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Abstract 

CD8 tissue resident memory (TRM) cells are especially suited to control pathogen spread at mucosal 
sites. However, their maintenance in lung is limited. Here, we found that enhancing NFkB signaling 
in T cells once memory to influenza is established increased pro-survival Bcl-2 and CD122 levels 
boosting lung CD8 TRM maintenance. By contrast, enhancing NFkB signals during the contraction 
phase of the response led to a defect in TRM differentiation without impairing recirculating memory 
subsets. Specifically, inducible activation of NFkB via constitutive active IKK2 or tumor necrosis 
factor (TNF) interfered with tumor growth factor beta (TGFb) signaling resulting in defects of lung 
CD8 TRM imprinting molecules CD69, CD103, Runx3 and Eomes. Conversely, inhibiting NFkB 
signals not only recovered but improved the transcriptional signature and generation of lung CD8 
TRM.  Thus, NFkB signaling is a critical regulator of tissue resident memory, whose levels can be 
tuned at specific times during infection to boost lung CD8 TRM. 
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Introduction 
 
Once infection has resolved, a few of the pathogen specific T cells that participated in the response 
persist as memory cells providing the host with enhanced protection against re-infection (1-3). 
These memory T cells strategically relocate to blood and secondary lymphoid organs (central, TCM 
and effector, TEM ,memory) as well as portal of entry tissues (tissue resident, TRM) each, with 
specific phenotypes and functions (4). Together, they guarantee the generation of a diverse and 
polyfunctional T cell memory pool. In contrast to other memory subsets, TRM cells do not leave 
tissue, and continue patrolling it for signs of pathogen re-entry. If this happens, they trigger innate 
immune responses and immediately control reinfection in situ, in tissues like lung, skin or gut(5). 
TRM cells have a protective role not only in infectious diseases(6-9), but also in cancer (10-13). Yet, 
mounting evidence also associates TRM with pathology in autoimmunity, transplants, and graft 
versus host disease (14-16). Although this puts TRM as a therapeutical target to treat disease, there 
is still poor understanding of how TRM cells are generated or maintained in tissues. Furthermore, 
the times during the immune response that are suitable for manipulation of TRM for therapeutic 
purposes are still ill defined. This is particularly important in the case of respiratory infections such 
as influenza that depend on lung-CD8 TRM to control viral titers and disease severity(17, 18) but 
where CD8 TRM longevity is limited(18). 
 
One of the cardinal features of TRM cells is their imprinting of non-lymphoid “tissue residency”, which 
differentiates them from circulating T cells. This is phenotypically characterized by high expression 
of CD69 and often (but not always) CD103. Transcriptionally, CD8 TRM cells require high expression 
of Runx3(11), Nr4a1 (19, 20) and low expression of Eomes (21), although depending on the tissue, 
a balanced expression of other transcription factors, such as Blimp-1 in lung(22), is also important. 
Signals that occur prior to tissue entry (23) and tissue-specific signals (24) both contribute to the 
differentiation of TRM. Among these, antigen and tumor growth factor b (TGFb) signals act at 
different points of the immune response to shape TRM(25-31). Yet, the role of inflammation in the 
generation and maintenance of TRM remains largely unexplored.  

NFkB signaling is a major driver of inflammation (32, 33) as well as one of the signaling pathways 
induced by T cell receptor signaling upon antigen recognition(34). Multiple pro-inflammatory factors 
(such as TNF or IL-1 or TLRs), together with antigen, signal through the canonical NFkB pathway 
at different times during infection (35-37), making it a plausible signaling hub where different 
environmental cues converge to regulate T cell differentiation and cell fate decisions.  Here we 
sought to understand how changes in the levels of IKK2/NFkB signaling a CD8 T cell experiences 
during infection impact their memory fate. Our data show that NFkB signaling has a specific role in 
tissue resident memory that is different from the other recirculating memory subsets. Furthermore, 
NFkB signaling differentially regulates CD8 TRM differentiation and CD8 TRM maintenance. 
Interestingly, our data also reveals that tuning NFkB signaling levels at specific times during 
influenza infection can aid to boost or deplete CD8 TRM in the lung, an organ where these cells 
gradually vanished over time after vaccination or infection leading to loss in clinical protection(18, 
38).  
 
