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Summary/Abstract  
 
 
Antipsychotic (AP) drugs are highly efficacious treatments for psychiatric disorders, but a serious side effect of 
their use is excessive weight gain and subsequent development of metabolic disease. Increased food intake is 
the underlying driver of AP-induced weight gain, although the underlying mechanisms remain unknown. In 
previous studies, we identified hypothalamic genes whose expression level was altered following APs-induced 
hyperphagia. Among these genes, the orexigenic peptide Agrp and the transcription factor nuclear receptor 
subfamily 5 group A member 2 (Nr5a2) were two of the most significantly upregulated genes by APs. NR5a2 is 
broadly expressed throughout the body, but little is known about its role in the brain. In this study, we investigated 
the role of hypothalamic NR5a2 in AP-induced hyperphagia and weight gain. In hypothalamic cell lines, OLZ 
treatment resulted in a dose-dependent increase in gene expression of NR5a2 and Agrp. In mice, administration 
of a specific Nr5a2 inhibitor decreased olanzapine-induced hyperphagia and weight gain, while knockdown of 
Nr5a2 in the arcuate nucleus (ARC) partially reversed olanzapine-induced hyperphagia. Chromatin-
immunoprecipitation-PCR studies showed for the first time that NR5a2 directly binds to the Agrp promoter region. 
In addition, in situ hybridization studies confirm that NR5a2 and Agrp are co-localized in a subset of cells in the 
arcuate nucleus. In summary, we identify Nr5a2 as a key mechanistic driver of AP-induced food intake and these 
findings can be used to inform future clinical development of APs that do not activate hyperphagia and weight 
gain.  
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INTRODUCTION  
 
Antipsychotic (AP) medications are highly efficacious treatments for various psychiatric disorders1-6 but a serious 
side effect of their use is excessive weight gain3,7,8. Approximately 20% of patients treated with a broad range of 
APs gain clinically significant amounts of weight (>7% of their baseline weight)9.  Drug safety reviews have shown 
the percentage of patients gaining a clinically significant amount of weight varies between individuals and 
depending on the drug, ranging from ~20-40% for olanzapine  (OLZ) and clozapine and ~10-20% for quetiapine 
and risperidone9-16.  While OLZ is associated with a very high risk for weight gain, it is also regarded as one of 
the most clinically effective medications17.  APs induce weight gain in both human7,18-20 and rodents 21-26 27-30, by 
increasing food intake (hyperphagia). Despite widespread efforts to understand how APs induce hyperphagia, 
very little is known about the mechanisms underlying this serious adverse effect. Previous studies have relied 
on non-specific anti-obesity drugs that suppress basal feeding  to reduce AP-induced weight gain (i.e. locaserin31, 
orlistat32, liraglutide33, nizatidine34  metformin35). While using anti-obesity drugs in combination with APs is 
clinically beneficial to offset weight gain, they do not shed light on the specific mechanisms underlying AP-
induced hyperphagia.  Delineating the specific mechanisms driving AP-induced hyperphagia can be used to 
inform future drug development of highly effective APs without this metabolic liability and also more broadly to 
understand pathways regulating food intake that could be used as potential anti-obesity strategies.  
 
In our previous work, we used a C. elegans-based high-throughput screen36 to identify specific chemical 
suppressors of AP-induced hyperphagia27.  We then conducted studies in a well-established mouse model of 
AP-induced hyperphagia and weight gain26-31,37-40 to determine whether the compounds identified in the C. 
elegans screen could also suppress AP-induced hyperphagia in mammals27. These studies identified 
hypothalamic genes whose transcriptional levels were associated with APs-induced hyperphagia, which include 
the orexigenic peptide Agrp and the transcription factor nuclear receptor subfamily 5 group A member 2 (Nr5a2), 
among the most significantly upregulated genes by APs.  Food intake is regulated by many parts of the brain41 
and agouti-related peptide expressing (Agrp) neurons in the arcuate nucleus (ARC) of the hypothalamus play a 
major role42-46.  While some studies have reported increased expression of Agrp after AP-treatment26,47,48, the 
importance of this neuronal subtype and the molecular mechanisms regulating the AP-induced expression of 
this key pro-feeding gene are not well understood49-51. Furthermore, the hypothalamic upregulation of Nr5a2 is 
specifically associated with AP treatment and not increased body weight, suggestive of its important role in AP-
induced hyperphagia27.  
 
