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Abstract 14 

Selective pressures on DNA sequences often result in signatures of departures from neutral 15 

evolution that can be captured by the McDonald-Kreitman (MK) test. However, the nature of 16 

such selective forces mostly remains unknown to the experimentalists. Here we use the bag of 17 

marbles (bam) gene in Drosophila to investigate different types of driving forces behind positive 18 

selection. We examine two evolutionary models for bam. The Conflict model originates from a 19 

conflict of fitness between Drosophila and Wolbachia that causes reciprocal adaptations in each, 20 

resulting in diversifying selection on the bam protein. In the alternative Buffering model, 21 

Wolbachia protects bam from deleterious mutations during an infection and thereby allows such 22 

mutations to accumulate and even fix in the population. If Wolbachia is subsequently lost from 23 

the species, mutations that revert the gene back towards its original biological function become 24 

advantageous. We use simulations to show that both models produce signals of positive 25 

selection, though the levels of positive selection under the Conflict model are more easily 26 

detected by the MK test. By fitting the two models to the empirical divergence of D. 27 

melanogaster from an inferred ancestral sequence, we found that the Conflict model reproduced 28 

strong signals of positive selection like those observed empirically, while the Buffering model 29 

better recapitulated the physicochemical signatures of the amino acid sequence evolution at bam. 30 

Our demonstration that the Buffering model can lead to positive selection suggests a novel 31 

mechanism that needs to be considered behind observed signals of positive selection on protein 32 

coding genes. 33 

 34 

Introduction 35 

Patterns of DNA sequence variation within and between species have increasingly been 36 

used to infer the evolutionary forces that have acted on genes and genomes. Over the past three 37 

decades, many tests of fit to a model of neutral evolution have been developed, with one of the 38 

most widely applied being that proposed by McDonald and Kreitman (McDonald and Kreitman 39 

1991) and referred to as the McDonald-Kreitman (MK) test. The basis of this test is a 40 

comparison of the ratios of nonsynonymous and synonymous fixed differences between species 41 

to those segregating as polymorphisms within species using a 2x2 contingency test (e.g., Fisher’s 42 

Exact Test, Chi-Square test, or G-test). Synonymous variation acts as a proxy for neutral 43 

variation (or at least variation that does not directly alter the protein sequence of genes), with an 44 
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excess of nonsynonymous fixed differences between species typically interpreted as evidence 45 

that some form of natural selection has accelerated the fixation of advantageous amino acid 46 

replacements. This pattern is often referred to as positive selection and is interpreted to mean that 47 

natural selection has been fine tuning the protein function of the gene or responding to a 48 

changing function, and/or that the gene is involved with intra- or inter-genomic conflict 49 

(McLaughlin and Malik 2017). Although the MK test has been found previously to have low 50 

power to detect positive selection, particularly when applied to single genes (Akashi 1999; Zhai 51 

et al. 2009), there are many empirical reports in the literature of significant departures in the 52 

direction of positive selection (e.g., Eyre-Walker 2006). The obvious question from the 53 

experimentalist’s perspective is what evolutionary mechanisms are driving such signatures of 54 

positive selection. 55 

We have studied the population genetics of two Drosophila genes that are critical for 56 

gametogenesis in D. melanogaster (bag of marbles, bam, and Sex-lethal, Sxl) and they both show 57 

evidence, using the MK test, of episodic bursts of positive selection (Bauer DuMont et al. 2007; 58 

Flores et al. 2015a; Bauer DuMont et al. 2021). These genes genetically interact with the 59 

endosymbiont bacteria Wolbachia pipientis in that Wolbachia rescues the reduced fertility of a 60 

partial loss-of-function bam mutant and the reduced egg production of multiple partial loss-of-61 

function Sxl mutants (Starr and Cline 2002; Flores et al. 2015b; Bubnell et al. 2021). The bursts 62 

of positive selection in bam in only certain lineages of Drosophila is consistent with the episodic 63 

nature of bacterial infections and the heterogeneous presence of Wolbachia reported across the 64 

genus (Richardson, et al. 2012; Turelli, et al. 2018; Meany, et al. 2019). These observations, 65 

along with the knowledge that functional divergence in bam is seen primarily in females, and 66 

that maternally-inherited Wolbachia physically resides in the germarium and manipulates 67 

reproduction of its host (Flores et al. 2015b) led Bauer DuMont et al. (2007), Flores et al. 68 

(2015a) and Flores et al. (2015b) to propose that evolutionary conflict between the host 69 

(Drosophila melanogaster) and Wolbachia over the control of reproduction may drive the 70 

observed positive selection at bam.  71 

Here, we explore the dynamics of protein sequence evolution under two evolutionary 72 

models that we hypothesize could be responsible for the burst of positive selection we see at 73 

bam. The first is a classic arms race conflict model. In this model, we assume that Wolbachia 74 

infection is detrimental to a germline reproductive process in which bam is involved. For 75 
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example, Wolbachia may manipulate bam in a way counterproductive to the fitness of the fly. 76 

Under arms race dynamics, we would expect positive selection to favor diversifying amino acids 77 

in bam that result in Drosophila’s escape from the deleterious impact of Wolbachia on their 78 

fitness. We term this the Conflict model. Note that while we model this as an evolutionary 79 

conflict, selection associated with a strong directional shift in function would be similar in 80 

outcome in many ways.  81 

Secondly, we propose and evaluate a new model of interaction that is based on the nature 82 

of the observed genetic interactions of Wolbachia with bam and Sxl. Wolbachia partially rescues 83 

the fertility defects of a single amino acid replacement hypomorphic mutant of bam (Flores et al. 84 

2015b, Bubnell et al. 2021) as well as for several hypomorphic alleles of Sxl (Starr and Cline 85 

2002) in D. melanogaster. We posit that in the presence of Wolbachia, slightly deleterious 86 

mutations may accumulate in the bam gene without significantly reducing bam’s function. When 87 

Wolbachia is lost from the population, there is positive selection for new nonsynonymous 88 

mutations that return the bam protein sequence to its initial, and assumed optimal, functional 89 

state. We term this model the Buffering model, as the effects of deleterious mutations are 90 

“buffered” during periods of infection by Wolbachia. 91 

We carry out evolutionary simulations to explore the population genetic consequences for 92 

sequence evolution at bam for both conflict and buffering interactions between the endosymbiont 93 

Wolbachia and the Drosophila host. With these models, we first reaffirm the resultant adaptive 94 

evolution of a theoretical arms race conflict and assess the likelihood that the alternative 95 

buffering type of interaction can also result in signatures of positive selection detectable with the 96 

MK test. We then evaluate the robustness of these models to variation in selection coefficients 97 

and duration of Wolbachia infection, and test our ability to distinguish between the two models 98 

using a measure of amino acid similarity (Miyata et al. 1979). Finally, using model parameters 99 

tuned to the observed sequences of bam in D. melanogaster, we evaluate evidence from the 100 

observed sequence divergence of bam in D. melanogaster compared to its common ancestor with 101 

D. simulans to see if we can discriminate as to which model (Conflict or Buffering) better 102 

captures the signatures of the bursts of positive selection observed at bam. 103 

 104 

Materials and Methods  105 

Simulation setup using SLiM 3.5 106 
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The evolution of bam was simulated under a Wright-Fisher model using nucleotide-based 107 

simulation in SLiM 3.5 (Haller and Messer 2019; Haller et al. 2019). We inferred the ancestral 108 

