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Abstract9

There is a strong consensus that selection for fungicide resistant pathogen strains can be most10

effectively limited by using applications of mixtures of fungicides designed to balance disease11

control against selection. However, how to do this in practice is not entirely characterised.12

Previous work indicates optimal mixtures of pairs of fungicides which are both at a high risk of13

resistance can be constructed using pairs of doses which select equally for both single resistant14

strains in the first year of application. What has not been addressed thus far is the important15

real-world case in which the initial levels of resistance to each fungicide differ, for example16

because the chemicals have been available for different lengths of time. We show how17

recommendations based on equal selection in the first year can be sub-optimal in this case. We18

introduce a simple alternative approach, based on equalising the frequencies of single resistant19

strains in the year that achieving acceptable levels of control is predicted to become impossible.20

We show that this strategy is robust to changes in parameters controlling pathogen epidemiology21

and fungicide efficacy. We develop our recommendation using a pre-existing, parameterised22
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model of Zymoseptoria tritici (the pathogen causing Septoria leaf blotch on wheat), which23

exemplifies the range of plant pathogens which predominantly spread clonally, but for which24

sexual reproduction forms an important component of the life cycle. We show that pathogen25

sexual reproduction can influence the rate at which fungicide resistance develops, but does not26

qualitatively affect our optimal resistance management recommendation.27

28

Introduction29

World food security faces multiple threats, including the growing global population (Godfray et al.,30

2010), climate change (Tai et al., 2014) and plant disease (Strange and Scott, 2005). However, it is31

estimated that food production will need to increase by 60% by 2050 (Ristaino et al., 2021). Despite32

annual spending of roughly 16billionUSdollars on fungicides globally, estimated crop losses due to33

disease stand at 20% (Jorgensen et al., 2017). Fungicide resistance challenges our ability tomaintain34

control of fungal pathogens, but effective resistance management strategies prolong control of35

these yield-limiting crop diseases and have been studied for decades (Staub, 1991; van den Bosch36

et al., 2014a; Corkley et al., 2021). We explore the optimal management of fungicide resistance in37

crop pathogens using mixtures containing pairs of fungicides which are ‘high-risk’ for resistance.38

In particular, we explore the effects of sexual pathogen reproduction and variation in initial levels39

of resistance.40

We use Septoria leaf blotch (Zymoseptoria tritici), the most prevalent disease of wheat world-41

wide (Suffert et al., 2011), as our case study. An estimated 70% (≈€1bn) of the European cereal42

fungicide market is primarily targeted towards the management of Z. tritici of winter wheat (Tor-43

riani et al., 2015). Most fungicide modelling studies focus on Septoria, so there are existing pa-44

rameterised models available (e.g. Hobbelen et al. (2013); Elderfield et al. (2018)). Further, it is a45

heterothallic fungus (Suffert et al., 2016) capable of both sexual and asexual reproduction (Suffert46

et al., 2011; Eriksen et al., 2001; Singh et al., 2021). It therefore exemplifies the large number of47

plant pathogens for which sexual reproduction is potentially important in the epidemiology (Agrios,48

2004) and evolution (McDonald et al., 1996). For Septoria, reported proportions of sexual repro-49

duction differ widely between experiments (Chen and McDonald, 1996; Zhan et al., 1998), but it50

is known that ascospores produced via sexual reproduction initiate Septoria epidemics within a51

2 of 61

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2022. ; https://doi.org/10.1101/2022.02.14.480407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480407
http://creativecommons.org/licenses/by-nd/4.0/


field (Shaw and Royle, 1989). Although ascospores are quantitatively the most significant form of52

primary inoculum (Suffert et al., 2011), for simplicity most fungicide resistance modelling studies53

do not consider pathogen sexual reproduction, although there are some exceptions (Shaw, 1989).54

Here we seek to understand the effect of the inclusion of pathogen sexual reproduction on the re-55

sulting resistance management recommendation. We neglect the effect of ascospores within the56

growing season, due to previous studies suggesting they have a small effect on the severity of an57

epidemic (Eriksen et al., 2001), in part caused by the longer latent period of the sexual pseudothe-58

cia compared to the clonal pycnidia. Optimal management principles for Septoria may transfer to59

other fungal and oomycete crop pathogens which reproduce sexually, e.g. Phytophthora infestans,60

cause of the potato disease late blight (Fones et al., 2020).61

A common resistance management strategy is to use fungicide mixtures with more than one62

mode of action present in the mixture. These fungicides are often categorised as ‘low-risk’ or ‘high-63

risk’ for resistance, depending on whether resistant pathogen strains exist in the population and64

the likelihood of developing resistance, amongst other factors (Brent and Hollomon, 2007). In prac-65

tice fungicide mixtures often contain two fungicides that are high-risk for development of resis-66

tance. These mixtures are of increasing relevance since there are few low-risk fungicides available67

and the high risk options are typically of higher efficacy (van den Bosch et al., 2014b). Further, low-68

risk (multi-site) fungicides are increasingly rare; for example chlorothalonil has been banned for69

use by the EU due to environmental concerns since 2019 (Murray, 2019). Previous modelling stud-70

ies have found fungicide mixtures to be more effective as a resistance management strategy than71

alternating use of fungicides (Elderfield et al., 2018) or spatially concurrent applications (Hobbelen72

et al., 2013), where different fields receive treatments from different modes of action. That mix-73

tures outperformed alternations or concurrent use was robust to fitness costs, partial resistance,74

changes in fungicide parameters and the initial frequency of the double resistant strain. For this75

reason we concentrate exclusively here on the optimal strategy for mixtures of two high-risk fungi-76

cides and seek to test how to optimally construct high-risk fungicide mixtures if current levels of77

resistance to the two mixing partners differ, or if between-season pathogen sexual reproduction78

is considered.79

It was reported by van den Bosch et al. (2014b) that, across 17 publications, mixtures of high-80

risk fungicides resulted in a reduction in selection for resistance in 20 out of 24 pathogen-crop-81

fungicide combinations. There is ongoing debate about how high-risk mixtures (i.e. mixtures of82
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high risk fungicides) should be constructed. Although the so-called ‘governing principles’ (van den83

Bosch et al., 2014a) suggest that increased fungicide dose increases selection for a given mode of84

action, increased dose of a mixing partner can reduce selection for the other mode of action in the85

mixture (van den Bosch et al., 2014b). Modelling work shows that the optimal way to mix a low-86

risk and a high-risk fungicide is to use themaximum dose of the low-risk chemical and theminimal87

viable dose of the high-risk chemical (Hobbelen et al., 2011a; Elderfield et al., 2018). However,88

maximising the dose of either fungicide when the mixture contains two high-risk chemicals could89

lead to excessive selection pressure on that fungicide, so different recommendations are required.90

Hobbelen et al. (2013) use modelling to address the case where the fungicide mixture contains91

two high-risk chemicals. They consider four pathogen strains: one that is resistant to both chemi-92

cals; one that is sensitive to both; and two more that are sensitive to one fungicide but resistant to93

the other. Their results suggest that the choice of doses used is crucial to the resulting durability of94

the strategy. Hobbelen et al. (2013) suggest the optimal fungicide mixture has a dose pairing that95

is as weak as possible whilst achieving sufficient yield, and selects equally for both single resistant96

strains. These authors addressed the case where both single resistant strains are initially at the97

same frequency, and explored what happens for different amounts of the double resistant strain.98

However, that study did not address the common real-world scenario where the initial levels of re-99

sistance to the two chemicals differ. The optimal strategy in this case is not yet described and – as100

well as the effect of sexual reproduction – is the focus of this paper. In this work we introduce and101

test a new prescription based on equalising the resistance frequencies by the time of breakdown,102

rather than equalising selection in the first year.103

Initial levels of resistance commonly differ for different fungicides due to differing natural inci-104

dences of resistant strains, or because one fungicide was introduced to market much earlier than105

its mixing partner. For instance, resistance to benzimidazoles developed rapidly in the mid-1980s106

(Blake et al., 2018), but resistance to Quinone outside Inhibitors (QoI) fungicides was not detected107

in the UK until 2001 (Cheval et al., 2017). Benzimidazoles were introduced in the 1960s, but QoIs108

were not introduced until the 1990s (Leadbeater, 2014), suggesting levels of resistance and rate of109

increase of resistance differed greatly between these fungicide classes. Fungicide sensitivity has110

been reported to differ for high-risk methyl benzimidazole carbamate (MBC) fungicides depending111

on year and region, with sensitive proportions of Oculimacula acuformis (eyespot disease of cere-112

als) comprising 92% in Germany in 1985, but only 4% and 16% in France and the UK respectively in113
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the same year (Parnell et al., 2008). Differing resistance frequencies in Botrytis cinerea (gray mould114

of raspberries) to seven different fungicides from a variety of fungicide classes were reported in115

Northern Germany (Rupp et al., 2017). Further, initial resistance frequencies may be influenced by116

mutation-selection balance (van den Bosch and Gilligan, 2008) which depends on the fitness costs117

of resistance, which will depend on the mutation, and hence the fungicide.118

Fungicides can be described by ‘dose-response curves’ which are measures of their efficacy.119

These curves differ depending on the mode of action and effectiveness of each chemical. We seek120

to show how different dose-response parameters influence the optimal strategy even when levels121

of resistance to the two fungicides vary and/or pathogen sexual reproduction is present. Under-122

standing the effect of different dose response curves on the optimal strategy is crucial to decision123

making when constructing mixtures containing pairs of existing fungicides and/or new chemicals124

that come on to the market. These decisions are made by agronomists and growers but typically125

informed by recommendations from the Fungicide Resistance Action Committee (FRAC).126

In this paper we address the following questions:127

1. What is the effect of varying initial levels of resistance on optimal resistance management128

strategies for mixtures of pairs of high risk fungicides?129

2. When do existing strategy recommendations fail, and how can we improve upon them?130

3. How robust is our new recommendation to alterations in parameters controlling pathogen131

epidemiology and fungicide efficacy?132

4. What is the effect of the balance of between-season sexual and asexual reproduction on the133

model and the strategy recommendation?134

Methods135

The model is an adapted version of one presented by Hobbelen et al. (2013), which addresses two136

high-risk fungicides used together to control Septoria. The model is compartment-based andmea-137

sures different categories of leaf tissue (Figure 2). After infection, healthy (susceptible) tissue (S)138

transitions to exposed tissue (E) (infected but not infectious) and then to infectious tissue (I ), be-139

fore removal (R) – see Figure 2. The initial infection is given by a primary inoculum (P ). The model140

also includes growth and senescence of living tissue. The model also tracks the active concentra-141

tion of both fungicides in the mixture over time. We split the modelled year into two distinct time142

periods – within and between growing seasons. A full list of model parameters and values (values143
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taken from Hobbelen et al. (2013)) is provided in Table 1.144

We generalise the model presented by Hobbelen et al. (2013) by introducing between-season145

sexual reproduction, because Septoria’s sexual ascospores are reported to contribute to a large146

proportion of the primary inoculum that initialises each epidemic (Eriksen et al., 2001; Suffert et al.,147

2011). We denote the proportion of between-season sexual reproduction qB , and initially set qB = 0148

in line with Hobbelen et al. (2013) before exploring the effect of between-season sexual reproduc-149

tion by scanning over a range of values. We neglect within-season sexual reproduction for simplic-150

ity and because previous research suggests its effect on epidemic severity is small (Eriksen et al.,151

2001). Another change to the model presented by Hobbelen et al. (2013) is that we consider one152

field instead of two, since we omit the less effective ‘concurrent field’ strategy.153

Pathogen strains154

When studying fungicide resistance evolution, modellers often consider an emergence and a se-155

lection phase separately (van den Bosch and Gilligan, 2008;Milgroom, 1990; van den Bosch et al.,156

2011). The former concerns the initial stochastic phasewhere new resistant strains appear through157

random mutation and invasion. We do not account for the emergence phase, and focus entirely158

on the selection phase, which is where the resistant strain is already established in the population,159

and a selection pressure is applied when fungicide treatments are used.160

We label the two fungicidesA andB. It is assumed that there are four pathogen strains; the dou-161

ble sensitive strain, two single resistant strains and the double resistant strain. These are denoted162

by ss, sr, rs and rr respectively, where r indicates resistant and s indicates sensitive to fungicideA or163

