Along the EC trajectory, there was increased expression of
Matrix Gla Protein (MGP), Angiopoietin-2 (ANGPT2), En-
dothelial cell-specific molecule 1 (ESM1) and other signa-
tures of hypoxia response, angiogenesis, and TNF-α sig-
nalling that increase over pseudotime and have highest ex-
pression in day 14 tumoroids (Extended Data Fig. 2i-j). The
cancer cell trajectory revealed initial induction of hypoxia-,
apoptosis-, and epithelial-to-mesenchymal transition-related
genes followed by adaption expression signatures associ-
ated with xenobiotic metabolism, cholesterol homeostasis,
and interferon responses (Fig. 1h-j, Extended Data Video
2). Many of the genes that increase over pseudotime and
peak at day 14 in tumoroid cancer cells, such as Peroxisome
proliferator-activated receptor gamma (PPARG), Syndecan
1(SDC1), Mucin 1 (MUC1), Kruppel-like factor 3 (KFL3),
have been previously associated with poor disease outcome
[17–19]. Regulome analysis revealed transcription factors
and their predicted targets that are differential along the can-
cer pseudotime, and these analyses highlighted a predomi-
nant role of PPARG and KLF2/3 in coordinating the cancer
cell responses within the tumoroid (Extended Data Fig. 4a-
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c). Interestingly, the PPARG regulome linked fatty acid and
cholesterol metabolism, with the IL2-STAT5, P53, and the
Interferon signaling pathways (Extended Data Fig. 4d). In
addition, PPARG correlated genes are also strongly associ-
ated with an immuno-suppressive environment, as well as
lower survival in the PDAC tumor cohort from the cancer
genome atlas (TCGA) (Extended Data Fig. 4e-h) [20]. Alto-
gether, these data show that CAFs become activated by day 7
within the tumoroid, and suggest that CAF activation induces
endothelial and cancer cell hypoxic and metabolic transition
response states that are relevant for primary pancreatic cancer
progression.

We next wanted to understand the specificity of the CAF-
derived signals and their impact on cancer cell states. We
generated tumoroids composed of CAF or normal fibroblasts
(NF, derived from healthy pancreatic tissue), and analysed
tumoroids using imaging and single-cell transcriptomics at
day 7 and day 14 (Fig. 2a). We observed CAF tumor-
oids had larger glandular structures and more developed en-
dothelial networks compared to NF tumoroids suggesting a
difference in signalling cues between the two microenviron-
ments (Extended Data Fig. 5a,b). Single-cell transcriptome
analysis of CAF- or NF-cancer tumoroids revealed 4 cancer
cell clusters (c3,4,6,8) and 5 fibroblast clusters (c0,1,2,5,7;
Fig. 2b). We found that within the fibroblasts clusters,
there were differential proportions of CAFs and NF (Fig.
2c). Clusters 1 and 2 were predominantly composed of CAF
cells, conversely cluster 0 was enriched for NF cells (chi-
squared test p-value < 2.2e-16). Differentially expressed
genes between NF and CAF show enrichments in both cases
for epithelial-to-mesenchymal transition gene ontology, and
CAF-enriched genes have increased enrichment for genes as-
sociated with angiogenesis, estrogen response, and the TP53
pathway (Fig. 2d,e; Extended Data Fig. 5c-e). We com-
bined cancer cells from NF and CAF tumoroid conditions
from both time points, and inferred cancer cell trajectories.
We observed segregation of cells along the pseudotime tra-
jectory that was time dependent, such that day 14 cancer
cells grown with CAFs were predominantly enriched at later
stages of trajectory (Fig. 2f). We searched for genes that in-
creased along the trajectory, and were therefore enriched in
day 14 CAF tumoroids, and observed upregulation of genes
involved in metabolic homeostasis as well as many classical
PDAC associated genes including TFF3, TSPAN8, AGR2,
and multiple S100 (Fig. 2g, Extended Data Fig. 5f-h). In-
terestingly, we identify Lipocalin 2 (LCN2) as an early in-
duced gene, and potentially could serve as an early prognostic
biomarker of subsequent cancer metabolic state response to
activated CAF signalling (Fig. 2h). We validated low expres-
sion of AKAP12 and CAF-specific induction of PDAC sig-
nature genes TFF3 and LCN2 using immunohistochemistry
in tumoroids (Fig. 2i-k). Together, these data suggest that
CAF-specific signals induce relevant cancer cell states, and
that this interaction dynamic can be recapitulated and studied
in developing tumoroid culture systems.

We used ligand-receptor pairing analyses to explore how
CAF and cancer cells interact within the tumoroid (Extended

Fig. 3. Interaction analysis identifies SDC1 as a dynamically expressed re-
ceptor in tumoroid cancer cells and SDC1-antibody block disrupts cancer cell
glandular structure. a) Ribbon plot32 showing receptor-ligand pairing in CAF tu-
moroids. Syndecan 1 (SDC1)-ligand pairings are highlighted in dark grey. b) SDC1
(left) and predicted ligand (right) expression in cancer and CAF cells over pseudo-
time, respectively. c,d) Immunofluorescence showing SDC1 induction from day 7
(c) to day 14 (d) tumoroids. Scale bar:50um. e) Kaplan–Meier plot showing that
high expression of SDC1 in PDAC cancers from the cancer genome atlas (TGCA)
dataset is associated with lower survival. f) Schematic shows SDC1 antibody block-
ing experiment. GFP reporter expression in cancer cells on day 14 tumoroids in-
cubated with isotype control (left, inset i) or SDC1 (right, inset ii) antibodies. Scale
bar:100um.