DNA sequence of the exons in bam (1338 nucleotides) for Drosophila melanogaster and 109 

Drosophila simulans using maximum likelihood with codeML v4.8 (Yang 2007). Briefly, 110 

alignments of seven Drosophila coding sequences were made using PRANK v.170427 111 

(Löytynoja 2014), including sequences of D. melanogaster, D. simulans, D. sechellia, D. 112 

yakuba, D. erecta, D. eugracilis, and D. pseudoobscura. The alignment was input in codeML 113 

and an ancestral sequence was estimated by maximum likelihood for the common ancestor of D. 114 

melanogaster and D. simulans, using the other species’ sequences as outgroup references. The 115 

estimated common ancestral nucleotide sequence was then used in SLiM as the starting sequence 116 

for the entire population in each simulation. 117 

The evolutionary parameters in the simulations were based on empirical estimates and 118 

then scaled to make the simulations run efficiently (summarized in Table 1). The reported 119 

evolutionary parameters from empirical observations were an effective population size (Ne) of 120 

1e6 (Campos et al. 2017), an overall mutation probability (𝜇) of 2.8e-9 per nucleotide per 121 

generation (Keightley et al. 2014), an average recombination rate (𝜌) of 1e-8 per nucleotide per 122 

generation (Comeron et al. 2012) and a divergence time t of 25 million generations (2.5 million 123 

years assuming 10 generations per year) from the common ancestor to each species (Russo et al. 124 

1995). These parameters were then scaled down by 1,000 to run more efficient simulations by 125 

using a smaller population and shorter simulation time while keeping the key products, Ne𝜇, Ner 126 

and Ne/t constant to approximate the same evolutionary process (Haller and Messer 2019). 127 

Hence, in each Wright-Fisher simulation, we have 1) a scaled population size Ne of 1,000 diploid 128 

individuals, 2) a mutation matrix representing a Kimura (1980) model with transition rate 𝛼 and 129 

transversion rate 𝛽 of 1.88e-6 and 0.47e-6 respectively (calculated from a scaled mutation rate 130 

𝜇=2.8e-6 and an observed 2:1 transition:transversion ratio in the sequences (Keightley et al. 131 

2009)), 3) a scaled recombination rate 𝜌 of 1e-5 and 4) 25,000 scaled generations for the 132 

divergence time t. We simulated bam as a single contiguous exon, though in reality there are two 133 

short introns (61 and 64 bp). The effect of excluding these introns had a negligible impact on the 134 

rate of recombination. 135 

We observed 85% of the codons in bam encode the same amino acids in both D. 136 

melanogaster and D. simulans reference sequences, likely due to functional constraints (example 137 
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classifications are show in supplemental fig. S1). Thus, we used this metric as a baseline in our 138 

initial simulations and first randomly sampled 75% of the codons among the 1338 nucleotide 139 

sites from the identical amino acids in the ancestral sequence to be constrained to the original 140 

amino acids. The rest of the identical amino acids (10% of the total amino acids) were assumed 141 

to be under completely neutral evolution, while the other 15% unidentical amino acids were 142 

under selection based on the setup of our models. A nonsynonymous mutation in the conserved 143 

codons was always assigned a selection coefficient s = -0.1, so that it would undergo strong 144 

purifying selection (Nes = -100 in our simulations). Note that the fitness of an individual in SLiM 145 

is calculated multiplicatively as (1+s) when it carries a homozygous mutation of selection 146 

coefficient s and (1+hs) when the mutation is heterozygous, where h is the dominance 147 

coefficient. In all our simulations, the dominance coefficient of any mutation was set to a 148 

constant of 0.5. A mutation in the neutral codons was always assigned a selection coefficient s = 149 

0.  150 

Each simulation run began with a neutral “burn-in” period of 20,000 simulation 151 

generations (=20×scaled Ne) to accumulate genetic variation consistent with an equilibrium state 152 

of mutation-drift balance before non-neutral dynamics started. Note that during this neutral 153 

period, mutations occurring at the conserved sites were still assigned a selection coefficient of s 154 

= -0.1 to retain the functionally constrained amino acid positions. At the end of the neutral “burn-155 

in” period all new variations (fixations and polymorphisms) were retained in the simulation. 156 

However, the “reference sequence” in SLiM that is used to track the substitutions in the 157 

population and to assign selection coefficients in the upcoming non-neutral phases of the 158 

simulation, was manually reset to the original estimated ancestral sequence inferred from PAML. 159 

We did this so the selection coefficients of subsequent new mutations would be based on the 160 

particular amino acid change encoded by the new mutation compared with the original inferred 161 

ancestral sequence.   162 

For each selection phase of the simulations, the absolute value of selection coefficient |s| 163 

for each positively or negatively selected mutation in the 15% of codon sites under selection was 164 

fixed for the duration of each simulation. The beneficial mutations were assigned a selection 165 

coefficient of s > 0 while deleterious mutations had a selection coefficient s < 0. To determine 166 

the fitness effect of each mutation, we explored several correlated measures of amino acid 167 

substitutions (e.g., Grantham et al. 1974; Miyata et al. 1979; Henikoff and Henikoff 1992). We 168 
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used the amino acid matrix of Miyata et al. (1979), which captures the primary features of 169 

biochemical and physical differences between amino acid pairs but does not take empirical 170 

protein sequence conservation into account, since some of our changes were going to be 171 

positively selected, and not conserved. We henceforth refer to the pairwise measures from the 172 

Miyata matrix as “Miyata scores (MS)” and use them to determine whether a mutation is neutral 173 

(synonymous, no change in the encoded amino acid) or under positive or negative selection 174 

(nonsynonymous, MS between the original amino acid and the mutated amino acid ≠ 0) in each 175 

selection scenario. Below, we will use a shorthand for Miyata score calculations as follows, with, 176 

for example, MS between the current amino acid and the mutated amino acid represented as 177 

MS(AAcur, AAmut).  178 

 179 

Selection regimes  180 

Wolbachia infections have been observed to be temporally dynamic in host populations, 181 

being lost at times and then regained, even from another species of Drosophila (Richardson et al. 182 

2012; Turelli et al. 2018; Meany et al. 2019). Thus, each model has two selection phases: one 183 

with selection parameters to represent a period of Wolbachia infection and another to represent a 184 

period of Wolbachia absence in the population. There are four different selection schemes: 1a) 185 

Wolbachia-infection phase in the Conflict model, 1b) Wolbachia-absence phase in the Conflict 186 

model, 2a) Wolbachia-infection phase in the Buffering model, and 2b) Wolbachia-absence phase 187 

in the Buffering model. The phases of infection and absence of Wolbachia alternated in each 188 

model, which simulated the periodic occurrence of Wolbachia in natural populations. To keep 189 

the simulations simple, we assume that Wolbachia infection and loss is instantaneous throughout 190 

the entire population and that there are no other effects of Wolbachia on the host beyond which 191 

we are modeling. 192 

The Conflict model was implemented based on a traditional arms race model. In the 193 

Wolbachia-infection phase, we assume that Wolbachia’s presence drives the positive selection of 194 