 
Results 
 
Increasing the levels of NFkB signaling after the peak of the response improves circulating 
CD8 T cell memory.  
 
To address the impact of NFkB signaling on T cell protective immunity, we generated two tetON 
inducible systems restricted to the T cell lineage. For this, we crossed mice carrying either a 
constitutively active Ikbkb allele (CA-IKK2)(39) or a dominant negative-acting version of IKK2 (DN-
IKK2)(40) driven by the tetracycline TA-activated promoter (tetO)7 transactivator with mice 
expressing CD2-driven rtTA(41). We refer to these mice as CD2rtTAxCA-IKK2 and CD2rtTAxDN-
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IKK2 respectively (SI Appendix Fig. S1 and S2). Expression of CA- and DN- IKK2 can be monitored 
by a luciferase reporter (either by flow or by luciferase assays) and is restricted to the T cell lineage 
(SI Appendix Fig.S1 and S2C). Furthermore, doxycycline dependent induction of IKK2 results in 
the upregulation of NFkB dependent genes (CD69 and Eomes)(42, 43) but does not lead to overt 
T cell apoptosis (no induction of cleaved caspase-3 or FasL) (SI Appendix Fig. S2D).  
 
We used these two new inducible models to interrogate whether changing the levels of IKK2/NFkB 
signaling in T cells during specific phases of the immune response impacts CD8 T cell memory. 
We tested whether boosting (or inhibiting) IKK2/NFkB signal transduction could modulate the 
establishment of circulating CD8 memory in two different polyclonal models of infection.  For this, 
we used both tetON IKK2 inducible models and manipulated NFkB signaling after the peak of the 
T cell response following on previous reports suggesting a role for p65NFkB transcriptional activity 
during the contraction phase of the immune response to L. monocytogenes (42, 44). We found that 
inhibition of NFkB signaling, during the contraction phase of the immune response to influenza 
infection, led to a loss of circulating CD8 T cell memory. By contrast, increasing NFkB signaling 
resulted in a considerable increase in the number of polyclonal antigen specific memory CD8 T 
cells generated, both against influenza A (IAV) and VSV virus infection (SI Appendix Fig.S2E-H). 
From these data, we concluded that IKK2/NFkB signaling has a critical role in the establishment of 
CD8 T cell memory upon infection and most importantly, that increasing the levels of this signaling 
pathway in T cells at the end of the immune response improves the generation of CD8 T cell 
memory cells.  
 
IKK2/NFkB signaling differentially regulates T cell memory subset diversity.  
 
Since CD8 T cell memory is composed of different subsets with unique locations and phenotypes, 
we next asked whether the impact of IKK2/NFkB signaling would equally affect all T cell memory 
subsets. Using our inducible models, we infected mice with X31 IAV and allowed CD8 T cells to 
differentiate for 5 days after which, we either increased or decreased NFkB signaling in T cells by 
feeding mice with doxycycline chow during the contraction phase of the immune response. Then, 
we measured the frequency and number of IAV specific CD8 TCM, TEM and TRM generated (Fig. 1A). 
Inhibition of NFkB signaling during contraction, impaired the generation of both TCM and TEM. 
However, increasing NFkB signaling, improved only the generation of IAV specific TCM (Fig. 1B, C). 
Most strikingly, when we examined the generation of lung TRM, we observed that NFkB signaling 
had opposite effects on this T cell subset. Generation of NP366 and PA224 IAV antigen specific lung 
CD8 TRM was decreased under high levels of NFkB signals. On the contrary, decreasing NFkB 
signaling resulted in a dramatic boost in the generation of polyclonal lung IAV (NP and PA) specific 
CD8 TRM (Fig 1D,E). This was not exclusive to the lung or the type of infection as the same results 
were observed for IAV specific CD8 TRM in spleen (Fig. 1F) and kidney in the context of systemic 
VSV infection (Fig. 1G). Of note, increasing NFkB levels did not result in an overall decrease in the 
number of CD8 or CD4 T cells in the lung, indicating that the effects of increasing NFkB signaling 
levels were restricted to antigen specific CD8 T cells (Fig. 2B,C). We also did not observe important 
defects in the lung IAV- specific CD4 T cell memory compartment when NFkB signals were 
increased, suggesting that the impairment in CD8 TRM generation we found was not due to a defect 
in CD4 T cells (Fig. 2D). Finally, we used an adoptive transfer model to confirm whether the effect 
of NFkB signaling was CD8 T cell intrinsic. In response to both, influenza and i.n. VSV infection we 
found that increasing NFkB signaling specifically in CD8 T cells during the contraction phase led to 
a severe loss in antigen specific lung CD8 TRM (Fig. 2E,F).  Altogether these data reveal that 
IKK2/NFkB signaling is a critical pathway in the regulation of CD8 T cell memory subset diversity. 
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Most importantly, our data suggest that manipulating NFkB signaling could deplete or boost CD8 
TRM in tissue.  
 