Data Fig. 6a-d). We found that a substantial portion of CAF
secreted signals are predicted to interact with the cancer ex-
pressed surface protein Syndecan 1 (SDC1) (Fig. 3a). SDC1
expression, as well as the predicted ligands, increase over
time in the tumoroid (Fig. 3b) and it was previously revealed
that SDC1 is recycled to the cell membrane by KRAS activity
and is a critical mediator of macropinocytosis in pancreatic
cancer [18].
SDC1 is known to be a key cell surface adhesion
molecule engaged in interactions with numerous ligands (eg
THBS1,FGF2,TNC,FN1) [21–26], thereby regulating major
pathways responsible for cell interactions with the microen-
vironment, and contributing to cancer progression, prolifer-
ation, metastasis and overall poor prognosis [27]. We also
searched for CAF receptors that might receive signals from
cancer cells, and identified epidermal growth factor recep-
tor (EGFR) as binding partner to cancer ligands that is asso-
ciated with CAF activation in the tumoroid (Extended Data
Fig. 6c-d). Primary PDAC tumors with high EGFR expres-
sion are associated with poor survival (Extended Data Fig.
6e), and EGFR inhibition shows promise as a co-target in
mouse models and is FDA approved for PDAC treatment in
humans [28,29]. More broadly, we show that regulators of
diverse signalling pathways are dynamically modulated in
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the tumoroid (Extended Data Fig. 6g-f), providing a rich re-
source for future in vitro perturbation experiments to under-
stand these complex interactions. Our data revealed SDC1
to be one of the highly enriched receptors, which prompted
us to investigate how the blockage of SDC1 impacts can-
cer growth within the tumoroid. Immunofluorescence con-
firmed that SDC1 protein increases in expression in day 14
relative to day 7 CAF tumoroids, and is predominantly local-
ized to the cancer cell membrane (Fig. 3c-d). We analyzed
PDAC samples from the cancer genome atlas (TCGA) [20]
and found that high detection of SDC1 is associated with
lower overall survival (Fig. 3e). We cultured day 14 CAF
tumoroids with an antibody blocking the activity of SDC1,
and found substantial disruption of cancer cell growth (Fig.
3f). These data show that multilineage tumoroids can be used
to manipulate and understand CAF-cancer interactions with
therapeutic relevance.

To understand the potential diversity of molecular profiles
and cell behaviors between different patients, we established
tumoroids containing cancer cells from four additional pa-
tients (Supplementary Table 1). We note that the CAF and
EC lines were the same throughout, and are not from the
same patients as the cancer cells. Strikingly, we observed that
migratory cell states emerge over time in tumoroids from cer-
tain patients and are not prevalent in others. (Fig. 4a). The
migratory cells were observed from two patients that sub-
sequently presented with recurrence, and had a shorter sur-
vival term than the other three patients (Supplementary Table
1). We generated single-cell transcriptome data from tumor-
oids from each patient (see Methods), analyzed cancer het-
erogeneity separately, integrated cancer cell data from each
individual, visualized cells in a UMAP embedding, and iden-
tified markers for each cluster (Fig. 4b-d, Extended Data Fig.
7a-d, Supplementary Table 2). In the integrated analysis, we
observed a diversity of cancer cell states and each individ-
ual contributed cells to all cell clusters (Extended Data Fig.
7e). Immunohistochemistry for Macrophage Migration In-
hibitory Factor (MIF, enriched in cluster 0) showed a spa-
tially distinct expression pattern in cancer cells at the periph-
ery of the organoid (Fig. 4e). We compared each tumoroid
cluster to bulk transcriptome datasets from different PDAC
types (Classical A, B; Basal A, B) [30], and found that cell
clusters within tumoroids could be classified based on signa-
tures from primary cancer (Fig. 4f). Interestingly, we found
that each tumoroid had cell states that expressed signatures
of each of the different PDAC cancer types, and the pro-
portions of these populations differ among patient tumoroids
(Extended Data Fig. 7f). These data suggest that PDAC types
classified from bulk measurements represent proportion dif-
ferences among cancers, that the underlying cell states de-
velop dynamically as a response to CAF stimuli, and that
tumoroids might be used to recapitulate PDAC type propor-
tions. Finally, we identify a multigene tumoroid migratory
signature (TMS) that develops over time in tumoroids (Fig.
4g; Supplementary Table 2), induced in cancer cells by CAF,
that positively correlates with shorter survival times (Fig.
4h,i; Extended Data Fig. 7g-i). We note that MIF and CEA-

Fig. 4. CAF-induced tumoroid migratory state signatures correlate with can-
cer prognosis. a) CCO cultures were established from additional PDAC patients
and co-cultured with CAFs and ECs to generate tumoroids. Images show cancer
cells and ECs stably transformed with EGFP and TdT expression cassettes, re-
spectively. Arrows highlight the presence of migratory-like cells in certain patient tu-
moroids. Scale bar: 250um. b) Cancer cell heterogeneity analysis from scRNA-seq
data from tumoroids from 5 patients. UMAP embedding is colored by cluster (top)
and patient (bottom). Approximate overall survival time (in years) and recurrence
status are noted for each patient. c,d) Feature plot (c) and heatmap (d) showing ex-
pression of cluster marker genes. e) Immunofluorescence staining for Macrophage
Migration Inhibitory Factor (MIF) in organoids with cancer cells expressing GFP.
Scale bar:100ul. f) Feature plots (top) and heatmap (bottom) showing scaled ex-
pression scores of PDAC subtype signatures in each tumoroid cancer cell or cluster,
respectively. Data suggests co-existence of cancer sub-populations within the same
tumoroid. g) Barplot shows log transformed fold changes of differentially expressed
between cancer cells within tumoroids with and without migratory cell phenotypes.
h) Kaplan–Meier (KM) plot showing that high expression of CEACAM6 in PDAC
cancers from the cancer genome atlas (TGCA) dataset is associated with lower sur-
vival. i) Boxplot showing the p-value distribution of KM survival curve differences be-
tween high and low expression of genes in the tumoroid migratory signature (TMS)
and non-migratory feature set.