Drosophila by favoring the nucleotide changes that lead to biochemically more diversified amino 195 

acids to “escape” the present function which may be targeted by Wolbachia’s harmful impact. In 196 

this case, all the nonsynonymous mutations that give rise to biochemically different amino acids 197 

from the current states (MS(AAcur, AAmut) > 0) were positively selected for, with selection 198 

coefficients s > 0 (fig. 1, top).  199 
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In the Wolbachia-absence phase of the Conflict model, there is no evolutionary conflict 200 

between bam and Wolbachia and thus no selective pressure on the host to adapt. Under these 201 

conditions, we assume that the current amino acid sequence functions adequately such that the 202 

DNA sequences in the population remain largely unchanged and the bam gene is under purifying 203 

selection to preserve the present amino acid sequences. In this case, nonsynonymous mutations 204 

leading to amino acid changes (MS(AAcur, AAmut) > 0) are considered deleterious with selection 205 

coefficients s < 0 (fig. 1, top). 206 

The second evolutionary model, the Buffering model, is built on the observation that 207 

Wolbachia offers a functional buffer for deleterious mutations in bam and rescues what would be 208 

reduced fertility of its host in the absence of Wolbachia. During the Wolbachia-infection phase, 209 

Wolbachia somehow functionally alleviates the deleterious effects of certain nonsynonymous 210 

mutations and makes them effectively neutral. Under this scenario, mutations leading to 211 

divergent amino acids different from the ancestral state (MS(AAanc, AAmut) > 0) are all regarded 212 

as neutral (fig. 1, bottom) and thus can accumulate, albeit slowly due to drift alone. If Wolbachia 213 

infection is lost, these previously buffered mutations are now deleterious, and new mutations 214 

leading to amino acids that converge back towards the initial amino acid ancestral states are 215 

favored as there is selective pressure for bam to regain its original optimal function. In this case, 216 

a mutation that converts the current amino acid to a mutated amino acid that is biochemically 217 

more similar to the ancestral amino acid (MS(AAanc, AAmut) – MS(AAanc, AAcur) < 0) is 218 

beneficial with a selection coefficient s > 0, while divergent mutations (MS(AAanc, AAcur) – 219 

MS(AAanc, AAcur) > 0) are deleterious with selection coefficients s < 0	(fig. 1, bottom).  220 

The above models capture two types of potential driving forces behind the signatures of 221 

positive selection observed on the bam gene. However, these models make many idealized 222 

assumptions about amino acid evolution based on Miyata scores and thus are regarded as the 223 

“Base” models. For instance, in the Conflict model, any nonsynonymous mutation would be 224 

positively selected during the presence of Wolbachia. However, mutations that lead to 225 

biochemically similar amino acids with homogeneous functions may not bear such strong 226 

selective advantages compared to the original ones and could be regarded as almost neutral, 227 

while the mutations giving rise to extremely dissimilar amino acids may completely lose their 228 

original functionality and thus be deleterious. To incorporate these more realistic biological 229 

assumptions, we set up additional “Complex” models based on empirical observations to 230 
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determine whether a mutation would be neutral, beneficial, or deleterious. For example, 231 

Demogines et al. (2013) identified adaptively evolving sites in the transferrin receptor gene TfR1 232 

in wild rodents to include amino acids R, K, N, I, and T, which corresponds with pairwise 233 

Miyata scores ranging from 0.4 to 3.37. Likewise, Charron et al. (2008) propose sites in the plant 234 

gene eIF4E to be in an arms race conflict with viral proteins, which includes those with amino 235 

acids L, P, and A that give pairwise Miyata scores ranging from 0.06 to 2.76. We found that the 236 

Miyata scores for all proposed positively selected residues in these studies ranged from 0.05 to 237 

3.37, with the majority of scores falling between 1.5 and 2.5. 238 

With the above proposition, in the complex Conflict model when Wolbachia is present, 239 

nonsynonymous mutations that give rise to biochemically similar amino acids (0 < MS(AAcur, 240 

AAmut) ≤ 1) are regarded as neutral with selection coefficients s = 0 (fig. 2, top); mutations 241 

leading to mildly different amino acids (1 < MS(AAcur, AAmut) ≤ 3) are considered beneficial 242 

with selection coefficients s > 0 (fig. 2, top); and mutations become deleterious with selection 243 

coefficients s < 0 when they generate extremely dissimilar amino acids (MS(AAcur, AAmut)  > 3) 244 

(fig. 2, top), as they are likely to disrupt the biological function of bam. These cutoffs are 245 

consistent with the range of Miyata scores found at sites that are proposed to be adaptively 246 

evolving in response to an evolutionary conflict. In the Wolbachia-absence phase in the complex 247 

Conflict model, to preserve the current amino acid sequences, we still assume that mutations 248 

leading to similar amino acid changes (0 < MS(AAcur, AAmut) ≤ 1) are considered neutral, but 249 

any mutation that causes a dissimilar amino acid change (MS(AAcur, AAmut) > 1) is deleterious 250 

with a selection coefficient s < 0 (fig. 2, top). 251 

Unlike the complex Conflict model, we have insufficient empirical observations to guide 252 

our selection cutoffs for a complex Buffering model. For simplicity, we adopted the same 253 

selection schemes used in the complex Conflict model to represent one biologically plausible 254 

possibility for the interaction. When Wolbachia is infecting in the complex Buffering model, any 255 

mutation that gives rise to a mildly biochemically different amino acid from the ancestral state (0 256 

< MS(AAanc, AAmut) ≤ 3) is regarded as neutral with selection coefficients s = 0 (fig. 2, below) 257 

due to the protection by Wolbachia. However, mutations are considered deleterious with 258 

selection coefficients s < 0 when they generate extremely dissimilar amino acids (MS(AAanc, 259 

AAmut)  > 3) (fig. 2, bottom), since they are likely to disrupt the biological function of bam. 260 

When Wolbachia is lost from the population, only mutations that converge back towards the 261 
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biochemical characteristics of the initial ancestral state relative to the current amino acid are 262 

favored (MS(AAanc, AAmut) – MS(AAanc, AAmut) < -1) with a selection coefficient s > 0, while 263 

the more divergent mutations (MS(AAanc, AAmut) – MS(AAanc, AAcur) > 1) are deleterious with a 264 

selection coefficient s < 0	(fig. 2, bottom). Any mutation in between (-1 ≤ MS(AAanc, AAmut) – 265 

MS(AAanc, AAcur) ≤ 1) is considered neutral (s = 0) since it does not cause a radical functional 266 

change in the amino acid to increase or decrease the fitness of an individual. Below, we test the 267 

evolution of bam under both the “base” and “complex” models to investigate how 268 

implementation of different fitness parameterizations for the base and the complex Miyata score 269 

ranges affect our simulation results. 270 

 271 

Simulation parameters 272 

 We focused on investigating the impacts of two key parameters on the evolution of the 273 

Drosophila species in each of the proposed models: 1) the magnitude of the selection coefficient 274 

for both beneficial and deleterious mutations, and 2) the length of alternating Wolbachia-275 

infection and Wolbachia-absence phases in each model in which the different selection phases 276 

occur. The absolute values of selection coefficients included |s| = 0.1, |s| = 0.01, and |s| = 0.001, 277 

resulting in Ne|s| = 100, Ne|s| = 10, and Ne|s| = 1 respectively, where Ne|s| = 1 can be considered 278 

effectively neutral. The lengths of different selection phases varied from equal periods of 12,500, 279 