Nr5a2, also called Liver receptor homolog -1 (LRH-1), is best known for its role in the periphery and governs a 
transcriptional network of genes involved in bile acid signaling and liver lipid homeostasis52-54. Nr5a2 has also 
been implicated in adipocyte formation55, intestinal function56 pancreatic inflammation57 and expression of 
pancreatic digestive enzymes58,59. However, Nr5a2 is also widely expressed in the mouse brain60 where it 
controls neural stem cell fate61. Within the brain, Nr5a2 is expressed in the ARC of the hypothalamus62-64 and 
more recently has been shown to mark a select subset of neurons in this region65 but little is known about its 
role in the central nervous system (CNS)61,64. Our previous studies provided the first insights into the potential 
involvement of NR5a2 in AP-induced food intake. In these C.elegans based studies, we determined that NR5a2 
ortholog/nhr-25 mutant strain (nhr-25(ku215)) was resistant to AP-induced hyperphagia27. NR5a2 is broadly 
expressed throughout the body and has well-described roles in the liver 54,66, gut 56, and pancreas 57,67 but little 
is known about its role in the CNS61,64. In the current study, we used several mouse models to investigate the 
role of NR5a2 in antipsychotic-induced food intake and weight gain.  
 
 
 
MATERIALS AND METHODS 
 
In vitro studies: Adult mouse hypothalamic cell lines (mHypoA-59, CLU468 cells, Cedarlane) were cultured as 
described previously 68,69. In brief, cells were grown and maintained in high-glucose, pyruvate-free DMEM 
supplemented with 10% fetal bovine serum, L-glutamine (Cat. 25030081, Gibco, NY), and 10 u/ml of penicillin 
and 10 ug/ml of streptomycin (Cat. 15149-122, Gibco) of in a 5% CO2 environment.  Cells were treated with OLZ 
(25µM- 200µM) for 6 hours and then RNA extracted for gene expression analysis. Cells were also co-treated 
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with NR5a2 antagonist SR1848 (Aobious, Gloucester, MA) for 6 hours at 1-5µM 70 in DMSO as described 
previously. 
 
Gene expression: RNA isolation was performed using Trizol (cat # 15596026, Invitorgen) and was purified using 
RNeasy Plus Mini Kit (cat # 774104, Qiagen) using the manufacturer’s recommendations. cDNA was reverse 
transcribed from 300 ng of RNA using High Capacity cDNA transcription kit (cat # 4368813, Applied Biosystems). 
Relative expression analyzed by qPCR using StepOne Realtime PCR System. Gene expression was calculated 
after normalization to the housekeeping genes71 using the ΔΔCt method. Gene expression was calculated relative 
to experimental controls. Primer sequences (5’-3’) used to measure gene expression are listed in Table 1. 
 
Mice 
All protocols were approved by UCSD IACUC. All mice were singly housed in standard cages and acclimated to 
laboratory conditions (12:12 light-dark, 20-21ºC, 50% humidity) for 7 days before experimentations. Mice were 
singly housed to allow accurate measurement of daily food intake by weighing food in the hopper and accounting 
for any spillage72. All studies were performed in female C57B6/J mice (Jackson, stock # 000664) or Agrp null 
mice. Agrp-/- mice were gifted by Dr. Chen Liu of UT Southwestern.  
 
Olanzapine administration: Olanzapine (OLZ) was compounded into 45% HFD diet (54 mg/kg =~6-8mg/kg) as 
a convenient dosing strategy27,29,30, and this approach has been used in many other studies investigating AP-
induced hyperphagia and weight gain26,37-40. This dose results in mouse plasma levels (21±5 ng/ml) that are 
similar to levels observed in humans treated with OLZ (10–50 ng/mL)38.    
 
Systemic inhibition of Nr5a2. Twelve-week old female mice were acclimated to receive intraperitoneal (IP) 
injections of sterile saline for 3 days before the experiment and then were randomized to receive a 45% high fat 
diet (CON, D09092903B, Research Diets) with or without olanzapine (OLZ, 54mg/kg, D16111030). Mice were 
then further randomized to receive the vehicle solution (VEH, 10% DMSO, 10% Tween 80 in 0.9% NaCl) or the 
Nr5a2 inhibitor (SR1848) at 30 mg/kg daily for 7 days. Food intake and body weight were measured daily. 
Animals were sacrificed at the end of the study and the hypothalamus was dissected, snap frozen in liquid 
nitrogen, and stored in -80ºC until analyses. 
 