B (for example the labelling rs would correspond to a pathogen strain that is resistant to fungicide164

A but sensitive to fungicide B).165
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Within-season166

Within-season model equations167

The within-season model dynamics are as follows:168

dS(t)
dt

= g(A) − Γ(t)S(t) −
�S(t)
A(t)

∑

mn∈{rr,sr,rs,ss}
�A,m(CA)�B,n(CB)

(

Imn(t) + Pmn(t)
)

, (1)
dEmn(t)
dt

=
�S(t)
A(t)

�A,m(CA)�B,n(CB)
(

Imn(t) + Pmn(t)
)

− Γ(t)Emn(t)

− 
�A,m(CA)�B,n(CB)Emn(t) for mn ∈ {rr, sr, rs, ss}, (2)
dImn(t)
dt

= 
�A,m(CA)�B,n(CB)Emn(t) − �Imn(t) for mn ∈ {rr, sr, rs, ss}, (3)
dR(t)
dt

= Γ(t)
[

S(t) +
∑

mn∈{rr,sr,rs,ss}
Emn(t)

]

+ �
∑

mn∈{rr,sr,rs,ss}
Imn(t). (4)

See Table 1 for parameter, variable and function definitions. Note that the notation mn ∈169

{rr, sr, rs, ss}means that we actually have 4 equations for Emn(t) and for Imn(t), each corresponding170

to one of the pathogen strains rr, sr, rs, ss. In the absence of fungicide treatment, infection occurs171

with infection rate �, with latent rate 
 (transition from latent infection to symptomatic infection)172

and removal rate � (transition from symptomatic to removed).173
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Table 1. Parameters and state variables used in the HRHR model. Sources: Hobbelen et al. (2013); Elderfield et al. (2018). Although the defaultvalue for the proportion of between-season sexual reproduction (qB ) is 0, we test different values to explore the effect of this parameter on theresults of the model. The value of  0 is changed by the non-dimensionalisation process, and the function g used by Hobbelen et al. (2013) was
r(k−A) for k = 4.2, not r(1 −A). All other parameter values are unchanged by this process. This explains why the tissue state variables (and someof the other parameters) have no units in our version of the underlying model.

Symbol Meaning Type Default value/range/equation Units
S(t) Susceptible tissue Variable [0, 1] -
Emn(t) Latently infected (exposed) tissue, strain mn Variable [0, 1] -
Imn(t) Infectious tissue, strain mn Variable [0, 1] -
R(t) Removed tissue Variable [0, 1] -
A(t) Total tissue (= S + R +∑

m,n[Emn + Imn]) Variable [0, 1] -
Pmn(t) Primary inoculum, strain mn Variable [0,  0] -
Ci(t) Fungicide i concentration Variable ≥ 0 Label dose (fraction of)
t Time Variable ≥ 0 degree-days

g(A) Production of host leaf tissue Function Equation 7 -
Γ(t) Senescence Function Equation 8 -

�F ,m(CF ) Fungicide F growth rate factor, strain m Function Equation 9 -
r Host growth rate Parameter 1.26 × 10−2 degree-days-1
� Infection rate Parameter 1.56 × 10−2 degree-days-1

−1 Latent period Parameter 266 degree-days
�−1 Infectious period Parameter 456 degree-days
 0 Initial inoculum amount Parameter (1.09∕4.2) × 10−2 -
� Inoculum decay rate Parameter 8.5 × 10−3 degree-days-1
qB Between-season sexual reproduction proportion Parameter 0 -
ΛF Fungicide F decay rate Parameter 1.11 × 10−2 degree-days-1
�F Fungicide F curvature Parameter 9.6 Label dose-1
!F Fungicide F asymptote Parameter 1 -
Temerge Start of modelled season Parameter 1212 degree-days
TGS32 First treatment time Parameter 1456 degree-days
TGS39 Second treatment time Parameter 1700 degree-days
TGS61 Senescence begins Parameter 2066 degree-days
TGS87 End of season Parameter 2900 degree-days
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Primary infection174

The modelled season starts at Temerge (Table 1), which corresponds to the emergence of ‘leaf five’175

(Elderfield et al., 2018; van den Berg et al., 2013), rather than the start of the growing season.176

The dynamics between the start of the growing season and Temerge are approximated by the initial177

conditions which are used to subsume both the primary infection and the initial dynamics at the178

start of the season (Elderfield et al., 2018).179

The initial infection comes from a primary inoculum Pmn for strain mn ∈ {rr, rs, sr, ss}. This in-180

oculum is assumed to decay exponentially, at the same rate � for all strains. In fact, aside from181

the effect of the fungicide application, the strains are treated as identical. In particular, this as-182

sumes no fitness cost to the presence of fungicide resistance. Letting t be the time since the start183

of the season (measured in degree-days) and Pmn,0 be the initial amount of inoculum for strain184

mn ∈ {rr, rs, sr, ss}:185

Pmn(t) = Pmn,0exp(−�t). (5)

Host growth186

We define the total amount of tissue187

A = S + Ess + Ers + Esr + Err + Iss + Irs + Isr + Irr + R. (6)
The growth of the wheat crop is given by the following function:188

g(A) = r(1 − A). (7)
The growth is monomolecular (Cunniffe and Gilligan, 2010), and includes density dependence189

such that the rate of production of host tissue decreases as the total amount of tissue (A) increases.190

We non-dimensionalised the tissue quantities so that the maximum leaf area after growth finishes191

is 1. This differs from the scale used by Hobbelen et al. (2013), where tissue quantities are mea-192

sured out of 4.2, the maximum leaf area index (due to vertically stacked leaves). The growth func-193

tion is scaled by a growth rate r.194
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Senescence195

We use the following senescence function Γ:196

Γ(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0.005
(

t−TGS61
TGS87−TGS61

)

+ 0.1e−0.02(TGS87−t), if t ≥ TGS61,

0, if t < TGS61.
(8)

This function is inherited from the models by Hobbelen et al. (2013) and Elderfield et al. (2018),197

and represents the rapid increase in the senescence of healthy tissue towards the end of the sea-198

son. Senescence begins at growth stage 61, t = TGS61 (where we use Zadok’s growth scale for the199

growth of wheat (Zadoks et al., 1974)). Senescence is assumed to only affect tissue from the S200

and E compartments, but the disease is assumed to disrupt this process meaning that there is201

no senescence of tissue in the I compartment. By harvesting time at t = TGS87 we get (almost)202

complete senescence of the healthy tissue.203

Effect of fungicides204

We denote the response of a pathogen strain m to the application of a fungicide F by �F ,m(CF ). The205

chemical concentration changes depending on the time since the chemical was applied, which206

means the pathogen response varies with time (Figure 1D). We assume fungicide applications207

occur instantaneously and that the concentration of fungicide decays exponentially (Figure 1C).208

Two-treatment fungicide programs were found to balance effective control with resistance man-209

agement in van den Berg et al. (2016), so we focus on strategies which have two spray applications210

per year. We assume the two fungicide treatments are applied at TGS32 and TGS39 each year (Table211

1).212

The fungicides decrease the rate of the transition of tissue from healthy to exposed (�), and213

from exposed to infected (
), corresponding to both protectant and eradicant activity (Equations 1214

- 4). Both transition rates are assumed to decrease by the same amount, as inHobbelen et al. (2013).215

The fungicide response �F ,s(CF ) lies in the interval [0, 1], and multiplies each respective transition216

rate (Table 2).217

For a dose CF of a fungicide F , we use dose responses to sensitive strains (Figure 1A,B) of the218

type219

�F ,s(CF ) = 1 − !F
(

1 − e−�F CF
)

, (9)
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Table 2. Effect of fungicides on the pathogen strains in the model. Each value in the interval [0, 1]multipliesthe rate of the transition of tissue from susceptible to exposed (�) and from exposed to infectious (
). Thismeans that the rr strain is unaffected by the presence of fungicide (multiplied by 1), whereas the ss strain hastransition rates reduced by a factor of �A,s�B,s < 1. Note that ‘fungicide effect’ and ‘realised effect’ areequivalent, since �A,r = �B,r = 1, i.e. resistant strains are assumed to be completely unaffected by anapplication of fungicide.

Strain Fungicide effect Realised effect
rr �A,r(CA)�B,r(CB) 1
sr �A,s(CA)�B,r(CB) �A,s(CA)

rs �A,r(CA)�B,s(CB) �B,s(CB)

ss �A,s(CA)�B,s(CB) �A,s(CA)�B,s(CB)

where �F ,s(CF ) is the effect on any strains sensitive to it. Here ! is the maximum effect of the fungi-220

cide and � is a curvature parameter. The curvature parameter � characterises how steeply the221

curve drops, i.e. how sharply the effect on the pathogen depends on the concentration of chem-222

ical (Figure 1A,B). Higher efficacy fungicides have higher values of ! and/or �. We predominantly223

focus on dose responses within a similar parameter range to pyraclostrobin, a high risk strobilurin224

fungicide modelled in Hobbelen et al. (2013). We assume that resistant strains are completely un-225

affected by an application of fungicide, in the same way as Elderfield et al. (2018). This means that226

�F ,r(CF ) = 1 for any fungicide F and concentration CF .227

The net rate of infection for any strain mn is given by the sum of the rates of primary infections228

and secondary infections. The rate of primary infections is given by �A,m(CA)�B,n(CB)Pmn(t), and the229

rate of secondary infection is given by �A,m(CA)�B,n(CB)Imn(t). Initially primary infection contributes230

highly, but since the primary inoculum decays away exponentially it becomes less important rela-231

tive to secondary infections as the season progresses.232
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Figure 1. Fungicide applications limit pathogen growth rates before concentrations decay. Dose response curves for pyraclostrobin (A)and a weaker but slower decaying alternative fungicide (B). We plot �F ,s(CF ), the multiplier on the growth rate for sensitive strains, so that thegrowth rate is unchanged (�F ,s(CF ) = 1) when the chemical concentration is 0, but the growth rate approaches 0 as the concentration ofpyraclostrobin increases (A). However, the weaker fungicide has a maximum efficacy ! = 0.8 (B), meaning that the growth multiplier approaches0.2 (dotted line) at high concentrations. The concentration depends on time since application (C), starting at 0 at the beginning of the modelledseason (1212 degree days as in Elderfield et al. (2018)) and increasing instantaneously at t = 1456 and t = 1700 when the doses are applied,before exponentially decaying with rates that differ here for the two fungicides. The effect of the fungicides correspondingly vary with time sincethe first spray (D). We model scenarios in which two sprays are applied, and here a full dose of both fungicides is applied.
Parameter values: pyraclostrobin: (!, �,Λ) = (1, 9.6, 1.11 × 10−2); weaker alternative fungicide: (!, �,Λ) = (0.8, 7, 8 × 10−3). Pyraclostrobinparameterisation is as in Hobbelen et al. (2013).