CAM6 are the two strongest indicators of the tumoroid mi-
gratory phenotype, and CEACAM6 has strong potential as a
therapeutic target. High CEACAM6 expression is also asso-
ciated with low cytotoxic T-cell infiltration [31]. Altogether,
this modular developmental system, together with our anal-
yses, provide a new inroad into the discovery of pancreatic
cancer therapies.

We provide strong evidence that a stroma-rich in vitro PDAC
microenvironment can induce cancer cells states that are rel-
evant to primary PDAC tumor physiology. Most importantly,
this system is dynamic and diverse phenotypic behaviors oc-
cur over time in response to intercellular communications.
We highlight behaviors, interactions, and associated molec-
ular states that can be manipulated for therapy development.
In particular, CAFs activate during tumoroid formation and
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secrete matrix proteins, cytokines, and other cues that tem-
porally impact cancer cell phenotypes, including metabolic
adaptation and migratory escape from persistent cell stress.
Strikingly, we observe migratory cell states in tumoroids
from patients with worse clinical outcomes, and these tumor-
oids harbor potentially predictive signatures of poor progno-
sis. We stress that our experiments are from five patients,
and future work is needed to explore the link between the
patient and the tumoroid avatar. In addition, future work that
incorporates macrophages, monocytes and other immune cell
types will be required to fully recapitulate the dynamic inter-
lineage signaling axes prevalent in PDAC tumor microenvi-
ronments. However, this tumoroid system is powerful in it’s
modularity and reproducibility, providing an exciting new in-
road into the mechanisms underlying fibroblast influence on
cancer cell states.

METHODS
Establishment of cystic organoid and fibroblast cultures
The clinical specimens used to establish organoids and
stromal cells were obtained from patients at the Kanagawa
Cancer Center with informed consent after approval by the
ethical review. Tumor tissue and healthy tissue were col-
lected by surgical resection. The cancer cyst organoid (CCO)
culture method from PDAC tumor specimens is briefly
described below [14]. The surgical tissue is washed several
times with Dulbecco’s phosphate buffered saline (DPBS).
The tissue was finely chopped using surgical scissors and
a scalpel. The tissue was transferred to a 50 ml tube and
washed again with DPBS. The washed tissue was digested
with LiberaseTM (Roche) at 37°C for 40-60 minutes.
Tissues were enzymatically treated and then washed with
DMEM containing 10% fetal bovine serum (FBS, Sigma)
to stop the enzymatic reaction. The obtained pancreatic
cancer cells were embedded in growth factor reduced (GFR)
Matrigel (Corning) and cultured in the following complete
medium. DMEM/F12(Thermo), Primocine (1mg/ml, Invivo-
Gen), GlutaMAX (1x, Invitrogen), 1x B27(1x, Invitrogen),
Gastrin, N-acetyl-L-cysteine (1mM, Sigma), Nicotinamide
(10mM, Sigma), A83-01(Tocris, 0.5uM), Noggin (Pe-
protech, 0.1ug/ml), R-Spondin1 (Peprotech, 100ng/ml),
Wnt3A(RD, 50ng/ml), EGF (Peprotech, 50ng/ml), FGF10
(Peprotech, 100ng/ml). Y-27632 (Sigma, 10uM) was added
for only one day after starting the organoid culture, and on
the following day, the cells were cultured in a complete
medium without Y-27632. The medium was changed 2 to
3 times a week. For establishment of fibroblasts, healthy
pancreatic tissue and cancer tissue were treated with Lib-
erase and the collected cells were washed with DPBS several
times. Subsequently, cells were suspended in Mesenchymal
stem cell growth media (MSCGM, Lonza) and seeded on a
culture plate. The media was changed 2-3 times a week. All
cells were cultured under 5% CO2 in 20% O2 at 37°C.

Tumoroid culture method
To establish a stroma-rich pancreatic tumoroid, pancreatic
CCO cells, fibroblasts and human umbilical vein endothelial

cells (HUVECs) were separately expanded and cultured.
Pancreatic CCO cells were incubated with Triple EX (Gibco)
for 7 minutes, and fibroblasts and HUVECs were incubated
for 3 minutes at 37°C to generate a cellular suspension. To
stop the enzymatic reaction by Triple EX, the cells were
washed with DMEM/F12 medium containing 10% FBS
and 1% Penicillin-Streptomycin (P/S, Gibco). The obtained
cells were counted separately, and then 3x104̂ cancer cells,
1.2x104̂ HUVECs, 8x104̂ fibroblasts were transferred to a
tube coated with bovine serum albumin (1% BSA), mixed
and centrifuged at 300 g. After removal of the supernatant,
cell pellets were gently resuspended and 1.2 x105̂ cells were
then seeded in 96 well plates coated with 50% Matrigel
(Corning). The three types of cells made cell-cell interac-
tions with each other and showed self organisation during
the period of 24-48 hours. The reconstituted stromal-rich
pancreatic tumoroid were cultured with 50% Endothelial
Cell Growth Media (Lonza) and 50% DMEM/F12 medium.
Culture mediums were exchanged every 24 hours. Tumoroid
were cultured under 5% CO2 in 20% O2 at 37°C.