6,250, and 3,125 simulation generations (corresponding to one, two, and four Wolbachia 280 

infection-loss cycle(s) respectively in a total divergence time of 25,000 simulation generations). 281 

For each set of parameter combinations, we ran 50 independent simulations and performed 282 

downstream analyses including the MK test, inferences of 𝛼 (the proportion of amino acid 283 

fixations driven by positive selection; Smith and Eyre-Walker 2002), and Miyata score 284 

differences between the ancestral and evolved sequences. All these downstream analyses were 285 

conducted every 3,125 simulation generations (the shortest phase length in our simulation setup) 286 

after the neutral burn-in period, by comparing the “reference sequence” in SLiM to the common 287 

ancestral sequence of D. melanogaster and D. simulans. For the MK test, 100 diploid individuals 288 

were randomly sampled from the population and nonsynonymous and synonymous fixations 289 

(relative to the inferred ancestral sequence) and polymorphisms present were tabulated. 290 

 291 

Analyses of simulated sequences 292 
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 The MK test was used to evaluate departures from an equilibrium neutral model 293 

consistent with positive selection and was implemented with a custom script modified from the 294 

iMKT package (Murga-Moreno et al. 2019) to include mutations at 2-fold degenerate sites which 295 

the standard iMKT package implementation ignores. Polymorphisms and divergences found at 4-296 

fold degenerate sites were considered synonymous and those found at 0-fold degenerate sites 297 

were considered nonsynonymous. If there was a polymorphism or divergence at a 2-fold site, the 298 

site was classified based on the synonymous or nonsynonymous nature of the resultant amino 299 

acid. Any sites in codons with a change at more than one position were rare in our simulations 300 

and ignored. The Fay et al. (2001) correction for low frequency polymorphisms was applied, 301 

counting only polymorphisms > 5% frequency to avoid including deleterious variation 302 

segregating in the populations. Significance of the MK test was determined by Fisher’s exact 303 

test. An estimate of the proportion of amino acid causing nonsynonymous substitutions driven to 304 

fixation by positive selection (𝛼 = 1 − !!""
!""!

) was calculated from the input values of the MK test 305 

following Smith and Eyre-Walker (2002). We also calculated the “true 𝛼” in the simulations by 306 

tracking the actual fraction of nonsynonymous substitutions in bam that were driven to fixation 307 

by positive selection in the simulation. Since the selection coefficient of a mutation could change 308 

as Wolbachia was gained and lost from the population, any mutation that once had a selection 309 

coefficient s > 0 and was eventually fixed in the population was regarded as being driven to 310 

fixation by positive selection. As with the estimated iMKT 𝛼, the true 𝛼 is calculated for each 311 

simulation from the observed substitutions relative to the ancestral sequence. The average 312 

Miyata score calculated for each amino acid change between the simulated, evolved sequence 313 

and the ancestral sequence was used as an assessment of physicochemical similarity between the 314 

two sequences.  315 

 316 

Results 317 

Conflict and Buffering Base Models 318 

We first used the Conflict and Buffering Base models described above to simulate the 319 

cyclic pattern of Wolbachia infection and loss in the Drosophila population. In the Conflict Base 320 

model, nonsynonymous mutations underwent positive selection in the presence of Wolbachia 321 

infection but were negatively selected in the absence of Wolbachia. In the Buffering Base model, 322 
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nonsynonymous mutations experienced neutral evolution in the Wolbachia-infection phase but 323 

were positively or negatively selected in the Wolbachia-absence phase.  324 

The patterns of true 𝛼’s were clearly indicative of positive selection in the Conflict Base 325 

model phase with Wolbachia with the strongest selection (Ne|s|>100, fig. 3A, row 1). The 326 

elevated true 𝛼’s persisted though with a slow decline during the subsequent Wolbachia-free 327 

phase. The Buffering Base model showed a positive, though much lower, 𝛼 that emerges in the 328 

first Wobachia-absence phase (fig 3B, row 1), consistent with our intuition of positive selection 329 

to return to a more functional bam protein without the deleterious mutation buffering by 330 

Wolbachia. This pattern was also most evident with strong selection. Among all the selection 331 

coefficients for both the Conflict model and Buffering model, the true 𝛼’s stayed high or 332 

increased in the phases where positive selection is expected and stayed constant or decreased in 333 

the phases of neutral evolution and purifying selection.  334 

In the Conflict Base model, the average of iMKT estimates of 𝛼 were almost all positive 335 

for selection coefficients with Ne|s|>1 and showed clear periodic changes as Wolbachia comes in 336 

and out of the population across all three phase lengths (fig. 3A, row 2). Surprisingly, the 337 

magnitude of the iMKT 𝛼’s increased in the phase without the imposed positive selection. This 338 

unexpected increase is explained by the change of nonsynonymous polymorphisms (Pn) in the 339 

population. In the Wolbachia-infection phase, both Dn and Pn accumulated due to the positive 340 

selection of nonsynonymous mutations, as expected; however, after the sudden change to the 341 

Wolbachia-absence phase, Dn was largely unchanged while Pn experienced a sudden decrease as 342 

nonsynonymous mutations were all selected against (fig 3A, row 4). Given the equation for 343 

calculating the iMKT 𝛼 (𝛼 = 1 − !!""
!""!

), the iMKT estimate of 𝛼 therefore increased in the phase 344 

with the implemented purifying selection that followed the positive selection. For the effectively 345 

neutral case of Ne|s| = 1, the iMKT 𝛼′𝑠 in the Conflict Base model fluctuated around 0. 346 

In the Buffering Base model across all selection coefficients, the iMKT 𝛼’s were mostly 347 

negative across the whole simulation, but changes in magnitude are evident in different selection 348 

phases, e.g., iMKT 𝛼 decreased during neutral phases (Wolbachia present) but increased in 349 

phases with selection (Wolbachia absent) (fig. 3B, row 2). These observed negative iMKT 350 

estimates of 𝛼 were due to the contributions from both Dn and Pn. In the initial Wolbachia-351 

infection phase of the Buffering model, nonsynonymous polymorphisms were negatively 352 

selected in the constrained codons and neutrally buffered by Wolbachia in the codons under 353 
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selection, with few such mutations in the latter category going to fixation, explaining the 354 

negative iMKT 𝛼’s in the initial phases (fig 3B, row 4). Following this “buffering” period, a 355 

subset of nonsynonymous mutations was selected for. However, the number of nonsynonymous 356 

mutations that could be positively selected in the Buffering Base model was much less than those 357 

in the Conflict Base model, leading to a smaller Dn and thus a smaller (possibly < 0) iMKT 𝛼, 358 

even when positive selection was present. While a periodicity of iMKT estimated 𝛼’s was 359 

observed in both models, the small number of polymorphisms and fixed differences made these 360 

estimates only vaguely reflective of the true 𝛼’s.  361 

The boxplots of differences between the true and iMKT 𝛼’s were used to evaluate the 362 

accuracy of iMKT 𝛼’s. In general, iMKT 𝛼’s systematically underestimate the true 𝛼’s due to 363 

the presence of deleterious polymorphisms (Fay et al. 2001, Eyre-Walker and Keightley 2009, 364 