Between-season dynamics233

Any remaining primary inoculum from the previous winter is assumed to have decayed entirely234

by the end of the growing season. We assume a constant total initial amount of inoculum in each235
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season (denoted  0), as is used by Hobbelen et al. (2013); Elderfield et al. (2018).236

We keep the proportion of between-season sexual reproduction as a free parameter (qB). Then237

the remaining proportion 1 − qB of the initial population is assumed to be clonal offspring. Initially238

we consider qB = 0 as in Hobbelen et al. (2013); Elderfield et al. (2018). We later scan over all239

possible values of qB to demonstrate the effect of alternative parameter choices.240

We denote the proportion of offspring of strain mn as Xmn, Ymn for the asexual and sexual cases241

respectively. The calculation of these quantities is described below. The levels of primary inoculum242

at the start of the next season are given by:243

Prr =  0
(

(1 − qB)Xrr + qBYrr
)

, (10)
Prs =  0

(

(1 − qB)Xrs + qBYrs
)

, (11)
Psr =  0

(

(1 − qB)Xsr + qBYsr
)

, (12)
Pss =  0

(

(1 − qB)Xss + qBYss
)

. (13)
Let I∗mn be the level of infection for strain mn at the end of the previous modelled season. We244

assume that the fractions of each pathogen strain at the start of a season are calculated based245

only on the fractions of infectious tissue infected by each strain at the previous season’s end, as in246

Hobbelen et al. (2011a). We also define the sum of all disease strains:247

I∗TOT =
∑

m,n
I∗mn. (14)

We may also define Fmn, the frequency of strain mn as a proportion of total disease:248

Frr =
I∗rr
I∗TOT

; Frs =
I∗rs
I∗TOT

; Fsr =
I∗sr
I∗TOT

; Fss =
I∗ss
I∗TOT

. (15)
The proportions of asexual offspring, Xmn, are simply given by:249

Xrr = Frr; Xrs = Frs; Xsr = Fsr; Xss = Fss. (16)
For the sexual offspring Ymn, we assume perfect randommating of unlinked resistance genes in250

a haploid population, which leads to frequencies as in Felsenstein (1965). The unlinked assumption251

is valid unless the loci involved are close together on the same chromosome. A full derivation of252

these frequencies is given in Supplementary Text 1.253

Now defining254

D = FssFrr − FsrFrs, (17)
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we obtain:255

Yrr = Frr −
1
2
D, (18)

Yrs = Frs +
1
2
D, (19)

Ysr = Fsr +
1
2
D, (20)

Yss = Fss −
1
2
D. (21)

Combining the results for Xmn and Ymn leads to the following result:256

Prr =  0
(

Frr −
1
2
qBD

)

, (22)
Prs =  0

(

Frs +
1
2
qBD

)

, (23)
Psr =  0

(

Fsr +
1
2
qBD

)

, (24)
Pss =  0

(

Fss −
1
2
qBD

)

. (25)
Note that the sum of these values gives  0, the total initial amount of inoculum.257

Measures of strategy performance258

Effective life259

FollowingHobbelen et al. (2013, 2011a), we use the term effective life to denote the number of years260

for which a fungicide or fungicide application strategy is effective, meaning growers achieve yields261

above a certain threshold, which we set at 95% of the disease-free yield (Hobbelen et al., 2013).262

We assume that a grower requires a yield above this threshold for economic reasons. We will use263

effective life to assess the effectiveness of the fungicide mixtures we test.264

Selection ratio265

Again followingHobbelen et al. (2011b), we use the term selection ratio as ameasure of how strongly266

a particular strategy results in selection for the resistant strain. They define the selection ratio in267

terms of the frequency of the resistant strain before the first spray and at the end of the growing268

season. We generalise this form to apply to any of our four pathogen strains, so that in any year269

N we use:270

SRmn,N = Φmn,N,end∕Φmn,N,start. (26)
Here Φmn represents the density of strain mn as a proportion of total disease, at the start or end271

of the season. If the selection ratio for a fungicide is greater than 1 then the pathogen strain has272

increased in frequency in year N .273
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Example simulation274

During the season, susceptible host tissue increases in density initially before natural senescence275

later on (Figure 2B,C). The four pathogen strains are affected by the fungicide mixture to different276

extents. The fungicide applications cause the exposed tissue (of sensitive strains) to stop increasing277

(Figure 2D) and the infectious tissue (of sensitive strains) to decay (Figure 2E). This leads to selection278

for resistant strains and a gradual loss in yield over successive seasons due to reduced control of279

the pathogen (Figure 2F). The proportions of the pathogen population carrying resistance to either280

fungicide increase over successive seasons (Figure 2G). This increase in resistance frequency for281

either fungicide (e.g. the strains rs and rr are resistant to fungicide A) is approximately logistic and282

is a result of the selection pressure applied. This is characterised by an initially gradual change in283

resistance frequency before a rapid increase (Figure 2G).284
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Figure 2. Selection for resistant strains within each season leads to yield losses over time. The diagram (A) is a graphical representation ofthe within-season model. The solid lines represent transitions, the dashed lines effects (for example the amount of infectious tissue affects therate of infection) and the dotted line represents the instantaneous arrival of primary inoculum (P ) at the beginning of each season in the model.The pathogen strains are denoted ss, rs, sr and rr, representing the double sensitive, two single-resistant, and the double resistant strain. S, E, I ,
R represent tissue categories: susceptible; exposed; infectious; and removed (B,C,D,E). The modelled season begins at 1212 degree-days(emergence of leaf 5), as in Hobbelen et al. (2013), with fungicide applications at t = 1456 and t = 1700. Over successive seasons, the yielddeclines to below the ‘unacceptable yield’ threshold (95%, F) as the resistance frequencies increase (G). The resistance frequencies for a fungicideare the proportion of total disease caused by strains resistant to that fungicide (e.g. for fungicide A these are strains rs and rr).
Parameter values: default values as used by Hobbelen et al. (2013), doses: (1, 0.5). Fungicides A and B parameterised to match efficacy ofpyraclostrobin. Initial resistance frequencies: (rr, rs, sr) = (10−8, 10−3, 10−6) – note that these are slightly higher than the default values used inlater figures. The disease progress curves are for the 5th growing season. Choosing higher resistance frequencies and a later growing seasonmeans the resistant strains are sufficiently high in density to be visible on the same scale as the sensitive strain.
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Results285

Finding an optimal high-risk mixture strategy286

We seek the optimal dose-pairing to minimise selection for resistant strains and prolong the effec-287

tiveness of the mixture while providing sufficient disease control to be economic. We restrict our288

search to fixed-dose strategies; those strategies for which each year the same dose choices are289

used, although the dose of fungicide A and of fungicide B may differ to each other in the mixture.290

Previous work on high-risk fungicide mixtures has neglected the scenario where frequencies291

of the single resistant strains differ initially. We seek to determine the optimal strategy depending292

on these initial conditions, as well as fungicide parameterisation (dose response and decay rate)293

and the balance of asexual and sexual pathogen reproduction. Initially we assume that there is no294

sexual reproduction in the pathogen population, but we relax this assumption later.295

Dose space296

We define ‘dose space’ as the set of pairs of fungicide doses which take values between 0 and 1,297

since we assume a "full dose" of 1 is the maximum dose that would be permitted (Figure 3A,B,C).298

This allows us to describe all permissible dose-pairs for our fixed fungicide strategy. Different299

choices lead to different effective lives (the number of years for which this strategy gives accept-300

able yields). We seek the optimal region within dose space, which is the region containing dose301

combinations which lead to the longest effective life for the mixture. This is a region rather than302

a single pair of doses, since there may be multiple dose combinations which break down in the303

same (optimal) year (Figures 3A, 4A-D).304

The position and size of the optimal region differs for different initial resistance frequencies,305

different fungicide parameters or different proportions of between-season sexual reproduction306

(for example the optimal regions in Figure 4A-D all differ). To find the optimal region, we use a307

grid of dose choices which discretises both concentrations and considers pairs of doses of each308

chemical (labelled fungicide A and B respectively). This ‘brute-force’ method allows us to simply309

read off which dose combinations are best for a given model parameterisation. This method was310

previously used by Hobbelen et al. (2013), although we use a finer grid of 51 as opposed to 11 (i.e.311

for each parameterisation we consider 512 = 2601 rather than 112 = 121 pairs of doses). We also312

seek a more biologically-motivated and general method to characterise the optimal dose region,313
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depending on characterisations of the pathogen and fungicides (initial levels of resistance, mode314

of reproduction, decay rates and dose-response curves).315

Strategies to test316

We will compare the following candidate strategies:317

• Equal selection in the first year (ESFY),318

• Equal resistance frequencies at breakdown (ERFB).319

We aim to see how these strategies perform relative to the grid search.320

Equal selection in the first year321

When strains are completely resistant to fungicide A and B, Hobbelen et al. (2013) assert that the322

most durable strategy exerts an approximately equal selection pressure on both single-resistant323

strains. They considered situations where the frequencies of the single resistant strains were equal324

initially and showhowequal selection in the first growing season gives the best outcome. Therefore325

we choose this as our first candidate strategy.326

To explore this strategy we define a metric ΩSFY :327

ΩSFY =
SRrs,1

SRrs,1 + SRsr,1
, (27)

where SRmn,1 is the selection ratio for strain mn in year 1, as defined in Equation 26. Then ΩSFY =328

0.5 means there is equal selection for both single resistant strains in the first year of chemical329

application (Figure 3B), whereas ΩSFY > 0.5 means there is greater selection for fungicide A, and330

ΩSFY < 0.5means there is greater selection for fungicide B. There is a curve in dose space defined331

by the doses satisfying ΩSFY = 0.5. In the equal dose-response, equal initial resistant frequency332

case, this contour is the line y = x, for sufficiently large pairs of doses that we get an acceptable333

yield. If the initial resistance frequencies are low enough that density dependent effects have a334

negligible effect on selection, the line still falls approximately along x = y even if the frequencies335

differ (Figure 3).336

Minimal doses (that still achieve sufficient disease control) along the ΩSFY = 0.5 contour are337

equivalent to what was recommended previously (Hobbelen et al., 2013). We will explore this338

strategy (equal selection in first year, low dose), and generalise it slightly to additionally explore a339

strategywhich takes any dose along this contour rather than only consideringminimal doses (equal340

selection in first year). Considering all doses on the contour gives an increased chance of finding341
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good dose combinations, and we are also interested in the relative performance of higher dose342

mixtures relative to lower dosemixtures. We define ‘low doses’ by considering theminimum viable343

and maximum permitted so-called ‘dose sum’ along this contour (we define dose sum as dose of344

fungicide A + dose of fungicide B). Low doses are within the lowest third (arbitrarily chosen) of345

dose sums which give acceptable control, a range which depends on the parameterisation.346

If the initial frequencies of the resistant strains differ – for example for pairs of fungicides that347

were introduced to market at different times – the ESFY recommendation sometimes fails to give348

the optimal outcome (Figures 3A, 4B,D).349

Equal resistance frequencies at breakdown350

We propose an alternative strategy – one that ensures resistance frequencies are equal in the first351

year where the yield becomes unacceptable (the ‘breakdown year’). This takes into account the352

effect of the strategy over its entire course rather than only its first year, and it more effectively353

accounts for differing initial levels of resistance to the two fungicides. This strategy performs as354

well or better when compared to the ESFY strategy, using the default parameterisation and a range355

of initial conditions (Figure 3A,C,D).356

To explore this strategy, we will define another quantity: ΔRFB . This is defined in terms of the357

difference between the (logits of the) single resistance frequencies at breakdown:358

ΔRFB = logit(Irs) − logit(Isr), (28)
where359

logit(x) = log10
( x
1 − x

)

, (29)
and Irs, Isr are the densities of single resistant strains to fungicides A and B respectively, measured360

at the end of the breakdown year. This quantity informs us about the state of the system in the361

breakdown year, and whether our strategy led to a greater degree of resistance to one fungicide362

compared to its mixing partner. The quantities ΩSFY and ΔRFB are conceptually similar, focusing363

on the effect of the strategy on the single resistant strains. However ΔRFB relates to resistance364

frequency in the breakdown year as opposed to selection in the first year (ΩSFY ). We use a different365

function involving logit(Imn) for ΔRFB because the densities of the single resistant strains can be as366

small as 10−10, so a logit scale is more appropriate, whereas because the selection is calculated in367

terms of a ratio, it typically lies between 1 and 10. We choose a logit scale rather than logarithmic368

because the growth of each single resistant strain is approximately logistic.369
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If the resistant frequencies are equal in the breakdown year then ΔRFB = 0. If there is more370

resistance to fungicide A than B, ΔRFB is positive and if there is more resistance to fungicide B371

than A then ΔRFB is negative. There is a contour in dose space described by ΔRFB = 0 (Figure 3A,C).372