Generation of reporter lines
For live imaging, HUVECs were infected with retroviruses
expressing Kusabira-Orange (KO) and cancer cells were
infected with a lentivirus expressing enhanced green fluores-
cent protein (EGFP)[34]. Briefly, Human Embryonic Kidney
(HEK) 283T cells were transfected with the retroviral
vector pGCDNsam IRES-EGFP or KOFP (M. Onodera) for
packaging at 293gag/pol (gp) and 293gpg (gp and VSV-G)
to induce viral particle production. The culture supernatant
of the retrovirus-producing cells was passed through a 0.45
mm filter (Whatman, GE Healthcare) and immediately used
for infection. The firefly luciferase gene was subcloned into
the CSII-EF-MCS-EGFP vector (RIKEN BRC) to generate
the CSII-EF-Luc-IRES-EGFP construct. CSII-EF-Luc-
IRES-EGFP plasmid and helper plasmid (293T cells were
transfected with calcium phosphate using pCAG-HIVgp
and pCMV-VSV-G-RSV-Rev, RIKEN BRC) to produce
VSV-G pseudotyped lentivirus. The virus supernatant was
recovered 46 hours after transfection, and filtered with a
0.45 µm filter. The virus supernatant was concentrated by
ultracentrifugation.

Whole-mount clearing and imaging
Tumoroids were washed several times with PBS and fixed
with 200ul of 4% (wt/vol) paraformaldehyde (PFA). Tu-
moroids were incubated on a horizontal shaker at 4ºC for
24 hours. PFA was then completely removed and fixed
tumoroids were washed several times with PBT buffer (0.1%
Tween (vol/vol)). Tumoroid washing buffer (TWB: 100ml
of PBS with 0.2 g of BSA and 0.1% Triton X-100) was
added to the wells and incubated on a horizontal shaker at
4ºC for 1 day to block tumoroid. The next day, the blocking
reagent was completely removed from the well, and then
100 ul of TWB with primary antibodies(1/100) was added to
the wells and incubated on a horizontal shaker at 4ºC for 2
days. After immuno-labeling the tumoroid with the primary
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antibody, these reagents were removed from the wells, and
then fresh TWB was added to the wells and was incubated
on a horizontal shaker at 4ºC for 2 hours. This process was
performed 3 times to completely remove the antibodies from
organoids. After the tumoroid were sufficiently washed with
TWB, 100ul of TWB with secondary antibodies(1/200) was
added to the wells and incubated on a horizontal shaker at
4ºC for 1 day. After immuno-labeling the tumoroid with the
secondary antibody, the secondary antibodies were removed
from the wells and then fresh TWB was added to the wells
and washed three times. Subsequently, 50ul of the fruc-
tose–glycerol clearing solution35 was added to the well and
incubated on a horizontal shaker at 4ºC, overnight. Cleared
organoids were placed on a glass slide or in a glass-bottom
plate and imaged on a spinning disc confocal microscope
(Olympus SpinSR10 spinning disk confocal super resolution
microscope, objective x10,x20,x30,x40,x60). We used the
following antibodies: anti-GFP (1:400; Abcam, ab13970),
anti-Cytokeratin 7 (1:00; Agilent Technologies, M701829-2),
anti-Cytokeratin 19 (1:100; Abcam, ab7754), anti-PPARG
(1:100, Thermo Scientific, PA3-821A), anti-Collagen I
(1:100; Abcam, ab34710), anti-Fibronectin (1:100, Abcam,
ab2413), anti-AKAP12 (1:100, Thermo Scientific, PA5-
52281), anti-Trefoil Factor 3 (1:100, Abcam, ab108599),
anti-Lipocalin-2 (1:100, Abcam, ab23477), anti-E-cadherin
(1:100, RD Systems, AF748), anti-Syndecan-1 (1:100,
Abcam, ab128936), anti-MIF (1:100, Abcam, ab187064),
anti-Collagen III (1:100, Abcam, ab6310), anti-AGR2
(1:100, Sigma-Aldrich, HPA007912), anti-CEACAM6
(1:100, Thermo Scientific, MA5-29144), anti-MUC1 (1:100,
Thermo Scientific, MA5-11202), Donkey anti-Goat IgG
(H+L) Highly Cross-Adsorbed Secondary Antibody, Alexa
Fluor Plus 405 (1:200, Thermo Scientific, A48259), Donkey
anti-Mouse IgG (H+L) Highly Cross-Adsorbed Secondary
Antibody, Alexa Fluor Plus 555 (1:200, Thermo Scientific,
A32773), Donkey anti-Rabbit IgG (H+L) Highly Cross-
Adsorbed Secondary Antibody, Alexa Fluor Plus 647 (1:200,
Thermo Scientific, A32795), Goat Anti-Armenian hamster
IgG HL (1:200,Abcam, ab173004), Goat anti-Chicken IgY
(H+L) Cross-Adsorbed Secondary Antibody, Alexa Fluor
Plus 488 (1:800, Thermo Scientific, A32931), Molecular
Probes DAPI (4’,6 Diamidino 2 Phenylindole, Dihydrochlo-
ride) (1:500, Thermo Scientific, D1306).