Increasing IKK2 signaling impairs protection against heterologous infections.  
 
CD8 TRM are critical to provide protection in tissue against re-infection. We, thus, tested whether 
increasing the amount of NFkB signaling in CD8 T cells as they differentiate to TRM would impact 
protective immunity in the lung. For this, we followed a published approach to deplete circulating 
CD8 T cells while sparing CD8 TRM. (45). We adoptively transferred OT-1 naïve male T cells into 
female or male congenically marked hosts, followed by intranasal VSV-OVA infection (Fig. 3A). 
Consistent with rejection against male antigen, male donors vanished in female but not in male 
hosts (Fig. 3B,C).  These conditions allowed us to singularly evaluate the T cell protective ability of 
antigen specific lung CD8 TRM generated under high levels of NFkB signaling. Consistent with our 
results in Fig. 2, high levels of NFKB signaling (CA-IKK2ON model) led to a loss of CD8 TRM (Fig. 
3D). However, female hosts bearing only male CA-IKK2ON CD8 TRM cells exhibited ~200 times 
higher virus titers than their control counterparts upon heterologous infection in the lung. This was 
despite better effector function (Fig 3E,F). These data, thus, show that loss of CD8 TRM due to high 
levels of NFkB signaling impairs protective immunity in the lung.   
 
IKK2/NFkB signaling interferes with late CD8 TRM transcriptional programming. 
 
Recent reports suggest that CD8 TRM development results from a combination of signals that T 
cells received before tissue entry and signals that occur later at tissue (23, 46-48).  In our model, 
NFkB signals where over-induced after the peak of infection coinciding with a time where some 
effector antigen specific T cells are being recruited to tissue while others are continuing their 
differentiation in tissue. We, thus, explored at which time during the contraction phase CD8 TRM 
loss began in CA-IKK2ON CD8 T cells. For this, we repeated similar experiments to the ones in Fig. 
1   and monitored the frequency and number of CD69+ CA-IKK2ON and control CD8+ TRM in lung at 
day 10 p.i and 30 p.i. (Fig. 4A). We found that the loss of CA-IKK2ON CD8 TRM occcured between 
day 10 and day 30 p.i. (Fig. 4B, C).  The loss of CD8 TRM correlated with a reduction in the number 
of CD8 TRM expressing the TRM tissue markers CD69 and CD103 (Fig 4C, D). Since we did not 
observe any defect in the number of circulating memory CD8 T cells in the lung (Fig. 4F)  or in the 
expression of CXCR3, one of the chemokine receptors important for lung recruitment (Fig. 4E)(49), 
we concluded that NFkB signals must interfere with lung tissue signals that are important for the 
establishment of CD8 TRM.  
We also assessed whether the defect in the establishment of the CA-IKK2ON CD8 TRM pool was a 
consequence of TRM transcriptional programming and/or survival. CD8 TRM differentiation requires 
downregulation of T-box transcription factors Eomes and T-bet (21, 50), induction of Runx3 and 
Nur77(11) and Blimp-1 in the lung(22) while some studies attribute a role for IL-15 in the 
homeostasis/survival of CD8 TRM in tissue (26, 51, 52). We observed that CA-IKK2ON CD8 TRM 
expressed higher levels of T-bet and Eomes than their control counterparts. However, they 
exhibited reduced levels of Nur77 and Runx3 and normal levels of Blimp-1 (Fig. 4G and SI 
Appendix Fig.S3). Conversely, DN-IKK2ON CD8 TRM exhibited a reversion of the levels of Nur77 
and Eomes and an induction of Runx3 over control levels (Fig. 4G). The expression of CD122, one 
of the chains of the IL-15R, was also impaired in CA-IKK2ON CD8 TRM cells. (Fig.4G).  Collectively, 
these data support the idea that NFkB signaling regulates CD8 TRM transcriptional programming 
and the imprinting of the CD8 TRM signature. 
 