We will refer to this as the ΔRFB contour.373

For the identical fungicide pair model parameterisation, some points along theΔRFB contour lie374

in the optimal region (Figure 3A). For these points, resistance frequencies in the breakdown year375

are equal and our strategy is optimal. Note that there are also points along the ΔRFB contour that376

are not optimal – this is because the strength of the mixture must be carefully chosen according377

to the fungicide/pathogen parameters. This process is examined in the wider parameter scan378

below. Note that in Figure 3D the optimal mixture strength is slightly higher than the weakest379

possible mixture strength. This is because the weakest possible mixture strength gives a yield380

in the first year of 95%. Any small increase in resistance then causes strategy failure. A slightly381

higher mixture strength achieves sufficiently good control to withstand these small changes in382

resistance in the early years, but much higher mixture strengths lead to stronger selection for383

resistant strains and hence much poorer resistance management. This trade-off causes the non-384

monotonic shape of the ERFB line in Figure 3D, which shows how effective life varies with mixture385

strength (parameterised as dose sum). Although Hobbelen et al. (2013) suggest that the optimal386

choice of dose is just high enough to provide effective control, this result suggests doses slightly387

higher than minimal are optimal. This result may have been obscured by the coarser 11 by 11 grid388

in dose space in that work.389

The ΔRFB contour is smooth within each effective life region (Figure 3A), but jumps as it moves390

into regions with a different effective life (so different breakdown year). This is because the values391

of ΔRFB are found using the relative amounts of single resistant strains in the breakdown year; in392

each different region the breakdown year differs and the relative amounts do not align exactly in393

different seasons.394

If initial resistance frequencies and fungicide parameterisations are the same, this recommen-395

dation is equivalent to equal selection in the first year as found in Hobbelen et al. (2013) (Figure396

4A). However, the ESFY recommendation may not work if the initial resistance frequencies and397

fungicide parameterisations are not identical. If the initial resistance levels differ then ERFB may398

outperform ESFY (Figure 4B,D). However, we note that if the fungicide parameterisations differ but399

the initial resistance levels are the same, then the two strategies are very closely aligned (Figure 4C).400
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This is because if selection is equal every year then resistance frequencies will be equal at break-401

down. Density dependent effects mean that equal selection in the first year does not guarantee402

equal selection in subsequent years, but this effect is small enough to be ignored in many cases.403

Equalising resistance frequencies at breakdown avoids the situation where resistance develops404

much faster to one fungicide in the mixture, causing it to become ineffective. That would lead to a405

loss of control for that fungicide and a lack of protection offered to its mixing partner, causing the406

mixture to fail more quickly than if resistance frequencies are equal at breakdown.407
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Figure 3. The equal single resistant frequencies at breakdown strategy is optimal in some cases where equal selection in first year is
sub-optimal. A, B, C: ‘Dose space’ for the scenario where the two fungicides are assumed to act with equal efficacy, but the initial levels ofresistance are unequal, with greater levels of resistance to fungicide B initially. The grey region is doses for which the mixture isn’t sufficientlystrong to give acceptable yields even in the first year. The optimal region is the green region with the highest effective life of 12 years (A).Examples of the best doses along each contour are denoted by stars, and the highest permissible doses (strongest mixture) are denoted bycircles. The dotted blue line represents doses where selection is equal after the first year of treatment (the ESFY strategy). There are no dosesalong this contour which lie in the optimal region of dose space. This is an example of a case in which the recommendation given by Hobbelen
et al. (2013) fails. The values of ΩSFY in dose space are shown in (B). The dashed black line represents those doses which lead to equalresistance frequencies for the two fungicides in the breakdown year (the ERFB strategy). Note that there are doses along this contour which fallin the optimal region (A). The ΔRFB contour in dose space is shown in (C). This strategy reacts much more to differing initial levels of resistance.The effective lives are shown against different values of ‘dose sum’ which is the sum of the doses of fungicide A and B, as we move along the
ΩSFY = 0 and ΔRFB = 0 contours (D).
Parameter values: both fungicides with dose response curves and decay rate parameter as per pyraclostrobin (Hobbelen et al., 2013):
(�, !,Λ) = (9.6, 1, 0.0111), initial resistance frequencies: (Irs, Isr, Irr) = (10−7, 10−3, 1.0010009487970706 × 10−10). Hobbelen et al. (2013) use defaultinitial values of 10−5 for the single resistant strains - we chose values 102 bigger/smaller than these values.
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Figure 4. When does equal resistance at breakdown outperform equal selection in the first year? When the fungicides have identical doseresponses, and the initial (single) resistance frequencies are the same, the ERFB and ESFY strategies are equivalent, and both are optimal (A).When the initial frequencies differ, but the fungicide parameterisations are the same, the strategies differ (B), as demonstrated by the differencein location of the ERFB and ESFY contours. Here ERFB outperforms ESFY; the ERFB contour passes through the optimal region but the ESFYcontour does not. When the fungicide parameterisations differ, but initial (single) resistance frequencies are the same, the ERFB and ESFYstrategies are very closely aligned, and both optimal (C). When both fungicide parameters and initial (single) resistance frequencies differ, againthe strategies differ, but ERFB outperforms ESFY (D).
Parameter values:
A,B: Both fungicides with dose response curves and decay rate parameter as per pyraclostrobin (Hobbelen et al., 2013): (�, !,Λ) = (9.6, 1, 0.0111).
C: fungicide A as per pyraclostrobin, fungicide B: (�, !,Λ) = (7.5, 0.95, 0.0111).
D: fungicide A as per pyraclostrobin, fungicide B: (�, !,Λ) = (7, 0.8, 0.0111).
A,C: Equal initial single RFs; (Irs, Isr, Irr) = (10−7, 10−7, 9.992007221626409 × 10−15).
B,D: Different initial single RFs; (Irs, Isr, Irr) = (10−7, 10−3, 1.0010009487970706 × 10−10).
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Table 3. Ranges/values taken by parameters in the scan over values of the between-season sexualreproduction proportion. The range of fungicide decay rates depends on Λ0, set as 1.11 × 10−2 degree days-1as in Table 1. The value of the double resistant strain is fixed such that D = 0 initially, and then we explorewhat happens when the double resistant strain is at a density much lower or higher (10−5 or 105 timeslower/higher) in each case (see Figure 5). Parameters were independently generated and parameter setswere accepted as long as the yield in the first year at full dose was at least 95% of the disease free yield, sothat there was a valid strategy possible.

Parameter Symbol Range/Value Distribution
Pathogen between-season sex proportion qB [0, 1] Uniform
Single resistant strain initial frequencies Imn(0) [10−8, 10−4] Log-uniform
Double resistant strain initial frequencies Irr(0) Varied Fixed by sr, rs strains
Fungicide decay rates Λi

[

1
3
Λ0, 3Λ0

] Uniform
Fungicide asymptotes !i [0.4, 1] Uniform
Fungicide curvatures �i [4, 12] -

The effect of sexual reproduction408

We explored the effect of sexual reproduction for a range of initial frequencies and fungicide pa-409

rameterisations, which were selected randomly and independently (Table 3). We tested the max-410

imum effective life from a grid of 21 by 21 doses with 11 different values of qB between 0 and 1411

for each set of parameters. Three such examples which demonstrate the possible behaviours are412

shown in Figure 5. We refer to each example as a ‘replicate’.413

Initially we explored the initial value of the double resistant strain we expect at linkage equilib-414

rium; meaning the initial value satisfied IrrIss = IsrIrs. These are the frequencies we would find in415

the absence of selection and if frequencies were combined at random. We also demonstrate the416

effect of increasing qB when Irr was not at linkage equilibrium, which could occur due to stochas-417

ticity or due to selection within a season, in the scenario where between-season reproduction was418

not entirely sexual. We tested two alternative scenarios: (i) low double resistant initial density (ii)419

high double resistant initial density. These were set to be 10−4 times lower/104 times higher than420

linkage equilibrium respectively. Although these are exaggerated values compared to the varia-421

tion from linkage equilibrium which might be expected in practice, they demonstrate the way the422

between-season reproduction influences the model output (Figure 5).423

When the initial proportion of double resistant was greater than the value expected from link-424

age equilibrium, higher proportions of sexual reproduction slowed the increase in the double re-425

sistant strain (Figure 5C). The maximum effective life often also increased with higher proportions426
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of sexual reproduction when the initial proportion of double resistant was equal to the linkage427

equilibrium value (replicates 2,3 Figure 5B). This increase in effective life is because the sexual428

reproduction step reduces the amount of the double resistant if there is already an increased pro-429

portion of double resistant strain relative to single resistant strains (see Supplementary Text 2).430

This is clear from the equations for between-season reproduction:431

Prr = Frr −
1
2
qB(FrrFss − FsrFrs) = Frr −

1
2
qBD, (30)

which shows that if D = FrrFss − FsrFrs > 0, then the sexual reproduction step will suppress the432

double resistant strain.433

For replicate 1 (Figure 5B), there is no effect on effective life as qB varies (Figure 5A,B), because434

the suppression of the double resistant strain is offset by an increase in one or both of the single435

resistant strains (Supplementary Text 2). Whether the single resistant strains are sufficient to lead436

to strategy failure depends on whether the fungicides in the mixture are low efficacy, so that each437

mixing partner cannot adequately control the single resistant strain which is sensitive to it.438

For low initial incidences of the double resistant (rr) strain, between-season sexual reproduc-439

tion sometimes acts to decrease the effective life (e.g. replicates 2 and 3, Figure 5A). Interestingly,440

in replicate 2 there is a non-monotonic response (Figure 5A). This is because any amount of sex-441

ual reproduction greatly increases the level of the double resistant strain after the first between-442

season sexual reproduction step. After this, higher levels of sexual reproduction tend can slow443

the increase in the double resistant strain that was caused by selection, or it can have no effect,444

as described above. This behaviour is explored in Supplementary Text 2. As the level of double445

resistant strain increases, the effective life observed tends to decrease. For example in replicate 2446

it decreases from 16 (Figure 5A) to 8 (Figure 5C) when qB = 0.447
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Figure 5. Effect of sexual reproduction proportion depends on the initial level of the double resistant
strain. We examine three randomly generated replicates (Table 3). For each replicate, we consider threepossibilities: low, expected and high double resistant density (A/B/C). To avoid the lines overlapping weshifted each replicate vertically by a small amount, but each effective life should be an integer.
Parameter values: random fungicide parameter values and single resistant frequencies, generated fromdistributions described in Table 3. A: initial double resistant strain (rr) density 10−4 times lower than valuefrom linkage equilibrium (VLE); B: initial rr density at VLE; C: initial rr density 104 times higher than VLE. Values:(prr, prs, psr,ΛA,ΛB , !A, !B , �A, �B) = Replicate 1: (7.049916 × [10−19∕10−15∕10−11], 5.545997 × 10−7, 1.269711 ×
10−8, 0.009758, 0.022030, 0.729797, 0.661193, 7.362942, 6.642679); Replicate 2: (1.085892 ×
[10−15∕10−11∕10−7], 1.596583 × 10−6, 6.801290 × 10−6, 0.007417, 0.009834, 0.574543, 0.706497, 11.143576, 11.170345);
Replicate 3: (2.445955 × [10−15∕10−11∕10−7], 7.155682 × 10−5, 3.417953 ×
10−7, 0.005803, 0.006279, 0.875035, 0.717337, 8.544356, 11.404773).