SDC1 inhibition assays
For antibody treatment with anti-SDC1 (Abcam) on long-
term cultured tumoroid, the co-cultured culture medium was
completely removed from the wells and changed to 200ul of
the co-cultured medium with 20ul anti-SDC1 added in the
wells. The tumoroid were cultured under 5% CO2 in 20%O2
at 37°C. The antibody mixed medium was changed daily
with a fresh one and the tumoroid had imaging after 5 days.
A 200ul medium containing 20ul of isotype control antibody
(Mouse IgG1, kappa monoclonal, Abcam) was used as a
control medium.

Single-cell RNA-seq experiments
All samples were dissociated to single cells by specific
enzymatic treatment. The cultured medium for stroma-rich
tumoroid was removed from the wells and tumoroids washed
three times with 1xDPBS. The tumoroids were collected in 5
ml tubes, after the DPBS was completely removed from the
tube, TrypLE™ Select (Thermo) was added and incubated at
37ºC for 8 minutes [36]. After the incubation step, tumoroids
were further dissociated by trituration. This incubation and
trituration process was repeated 3 times to obtain a single
cell suspension. The enzymatic dissociation was stopped
by addition of cold BE-PBS (Cold PBS 1 ml with 0.04%
BSA / (0.1 mM EDTA)) and remaining cellular clumps were
removed by using 70um and 40um strainers. Fibroblasts and
HUVECs were cultured on a 10 cm dish and dissociated to a
single cell suspension using the same procedure as described
above. Single cell suspensions were adjusted to an appropri-
ate concentration to obtain approximately 2000-10000 cells
per lane of a 10x Genomics microfluidic Chip G. Libraries
were generated using 10x Genomics 3’ Gene Expression
Kit (v3.1), following recommended protocol, and subse-
quently sequenced on NextSeq500, using 28-9-0-91 Read
Configuration, as recommended by for Single Index libraries.

Single-cell RNA-seq data preprocessing
CellRanger (v3.1.0, 10x Genomics) was used to extract
unique molecular identifiers, cell barcodes, and genomic
reads from the sequencing results of 10x Chromium ex-
periments. Then, count matrices, including both protein
coding and non-coding transcripts, were constructed aligning
against the annotated human reference genome (GRCh38,
v3.0.0, 10x Genomics). In order to remove potentially
damaged or unhealthy cells and improve data quality, the
following filtering steps were performed in addition to the
built-in CellRanger filtering pipeline. Cells associated with
over 20,000 transcripts, usually less than 1% of the total
number of samples, were removed. Cells associated with a
low number of transcripts (<1% of the total number of sam-
ples) were removed. Cells with over 15% of mitochondrial
transcripts were removed. Transcripts mapping to ribosomal
protein coding genes were ignored. Cells with <800 unique
transcripts (<1% of the total number of samples) were
removed together with transcripts detected in less than 10
samples.

Normalization with Seurat
For normalization and variance stabilization of each scRNA-
seq experiment’s molecular count data, we employed the
modeling framework of SCTransform in Seurat v3 [37].
This procedure overcomes the need for heuristic steps
by performing a more effective normalization, strongly
removing technical effects from the data while preserving
biologically relevant sources of heterogeneity. In brief, a
model of technical noise in scRNA-seq data is computed
using ‘regularized negative binomial regression’. The
residuals for this model are normalized values that indicate
divergence from the expected number of observed UMIs for
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a gene in a cell given the gene’s average expression in the
population and cellular sequencing depth. The residuals for
the top 2,000 variable genes were used directly as input to
computing the top 100 Principal Components (PCs) by PCA
dimensionality reduction through the RunPCA() function in
Seurat. Corrected UMI, which are converted from Pearson
residuals and represent expected counts if all cells were
sequenced at the same depth, were log-transformed and used
for visualization and differential expression (DE) analysis.

Doublet removal with DoubletFinder
For each scRNA-seq experiment DoubletFinder [38] was
used to predict doublets in the sequencing data. Its work-
flow can be broken up into 4 major steps. First, generate
artificial doublets from existing scRNA-seq data by merging
randomly selected cells. Second, pre-process merged
real-artificial data. Third, perform PCA and use the PC
distance matrix to find each cell’s proportion of artificial k
nearest neighbors (pANN). For this step we restricted the
dimension space to the top 30 PCs. Fourth, rank order and
threshold pANN values according to the expected number of
doublets. Optimal input parameters for doublet estimation
and removal were selected through ROC analysis across
pN-pK parameter sweeps for each scRNA-seq dataset; pN
describes the proportion of generated artificial doublets
while pK defines the PC neighborhood size. In order to
achieve maximal doublet prediction accuracy, mean-variance
normalized bimodality coefficient (BCmvn) was leveraged.
This provides a ground-truth-agnostic metric that coincides
with pK values that maximize AUC in the data. Dou-
bletFinder is mostly sensitive to heterotypic doublets but not
to homotypic ones. To overcome this we consider doublet
number estimates based on Poisson statistics with homotypic
doublet proportion adjustment assuming 1/50,000 doublet
formation rate the 10x Chromium droplet microfluidic cell
loading.