Hypothalamic inhibition of Nr5a2. Twelve-week old female mice were anesthetized with isoflurane and were 
mounted on a heating pad on a Neurostar robotic stereotaxic surgery set-up. Nr5a2 siRNA (SMARTpool: Accell, 
Catalog ID:L-047044-01-0005, Dharmacon, Lafayette,CO) or non-targeting control siRNA (Catalog #  K-nin; 
Dharmacon, Lafayette,CO) (n=4-5) was delivered bilaterally into the ARC using coordinates: A-P: -1.58 mm from 
Bregma; M-L ± 0.25 mm from midline; D-V: -5.8 mm into the skull. Mice were allowed to recover for 7 days before 
transitioning to CON or OLZ. Food intake was measured daily and body weight every other day for 14 days. 
Animals were sacrificed at the end of the study and the hypothalamus was dissected, snap frozen in liquid 
nitrogen, and stored in -80ºC until analyses. 
 
Agrp null studies. Twelve-week old WT and Agrp-/- female mice were randomized to receive either CON or OLZ 
(n=9-17/group). Food intake was measured daily and body weight every other day for 12 days. Animals were 
sacrificed at the end of the study and the hypothalamus was dissected, snap frozen in liquid nitrogen, and stored 
in -80ºC until analyses. 
 
Chromatin Immunoprecipitation (ChIP). ChIP experiments were conducted in triplicates using methods 
previously described in other neuronal cell types 73-75.  Briefly, hypothalamic mHypoA-59 cells were grown in 
10cm dishes and at 75-80% confluency and fixed with 1% formaldehyde.  Nuclei were isolated before chromatin 
extraction. Chromatin from approximately 10 million cells was sheared using a sonication device (Bioruptor Pico, 
#2013-2019, Diagenode) and optimized to produce ~400bp fragments. Chromatin was immunoprecipitated using 
4ug of Nr5a2 antibody (PP-H2325-00. 5 μg/ChIP, RD Biosystems)57 and 20ul of beads without any antibody 
were used as control sample. Importantly, this antibody has been validated in the Nr5a2 KO52 and has 
successfully been used in liver76,77 and pancreatic57 ChIP experiments in mice. After primary and secondary 
antibody incubation and washes,  purified DNA was used in quantitative PCR   reactions with primers targeting 
the promoter of NR5a2 target gene Prospero Homeobox 1(Prox1) promoter  (Prox1-F 5’-
CTGTTAACTGTGCCCAGGGAGAGGA-3’, Prox1-R 5’-TGGTTTGACATCTTGGGTGA-3’) 61 as a positive 
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control61 or the Agrp promoter region (Agrp-F 5’-GGGGTCTGGACACCCTATCT-3’, Agrp-R 5’-
CACACGTGACTGCTTCCTGT-3’)78. Fold enrichment was calculated relative to the no-antibody control 
samples. 
 
RNAscope.  WT female C57BL6 mice were anesthetized with Pentobarbital then transcardially perfused with 20 
ml PBS followed by 40 ml 10% Formalin/PBS (Sigma). Brains were removed and incubated in 15% sucrose/10% 
Formalin overnight at 4oC. Following cryoprotection in 30% sucrose/PBS, brains were embedded in OCT on dry-
ice and stored at -80oC. Serial 20 μm sections were cut using a cryostat and mounted on glass slides (VWR) 
and sections stained with RNAscope® Probe - Mm-Nr5a2-O1-C2 (cat number 547841-C2), Agrp RNAscope® 
Probe - Mm-Agrp (cat number 400711).  
 