Previously mixtures were found to outperform alternations in the absence of sexual reproduc-448

tion (Elderfield et al., 2018;Hobbelen et al., 2013). When between-season reproduction is included,449

mixtures still outperformed alternations in every case across 100 tested randomly generated sce-450

narios (Supplementary Text 3).451

Generalising to different pathogen and fungicide parameterisations452

We tested the robustness of the observation that there are optimal dose combinations along the453

ΔRFB contour, and that the ERFB strategy outperforms the ESFY, by testing a wide range of possible454

parameter values. We performed a randomisation scan test across different pathogen and fungi-455

cide parameter values to checkwhether this recommendation applies in different scenarios, includ-456

ing varying levels of between-season sexual reproduction, initial levels of resistance, and fungicide457

dose-responses and decay rates (Table 4). We have seen that the introduction of between-season458

reproduction can have an effect on the maximum effective life (Figure 5), and seek to show that459

the ERFB strategy is still optimal despite this effect and is robust to different initial conditions and460
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fungicide parameter values.461

Choice of pathogen parameters462

The model uses a proportion of between-season sexual reproduction qB . In this section we allow463

qB to vary between 0 and 1, since there is no agreed-upon experimental value that we could use.464

To characterise the pathogen population with respect to the two fungicides, we allow the initial465

level of resistant strains to also vary. We independently choose values for the proportion of the466

population taken up by the two single resistant strains and for the double resistant strain. The467

remaining proportion of the population is the double sensitive strain.468

Choice of fungicide parameters469

The fungicides in themodel are characterised by three parameters: the decay rate of the chemical;470

the curvature parameter; and the asymptote of the dose-response curve. Fungicides with a higher471

curvature or asymptote value are more efficacious. Longer decay rates also increase the efficacy472

of a fungicide. We vary all three parameters for each fungicide in the scan.473

Parameter scan process474

For each simulation in the ensemble, we sampled randomly from independent distributions for475

each parameter (Table 4). We repeated 500 times, giving 500 scenarios with different fungicide476

and pathogen characteristics as described above. In each case, we compared the best effective life477

from the grid to the best ERFB and ESFY outcomes.478

For each parameter combination, we ran the model over a 51 × 51 grid of dose pairings. We479

also found the ERFB and ESFY contours in dose space, and compared the optimal effective life480

from doses on these contours to the optimal value from the grid. The ERFB and ESFY contours are481

not constrained to lie on the set of pairs of doses we used for our grid, and using only these values482

would not necessarily lead to a smooth curve in dose space. Instead we characterised points on483

each contour in terms of the total dose applied, which approximately relates to the strength of the484

mixture. In particular, we identified a set of lines in dose space along which CB = CDS − CA, where485

CA, CB are the concentrations of fungicide A and B, and CDS is the so-called ‘dose sum’ (i.e. dose486

of fungicide A + dose of fungicide B). For each such line we used a numerical optimiser to find487

the single pair of doses which minimised the squared deviation from the relevant value (0 or 0.5488

for ΔRFB and ΩSFY respectively). The optimiser used was ‘minimize’ from the open-source Python489
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Table 4. This table shows the ranges/values taken by parameters in the ERFB robustness scan. Table 1describes the other default parameter values, their sources and their units. The range of fungicide decayrates depends on Λ0, set as 1.11 × 10−2 degree days-1 as in Table 1. Certain parameter combinations wereexcluded to ensure that both ERFB and ESFY were possible, as described in the main text.

Parameter Symbol Range/Value Distribution
Pathogen between-season sex proportion qB [0, 1] Uniform
Single resistant pathogen strain initial frequencies Imn(0) [10−10, 10−3] Log-uniform
Double resistant pathogen strain initial frequencies Irr(0) [10−15, 10−4] Log-uniform
Fungicide decay rates Λi

[

1
3
Λ0, 3Λ0

] Uniform
Fungicide asymptotes !i [0, 1] Uniform
Fungicide curvatures �i [0, 12] -

package ‘scipy.optimize’.490

This process found this point precisely rather than to the ±0.02 that would be obtained using491

the grid. Repeating the process for a total of 100 dose sums CDS identified a smoothly varying492

contour of pairs of doses precisely along the contour and avoiding the rounding error that would493

have been associated with ‘snapping’ to the grid of points. This meant that when effective lifetimes494

were compared, it was possible for the tested strategies to find a higher, equal or lower optimal495

value compared to the grid.496

Restriction on parameter space497

We restricted the parameter scan to only those fungicides for which equal selection in first year and498

equal resistance at breakdownwas possible. For certain particularlyweak fungicides, theminimum499

dose of the mixing partner (required to attain acceptable yield) was sufficiently large that equal500

selection was not possible, or if initial levels of resistance to the mixing partner were high then the501

mixing partner would always break down first.502

We excluded any of these problematic parameter combinations by restricting our scan to those503

for which a full dose of either chemical on its own could give sufficient control (> 95%) at least in504

the first year of application. This restriction corresponded to excluding fungicides which were not505

strong enough to provide adequate control if used as a solo product in the first year, and meant506

that the corners (1,0) and (0,1) of dose space correspond to doses that give acceptable control. The507

restriction was sufficient to ensure that both strategies were viable in each scenario tested.508
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Parameter scan results509

Here we present the results of the parameter scan demonstrating how often the ERFB and ESFY510

strategies are optimal for randomly selected parameter values, rather than only showing ERFB511

worked when using the default parameter values. We want to establish which parameters affect512

the benefit to using ERFBover ESFY, andwhether there are any caseswhere ERFB fails to be optimal.513

We find that ERFB is almost always optimal and explore the few cases where it is sub-optimal in514

Supplementary Text 5.515

The ERFB strategy is optimal in 99% of cases (i.e. 495 out of 500). This means there is at least one516

point along the ΔRFB contour which gives an effective life at least as good as the optimum effective517

life from the grid. The ESFY strategy is less effective, performing optimally in 72% of cases. These518

results are summarised in Table 5. There were only 5 cases where ERFB was sub-optimal (by one519

year only). These cases are described in Supplementary Text 5. Although there are many cases520

where the ESFY strategy performs worse than the ERFB contour, it is usually only one year away521

from the optimum, and is at most 5 years from the optimum. There is a single case in which the522

ESFY strategy outperformed the ERFB strategy by one year. This case is described in Supplementary523

Text 5.524

There was a relationship between the difference in initial frequencies (on a log scale) and im-525

provement in performance from using ERFB instead of ESFY (Figure 6A). This is as expected -–526

the strategy which takes differences in initial frequencies into account (ERFB) more effectively per-527

forms better relative to the other strategy (ESFY) when these differences are larger. There is less of528

a clear pattern when looking at the initial values of the double resistant strain, although notably for529

very large initial values (greater than 10−5) there is no difference in strategy performance, since the530

double resistant strain dominates and causes the loss of control (Figure 6B). This is because the531

improvement of ERFB on ESFY is usually caused by changes in the relative amounts of fungicide A532

and B in the mixture (due to the different positions of the contours). Both fungicide A and B are533

ineffective against the double resistant strain, so changes in the relative amounts of each do not534

increase the effective life if the double resistant strain is the dominant cause of loss of control. For535

smaller levels of the double resistant frequency, larger differences in performance are sometimes536

observed. There is no clear pattern in the performancewhen looking at differences in the fungicide537

asymptote parameter (Figure 6C), which again suggests that the initial frequencies are the most538
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Table 5. This table shows the results of the ERFB robustness parameter scan, which tested 500 differentrandomly generated scenarios. ‘Cases worked’ is the number/percentage of runs in which the strategy was atleast as durable as the optimal strategy from the 51 × 51 grid. ERFB worked in all but 5 exceptional caseswhich were within one year of the optimum, whereas ESFY (low dose) and ESFY (all doses) both failed to giveoptimal results in 28% of cases. ERFB worked every time to within one year whereas both ESFY tactics were atleast two years from the optimum in over 10% of cases (12.4% for all doses, 12.6% for low doses only). Thecases where ERFB was sub-optimal are addressed in Supplementary Text 5.

Strategy Cases worked Cases worked (%)
Equal resistance frequency at breakdown 495 99%

Equal selection in the first year 360 72%

Equal selection in the first year, low dose 360 72%

Table 6. We split the ΔRFB contour into 3 depending on the dose sum, splitting evenly into thirds betweenthe minimum and maximum viable values on the contour. Minimum values are determined by the lowestdoses to give acceptable yields, and maximum are determined by the largest dose sum such that both dosesare less than or equal to 1. Low strength mixtures were optimal in 99% of cases, meaning their effective lifewas at least as good as the maximum value obtained on the 51 by 51 grid. There are 5 (i.e. 1% of cases) inwhich there were ERFB was not optimal (as explained in Supplementary Text 5), so low strength mixtureswere optimal in every case in which ERFB was optimal. Note that in some cases there were optimal values inmore than one segment of the contour, meaning that these percentages do not sum to 100. In only 3.8% ofcases did high strength mixtures perform optimally (and in these cases low doses were also optimal).

Strategy Optimal runs Optimal runs (%)
Low strength 495 99%

Medium strength 90 18%

High strength 19 3.8%

important feature in terms of whether ERFB outperforms ESFY.539

These results mean we can use the ΔRFB contour to conceptually reduce the problem of dose540

selection from a two-dimensional problem (choice of two doses) to a one-dimensional problem:541

‘how far along the ΔRFB contour is best?’ In other words, we have established that single resistance542

frequencies should be equal in the final year, and the only remaining question is: ‘how strong543

should the mixture be?’544

On analysing the parameter scan, we find that whenever the ERFB strategy is successful, low545

doses are optimal (Figure 6D/Table 6). To define ‘low doses’ we split the contour into 3 based on the546

dose sum between the minimum and maximum viable dose sums (acceptable yields and dose≤ 1)547

along the contour. There are a small number of cases for which high doses perform equally well,548

but for the vast majority of points in Figure 6D lower doses are preferable (and in no case are high549

doses better).550

So the optimal strategy when initial resistance frequencies vary is to pick low doses along the551
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equal resistance in breakdown year contour. These doses are often very close to minimal, but552

usually fractionally stronger than weakest possible acceptable mixtures. This ensures that small553

losses of control due to small increases in resistance are insufficient to push the strategy below554

the 95% threshold, as we saw in Figure 3D.555
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Figure 6. Initial resistance frequencies drive the improvement in the ERFB strategy over ESFY. A,B,C: we plot the difference between theeffective life of the ERFB strategy and the ESFY strategy for each of the 500 scenarios in the parameter scan (Table 4). The equal resistance atbreakdown strategy always produces an equal (black) or better (blue) effective life when compared to equal selection in first year (all doses)strategy. The quantity on the x-axis of subplot A is the log difference in the single resistance frequencies |log(Irs,0) − log(Isr,0)|. Subplot B showsthe double resistant frequency on the x-axis, while subplot C shows the ‘asymptote metric’, !A∕(!A + !B), where !F is the asymptote of thedose-response curve for a fungicide F (Table 1/Figure 1). Values away from 0.5 indicate greater differences in maximum efficacy for the twofungicides. There is a single case where ESFY outperforms ERFB (red), so that ERFB EL - ESFY EL is negative – this case is explored inSupplementary Text 5.In the examples tested in the parameter scan, low doses were equal (green) or better (purple) than high doses (D). The quantity on the y-axis ofsubplot D, ‘high/low dose metric’ is ELlow∕(ELlow + ELℎigℎ), which is the maximum effective life offered by doses on the low or high sections ofthe ERFB contour.

Discussion556

Optimising deployment of fungicides in order to delay spread of fungicide resistant strains remains557

a major challenge (Cunniffe et al., 2015a). Previous work has indicated that optimal mixtures of558
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pairs of fungicides which are both at a high risk of resistance can be constructed by using pairs of559

doses which select equally for both single resistant strains in the first year of application (Hobbelen560

et al., 2013). However, we have shown that this recommendation can give sub-optimal results in561

the common real-world case in which the initial levels of resistance to the chemicals are not equal562

(Figures 3, 4). We have presented an alternative strategy which gave optimal results essentially all563

of the time across a broad scan (Tables 4, 5, Figure 6). This was an improvement when compared564

to the existing strategy recommendation which was optimal 72% of the time, where we tested a565

range of epidemiological and fungicide efficacy parameters, as well as different initial conditions566

for the proportion of single- and double-resistant pathogen strains. When the initial single resistant567

frequencies differed by at least 10−4, the mean difference in effective life for the strategies was 1.01568

years with a range of 0 to 4 years and the mean effective life of the equal resistance frequencies at569

breakdown (ERFB) strategy was 10.75 years. The average improvement in this case (as a percentage570

of the optimal ERFB effective life) was 7.61% with a range of 0 to 28.57%.571

The strategy which consistently gave optimal results required doses which make the single re-572

sistance frequencies equal in the breakdown year. That means that the levels of resistance to each573

fungicide in themixture are equal in the year that the yield becomes unacceptable due to pathogen574

evolution. This concept was shown to work even when fungicide parameters (asymptote, curva-575

ture and decay rate) and pathogen parameters (initial frequencies and between-season sexual576

reproduction proportion) were varied (Tables 4, 5). The equal resistance frequency at breakdown577

strategy can be framed in biological terms rather than the purely mathematical framework relied578

on by a naive grid-search method. This leads to the following general and practically applicable579

recommendations:580

• reduce doses of fungicides which have higher levels of existing resistance;581

• lower doses are preferable to higher;582

• relatively lower doses of the higher efficacy fungicide in the mixture are preferable;583