NFkB signaling inhibits TGFb signaling required for CD8 TRM signature molecules.  
 
The fact that the number of CA-IKK2ON CD8 TRM cells started to decrease late in the immune 
response and that this coincided with changes in TRM  associated transcription factors (Eomes and 
Runx3) that are regulated by tissue cues (24, 46), led us to hypothesize that NFkB signaling could 
be inhibiting tissue signals that are required for lung CD8 TRM differentiation. TGFb is a crucial 
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cytokine for tissue resident memory differentiation and plays a specific role in lung. Moreover, both 
Runx3 and CD103 are downstream targets of TGFb signaling (53, 54), and our data showed 
defects in both TRM markers in CA-IKK2ON CD8 TRM cells (Fig. 4). Therefore, we tested whether 
NFkB signaling could inhibit TGFb signaling in differentiating CD8 T cells (Fig. 5). For this, we used 
two inducible models where IKK2 signaling can be increased in CD8 T cells.  CD8 T cells that were 
exposed to TGFb while NFkB signaling was over-induced indeed expressed lower levels of CD103 
and Runx3 than TGFb controls (Fig. 5A). Furthermore, increasing NFkB signaling also resulted in 
defective canonical (phosphorylated Smad2/3) and non-canonical (phosphorylated ERK) TGFb 
signal transduction (Fig 5B,C, SI Appendix Data Fig.S4). In other cell types, NFkB can interfere 
with TGFb signals through the expression of the inhibitory protein Smad7(55). Thus, we determined 
the levels of Smad7 under the different conditions. Consistent with the idea that NFkB signals can 
induce Smad7 in T cells and thereby inhibit TGFb signaling, we observed that CD8 T cells under 
high NFkB signaling upregulated Smad7 expression as p-Smad2/3 and pERK levels decreased 
(Fig. 5C). Collectively, these data shows that IKK2/NFkB signaling can negatively regulate TGFb 
signaling and the CD8 TRM markers, Runx3 and CD103.  
 
TNF-mediated NFkB signaling inhibits TGFb signaling for TRM. 
 