  
RESULTS 
 
Olanzapine treatment results in significant elevation of NR5a2 and Agrp in hypothalamic cell lines.  
OLZ treatment of hypothalamic cells resulted in a significant dose-dependent upregulation of both Nr5a2 (Fig. 
1A) and Agrp genes expression (Fig. 1B) compared to vehicle treatment. While in general AP-drugs drive 
hyperphagia and weight gain, there is significant variation in the magnitude of these effects 79. In our recent 
study,29 we measured antipsychotic-induced weight gain (AIWG) in mice and stratified into subgroups that were 
highly prone to weight gain (gained 6.3g body weight) and weight gain resistant (gained 1.3g body weight) 29. 
In addition to the previously noted elevation in the hypothalamic expression of Agrp, we also observed a highly 
significant elevation of Agrp (Fig. 1C) and NR5a2 (Fig. 1D) expression in the AIWG-prone compared with the 
AIWG-resistant mice.  In addition, AIWG-prone mice were also hyperphagic compared to AIWG-resistant mice 
and thus the elevated hypothalamic expression of NR5a2 and Agrp in the AIWG-prone mice further suggests 
that these genes may play a role in AP-induced hyperphagia and weight gain. 
 
NR5a2 inhibitor treatment reduces AP-induced food intake and weight gain. 
We further investigated the role of Nr5a2 in AP-induced hyperphagia in mice using a specific Nr5a2 antagonist 
(SR1848, IP 30mg/kg daily)70. SR1848 inhibits NR5a2 function by triggering translocation of Nr5a2 from the 
nucleus to the cytoplasm, which ultimately abrogates its ability to transduce transcription of its targets70. As 
expected, OLZ treatment resulted in elevated hypothalamic expression of NR5a2 and co-treatment with SR1848 
(OLZ+SR) did not impact NR5a2 expression levels (Fig. 2A). However, co-treatment of OLZ with SR1848 
resulted in significantly reduced daily food intake (Fig. 2B) and weight gain (Fig. 2C) compared with OLZ alone 
over 7 days of treatment. Furthermore, hypothalamic levels of Agrp (Fig. 2D) were significantly reduced by co-
treatment, while other appetite regulating neuropeptides Npy and Pomc levels were not significantly changed.   
To determine whether SR1848 has a direct effect on hypothalamic gene expression, we treated hypothalamic 
cell lines with SR1848 and measured Agrp gene expression (Fig. 2E). We observed significant reduction in 
Agrp expression levels after either 1uM or 5uM SR1848 dosing for 6 hours suggesting inhibition of NR5a2 in 
the hypothalamus has a direct impact on Agrp gene expression.  
 
The knockdown of Nr5a2 in the arcuate nucleus partially reversed olanzapine-induced hyperphagia and 
weight gain.  
To determine whether AP-induced food intake and body weight regulation in vivo require the expression of 
Nr5a2 specifically in the hypothalamus, we used siRNA-mediated knockdown of Nr5a2 expression in the 
hypothalamus (Fig. 3A). As expected, Nr5a2 expression was increased by OLZ treatment, and treatment with 
siRNA targeting NR5a2 significantly reduced NR5a2 expression (Fig. 3A). OLZ treatment increased food intake 
(Fig. 3B) and body weight gain (Fig. 3C-D) which was reversed by hypothalamic NR5a2 siRNA treatment. 
Furthermore, gonadal (gWAT) and subcutaneous (sWAT) fat mass were also significantly elevated by OLZ 
treatment and significantly reduced by NR5a2 siRNA compared to siRNA control (Fig. 3E).  
 
Genetic deletion of Agrp in mice prevented olanzapine-induced hyperphagia and weight gain.  
Since OLZ treatment increases the expression of Agrp similarly to Nr5a2, we tested whether Agrp is necessary 
for the hyperphagic effect of OLZ. As expected, OLZ treatment of WT mice induced higher food intake (Fig. 4A) 
and weight gain (Fig.4B-C) compared with control-treated mice. On the other end, AgrpKO mice were resistant 
to the hyperphagic and weight gain response to OLZ treatment (Fig.4A-C). While OLZ treatment resulted in 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.15.480590doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480590


 6 

elevated hypothalamic transcriptional levels of NR5a2 in AgrpKO mice compared with control treated KO mice, 
the expression of Npy, Pomc and Cart was unchanged, (Fig 4.D) suggesting NR5a2 maybe upstream of Agrp 
regulation.  
 