Data integration with Cluster Similarity Spectrum (CSS)
Individual datasets, after preprocessing and doublet removal,
were aggregated according to specific criterias (e.g. pa-
tient id, timepoint, culture condition) and went through
an additional step of mild processing in order to mitigate
technical confounding factors, which also served as means
for selection of a set of meaningful 2,000 most variable
global genes prior to data integration. Integration of different
conditions (cell lines and timepoints) was performed using
the log-normalized corrected UMI count data. We used
the first 30 PCs and the Pearson residuals to integrate the
different timepoints (or cell lines) in the datasets using
the Cluster Similarity Spectrum method (CSS) [39]. In
brief, clustering is applied to cells within each sample label
separately and similarities, by Spearman correlation, of one
cell to those clusters are calculated and normalized. To
obtain a two-dimensional (2D) representation of the data we
performed Uniform Manifold Approximation and Projection
(UMAP [39,40] using RunUMAP() with default parameters
on the CSS matrix. Integrated datasets were then clustered

according to the shared neighborhood graph on lower
dimensional space using the Louvain algorithm41 through
either the Seurat function FindClusters() with resolution 0.2.

Pseudotime reconstruction
PCA is an eigenvector-based multivariate analysis that
defines a new orthogonal coordinate system that optimally
describes variance in a dataset. It learns a linear transfor-
mation where the PCs form an orthogonal basis for the
features that are uncorrelated [42]. By construction, this
transformation can encode the original data in a latent (lower
dimensional) space concentrating much of the signal into
the first few principal components and achieve a higher
signal-to-noise ratio while minimizing the total squared
reconstruction error. Given its strength, we thus sought
at using PCA to learn time-dependent variability in our
tumoroid system and optimally describe heterogeneity
in the scRNA-seq time course data by reconstructing a
differentiation trajectory for each cell type in the 2D PCA
space. Cells were subsequently aligned along that trajectory.
This was done for the time-course data of the multi-lineage
tumoroid cells derived from patient 1 in co-culture with CAF
and endothelial cells; cells in other culture conditions or
derived from different patients were then projected to that
space.

CAF-tumor communication
To investigate ligand-receptor (LR) mediated cell-cell com-
munications during cancer progression in our multi-lineage
tumoroids, we focused on the signals exchanged between
CAF and cancer cells. For this analysis we extracted
genes labeled as either ligands or receptors from curated
databases43 and performed differential expression (DE) tests
between CAF and cancer cells in order to gain insights into
specific molecules involved and retrieve directional infor-
mation about the signal exchange. Among all significant
LR pairs, we focused first on CAF to cancer signaling, thus
considering CAF as the signal source, expressing ligands,
and cancer as the signal target, expressing receptors. We
then looked also at signals being delivered by cancer to CAF
receptors. In order to model dynamic communication during
cancer progression we emphasized LR pairs characterized
by significant incremental expression change along pseu-
dotime alignment. This analysis identified ligand-receptor
(LR) pairs which significantly co-expressed along CAF-
cancer trajectories, and therefore potentially mediated the
communications between cell populations. To prioritize
most important signaling molecules we first modelled the
gene expression as smooth functions over pseudotime. In
particular, we used a univariate penalized cubic regression
spline basis smooth [44] defined by a set of 80 knots spread
evenly through the covariate (pseudotime) values. They
were penalized by the integrated square second derivative
cubic spline penalty, modified to shrink towards zero at
high enough smoothing parameters. Next, we used cosine
similarity to summarize the interaction (binding) strength for
every LR pair; higher the cosine similarity is the stronger
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the signaling through the given LR pair. Uncertainties
(standard errors) resulting from spline fits at each knot were
propagated through the computation of the cosine similarity
to report a confidence estimate on its measure.

Functional enrichment analysis
To understand mechanisms underlying phenotypes in our
data, differentially expressed genes were analyzed for cancer
hallmark enrichment using one-sided hypergeometric testing.
P-values were adjusted for multiple testing hypotheses by the
Bonferroni method and only enrichment results below a 5%
significance level threshold were considered. The hallmarks
are a collection of curated gene sets, within MSigDB, refined
to convey a specific biological state or process and display
coherent expression [45]. Cell populations were evaluated
for over representation or change in biologically related
functional gene sets. For this analysis we only considered
hallmarks consisting of sets with more then 10 but less then
300 mapped genes.

Gene regulatory network inference in tumoroids
To gain biological insights into mechanisms driving time-
dependent cellular heterogeneity in pancreatic cancer, we
resorted to utilizing the Single-Cell rEgulatory Network
Inference and Clustering (SCENIC) workflow [16]. This is
a computational method to infer gene regulatory networks
(GRNs) and cell types from single-cell RNA-seq data. In
brief, we initialized SCENIC options by selecting the latest
versions (v9) of two motif annotation datasets, 500 base
pairs (bp) upstream and 100 bp downstream of transcription
start site (TSS) as well as 10k bp centered TSS, on human
genome (hg38) and 20 processing units; otherwise default
parameters. To infer potential transcription factor targets,
we imputed Pearson residuals of the most variable genes ex-
pressed in at least 10% of the cells and built a co-expression
network via GENIE346 with default parameters. GENIE3
is a Random Forest based method capable of detecting non-
linear dependencies. In order to distinguish activation from
repression we took advantage of the Spearman correlation
between transcription factors and respective target genes.
Finally, the activity of the inferred GRNs was computed
by aggregating the expression of the target genes within
each single cell. We then identified top variable GNRs by
assessing their activity along the pseudotime.