Messer and Petrov 2013). For the Conflict Base model with effectively neutral evolution 365 

(Ne|s|=1), iMKT 𝛼’s usually underestimated the true 𝛼’s (fig 3A, row 3). However, under 366 

stronger selection (Ne|s|=10 or 100), iMKT 𝛼’s underestimated the true 𝛼’s only during the 367 

Wolbachia-infection phase; there was good accuracy in iMKT 𝛼’s estimation when Wolbachia 368 

was lost, which reflected the delay in detecting selection based on changing Pn as previously 369 

explained. In the Buffering Base model, iMKT 𝛼’s also tended to underestimate the true 𝛼’s 370 

(especially with Ne|s|>1 in the later Wolbachia-infection phases), with the boxplots distributed 371 

above 0.  372 

For the Conflict Base model, the pattern of the true 𝛼’s and the iMKT 𝛼’s was not 373 

dramatically influenced by the magnitude of the selection coefficient (Ne|s|=10 or 100) and the 374 

varying lengths of the infection/absence periods that we examined. In contrast, for the Buffering 375 

Base model, longer Wolbachia infection periods resulted in larger true 𝛼’s, presumably due to 376 

the greater time to accumulate buffered deleterious mutations in the presence of Wolbachia. 377 

Nevertheless, the length of Wolbachia infection and absence periods had only a minor impact on 378 

the final magnitude of Dn, Ds, Pn, and Ps observed at the end of the simulations (fig. 3A&B, row 379 

4). Only Pn show dramatic periodic fluctuations due to the cyclic infection and absence periods.  380 

Additionally, we looked at the distributions of p-values in iMKT (FWW correction, SNPs 381 

frequency > 5%) and the correlation between iMKT 𝛼’s and their corresponding p-values at the 382 

end of the simulation. In general, a statistically significant rejection of neutrality in the direction 383 

of positive selection was more likely to be detected with the iMKT in the Conflict Base model 384 
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than in the Buffering Base model with the iMKT, since the values of the key MK test parameter 385 

Dn are generally much larger in both Wolbachia-infection and Wolbachia-absence phases in the 386 

Conflict model. This increased magnitude of Dn provided more statistical power in Fisher's exact 387 

test (fig. 5A). On the other hand, even under the strongest selection in our simulations, the MK 388 

test could hardly detect any statistically significant signals of positive selection in the Buffering 389 

model, likely due in part to the modest length of the bam gene (fig 5B). Overall, smaller p-values 390 

were always associated with larger iMKT 𝛼’s, and all the significant p-values (<0.05) were 391 

associated with iMKT 𝛼’s close to 1.0 across all selection coefficients (data not shown).  392 

All together, these results demonstrated that 𝛼 estimated from iMKT identified 393 

departures from neutrality in the direction of positive selection in the Conflict Base model but 394 

not reliably in the Buffering Base model. The phase without imposed positive selection in the 395 

Conflict model introduced a cyclical pattern of the iMKT 𝛼 (but not the true 𝛼). The iMKT 𝛼 396 

was basically unreliable in all phases of the Buffering model. Lastly, the MK test parameter Dn 397 

reached a higher magnitude in the Conflict model, which was reflected in the smaller p-value 398 

statistics, suggesting greater power to detect positive selection with the MK test in the Conflict 399 

model than in the Buffering model. 400 

 401 

Conflict and Buffering Complex Models 402 

We next implemented the models with a more complex parameterization of selection 403 

coefficients based on Miyata scores. The MK test results for these Conflict and Buffering 404 

Complex models closely resembled those for the Base models. Since we narrowed down the 405 

Miyata score range for the positively selected nonsynonymous mutations in both complex 406 

models by introducing neutral and deleterious ranges, we observed lower true 𝛼’s for both the 407 

Conflict and Buffering Complex models compared to their Base models (fig 4A&B, row 1). For 408 

the Buffering Complex model, this difference was particularly pronounced, with a barely 409 

perceptible increase in true 𝛼 for even the strongest selection scenario of Ne|s| = 100. The 410 

patterns of iMKT 𝛼’s and boxplots for the difference between the true and iMKT 𝛼’s were 411 

similar between Complex and Base models (fig 4A&B, row 2&3). The total number of Dn did 412 

not reach the same magnitude at the end of simulation for the Conflict Complex model as it did 413 

in Conflict Base model across different phase lengths and selection coefficients. However, Dn 414 

had a slight increase in the Buffering Complex model compared with the Buffering Base model, 415 
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potentially due to the introduction of the neutral region leading to a small number of additional 416 

nonsynonymous fixations by genetic drift alone (fig 4A&B, row 4). The distributions of p-values 417 

were also similar between the Complex and Base cases (fig 5, C & D). 418 

 419 

Distributions of Miyata scores 420 

We expect amino acid substitutions to be more diversified in the Conflict model than in 421 

the Buffering model in both the Base and Complex cases, as the former is based on the premise 422 

of a sequence evolving away from the ancestral sequence and the latter is based on the premise 423 

of a sequence evolving toward the ancestral sequence. To assess this, we calculated Miyata 424 

scores between each amino acid substitution and its ancestral amino acid throughout the 425 

simulations.  426 

For both the Base and Complex cases, the distributions of Miyata scores per amino acid 427 

from the Conflict and Buffering models were most distinguishable from each other in the 428 

strongest selection scenario at Ne|s| = 100. Here, the interquartile ranges of Miyata score 429 

distributions of the two models were completely separated at the end of simulations (fig6A, 6B; 430 

row 1), but they were basically indistinguishable from each other throughout the simulations 431 

when the selection is the weakest at Ne|s| = 1 (fig6A, 6B; row 3).  432 

For Ne|s| = 10, the distributions of Miyata scores overlap more in the Base case 433 

compared with the Complex case (fig6A, 6B; row 2) because the positively selected mutations 434 

had a higher concentration of Miyata scores between 1 and 3 in the Complex case, which made 435 

the differences between Miyata scores more prominent. The same results can be observed in the 436 

strongest selection simulations, where the distance between interquartile ranges was also larger 437 

in the Complex cases than in the Base cases. 438 

In summary, we are better able to distinguish between the Conflict and Buffering models 439 

using Miyata score distributions when there is strong selection, and when there is a more 440 

complicated parameterization of selection scheme as in the Complex models. Different 441 

infection/absence phase lengths did not have a large impact on the average Miyata scores across 442 

the simulations. 443 

 444 

Comparison with the empirical data 445 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480440


 
 

16 

 To evaluate which model in our analysis better captures bam’s observed patterns of 446 

sequence evolution within and between natural populations of Drosophila, we first performed 447 

our MK test on a population sample (n=89) of D. melanogaster (Lack et al. 2015), using 448 

divergence to the predicted common ancestral sequence with D. simulans as the outgroup and a 449 

randomly sampled sequence as the reference sequence used in the iMKT estimate. Analysis of 450 

these data reject neutrality in the direction of positive selection using the MK test with a p = 451 

0.00015 and 𝛼 estimated to be 0.91 (FWW correction, SNPs > 5% only). We used the number of 452 

nonsynonymous substitutions per nonsynonymous site (dN) calculated from iMKT results as the 453 

summary statistic to tune selection parameters of the two simulation models with only one 454 

Wolbachia infection-loss cycle.  455 

While examining polymorphism levels would seem important to distinguish between 456 