 
NR5a2 directly regulated Agrp expression 
These data led us to hypothesize that NR5a2 may directly regulate the expression of Agrp by binding to its 
promoter.  To test this, we conducted chromatin immunoprecipitation with NR5a2 antibodies followed by PCR 
(ChIP-PCR) in hypothalamic mHypo-59A cells. In agreement with previous studies in neuronal stem cells,61 we 
found that Nr5a2 binds the Prospero Homeobox 1(Prox1) promoter (Fig. 5A). We then used primers specific for 
Agrp promoter region 78 and determined ~2-fold enrichment of Nr5a2 binding to the Agrp promoter region over 
the control sample (Fig.5B). These ChIP experiments in hypothalamic cells identify Agrp as a direct 
transcriptional target of the transcription factor NR5a2. In situ hybridization analysis determined that NR5a2 is 
expressed highly and specifically in the ARC of the hypothalamus (Fig. 5C). Co-staining with Agrp revealed that 
a subset of NR5a2 expressing neurons also contain Agrp (Fig. 5C). Therefore, these studies suggest that a 
refined population of NR5a2-expressing cells co-express Agrp in the ARC which play a major role in AP-induced 
hyperphagia and weight gain. 
 
 
DISCUSSION 
 
In these studies, we used several mouse models to investigate the role of Nr5a2 in AP-induced food intake and 
weight gain.  We first determined that OLZ treatment resulted in a dose-dependent increase in both Nr5a2 and 
Agrp expression in hypothalamic cells. Furthermore, hypothalamic Nr5a2 expression was highly induced in mice 
that were particularly prone to AIWG compared with mice that were relatively protected from AIWG.  
Administration of SR1848, a specific Nr5a2 inhibitor, decreased OLZ-induced hyperphagia and weight gain and 
knockdown of Nr5a2 in the ARC partially reversed OLZ-induced hyperphagia.  Importantly, Agrp null mice were 
protected from OLZ-induced hyperphagia and weight gain, despite having elevated hypothalamic Nr5a2 
expression, suggesting this transcription factor may regulate Agrp expression.  The ChIP-PCR results reported 
in the current study show, for the first time, that NR5a2 directly binds to the Agrp promoter region and suggest 
that Nr5a2 directly regulates the expression of this pro-feeding neuropeptide in the hypothalamus.  Our in-situ 
studies also confirmed that Nr5a2 and Agrp are co-localized in a small subset of cells in the ARC and this co-
expression is also further supported by single cell RNA seq studies of the ARC 65.   
 
Despite the importance of Agrp in the homeostatic control of feeding, the transcriptional regulation of its 
expression is still poorly understood.  Studies have shown Agrp transcription is regulated by key energy sensors, 
including Peroxisome proliferator-activated receptor gamma coactivator 1-alpha80, AMP-activated protein kinase 
or sirtuin 1, and Estrogen receptor alpha and Signal transducer and activator of transcription 3 81, forkhead box 
protein O182, Krüppel-like factor 483. Our studies discovered a new transcriptional regulator Nr5a2 to this 
important list of factors that can regulate Agrp expression. Future chIP-seq studies are warranted to determine 
the comprehensive transcriptional targets of Nr5a2 in Agrp-expressing neurons. Given that Nr5a2 is also 
expressed in non-Agrp expressing cells, it will be important to investigate its transcriptional targets in other 
neuronal population in the ARC.  

Nr5a2 has recently been implicated as playing an important role in maintenance of neuronal differentiation and 
identity in the hippocampus. In these studies, deletion of Nr5A2 in the dentate gryrus cells in vivo lead to a 
reduction of the number of NeuN as well as Calbindin-positive neurons84. Similar studies in the hypothalamus 
will be necessary to reveal if this a broader function of NR5a2 in mammalian brain function and plasticity.  

To enable transcription factors to bind, chromatin must be an ‘open state’ and these accessible regions can be 
determined using a technique called Assay for Transposase-Accessible Chromatin combined with sequencing 
(ATAC-seq).  ATAC seq studies from the human prefrontal cortex found enriched motifs for NR5a2 target genes 
in schizophrenia patients (treated with APs) compared with matched case controls 85. These studies confirm that 
APs impact NR5a2 function in the human brain and suggest NR5a2 is an important target for future therapeutic 
development.  
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In summary, these studies identify a novel mechanism by which OLZ triggers the transcription of Agrp through 
NR5a2 in a subset of Agrp neurons to promote hyperphagia. These findings can be used to inform future clinical 
development of APs that do not activate hyperphagia and provide deep insights into the regulation of eating 
behavior. Importantly, it is critical to mitigate AP-induced weight gain to prevent patient non-compliance 86 and 
avoid further exacerbating the growing obesity epidemic and the associated increase in the prevalence of 
metabolic diseases. 
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FIGURE LEGENDS 
 