• higher efficacy could be in terms of: the decay rate (slower decaying); the curvature (the584

effectiveness increases more rapidly with dose); or the asymptote (the maximum level of585

control for that chemical).586

The first point means that equal selection in the first year (ESFY) is only optimal if the initial587

resistance levels are sufficiently close, or equal as in Hobbelen et al. (2013). If they differ, the588
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mixture should be adjusted such that selection isweaker for the fungicidewith an increased level of589

existing resistance, such that the two single-resistant strains reach equal frequency as the mixture590

becomes unable to achieve acceptable levels of control. Conversely, in the limit as initial resistance591

to one fungicide decreases, its optimal dose increases towards full dose and the dose of themixing592

partner decreases to minimal levels required to give control. This matches the recommendation593

given by Elderfield et al. (2018) about mixtures of low-risk and high-risk fungicides. Although the594

idea of low doses and relatively lower doses of higher efficacy fungicides have been presented595

before (Hobbelen et al., 2013), they have only previously been tested in the absence of pathogen596

sexual reproduction. We have confirmed that these recommendations also apply when there is597

between-season sexual reproduction (Figure 6D).598

The requirement that single resistance frequencies were equal at breakdown defines a curve of599

possible dose pairings in dose space (the ERFB contour, see Figures 3, 4). This contour starts from600

a minimum viable mixture strength and runs to a maximum viable strength in dose space due to601

legal limitations on doses i.e. the point on the contour at which the dose of either fungicide first602

reaches 1. The parameter scan showed that low doses along this contour were optimal in virtually603

every case (Table 6, Figure 6D). The 5 exceptions are described in Supplementary Text 5 and were604

based on an edge effect caused by the 95% yield threshold - meaning that in these cases greater605

control was achieved in the final year by higher doses of either fungicide A or B despite slightly606

worse resistance management.607

The parameter scan results can be extended to awider range of fungicides than explicitly tested608

in the scan. This is because there is a mathematical link between the curvature and dose param-609

eters which means two fungicide/dose combinations are equivalent if the curvature multiplied by610

chemical concentration is constant. This means that two fungicides with the same asymptote and611

decay rate parameters, but different curvatures can be treated as identical with an appropriate612

scaling of dose – see also Supplementary Text 4). This means that the ERFB strategy is optimal613

across many more choices of the curvature parameters than were explicitly tested in the scan.614

Although sexual reproduction has a major role in the population genetics of Septoria (Chen615

and McDonald, 1996; Singh et al., 2021), it has been omitted from previous models of fungicide616

resistance (Hobbelen et al., 2013; Elderfield et al., 2018), justified because Septoria spreads largely617

clonally within season. We use the simplest model of sexual reproduction, that mating is fully ran-618

dom between unlinked loci and only occurs between seasons. Although loci may be linked for619
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genes which are close together on the same chromosome, resistance of Septoria to some high-620

risk fungicide classes is conferred by mutations to genes on different chromosomes, leading to621

independent assortment. For example, resistance to methyl benzimidazoles are caused by muta-622

tions to chromosome 1 whereas resistance to succinate dehydrogenase inhibitors can be caused623

by mutations to chromosome 4, 7 or 8 (Hartmann et al., 2020). The proportion of sexual repro-624

duction between seasons is assumed to be constant, despite evidence that sexual reproduction625

is influenced by density of infection (Suffert et al., 2018; Eriksen et al., 2001). We showed that626

changing the between-season sexual reproduction proportion had an effect on the maximum ef-627

fective life (Table 3, Figure 5). However, we showed that the inclusion of sexual reproduction did628

not affect the optimal strategy recommendation for a variety of different values of the proportion629

of between-season sexual reproduction (Table 5). Further, the model already normalises for den-630

sity each year in the constant inoculum assumption which was used in previous models (Elderfield631

et al., 2018; Hobbelen et al., 2013). Although the model neglects within-season sexual reproduc-632

tion, we explored scenarios where all between-season reproduction was sexual, meaning that we633

have explored scenarios involving extensive pathogen sexual reproduction. Our results apply to634

haploid pathogens, although the situation may be more nuanced in the diploid case. The insec-635

ticide literature suggests that higher doses of insecticide mixtures can be preferable in tackling636

resistance in sexually reproducing diploid pest species, particularly in combination with refugia637

(Andow and Zwahlen, 2006).638

The question of mixtures vs alternations is still under debate (Corkley et al., 2021), but we639

showed that high-risk mixtures outperform alternations when between-season reproduction oc-640

curs (Supplementary Text 3), which has previously only been shown in the case without pathogen641

sexual reproduction (Hobbelen et al., 2013).642

Although these results apply to the wheat-Septoria pathosystem, they could potentially trans-643

fer to other pathosystems that are managed by mixtures of high risk fungicides. Future work may644

consider extending these ideas to such pathosystems e.g. grapevine powdery mildew (Elderfield645

et al., 2018) or potato blight (Pacilly et al., 2018; Cohen and Rubin, 2020). However, we also note646

that past research on mixtures containing a high risk fungicide and a low risk fungicide (Elderfield647

et al., 2018) showed a remarkable consistency of optimal recommendation across pathosystems648

and model structures, and we have no reason to believe results would differ for other pathosys-649

tems.650
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The same ideas should generalise to mixtures of three or more fungicides - all modes of action651

in themixturewould need balancing in a similarmanner. However, furtherworkwould be required652

to confirm this and to explore other strategies possible with more fungicides such as alternations653

with three chemicals or varying pairs of two chemicals. Although growers use three-way fungicide654

mixtures (Phelan, 2017), to the best of our knowledge, no modelling study exists of a mixture of655

three or more fungicides as applied to Septoria. Three-way fungicide mixtures were also tested656

for their control of Phytophthora infestans on tomato or potato and Plasmopara viticola on grape657

(Samoucha, 1987). Combining our results with those of Elderfield et al. (2018) would suggest that658

a full dose of a low-risk chemical combined with minimal doses along the ERFB contour is likely to659

produce the longest effective life for a three-way mixture containing two high-risk fungicides and660

one low-risk fungicide (applied to Septoria).661

In commonwith all theoretical studies, a number of assumptions weremade in themodel used662

to generate these results. For example, we do not consider spatial effects (Shaw, 2000; Parnell663

et al., 2005, 2006), which could explore how resistance might develop on a regional scale. Man-664

agement decisions made by one grower affect the entire community due to dispersal of aerial665

inoculum (Laranjeira et al., 2020). Future work might address how decisions made by growers can666

adversely affect others, and what policy changes can be used to incentivise sustainable behaviour.667

A spatially explicit model would also allow reactive diseasemanagement to be optimised (Cunniffe668

et al., 2015b, 2016), which would correspond to levels of fungicide treatment depending on local669

disease intensity, or even the results of a decision support type system (Carisse, 2010; Jorgensen670

et al., 2017; Lázaro et al., 2021).671

Emergence of new resistant strains is not considered (Hobbelen et al., 2014), nor is partial re-672

sistance (Mikaberidze et al., 2017; Hobbelen et al., 2013), cross-resistance (Rehfus et al., 2018) or673

fitness costs (Mikaberidze et al., 2014; Mikaberidze and McDonald, 2015). Strong fitness costs to674

resistance could prolong effective lives by reducing the overall benefit of carrying resistance. If the675

double-resistant strain carried the strongest penalty, we would expect the ERFB strategy to still676

hold since the single resistant strains become a relatively greater threat to control (and the ERFB677

strategy performs well at managing the single resistant strains). Similarly inclusion of partial re-678

sistance would further extend effective lives, since then resistant strains would be suppressed to679

some extent by the fungicide. We believe that the ERFB strategy would still hold in this case; future680

work would be needed to confirm this.681
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There is no stochasticity in the model, so variation within a growing season and between differ-682

ent growing seasons is ignored (te Beest et al., 2008), as is precise timing of fungicide applications683

(van den Berg et al., 2013, 2016). Effects of host plant resistance (Mikaberidze andMcDonald, 2020;684

Carolan et al., 2017) and of multiple pathogens (where the crop is infected by e.g. brown rust as685

well as Septoria (Garin et al., 2018)) are neglected. These various factors potentially have effects on686

the strength of mixture required, although different relative dosages of the two fungicides could687

still be used to give greater protection to the chemical at most urgent threat.688

Future work might focus on exploring total lifetime yield (Elderfield et al., 2018) or economic689

output (te Beest et al., 2013; van den Bosch et al., 2020) rather than effective life. The latter would690

involve incorporating the price of grain into the calculations, as well as the cost of each fungicide691

application and other costs from each year’s farming. Using economics rather than effective life692

would likely incentivise lower doses in general, and relatively higher doses of cheaper fungicides693

if the difference in price relative to efficacy was significant. For instance, if a cheap high efficacy694

fungicide were used, lower doses might be best for effective life, but higher doses might lead to695

cost savings within an individual year. In a systemwhere grain prices are high, each additional year696

of relatively high yield is very valuable, so resistance management becomes the most important697

factor. This means economics would probably only change where it is optimal within the small698

region of dose space which contains the maximum effective life. In a system where grain prices699

were relatively low, then minimising doses of expensive fungicides may become a higher priority700

than choosing a strategy which is optimal for resistance management. These factors are impor-701

tant when considering policy changes to incentivise sustainable use of fungicide mixtures. Use of702

modelling to inform policy change on sustainable agriculture should be informed by agronomic,703

environmental, economic, and social considerations (Mouratiadou et al., 2021).704

The breakdown in the final year recommendation may seem less practical than a first year rec-705

ommendation, since it may be difficult to predict the future evolution of the pathogen population,706

leading to greater uncertainty in the recommendation. However, points in dose space that are707

close to the optimal ones usually also have a long effective life (Figure 4). This means that even if708

the estimates of the initial resistance frequencies or other parameters are imperfect, a good deci-709

sion that is close to the optimal can bemade. Themodel could be used to find the best estimate for710

the optimal dose-pairing given imperfect information about the levels of resistance or fungicide pa-711

rameters. It can be difficult to estimate the proportion of resistance strains particularly when their712
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incidence is very low (van den Bosch et al., 2014a) and there is regional variation (Garnault et al.,713

2019). However, as the resistance frequencies increase and become easier to reliably estimate,714

the model output could be updated with an improved estimate for the corresponding optimal715

dose combination. As is invariably the case, more complex disease management recommenda-716

tions (such as the equal resistance at breakdown recommendation) require good prior knowledge717

for good outcomes (Hyatt-Twynam et al., 2017).718

There are some practical criticisms which can be made – for example, growers typically apply719

doses inmultiples of a quarter of a full dose. Thismeans that a very precise theoretical prescription720

for an optimal dosemay not be used under current practices. However, our results show that pairs721

of fungicides should be used in such a way as to avoid resistance developing too rapidly to either722

component of the mixture. This may be achievable to an extent even if we restrict our attention723

to multiples of quarter-doses. Further, if modelling shows that using more precise doses would724

result in dramatic increases in the durability of a particular fungicide mixture then they should be725

recommended.726

An interesting area for future work would be to consider time varying disease management727

strategies. Given that the resistant frequencies vary each year, it may be possible to prolong the728

effective lifetime by increasing dose as the level of resistance increases (and the reliability of esti-729

mates resistance frequency improves). Further, it would allow other strategies like alternating the730

use of mixtures that favour fungicide A or B, which could outperform strategies that are static in731

time. We hope to address these questions in future work. One approach to this would be to use732

optimal control theory (Bussell et al., 2019; Bussell and Cunniffe, 2020, 2022), another would be to733

use dynamic programming (Bellman, 1952; Onstad and Rabbinge, 1985).734

Availability of code online735

An implementation of themodel in the freely-available programming language Python (Python Soft-736

ware Foundation, available at http://www.python.org) is online at https://github.com/nt409/HRHR.737
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Supplementary Text 1916

Between-season sexual reproduction – derivation917

For between-season sexual reproduction, we assume that the recombination is random, so
that each (haploid) offspring has an equal probability of inheriting each allele from either
(haploid) parent (Supplementary Text 1 Table 1). We have two unlinked (assumed) loci, each
with two alleles: resistant or sensitive.