NFkB signaling is a mediator of inflammatory signals during respiratory infections(56-58).  One of 
the most understood NFkB triggers is the pro-inflammatory cytokine TNF, which has been 
associated  to TRM in the lung (59) and signals through the canonical NFkB pathway(35). Based on 
these, we hypothesized that TNF could, via NFkB, inhibit TGFb signaling and impair CD8 TRM. To 
assess this, we designed an experiment where CD8 T cells differentiating in the presence of TNF 
were exposed to TGFb and then, measured changes in TGFb signaling as well as TRM markers 
downstream of TGFb, Runx3 and CD103.  As expected, TNF did not induce TGFb signaling or the 
expression of Runx3 and CD103 while TGFb did. However, consistent with the idea that TNF 
inhibits TGFb signaling, CD8 T cells differentiating in the presence of TGFb were impaired in the 
phosphorylation of Smad2/3 and the expression of Runx3 or CD103 when TNF was present (Fig. 
5D-G).  
To confirm whether the ability of TNF to inhibit TGFb signaling was NFkB dependent, we repeated 
the same experiments with DN-IKK2ON CD8 T cells and use doxycycline to inhibit NFkB signaling. 
Confirming our hypothesis, DN-IKK2ON CD8 T cells remain unresponsive to the effects of TNF on 
TGFb signaling (Fig. 5D-G). Thus, TNF inhibits TGFb signaling and proteins crucial for CD8 TRM 
via NFkB. 
 We also assessed whether TNF and NFkB signaling could affect the induction of other transcription 
factors important for lung CD8 TRM. Blimp-1 was not affected by TNF and/or TGFb. By contrast, T-
bet and Eomes were. Remarkably, Eomes expression was inhibited by TGFb  (60) and neither TNF 
nor inhibiting NFkB signaling could revert it (Fig. 5H). In summary, these results support the idea 
that pro-inflammatory cytokines able to induce NFkB, such as TNF, can inhibit TGFb signals in 
CD8 T cells and, thereby, impair their differentiation towards the CD8 TRM fate (Fig. 5I). 
 
At memory, NFkB signaling promotes lung CD8 TRM survival. 
 
Upon influenza infection, lung CD8 TRM cells fail to persist weakening protective immunity against 
the same or other influenza variants (18, 61). In prior work using NFkB pharmaceutical inhibitors, 
it was found that once memory CD8 T cells are generated their maintenance depended on NFkB 
signals(42). Although these studies did not distinguish between the different T cell memory subsets, 
the data conflicted with our findings that enhanced NFkB signaling is detrimental to CD8 TRM 
differentiation (Fig. 1 and 4). Therefore, we decided to address the impact of NFkB signaling on 
CD8 TRM at memory once memory T cells have been formed. For this, we used the CA-IKK2ON 
inducible model and allowed the generation of CD8 TRM in the lung upon IAV infection. 30 d.p.i, we 
compared control and doxycycline-treated mice for changes in the number of CD8 TRM in the lung. 
We observed a ~ 6-fold increase in the number of IAV specific CD8 TRM cells in the lung when 
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NFkB signaling had been induced (Fig. 6A). Strikingly, this was the opposite effect that increasing 
NFkB signals during contraction had in CD8 TRM generation (Fig. 1). The increase in CA-IKK2ON 

CD8 TRM at memory correlated with higher levels of CD122 and Bcl-2, suggesting NFkB signals at 
memory mediate CD8 TRM survival (Fig. 6B).  
In most tissues TRM maintenance is independent of the input of circulating memory T cells (62, 63) 
although, in the lung this is still controversial (61, 64). Curiously in our studies, increasing NFkB 
signals at memory only boosted the frequency of IAV specific CD8 TRM in the lung. The frequency 
of IAV specific circulating memory T cells remain unaltered (Fig. 6C), suggesting NFkB signals 
improve CD8 TRM maintenance in the lung by supporting CD8 TRM survival. 
Finally, NFkB signaling at memory was also beneficial for the CD8 central memory pool as we also 
observed a significant increase in the number of IAV specific CD8 TCM in draining lymph nodes 
after doxyclycline treatment (Fig. 6. D, E).  Together, these data reveal that NFkB signaling 
differentially affects tissue resident memory depending on the stage of differentiation of the CD8 T 
cell (before and after becoming CD8 TRM). Most importantly, our results support the idea that 
enhancing NFkB signaling in CD8 T cells once the TRM pool has been established could improve 
CD8 TRM maintenance in tissue.  
 
 
Discussion  
 
T cell memory in tissues is an essential part of mucosal immunity that protects against infection 
and disease. Here we show that the pro-inflammatory signaling pathway IKK2/NFkB, is critical for 
both the generation and maintenance of the CD8 TRM pool after infection. Our results, mainly refer 
to influenza specific CD8 TRM in the lung, a tissue where maintaining a long-lived CD8 TRM pool is 
crucial for protective immunity(18) but challenging, due to the CD8 TRM short life-span (65). The 
reasons why resident memory CD8 T cells are short-lived in the lung but not in other tissues are 
still unclear.  However, our work suggests that boosting NFkB signaling at the end of the immune 
response might offer a therapeutic avenue to increase CD8 TRM survival and protective immunity 
upon infection or vaccination. Furthermore, since improved survival also occurred for CD8 TCM of 
the draining lymph nodes, this suggests a controlled increase in NFkB signaling could boost several 
subsets of the T cell memory pool.  
 