Conflict and Buffering models, these levels are very sensitive to the length of Wolbachia 457 

infection and absence as we have modeled it, for example, due to the strong purifying selection 458 

occurring in the Conflict model when Wolbachia is lost. Thus, determining the time point for 459 

sampling is problematic for the empirical data as we do not know for a species that is infected 460 

with Wolbachia how long it has been infected, nor do we know for uninfected species when the 461 

last time they were infected (or even if they were). The problematic effect of this timing choice 462 

on Pn and Ps can be seen in Figures 3 and 4. As Dn is less sensitive to the sampling time points 463 

and represents the number of amino acid changes in bam, we chose to only use this parameter to 464 

evaluate how well our models fit to empirical data.  465 

Applying our custom iMKT script to our empirical sequence data, we found that iMKT 466 

Dn = 34 and dN = 0.033 for the empirical D. melanogaster population. We initially found that 467 

Conflict models always predicted a much higher Dn than the empirical observation, while 468 

Buffering models often exhibited a much lower Dn. Such results showed the initially assumed 469 

ratio of codons under selection (RS=15%) and ratio of codons under constraints (RC=75%) 470 

could not reproduce similar results for the evolution of amino acids for either model. Thus, we 471 

chose to tune these two ratios of selected and constrained codons (RS and RC) under different 472 

strengths of positive selection (Ne|s| = 100, 10, 1) and explore under which parameter settings 473 

could we fit the empirical dN in each of our proposed models. When we achieved a matching 474 

dN, we then compared the Miyata scores per amino acid change in the observed data and our 475 
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simulation results and see whether a Conflict or a Buffering model is more similar to our 476 

observations. 477 

For each selection coefficient s, we first ran simulations using RS and RC both sampled 478 

from a uniformly distributed grid of nine points ranging from 0 to 0.8, since the maximum 479 

proportion of conserved codons is 0.85, and assessed the resulting dN. Preliminary simulations 480 

revealed that for the Conflict models, dN was consistently more than two-fold overestimated for 481 

any proportion of selected sites greater than 0 (e.g., RS > 0, data not shown). Therefore, we 482 

refined the Conflict model grid search for RS to a uniform grid of 6 points from [0, 0.1], while 483 

keeping the full grid range for RC. For the Buffering models, we kept the full range of the RS 484 

grid as we did find parameters that fit the observed dN. For each pair of parameters for all 485 

models, we ran 50 simulations and calculated the mean of dN (dN1 ) across the runs. We then 486 

compared the difference between the empirical dN and dN1 . The best pair of RS and RC was the 487 

one that led to the smallest difference between dN1  and the empirical dN under each selection 488 

coefficient s.  489 

For the models with selection coefficient Ne|s| = 1, all combinations of the two ratios 490 

reproduced similar results consistent with effective neutrality (fig 7). For moderate or strong 491 

selection, the best-fit parameters are shown in Table 2.    492 

 493 

Analyses of Conflict and Buffering Models Best Fitting the Empirical Data 494 

To evaluate how well the Conflict and Buffering models implemented with the best-fit 495 

pairs of RS and RC recapitulate the empirical data for D. melanogaster, we performed the same 496 

iMKT analysis and Miyata score analysis for the resulting simulations. Positive true 𝛼’s were 497 

observed in the Conflict Base, Buffering Base and Conflict Complex models across different 498 

phase lengths, indicating that positive selection was present under these scenarios. However, 499 

iMKT could only identify positive selection by 𝛼 and statistically significant p-values in the two 500 

Conflict models with strong selection at Ne|s| = 100. Moderate selection at Ne|s| = 10 in the 501 

Conflict models or any levels of selection in the two Buffering models was not detected by 502 

iMKT p-values or inferred 𝛼 (fig. 8).    503 

In addition, we calculated the empirical per-site Miyata scores between the current D. 504 

melanogaster sequences and their predicted common ancestral sequence shared with D. simulans 505 

(supplemental file S2), and compared it with the distributions of per-site Miyata scores simulated 506 
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from the best-fitted RS and RC at different timepoints. The end of the simulations at 45,000 507 

scaled generations represents the actual divergence time between the ancestral sequence and the 508 

extant D. melanogaster and D. simulans species. At this time point, the interquartile ranges of 509 

Miyata scores of the Conflict and Buffering models have separated from each other, with fully 510 

non-overlapping interquartile distributions in the Complex models. In all models, the per-site 511 

Miyata score of D. melanogaster are located closer to the center of the distributions from the 512 

Buffering models than to the center of distributions from the Conflict models (Figure 9).  513 

In summary, the best-fit Conflict models with strong selection reproduced the most 514 

significant iMKT p-values and high estimates of 𝛼 like that observed in the D. melanogaster 515 

sample, but the Miyata-score analysis indicated the Buffering models as a better fit for the 516 

evolution of the amino acids’ biochemical properties. It is important to note that while the 517 

average iMKT 𝛼 is extremely close to zero for all Buffering models, the lower whiskers on the 518 

box plots in fig 8B and 8C show that high iMKT inferred 𝛼’s can, although infrequently, occur 519 

under the Buffering models as well. 520 

 521 

Discussion 522 

The increasing availability of DNA sequence datasets for diverse genes, genomes and 523 

organisms has led experimentalists to scan genes and genomes for footprints of natural selection. 524 

Using tests like the MK test, a striking number of cases of departures from neutrality have been 525 

revealed (e.g., Eyre-Walker 2006). In some cases, statistical evidence of strong positive selection 526 

can be easily associated with a proposed causal factor (e.g., genes involved in antiviral immunity 527 

or in mating behavior; e.g., McLaughlin and Malik 2017). In other cases, the driving factor is 528 

less clear.   529 

In this study, we proposed two different models, the Conflict model and the Buffering 530 

model, to investigate different types of driving forces behind the signatures of positive selection 531 

at bam, motivated by its biological interactions with Wolbachia. The Conflict model is based on 532 

an arms race dynamics previously proposed to model the interactions between competing 533 

symbiotic species, which positively selected diversified amino acids. The alternative Buffering 534 

model we newly propose in this paper is based on another possible interaction between bam and 535 

Wolbachia, in which Wolbachia protects bam from the effects of deleterious mutations that can 536 

therefore accumulate during the Wolbachia infection phase by drift (equivalent to the relaxation 537 
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of functional constraints for amino acid mutations). When Wolbachia is lost, the constraints are 538 

reimposed and amino acids similar to bam’s ancestral state are selected for.  539 

We used simulations to study the evolutionary process involved in each model and found 540 

that both models can generate positive selection as measured by the true 𝛼. A positive true 𝛼 in 541 

the Conflict Base and Complex models aligns with our expectations of the represented 542 

interaction. More interestingly, the positive true 𝛼 in the Buffering models reveals that 543 

Wolbachia need not function as a reproductive parasite in conflict with bam to drive positive 544 

selection in the host gene. 545 

However, we must highlight the difference in the Buffering model’s ability to generate 546 

positive selection and our ability to detect it. We found that in all simulations, the iMKT 𝛼 547 

generally underestimated the true 𝛼. This underestimation had a minimal effect on our 548 

interpretation of evolution in the Conflict models, as the true 𝛼 was very large in all simulations 549 

outside of those with the weakest selection (Ne|s| = 1). On the other hand, with a maximum true 550 