 
Figure 1. OLZ treatment is associated with elevated Nr5a2 expression. OLZ treatment of hypothalamic cells 
results in dose dependent increase in expression of (A) Nr5a2 and (B) Agrp.  Mice that are highly Prone to 
Antipsychotic-Induced Weight Gain (AIWG-P) have significantly elevated hypothalamic levels of (C) Nr5a2 and 
(D) Agrp compared with AIWG-Resistant mice (AIWG-R).  Data is expressed as mean ± SEM and was analyzed 
using one-way ANOVA followed by uncorrected Fisher’s LSD test, (A-B, (n= 3-8 replicates per group) or students 
t-test (C-D, n= 8-10 replicates per group), * denotes statistical significance at p < 0.05. 
 
Figure 2. Systemic Nr5a2 antagonist treatment reduces food intake and weigh gain in mice treated with 
Olanzapine. A) Nr5a2 expression, (B) Average daily food intake, (C) Weight gain, (D) Hypothalamic 
neuropeptide expression in C57BL/6 WT female mice fed either control diet (CON) or OLZ diet and injected 
with NR5a2 antagonist (SR1848, ‘SR’, 30mg/kg) or vehicle (VEH) for 7 days. E) Quantitative PCR determination 
of Agrp expression in hypothalamic cells lines treated with SR1848 (1uM or 5uM) for 6 hours. Data is expressed 
as mean ± SEM and was analyzed using one-way ANOVA followed by uncorrected Fisher’s LSD test, * denotes 
statistical significance at p < 0.05, n= 4-11 replicates per group. 
 
Figure 3. Hypothalamic knockdown of Nr5a2 significantly bunts OLZ-induced food intake and weight 
gain. siRNA mediated knock down of Nr5a2, delivered by stereotaxic injection to the arcuate nucleus, results 
in (A) reduced expression of Nr5a2, (B) blunted OLZ-induced food intake and (C-D) reduced OLZ-induced 
weight gain and body fat (E), Data is expressed as mean ± SEM and was analyzed using one-way ANOVA 
followed by uncorrected Fisher’s LSD test, * denotes statistical significance at p < 0.05, n=4-5 per group.  
 
Figure 4. Agrp KO mice are resistant to OLZ-induced hyperphagia and weight gain. A) Food intake (B-C) 
weight gain, (D) hypothalamic gene expression in WT and KO mice treated with CON or OLZ diets. Data is 
expressed as mean ± SEM and was analyzed using one-way ANOVA followed by uncorrected Fisher’s LSD 
test, * denotes statistical significance at p < 0.05, n=9-12 per group. 
 
Figure 5. Agrp is a direct transcriptional target of Nr5a2. Chromatin immunoprecipitation with Nr5a2 
antibodies followed by PCR (chIP-PCR) in the hypothalamic cell line (mHypo-59A) result in enrichment of 
binding to the (A) Prox1 promoter (positive control) and (B) Agrp promoter region compared with beads. Data 
is expressed as mean ± SEM and was analyzed using students t-test, (n= 3 replicates per group), * denotes 
statistical significance at p < 0.05. C. In-situ hybridization reveals NR5a2 (red) is specifically localized to the 
arcuate nucleus (Agrp, green) and co-expressed in a subset of Agrp neurons (yellow) in the dorsal (D) and 
Lateral (L) ARC.  
 
Table 1.  

 
 Gene Primer sequence 5'-3'  

Agrp F: GGAACAGTGTTTTCTGCTCCC  
R: ACTCGTGCAGCCTTACACAG  

Npy F: TAACAAGCGAATGGGGCTGT  
R: TTCAAGCCTTGTTCTGGGGG  

Pomc F: GGCGACGGAAGAGAAAAGAGG  
R: TGTTCAGTCTCCTGCCTGTCG  

Cart F: TGGATGATGCGTCCCATG  
R: TACTTCTTCTCATAGATCGGAAT  

Nr5a2 F: AGTCTGAGGTTTCCTTCCCAAAG  
R: CTAGAGCAAGCTTCCAGGGG  

Pgk1 F: CTGACTTTGGACAAGCTGGACG  
R: GCAGCCTTGATCCTTTGGTTG  

Hrpt1 F: CACAGGACTAGAACACCTGC  
R: GCTGGTGAAAAGGACCTCT  
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