It is striking that the same signaling pathway, NFkB, operates in opposite manners for CD8 T cells 
depending on their differentiation stage (during TRM differentiation and at memory). This could be 
due to epigenetic modifications that regulate the accessibility of NFkB to specific gene loci 
depending on the differentiation stage of a CD8 T cell. Alternatively, changes in the environmental 
cues as the infection resolves could also explain the differential impact on CD8 TRM when levels of 
NFkB signaling increase. Although our findings cannot distinguish between these two possibilities, 
our data suggest that NFkB signaling does interfere with TGFb to skew CD8 T effectors away from 
TRM.  TGFb is a universal driver of CD8 TRM whose levels in tissue can change depending on age 
and in the context of diseases such as infection, autoimmunity, asthma, or fibrosis(66). Importantly, 
multiple signals can also locally trigger the induction of NFkB signaling in CD8 T cells, including 
antigen, TLRs and pro-inflammatory cytokines(35-37). We show that TNF, a known driver of NFkB 
(35) is able to inhibit TGFb b-dependent signaling and TRM programming in CD8 T cells. TNF and 
other pro-inflammatory cytokines such as IL-6 are heavily produced in pathological settings of 
chronic inflammation and could easily affect the levels of NFkB signals(67-69) a CD8 T cell 
experience in tissue. For the CD8 T cells that also encounter TGFb locally, this could decrease 
their likelihood to become CD8 TRM. Further evaluation of the dynamics of CD8 TRM during 
infections with a strong pro-inflammatory profile could provide insight into how overt inflammation 
may affect long-term immunity and inform of specific therapeutics targeting NFkB or its pro-
inflammatory drivers to either boost or deplete tissue resident memory. This might be especially  
relevant in the context of immune treatments that are linked to high levels of  inflammation  and 
that in the case of cancer(70, 71) or autoimmunity (RA) have a TRM component that affects disease 
outcome (14, 72).  In the same line, it would also be important to evaluate how current treatments 
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targeting TNF or NFkB signaling in the Clinic, affect the establishment of tissue resident memory 
in patients.  
We also found that NFkB signaling did not affect CD8 TRM in the same manner as it did CD8 TCM 
or TEM development, indicating that NFkB signaling is a key regulator of T cell memory diversity. 
Modulation of NFkB signaling levels may serve as an opportunity to regulate specific T cell memory 
subsets depending on their role in disease. Finally, our findings also underscore the impact that 
fluctuating levels of a single signaling pathway can have on the quality of T cell memory depending 
how and when during the infection these levels change. This may be particularly important for 
pleiotropic signaling pathways such as NFkB where multiple stimuli feed in (including patient’s 
treatments) and can easily add up to shape T cell fate. Incorporating this concept into current 
vaccine strategies could aid to improve their long-term efficacy.  
 
 
Materials and Methods 
 
Mice.  OT-1Thy1.1+ TCR transgenic strain, C57BL/6J (B6), B6.SJL-Ptprca Pepcb/BoyJ (CD45.1 
congenic C57BL/6), B6.Cg-Gt(ROSA)26Sortm4(Ikbkb)Rsky/J (IKK2-CAfl/fl), B6 -Tg (GzB-cre)1Jcb/J 
(GzB-Cre) mice (Jackson Laboratory, Bar Harbor, ME) along with OT-1Thy1.1XIKK2CAfl/fl xGzBCre 

; CD2rtTA x CA-IKK2 (tetracycline-inducible constitutive active IKK2) and CD2rtTA x DN-IKK2 
(tetracycline-inducible dominant negative IKK2) mice were maintained under specific pathogen-
free conditions at the University of Missouri. All mouse strains were screened for transgene 
homozigocity by PCR. Mice were aged between 8-13 weeks at the time of infectin. Infection and 
maintenance of mice infected with influenza virus or vesicular stomatitis virus occurred in an ABSL2 
facility at the University of Missouri. All animal procedures were conducted according to the NIH 
guidelines for the care and use of laboratory animals and were approved by the University of 
Missouri Institutional Animal Care and use Committee. 
 