𝛼 (~ 0.25) in the Buffering models’ simulations, an underestimation led to a weak or absent 551 

signal of positive selection detectable by iMKT, which could further be confounded by statistical 552 

noise. Such findings highlight some limitations of the MK test that are consistent with the 553 

findings of others (Akashi 1999, Fay et al. 2001, Eyre-Walker and Keightley 2009, Zhai et al. 554 

2009, Messer and Petrov 2013). Nevertheless, even with these limitations, the iMKT could still 555 

infer high 𝛼’s, representing detection of positive selection, in some simulation runs under the 556 

Buffering models.  557 

The Buffering models require the fixation of Wolbachia-buffered deleterious 558 

nonsynonymous mutations by drift for there to be resulting positive selection during a 559 

subsequent phase without Wolbachia. This effect is seen across the three different infection 560 

lengths that we simulated in the Buffering Base model. Thus, longer Wolbachia infection phases 561 

will increase the chance of detecting positive selection in a subsequent Wolbachia absence phase, 562 

though never to the level resulting from Conflict models. The average length of Wolbachia 563 

infection time is unknown for Drosophila, but a few studies have documented the minimum 564 

length of current Wolbachia infections. These include two independent studies that found the 565 

wMel Wolbachia variant to have been in D. melanogaster for 79,000 and 80,000 Drosophila 566 

generations thus far (Richardson et al. 2012; Choi and Aquadro, 2014). These time periods are 567 

shorter than what we have simulated, but there is evidence to suggest turnover of Wolbachia 568 
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variants that could act as a longer standing infection period than currently documented (Riegler 569 

et al. 2005, Kriesner et al. 2013). Thus, Wolbachia infection of the length we have simulated, and 570 

with it a potential for subsequent positive selection, is not out of question.  571 

In addition to phase lengths affecting the Buffering model results, population size could 572 

also play a large role. Because drift during the Wolbachia infection phase is what allows the 573 

buffered deleterious nonsynonymous mutations to fix, this model will likely lead to stronger 574 

signatures of positive selection for species with smaller Ne than this large population size 575 

Drosophila species since the time to fixation of neutral mutations is approximately 4Ne 576 

generations (Kimura and Ohta 1969). 577 

To better evaluate the fit of the observed data from D. melanogaster to the predictions of 578 

the Conflict and Buffering models, we tuned the simulation selection parameters of both models 579 

to fit the observed nonsynonymous sequence divergence per nonsynonymous site (dN) between 580 

D. melanogaster and the inferred common ancestor with D. simulans. Explorative simulations 581 

are reflected in the empirically tuned simulations. Only the tuned Conflict model recapitulated 582 

the statistically significant positive iMKT 𝛼’s that we observed for the D. melanogaster 583 

population. As in the general Buffering results discussed above, the tuned Buffering model can 584 

result in evidence of positive selection as indicated by a true 𝛼 under certain conditions, but we 585 

can rarely detect it with the iMKT in bam with statistical significance. Interestingly, for the 586 

Miyata score analysis, we found that the Buffering models better fit our empirical data, as the 587 

Conflict models predicts greater amino acid diversity (assessed by the Miyata score) than we 588 

observe. Thus, combining these two results, we suggest that the Buffering model is a possible 589 

explanation behind the observed evolution in the D. melanogaster bam gene on the rare occasion 590 

that the iMKT is significant in the direction of positive selection. Nevertheless, a p-value less 591 

than or equal to 0.05 for the empirical MKT result is the typical criteria used by experimentalists 592 

to infer a departure from an equilibrium neutral model. Thus, with the current assumptions of our 593 

models, the Conflict model of an arms race between Wolbachia and bam is the better explanation 594 

for the signature of selection that we observe at bam.  595 

We note that the best fit results for all models come with parameterizations that include a 596 

considerable proportion of neutral sites. This suggests that our model is missing important 597 

subtleties behind the evolution of bam. For instance, we have only used fixed selection 598 

coefficients throughout our simulations to model the selection coefficients for both beneficial 599 
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and deleterious mutations, while they could actually be drawn from some distribution. The 600 

cutoffs of Miyata scores to determine the characteristics of each mutation were also fixed and 601 

thus could also involve more customization based on the properties and functions of actual 602 

amino acids as well. It is also possible that a mixture of Conflict and Buffering models may be 603 

operating, with each driving evolution at a subset of sites. Importantly, while the underlying 604 

simplified assumptions as implemented in our models give them only a limited ability to capture 605 

the full details of the evolutionary processes, our simulations do demonstrate that the Conflict 606 

models have enough power to generate statistically significant signatures of positive selection at 607 

bam. 608 

With regard to resolving the evolutionary interactions between bam and Wolbachia in 609 

Drosophila, it will now be important to explore other experimental evidence with respect to 610 

potential conflict, change in function or buffering. For example, we could test for evidence of 611 

positive selection in Wolbachia genes, as positive selection in Wolbachia is expected under the 612 

Conflict model where Wolbachia would co-evolve with bam to continue its impact on 613 

Drosophila fertility. There is already some evidence of positive selection at a few genes across 614 

different Wolbachia strains of arthropods and nematodes (Baldo et al. 2002; Baldo et al. 2010) 615 

but a much more thorough analysis of closely related Wolbachia strains infecting D. 616 

melanogaster is needed. To test for a conflict-like interaction between germline stem cell genes 617 

and Wolbachia, signals of selection in Wolbachia need to be examined solely within the 618 

Drosophila genus, since Wolbachia has a very different relationship with its nematode hosts 619 

(Taylor et al. 2005). 620 

While our modeling study was motivated by the bursts of positive selection at bam and 621 

Sxl in Drosophila and the experimental interactions between Wolbachia and hypomorphs at these 622 

genes, both the Conflict model and the Buffering model should be investigated when we try to 623 

understand the signals of positive selection at other genes in Drosophila. Considering that 624 

Wolbachia infects some 50% or more of all arthropods (Hilgenboecker et al. 2008; Zug et al. 625 

2012; Weinert et al. 2015), this means that there are potentially many yet undiscovered cases of 626 

strong episodic positive selection in other species. Genes of a greater length than bam are of 627 

particular interest as there is potentially more statistical power to detect positive selection 628 

resulting from the Buffering model. 629 
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We also want to emphasize that a fit to the Conflict compared to the Buffering model 630 

does not by itself imply a conflict drives the positive selection observed. A change in function 631 

that favors diversification of the protein-coding gene would also give similar results because, like 632 

the Conflict model, selection to refine a new function would likely favor positive selection for 633 

physicochemically different amino acids, which is selection for increasingly diverse Miyata 634 

scores. A recent analysis of CRISPR/Cas-9 generated nulls in five Drosophila species raises this 635 

possibility for bam (Bubnell et al. 2021). Whether the observed changes in function are 636 

associated with conflict with Wolbachia remains an open question as the two are not mutually 637 

exclusive. 638 

Ultimately, we suggest that the Buffering model is a new entry to the suite of models that 639 

need to be considered in cases where molecular population genetic evidence is found for 640 

departures from selective neutrality consistent with positive selection. The Buffering model is a 641 

framework that could apply to populations that experience cycles of higher mutational loads, 642 

followed by positive selection. This is observed in seasonally small populations, where a drop in 643 

population size allows the fixation of some deleterious alleles that are subsequently purged from 644 

the population. Additionally, populations in changing environments may experience higher 645 

mutational loads at the onset of the change. This phenomenon would be similar to that of 646 

antagonistic pleiotropy, in which, for our case, one environment is more tolerant of various 647 

alleles, allowing some alleles to fix that would be considered deleterious in the subsequent 648 

environment. In the subsequent environment, positive selection favors new mutations that return 649 

the gene to its optimum sequence (Chen and Zhang 2020). 650 

 651 

Supplemental Materials: 652 

Supplemental materials are available at Molecular Biology and Evolution online. 653 
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 791 
Fig. 1. Simulation setup for Conflict and Buffering Base models. Selection on new 792 

nonsynonymous mutations (mutated amino acid, AAmut) is determined by their Miyata score 793 