918

919

920

921

Pathogen strains ss sr rs rr

ss ss ss/sr ss/rs ss/sr/rs/rr
sr ss/sr sr ss/sr/rs/rr rr/sr
rs ss/rs ss/sr/rs/rr rs rr/rs
rr ss/sr/rs/rr rr/sr rr/rs rr

922

Supplementary Text 1 Table 1. The possible offspring of sexual reproduction between parentsgiven by the left column and top row are shown. For those entries which contain four strains, theprobability of each is 1∕4, so each number is accordingly scaled. Similarly those entries containing twostrains each have probability 1∕2. Note that both parents and offspring are haploid; for example srcorresponds to a haploid which carries the allele for sensitivity (s) to fungicide A on one chromosome,and the allele for resistance (r) to fungicide B on another.

923

924

925

926

927

928929

Let Fmn denote the frequency (a proportion ∈ [0, 1] of total disease) of strain mn immedi-
ately before the single, instantaneous round of between-season sexual reproduction which
we model. Let Ymn represent the frequency of strain mn immediately afterwards. Then col-
lecting together all the terms, we find:

Yss = F 2
ss +

1
2
(FssFsr + FsrFss) +

1
2
(FssFrs + FrsFss) +

1
4
(FssFrr + FrrFss) +

1
4
(FsrFrs + FrsFsr)

= F 2
ss + FssFsr + FssFrs +

1
2
FssFrr +

1
2
FsrFrs, (31)

and similarly:
Ysr = F 2

sr + FsrFss + FsrFrr +
1
2
FssFrr +

1
2
FsrFrs, (32)

Yrs = F 2
rs + FrsFss + FrsFrr +

1
2
FssFrr +

1
2
FsrFrs, (33)

Yrr = F 2
rr + FrrFsr + FrrFrs +

1
2
FssFrr +

1
2
FsrFrs. (34)

930

931

932

933

934

935

936

937

938

939

940

This can be simplified by noting that, Fss + Fsr + Frs + Frr = 1, and that, using the ss strain
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as an for example:
Yss = Fss(Fss + Fsr + Frs + Frr) −

1
2
FssFrr +

1
2
FsrFrs

= Fss −
1
2
FssFrr +

1
2
FsrFrs. (35)

Now define:
D = FssFrr − FsrFrs. (36)

Then we find:
Yss = Fss −

1
2
D; Ysr = Fsr +

1
2
D; Yrs = Frs +

1
2
D; Yrr = Frr −

1
2
D. (37)

941

942

943

944

945

946

947

948

949

950

951

952

953

This form is equivalent to that of Felsenstein (1965) for a haploid population, with two
alleles at two loci and discrete generations (we use Fmn in place of their xi). We assume that
the recombination fraction r = 1∕2, corresponding to the two loci being unlinked. We also
assume that the probability of surviving from meiosis to fertilisation is equal for all strains,
in line with our assumption that the strains behave identically in the absence of fungicide.

954

955

956

957

958
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Supplementary Text 2959

Between-season sexual reproduction – effect on the model960

Depending on initial resistance frequencies and fungicide parameterisations, we can ob-
serve:

961

962

• non-monotonic response in maximum effective life as qB increases (Supplementary
Text 2 Figure 1A);

963

964

• no effect on maximum effective life as qB increases (Supplementary Text 2 Figure 1B);965

• monotone increase in maximum effective life as qB increases (Supplementary Text 2
Figure 1C).

966

967

968

Supplementary Text 2 Figure 1. Three effects are possible with sexual reproduction. This figureis exactly as in Figure 5 (main text), but highlighting the three qualitative behaviours we see as theproportion of sexual reproduction (qB ) increases. These are: (A) non-monotonicity; (B) no change ineffective life; and (C) monotonic increase in effective life as qB increases. Parameter values: as inFigure 5 (main text); random fungicide parameter values and single resistant frequencies, generatedfrom distributions described in Table 3. A: initial double resistant strain (rr) density 10−4 times lowerthan value from linkage equilibrium (VLE); B: initial rr density at VLE; C: initial rr density 104 timeshigher than VLE. Values: (prr, prs, psr,ΛA,ΛB , !A, !B , �A, �B) = Scenario 1:(7.049916 × [10−19∕10−15∕10−11], 5.545997 × 10−7, 1.269711 ×
10−8, 0.009758, 0.022030, 0.729797, 0.661193, 7.362942, 6.642679); Scenario 2:(1.085892 × [10−15∕10−11∕10−7], 1.596583 × 10−6, 6.801290 ×
10−6, 0.007417, 0.009834, 0.574543, 0.706497, 11.143576, 11.170345); Scenario 3:(2.445955 × [10−15∕10−11∕10−7], 7.155682 × 10−5, 3.417953 ×
10−7, 0.005803, 0.006279, 0.875035, 0.717337, 8.544356, 11.404773).

969

970

971

972

973

974

975

976

977

978

979

980

981

982983

For medium or high initial levels of the double resistant, we typically only see the latter
two behaviours (no change or monotone increase). This is because sexual reproduction
acts to suppress the double resistant strain, as shown by the between-season equation for
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the rr strain:
Prr = Frr −

1
2
qBD. (38)

Therefore if D = FrrFss − FsrFrs > 0, we expect a decrease in the level of double resistant
after the sexual reproduction step (for any qB > 0, i.e. any non-zero amount of sexual repro-
duction). Note that D > 0 is equivalent to Frr > FsrFrs∕Fss. Initially Fss ≈ 1, so the threshold
FsrFrs∕Fss ≈ FsrFrs. The effect of sexual reproduction decreasing the rate of the double resis-
tant strain increasing is particularly clear in Supplementary Text 2 Figure 2H, and is present
but to a lesser extent in Supplementary Text 2 Figure 2D.

984

985

986

987

988

989

990

991

992

993

994

995

996

When the effective life is the same across different levels of sexual reproduction, this is
caused by increases in the single-resistant strains relative to the asexual case (Supplemen-
tary Text 2 Figure 2E,F,I,J). This offsets the decrease in the double-resistant strain. Whether
the single or double resistant strain plays the major role in yield losses depends on the ef-
ficacy of the fungicides – very high efficacy fungicides are capable of controlling the single
resistant strains since one component of the mixture remains effective. For example, rel-
atively good control of the single resistant strains in Supplementary Text 2 Figure 2A,B,C
means that the effective life is quite long, since it takes a long time for the double resistant
to reach sufficiently high frequencies to reduce yields below 95%. In contrast, poor control
from fungicide A and good control from fungicide B in Supplementary Text 2 Figure 2D,E,F
means that the strains resistant to fungicide B (strains sr, rr) rapidly increase in density and
lead to loss of control whilst strain rs declines.

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

If the level of double resistant is very low (Frr < FsrFrs∕Fss), then D < 0 and the double
resistant increases in density (Supplementary Text 2 Figure 2A). This increase is only seen
in the first year, after which point the double resistant remains at a level at least as high as
FsrFrs∕Fss, due to the greater selection for the rr strain in comparison to the other strains ev-
ery year. The non-monotonic effect is due to even low levels of sexual reproduction leading
to an increase in the double resistant after the first off-season, but higher levels of sexual
reproduction again suppressing the double resistant strain in subsequent years. This is
shown by the decreased gradient of sexual proportion qB = 1 vs sexual proportion qB = 0.5
in Supplementary Text 2 Figure 2A.

1009

1010

1011

1012

1013

1014

1015

1016

1017
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1018

Supplementary Text 2 Figure 2. Higher between-season sexual reproduction slows the double
resistant strain. Three different scenarios, demonstrating the three qualititative behaviours fromSupplementary Text 2 Figure 1: non-monotonicity in effective life as qB increases; no change ineffective life as qB increases; monotonic increase as qB increases. The dotted line is the effective life ofthe asexual reproduction case. Note that here we compare full dose of both fungicides in each case,whereas in Supplementary Text 2 Figure 1 and main text, Figure 5, we compare the optimal dose fromthe 21 by 21 grid of doses in each case. The randomly generated scenarios that we show here aredifferent to any shown in Supplementary Text 2 Figure 1, but here we are comparing somethingdifferent (full dose rather than optimal dose). NB the subplots in each column are for the samescenario, but the scenarios are completely different between columns (not just a change in initialresistance frequencies).

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Left column: the ‘non-monotonicity’ case. In this example the double resistant strain is lower thanthe value at linkage equilibrium (VLE) by 10−4. Here high values of qB , or qB = 0 give longer effectivelives than intermediate values. Middle column: the ‘no effect’ case. In this example the doubleresistant strain is at VLE. Here there is a faster increase in the double resistant strain when qB = 0 (D)but this is offset by reduced growth of the single resistant strains (E,F). Right column: the ‘monotoneincrease’ case. In this example the double resistant strain is higher than the VLE by 104. Here thefaster growth of the double resistant strain when qB = 0 causes a shorter effective life than we see inthe case where qB takes larger values.

1030

1031

1032

1033

1034

1035

1036

1037

Parameter values. Generated at random: ( Irr, Isr, Irs, !A, !B , �A, �B , ΛA, ΛB ) = left column: (
1.085892 × 10−15, 6.8012899586885546 × 10−6, 1.596583402894029 × 10−6, 0.574543, 0.706497, 11.143576,
11.170345, 0.007417, 0.009834 );middle column: ( 1.140463 × 10−10, 1.545001824789278 × 10−6,
7.38107054353044 × 10−5, 0.983611, 0.82889, 9.581831, 5.728716, 0.032598, 0.003884 ); right column: (
1.121325 × 10−10, 1.0174155443038875 × 10−6, 1.1002632709098869 × 10−8, 0.697464, 0.480298, 5.136889,
5.748469, 0.016088, 0.011044 ).

1038

1039

1040

1041

1042

10431044
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Supplementary Text 31045

Between-season sexual reproduction – mixtures vs alternations1046

We now explore the effect of varying the between-season sexual reproduction qB on the
model output and the optimal strategy. To check that mixtures outperform alternations
whenbetween-season sexual reproductionwaspresent, we ran a simple scanwhere between-
season reproduction was entirely sexual. The case where reproduction was entirely asex-
ual has previously been examined in Hobbelen et al. (2013); Elderfield et al. (2018), and
mixtures were found to outperform alternations.

1047

1048

1049

1050

1051

1052

We tested 100 randomly generated scenarios (Supplementary Text 3 Table 1). We var-
ied the asymptote, curvature and decay rate parameters of both fungicides, as well as the
initial resistance frequencies, ignoring any parameter sets where either of the alternation
strategies had an effective life of 0 (i.e. could never achieve a yield ≥ 95%). Using a grid of
51 × 51 doses, we checked whether the maximum effective life from the mixture tactic in
each case was greater than or equal to the maximum effective life from either alternation
tactic (applying fungicide A first each year or applying fungicide B first each year). In every
case, themixture tactic was at least as good as either alternation tactic (Supplementary Text
3 Figure 1).

1053

1054

1055

1056

1057

1058

1059

1060

1061

Variable Range/value Distribution
Initial proportion, strain rs, sr [10−10, 10−4] Log-uniform
Initial proportion, strain rr [10−15, 10−6] Log-uniform
Fungicide asymptote [0.4, 1] Uniform
Fungicide curvature [4, 12] Uniform
Fungicide decay rate A [1∕3Λ0, 3Λ0] Uniform

1062

Supplementary Text 3 Table 1. Bounds for the parameter scan used to confirm that mixturesoutperform alternations. For this scan we used a grid of 51 × 51 doses, and checked that themaximum effective life from the mixture grid was greater than or equal to the maximum from thealternation grid for each example. We tested the case where between-season reproduction wasentirely sexual. Unless stated above, all other parameters take their default values (see Table 1). Notethe fungicide decay rate range depends on Λ0, which is 1.11 × 10−2 degree days-1 as in Table 1.

1063

1064

1065

1066

1067

10681069
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1070

Supplementary Text 3 Figure 1. Mixtures outperform alternation even with between-season
sexual reproduction. Here are the optimal effective lives from 100 randomly generated scenarios.The scenarios are arranged from smallest to largest effective life of the mixture strategy. Here weconsider the optimal dose from a 51 by 51 grid. Parameter values: randomly generated, seeSupplementary Text 3 Table 1.
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10751076
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Supplementary Text 41077

Parameter scan – link between curvature and dose1078

The following argument will show the link between curvature and dose which allows us to
generalise the parameter scan results (Tables 5, 6 and Figure 6) to a wider range of fungi-
cides. In particular, we show that any pair of fungicides with identical decay rate and asymp-
tote but differing curvature can be considered to behave identically with an appropriate
change of dose. To meet legal dose requirements (doses less than 1), we note that this
applies to any higher efficacy fungicides (increased curvature) than those tested, and some
lower efficacy ones (see below).