Bulk RNA-seq data processing
Pancreas adenocarcinoma (PAAD) related samples from The
Cancer Genome Atlas (TCGA) were downloaded via the
Genomic Data Common (GDC) website. The R package
TGAbiolinks was used to connect to GDC data transfer tool
client and GDC API in order to query and download the raw
gene expression profiles, metadata and available clinical data
for 177 tumor samples as well as 4 normal pancreatic tissue
samples. The data was filtered by removing subsequent
occurrences of probes matching the same gene symbol as
well as probes matching no known genes at all. Raw HTSEQ
counts data was then normalized for sequencing depth

using estimateSizeFactors() and variance-stabilized through
regularized-logarithm transformation to remove spurious
effects from aberrant gene counts with rlog() function in
DESeq2 [47]. For the regularized-logarithm transformation
the blind parameter was set to false. This, to ensure that
variables in the design formula will not contribute to the
expected variance-mean trend of the experiment; otherwise
default parameters were used.

Survival analysis
Individual samples were divided into higher and lower
categories based on normalized expression of the gene
of interest. A quartile cutoff based on expression was
considered to group the samples into two categories. The
long-term survival probability was analyzed by utilizing
the Kaplan-Meier survival plot. Log-rank test [48], as
implemented within the survdiff() function, was applied to
assess the difference between the survival cohorts. Analysis
of survival time was performed using the survival package in
R statistical software.