(MS) to the appropriate reference amino acid (the current amino acid, AAcur , or the ancestral 794 

amino acid, AAanc). 795 
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 797 

 798 
Fig. 2. Simulation setup for Conflict and Buffering Complex models. Selection on new 799 

nonsynonymous mutations (mutated amino acid, AAmut) is determined by their Miyata score 800 

(MS) to the appropriate reference amino acid (the current amino acid, AAcur , or the ancestral 801 

amino acid, AAanc). 802 
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Fig. 3. MK test results of simulations for two base models. (A) Conflict model; (B) Buffering 806 

model. Each panel shows MKT analyses with different selection coefficients of Ne|s|=100, 807 

Ne|s|=10, and Ne|s|=1 graphed across alternating phases (phase length=12,500, 6,250, 3,125 and 808 

simulation generations) of Wolbachia infection (Wol+, dark grey) and Wolbachia absence (Wol-, 809 

light grey) post-burn-in period. In each panel, row 1: the average true 𝛼 in the simulations; row 810 

2: the average iMKT 𝛼 in the simulations (FWW correction, SNPs frequency > 5% only); row 3: 811 

the distributions of differences between the true and iMKT 𝛼 every 3,125 simulation 812 

generations; row 4: The average of each iMKT component (Dn, Ds, Pn, Ps). 813 
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Fig. 4. MK test results of simulations for two complex models: (A) Conflict model, (B) 816 

Buffering model. Each panel shows MKT analyses with different selection coefficients of 817 

Ne|s|=100, Ne|s|=10, and Ne|s|=1 graphed across alternating phases (phase length=12,500, 6,250, 818 

3,125 and simulation generations) of Wolbachia infection (Wol+, dark grey) and Wolbachia 819 

absence (Wol-, light grey) post-burn-in period. In each panel, row 1: the average true 𝛼 in the 820 

simulations; row 2: the average iMKT 𝛼 in the simulations (FWW correction, SNPs frequency > 821 

5% only); row 3: the distributions of differences between the true and iMKT 𝛼 every 3,125 822 

simulation generations; row 4: The average of each iMKT component (Dn, Ds, Pn, Ps).  823 
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 824 
Fig. 5. Distributions of iMKT p-values. iMKT p-values (FWW correction, SNPs frequency > 825 

5% only) for simulation runs with Wolbachia phase=12,500 simulation generations and 826 

Ne|s|=100, 10, 1 for the simulated models at 45,000 simulation generation. The vertical red line 827 

denotes p-value=0.05. Note that distributions are normalized to have an area of 1 under the 828 

histograms. (A) Conflict base model; (B) Buffering base model; (C) Conflict complex model; 829 

(D) Buffering complex model.  830 

A B

C D

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480440


 
 

35 

 831 

A

B

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480440


 
 

36 

Fig. 6. The distribution of Miyata scores per amino acid substitution. Miyata scores per 832 

amino acid substitution across multiple runs for substitutions between the consensus sequence at 833 

the end of a given simulation generation and the ancestral sequence. Data is shown for both the 834 

Conflict model (dark grey) and Buffering model (light grey) at every 3,125 simulated 835 

generations post burn-in for different phase lengths.  836 
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 837 

Fig. 7. Heatmap of 𝒍𝒐𝒈𝟐
𝑺𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏	𝒅𝑵
𝑶𝒃𝒔𝒆𝒓𝒗𝒆𝒅	𝒅𝑵

 for four models to fit the empirical data. For each 838 

model, average dN was calculated across 50 simulation runs per each pair of conserved-site ratio 839 

and selection-site ratio to find the combination of parameters best fitting the empirical dN. Red 840 

boxes highlight the pairs of parameters used to investigate which model is preferred to 841 

recapitulate the observed data in iMKT and Miyata score analysis. 842 

 843 

  844 

A

B

C

D

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480440


 
 

38 

 845 

A

B

C

D

E F

G H

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 16, 2022. ; https://doi.org/10.1101/2022.02.14.480440doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.14.480440


 
 

39 

Fig. 8. MK test results of simulations for best-fit models for D. melanogaster. (A) MK test 𝛼 846 

analysis of each model with different selection coefficients of Ne|s|=100, Ne|s|=10 graphed at 847 

phase length=12,500 simulation generations of Wolbachia infection (Wol+, dark grey) and 848 

Wolbachia absence (Wol-, light grey) post-burn-in period. In each panel, row 1: the average true 849 

𝛼 in the simulations; row 2: the average iMKT 𝛼 in the simulations (FWW correction, SNPs 850 

frequency > 5% only); row 3: the distributions of differences between the true and iMKT 𝛼 851 

every 3,125 simulation generations; row 4: The average of each iMKT component (Dn, Ds, Pn, 852 

Ps). (B) Distributions of iMKT p-values. iMKT p-values (FWW correction, SNPs frequency > 853 

5% only) for simulation runs with Wolbachia phase=12,500 simulation generations and 854 

Ne|s|=100, 10 for the simulated models at 45,000 simulation generation. The vertical red line 855 

denotes p-value=0.05. Note that distributions are normalized to have an area of 1 under the 856 

histograms. 857 
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 859 

 860 
Fig. 9. Distributions of Miyata score for the D. melanogaster samples from the simulations 861 

with best-fit parameters. The boxplots are the distributions of Miyata scores for each model at 862 

every 3,125 generation. (A) Conflict and Base models; (B) Conflict and Buffering Complex 863 

model. The distributions are compared with the observed summary statistics of D. melanogaster 864 

empirical data (red horizontal line). 865 
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Table 1. Empirical (biological) estimates for evolutionary parameters and scaled estimates used 866 

for simulation. 867 

Parameter 𝑁6 𝜌 𝜇 𝑡 

Empirical Estimate 1e6 1e-8 2.8e-9 2.5e7 

Scaled Estimate (simulation) 1e3 1e-5 2.8e-6 2.5e4 

Ne: effective population size; 𝜌: recombination rate; 𝜇: mutation rate; 𝑡: time in unit of 868 

generation  869 
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Table 2. Best fit RS and RC parameters for Ne|s| =10 and 100 for Conflict and Buffering models. 871 

 Ne|s| RS RC 

Conflict 

Base 

10 0.02 0.5 

100 0.02 0.6 

Buffering 

Base 

10 0.6 0.1 

100 0.6 0.0 

Conflict 

Complex 

10 0.08 0.6 

100 0.04 0.7 

Buffering 

Complex 

10 0.2 0.5 

100 0.4 0.2 
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