1079

1080

1081

1082

1083

1084

1085

For a dose C of a fungicide F , we use dose responses of the type
�F ,s(C) = 1 − !

(

1 − e−�C
)

, (39)
where �F ,s(C) ≤ 1 is the factor by which the rates of the transition of tissue from healthy to
latent (�), and from latent to infected (
) are reduced. Now define � as the effect on sensitive
strains:

�(C) = 1 − �F ,s(C) = !
(

1 − e−�C
)

. (40)

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

Wealso assume fungicide concentrations decay exponentially, so that tunits after a dose
application the concentration will be:

C(t) = (C0 +D)exp(−Δt), (41)
whereΔ is the decay rate, C0 was the concentration immediately before the application, and
D was the applied dose.

1096

1097

1098

1099

1100

1101

1102

Consider a pair of fungicides 1 and 2which differ only in their curvature, i.e. have param-
eters (!, �1,Δ) and (!, �2,Δ). Then if we apply a dose of fungicide 2 such that

C2 =
C1�1
�2

= KC1, (42)
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then we find:
�1(C1) = !

(

1 − exp
(

− �1(C0 +D)exp(−Δt)
))

, (43)
�2(C2) = !

(

1 − exp
(

− �2
(C0 +D)�1

�2
exp(−Δt)

))

= !
(

1 − exp
(

− �1(C0 +D)exp(−Δt)
))

= �1(C1). (44)

1103

1104

1105

1106

1107

1108

1109

1110

1111

That is, if fungicide 1 has a curvature that is a factor of K bigger than fungicide 2, we can
apply doses that are a factor ofK smaller than fungicide 2. Thenwe end upwith an identical
form for �1 and �2, and so an identical form for �1,s(C1) and �2,s(C2), even when accounting for
the decay in concentration over time. This means that the two fungicides behave identically
if these doses are applied (Supplementary Text 4 Figure 1).

1112

1113

1114

1115

1116

1117

Supplementary Text 4 Figure 1. Fungicides with different curvatures can behave identically
with appropriate dose choice. One fungicide has a curvature �ℎ = 10 and the other has a curvatureof �l = 5. Both have the same asymptote and decay rate, which is required for this effect. Thisparameterisation results in the former fungicide having a higher efficacy (A, B). Applyingappropriately scaled doses: Dℎ = Dl�l∕�ℎ, so that Dl = 1, Dℎ = 0.5, (C), the effect is identical (D). Sincethe lower efficacy fungicide has half the curvature, it requires double the dose.

1118

1119

1120

1121

1122

1123

Parameter values: higher efficacy fungicide �ℎ = 10. Lower efficacy fungicide: �l = 5. Both haveasymptote ! = 0.8 and decay rate Λ = 1.11 × 10−2. Doses applied in B: (Dℎ, Dl = 0.5, 1).
1124

11251126
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Legal dose caveat1127

Note that to ensure that we remain within legal requirements for doses (C < 1), we require
that

C2 =
C1�1
�2

≤ 1, (45)
so the parameter scan analysis can only directly be transferred to fungicideswith curvatures
satisfying

�2 ≥ �1C1,optimal. (46)

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

Sinceminimal doses tend to be optimal, this means our results may be generalised for a
range of fungicides that are lower or equal efficacy than those in the scan (�1C1,optimal ≤ �2 ≤

�1), and any fungicides that are higher efficacy (higher curvature than �1).

1138

1139

1140

For instance, if a particular fungicide with curvature 8 had an optimal dose of 0.25 in a
mixture, then we could apply our results to any fungicide with curvature � ≥ 8 × 0.25 = 2,
using optimal dose 2∕� ≤ 1.

1141

1142

1143
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Supplementary Text 51144

Parameter scan – sub-optimal runs1145

Runs in which equal resistance frequencies at breakdown was sub-optimal1146

There were initially 8 runs of the 500 for which equal resistance frequencies at breakdown
(ERFB) appeared to not give optimal results. However, when re-running so that a much
larger number of doses along the contourwere chosen (500 and in a narrower range around
the optimum), 3 of these cases were found to be optimal, leaving only 5 runs that were
sub-optimal after the more computationally intensive search. The remaining 5 runs (Sup-
plementary Text 5 Figure 1) the results remained sub-optimal by one year even when the
denser grid was used. Parameter values for these runs are in Supplementary Text 5 Table
1.

1147

1148

1149

1150

1151

1152

1153

1154

In each of these cases, the optimal region is very small. There is a much larger region
which achieves an effective life within one year of the optimal value. In this larger region,
the resistancemanagement offered is relatively good. The doses in the optimal region offer
better control in that year than the surrounding region. The location of this region depends
on the efficacy of the two fungicides, and in these 5 cases the ERFB contour does not pass
through the optimal region. We examine one of these runs (scenario B) in Supplementary
Text 5 Figure 2.

1155

1156

1157

1158

1159

1160

1161

Some dose-pairs near the optimal region are sub-optimal effective lives because they of-
fer slightly poorer control, despite good resistancemanagement. Other higher dose choices
near the optimal region are sub-optimal because the poorer quality resistancemanagement
is bad enough to not offset the greater control caused by higher doses in the final year.
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1163

1164

1165
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1166

Supplementary Text 5 Figure 1. All sub-optimal runs. All 5 sub-optimal runs are shown, here on a101 by 101 grid. In each case the optimal region is very small and gives a one year improvementrelative to the best dose along the ERFB contour. In each case the contour narrowly misses theoptimal region.
1167

1168

1169

1170

Parameter values: see Supplementary Text 5 Table 1.11711172
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A B C D E
!A 0.492317 0.812490 0.815263 0.814526 0.924196

!B 0.637730 0.692780 0.675103 0.806968 0.930859

�A 6.816520 2.951951 10.259259 7.407919 4.753716

�B 9.333866 7.009989 3.628018 9.627502 10.083944

ΛA 0.003854 0.004001 0.013152 0.011560 0.012227

ΛB 0.009849 0.006771 0.005065 0.004593 0.004933

prr 7.540441 × 10−8 1.165713 × 10−9 1.679725 × 10−9 3.379948 × 10−9 2.632505 × 10−10

prs 2.332734 × 10−5 5.311738 × 10−10 2.214624 × 10−9 8.008551 × 10−9 1.153372 × 10−9

psr 2.697823 × 10−6 1.312246 × 10−10 5.736566 × 10−4 2.206591 × 10−5 5.557970 × 10−8

qB 0.6347437 0.6778327 0.488108 0.282625 0.108196

1173

1174

Supplementary Text 5 Table 1. Parameter values for the sub-optimal runs shown in SupplementaryText 5 Figure 1.1175

11761177
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1178

Supplementary Text 5 Figure 2. Final year control causes the small number of exceptions
where the ERFB strategy is sub-optimal. The optimal strategy achieves a yield of 95.003% in year 12,compared to the ERFB strategy which achieves 94.92% in this year (B). The optimal strategy fails in year13, whereas the ERFB strategy fails in year 12 (A). Despite lower incidences of all resistant strainsunder the ERFB strategy, (F, G, H), the control offered by the doses is lower in year 12, since the doseof fungicide B is much lower. Each resistant strain increases faster under the optimal strategy,meaning that the differences in frequency increase over time (C, D, E).

1179

1180

1181

1182

1183

1184

1185

Parameter values: see Supplementary Text 5 Table 1, scenario B. Doses: optimal = 0.18, 0.2, ERFB
= 0.185, 0.175.1186

11871188

Taking the first of the sub-optimal examples (Supplementary Text 5 Figure 1A), we see
that for a small perturbation in initial resistance frequencies this effect disappears and ERFB
is optimal (Supplementary Text 5 Figure 3). This supports the conclusion that the effect is
caused by control in the final year, which is why every sub-optimal run of the 500 was only
worse than the optimal by a single year. By the failure year, usually resistance frequencies
are increasing rapidly and yield is falling steeply (main text, Figure 2F, 2G). This is why it
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is rare to have such a small optimal region; more commonly all doses within a larger op-
timal region are further above 95% in the penultimate year and further below 95% in the
breakdown year.

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

Supplementary Text 5 Figure 3. ERFB is optimal under small perturbation of initial conditions
of sub-optimal run. This is the sub-optimal run with a grid size of 201 by 201. The optimal region isvery small and outperforms ERFB because the increased control in offered by a higher dose offungicide B (A). However, a small perturbation away from the initial conditions removes this effect,and we find that the ERFB strategy is optimal again (B). Here the green region no longer exists and theoptimum effective life is now 9 (yellow).

1199

1200

1201

1202

1203

1204 If we gradually decrease resistance frequencies, the scenario can change from something analogousto panel B to something analogous to panel A. This is because the doses which achieve yieldsfractionally above 95% in the final year may not be the same as those which are best for longer termresistance management, since control and resistance management may not align in any given year. Inpractice there are very few cases where this phenomenon is observable, as shown by the fact it doesnot impact 99% of cases.

1205

1206

1207

1208

1209

1210

Parameter values:1211

Pathogen parameters, A: see Supplementary Text 5 Table 1, scenario A.1212

Pathogen parameters, B: (IBrr , IBrs, IBsr, IBss) = (1.1 × IArr , 0.9 × IArs, 1.1 × IAsr, 1 − IBrr − IBrs − IBsr).12131214

Run in which equal selection in the first year outperformed equal resistance

frequencies at breakdown

1215

1216

There was a single case out of the 500 in which equal selection in the first year (ESFY) gave
an improved output relative to ERFB. Here the best ERFB effective life matched the optimal
value from the 51 by 51 grid, but the best ESFY effective life was one year greater than this
optimal grid value (Supplementary Text 5 Figure 4). Note that Supplementary Text 5 Figure 4
uses a denser grid of 201 by 201 to adequately illustrate this effect. See also Supplementary
Text 5 Figure 5. Note that the comparison in the parameter scan was between the 51 by 51
grid, ESFY and ERFB; it is possible that there are other cases where a finer grid might find
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small regions which achieve one year greater than the ERFB optimum and the 51 by 51 grid
optimum.

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

Supplementary Text 5 Figure 4. The single case where ESFY outperformed ERFB. In this case theESFY contour passes through the optimal region, but the ERFB contour does not. This was the onlycase in which this happened. Although ERFB is sub-optimal on the 201 by 201 grid, it was optimal onthe coarser 51 by 51 grid.
1227

1228

1229

1230

Parameter values: Initial frequencies: Irr = 1.3122930696727086 × 10−10,
Irs = 1.3687346286628245 × 10−7, Isr = 9.216054320447214 × 10−7, Iss = 0.9999989413898756.
qB = 0.0334369453801207. Fungicide parameters: !A = 0.5100900734551262, �A = 5.336781378462673,
ΛA = 0.003895561458581, !B = 0.8667335745106877, �B = 4.618154403228932, ΛB = 0.0080007828566827.

1231

1232

1233

12341235

60 of 61

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 26, 2022. ; https://doi.org/10.1101/2022.02.14.480407doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480407
http://creativecommons.org/licenses/by-nd/4.0/


1236

Supplementary Text 5 Figure 5. The single case where ESFY outperformed ERFB - explained.The optimal strategy achieves a yield of 95.002% in year 11, compared to the ERFB strategy whichachieves 94.99% in this year (B). The optimal strategy fails in year 12, whereas the ERFB strategy fails inyear 11 (A). In this case the ERFB strategy selects less strongly for the rs and rr strains but morestrongly for the sr strain.

1237

1238

1239

1240

1241

Parameter values: Initial frequencies: Irr = 1.3122930696727086 × 10−10,
Irs = 1.3687346286628245 × 10−7, Isr = 9.216054320447214 × 10−7, Iss = 0.9999989413898756.
qB = 0.0334369453801207. Fungicide parameters: !A = 0.5100900734551262, �A = 5.336781378462673,
ΛA = 0.003895561458581, !B = 0.8667335745106877, �B = 4.618154403228932, ΛB = 0.0080007828566827,Doses: ESFY = 0.19, 0.26, ERFB = 0.215, 0.23.

1242

1243

1244

1245

12461247
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