Differential expression analysis
Gene differential expression (DE) between distinct cell
populations in scRNA-seq data was assessed by performing
Wilcoxon rank sum tests and auROC analysis as imple-
mented in Presto [49] package in R. Log-transformed
corrected UMIs were used as input for the DE statistical
tests, and genes were called differentially expressed if
associated adjusted p-value (Bonferroni method) was lower
than 0.05, AUC value was above 0.6 and log fold change
was greater than 0.15. In addition we also set thresholds
on detection rates of DE genes. In particular, a given gene
was assigned as over-expressed in the analyzed group if it
was detected in at least 30% of the samples of that group
while the detection rate in the background samples was at
most 70% of the detection rate of the analyzed group. To
probe association between genes and invasive phenotype
we performed within-cluster DE tests between different cell
lines. The resulting specificity score is then an aggregate
count of the times a given gene was found to be a top 5
up-regulated genes for a specific phenotype. Differential
expression analysis on bulk RNA-seq data was performed
in accordance with the DESeq2 pipeline on row counts with
DESeq() function and default parameters. Genes were then
considered up-regulated if they were assigned an adjusted
p-value below 0.05 and a log fold change greater than 0.5.
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Supplementary Fig. 1. Single-cell transcriptome analysis of pancreatic cancer cyst organoid cultures and comparison to primary cancer tissue. a) Cancer cyst 
organoid (CCO) lines were established from PDAC patient biopsies. CCOs were propagated over multiple passages, and after day 7 of culture post-passage, CCOs were 
subjected to scRNA-seq. Scale bar:400um. b) Brightfield image of CCOs in a 3D matrigel culture 6 days after passage. c) UMAP cell embedding of CCO scRNA-seq data 
colored by cluster. d-f) Feature plots of PDAC cancer cell markers Keratin (KRT19 and KRT17), correlation to cell cycle states (e) and cluster markers (f). g) Heatmap showing 
normalized cluster marker expression. h) Gene ontology analysis of genes enriched in each CCO cluster. Circles are colored based on significance (High p-value in blue, low in 
yellow/gray) and sized by fold enrichment. i) CCO pseudo-bulk samples, obtained through aggregation of single cells according to their respective cluster memberships, were 
compared to bulk transcriptome data from healthy and cancer tissue from the TCGA cohort. Heatmap shows correlation (high, bright yellow; low, dark colors) of each cluster to 
the different patient specimens. j) Barplots show the number of genes that are differentially expressed between normal and PDAC tissue and are up-regulated (up), down-
regulated (down), or not differentially expressed (neutral) in CCOs compared to primary pancreas cells. k) Dotplot shows similarity between CCO and pancreatic cancer 
signatures when compared to healthy pancreatic tissue (chi-squared p-value 1.6e-07). l) Boxplots show the expression distribution of pancreatic cancer markers as 
comparison between TCGA healthy and cancer samples and our CCO culture.
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Supplementary Fig. 2. Comparison between 2D monoculture and 3D tumoroid cells and tumoroid time points. a) Cancer cells (teal blue), cancer associated fibroblasts 
(CAFs, pink), and endothelial cells (ECs, yellow) expressing a reporter 0, 12, and 24 hours after co-culture. Scale bar:10ul. b-c) Whole-mount immunohistochemistry on 
cleared tumoroids probing Collagen 3 (COL3, b) and Anterior gradient 2 (AGR2, c). Cancer cells stably expressing EGFP; nuclei are marked with DAPI. Scale bar:100ul. d) 
Feature plots showing expression of representative cluster and cell type marker genes from single-cell transcriptome data generated from tumoroids and input cells. e) 
Heatmap showing genes that are differentially expressed between tumoroid cell types and their input counterparts. f) Barplots show transformed fold change (log 2) between 
day 7 (dark grey) and day 14 (light grey) tumoroid cancer (top), CAF (middle), and EC (bottom) cells. g) Gene ontology analysis of genes enriched in day 7 and day 14 tumoroid 
endothelial cells. h) Principal component (PC) analysis was used to establish pseudotemporal ordering of cancer, CAF, and endothelial cells, and plots show cells colored by 
pseudotime. i) Density plots showing proportion of tumoroid endothelial cells along the inferred pseudotime. j) Pseudotemporal expression profile of genes differentially 
expressed (DE) between tumoroid endothelial cells at day 7 and day 14. Inset shows cumulative expression profiles of the DE genes.
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Supplementary Fig. 3. Regulon analysis of Tumoroid CAFs. a) SCENIC was used to infer regulatory network scores for tumoroid CAFs. b) The expression slope 
over tumoroid CAF pseudotime is plotted for the top regulators based on area under the curve (AUC) metrics from SCENIC. c) Line plots show the ranged regulon score 
for each of the top regulators over tumoroid CAF pseudotime. d) Heatmap shows expression of predicted targets of each major regulator over tumoroid CAF 
pseudotime. e) Protein-protein interactome from STRING database with pathway annotation for up-regulated networks for CAF pseudotemporally regulated genes.
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Supplementary Fig. 4. Regulon analysis of Tumoroid cancer cells. a) SCENIC workflow was used to infer regulatory network scores for tumoroid cancer cells (left). The 
expression slope over tumoroid pseudotime is plotted for the top regulators based on area under the curve (AUC) metrics from SCENIC (right). b) Line plots show normalized 
pseudotemporal expression of central regulators. c) Heatmap shows expression of predicted targets of each major regulator over tumoroid cancer cell pseudotime. d) Protein-
protein interactome from STRING database with pathway annotation for up-regulated networks. e) Spearman correlation score between transcription factors (TFs) of dynamic 
regulons and percentage of tumor infiltrating immune cells in TCGA pancreatic cancer sample cohort. TFs show a wide range of values, and note that PPARG registers the 
highest negative correlation score. f) Correlation plot of PPARG expression with the percentage of infiltrating intratumoral immune cells g) Differential association of positively 
versus negatively PPARG correlated genes with percentage of intratumoral immune cell infiltration is statistically significant. h) Kaplan-Meier curve showing significant 
association of high PPARG expression with poor prognosis in the TCGA PDAC cohort.
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Supplementary Fig. 5. Comparison of NF and CAF tumoroids. a-b) Images show tumoroids generated with normal fibroblasts (NFs, a - upper row) or cancer associated 
fibroblasts (CAFs, b - lower row) with endothelial cells labeled with TdTomato and cancer cells labeled with EGFP. Scale bar:250um. c-e) UMAP cell embedding from Fig. 2 
showing normal and cancer associated fibroblasts colored by respective transcriptional signatures (c), tumoroid culture timepoint (d), or expression feature (e). f) Heatmap 
shows expression profiles of differentially expressed (DE) genes, at each timepoint, between cancer cells in tumoroids with NFs or CAFs. g) Pseudotemporal expression 
pattern of representative genes in cancer cells from NF and CAF tumoroids. h) Hallmark enrichment analysis in cancer cells within the different tumoroid types at 7 (top) and 14 
(bottom) days of co-culture. Data shows how cancer cells within the CAF tumoroid change state and acquire new metabolic footprints, while cancer cells in contact with normal 
fibroblasts remain largely stable over the entire co-culture period.
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Supplementary Fig. 6. Expression of receptors and ligands in tumoroid CAF and cancer cells. a) Ribbon plot representing communication between cancer associated 
fibroblasts (source) and cancer cells (target) highlighting SDC1 interactions. b) Expression of CAF-specific ligands and cancer-specific receptors along respective 
pseudotemporal trajectories. c) Ribbon plot representing communication between cancer cells (source) and CAFs (target) highlighting EGFR interactions. EGFR is inferred to 
be a major hub for collecting cancer stimuli and up-regulated during fibroblast activation. d) Expression of cancer-specific ligands and CAF-specific receptors along respective 
pseudotemporal trajectories. e) Survival analysis on TCGA pancreatic cancer cohort links EGFR overexpression to worse outcome. f) Cross-correlation of ligands’ and 
receptors’ expression patterns reveals distinct repertoires associated with each tumoroid cell type. g) Signaling molecules from curated annotations33 of major developmental 
pathways are dynamically expressed along CAF and cancer trajectories within tumoroids. h) GFP reporter expression in cancer cells on day 14 tumoroids incubated with 
isotype control (left) or SDC1 (right) antibodies. Scale bar:100um
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Supplementary Fig. 7. Heterogeneity analysis of tumoroid cancer cells from six patients. a-d) Heterogeneity analysis in tumoroid cancer cells for each patient derived 
line showing selection of marker genes for cultures with no migratory cells (a,b) and cultures with migratory cells (c,d). Insets display individual UMAP embeddings color-coded 
by cluster. Note that the cluster colors are not comparable across samples. e) Proportion of cells in each cluster that are derived from each patient from the integrated 
heterogeneity analysis presented in Fig. 4. f) Pie chart shows the proportion of cells from each patient tumoroid classified into PDAC subtypes. The data shows how different 
subtypes co-exists within each patient-derived tumoroid. g) Feature plots on the integrated UMAP from Fig. 4 showing expression of genes enriched in tumoroids without (top 
row) and with (bottom row) migratory cells. h) Kaplan–Meier (KM) plot showing the relationship of gene expression in the Tumor Migration Signature (TMS, bottom) or in the 
non-TMS (top) and the survival times. Data is from the cancer genome atlas (TGCA). i) Immunofluorescence staining for CEACAM6 (red, top) and MUC1 (pink, bottom) on day 
14 tumoroids from Patient 6. Cancer cells stably express GFP, DAPI marks nuclei (white). Scale bar:100um.
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