Reagents and antibodies. Biotinylated, influenza-specific monomers (H-2Db NP366-374 
ASNENMETM, H-2Db PA224-233 SSLENFRAYV, I-Ab NP311-325 QVYSLIRPNENPAHK) were 
obtained from the NIH Tetramer Core Facility (Atlanta, GA). Biotinylated H-2Kb monomers for OVA 
(SIINFEKL) and VSV NP52-59 (RGYVYQGL) were generated in our laboratory. Biotinylated 
monomers were tetramerized using fluorescently labeled streptavidin (Biolegend, San Diego, CA). 
Doxycycline containing diet (6 g/kg) was purchased from Envigo (Indianapolis, IN).  
For Flow cytometry we used antibodies anti- CD8 (53-6.7), CD4 (L3T4), CD45.2 (104), CD44 (IM7), 
CD62L(MEL-14), TNF (MP6-XT22) and CXCR3 (CXC3-173) from Biolegend; anti- CD103 (M290), 
CD69 (H1.2F3), CD122 (TM-b1), Blimp1 (6D3),T-bet (O4-46), IFN-g(XMG1.2) and Phospho-
SMAD2/3 from BD Biosciences; anti-Runx3 (527327) from R&D systems; anti-Eomes (Dan11mag) 
from Thermo Scientific and anti-Luciferase from Rockland, Inc. For western blotting and 
immunostaining we used antibodies anti- phosphorylated-SMAD2(Ser465/Ser467) (E8F3R), 
SMAD2/3 (D7G7), phosphorylated ERK1/2 from Cell Signaling; anti- SMAD7(293739) from R&D 
Systems; anti- a-tubulin (B-5) from Sigma and secondary antibodies goat anti- mouse and anti-
rabbit from Li-Cor Biotechnology.  
 
 
Virus infections. Mice were infected intranasally with 1000 pfu Influenza A/HKx-31 (X31,H3N2) 
for sublethal infection or intravenously with vesicular stomatitis virus (VSV) (2x106 pfu), unless 
otherwise indicated in Figure legends. For heterologous infection experiments, mice were primed 
intranasally with 5x104 pfu VSV-OVA, then challenged 30 days later with 5000 pfu of influenza 
A/PR8-OVA (PR8, H1N1). 
 
Viral titers. The TCID50 of influenza virus was determined using MDCK cells as described (74). 
Briefly, lung samples were homogenized using a Mini-BeadBeater (BioSpec, Bartlesville, OK) and 
cleared homogenate was used to inoculate confluent MDCK cell monolayers. 24 hours post 
inoculation, the supernatant was discarded and replaced with fresh media (DMEM containing 
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0.0002% Trypsin). Agglutination of chicken RBCs (Rockland Immunochemicals Inc., Limerick, PA) 
was utilized to determine the presence of influenza virus after 3 days of culture. 
 
In vivo antibody labeling and flow cytometry. For in vivo antibody labeling and differentiation of 
T cells circulating in the vasculature or resident in parenchyma (TRM) tissues, three minutes before 
being killed, mice were injected intravenously via tail vein injection with 2 mg PE-labeled CD45.2 
(clone 104) or PE-labeled CD8b, (clone Ly-3).  Lungs, kidney, spleen, and mediastinal lymph node 
tissues were harvested, and lymphocytes isolated. Next, lymphocytes were stained in vitro with 
anti-CD8α antibodies along with antibodies to other surface and intracellular markers conjugated 
to fluorochromes. Stained cells were run on a LSR Fortessa flow cytometer (BD, San Jose, CA), 
and analyzed using with FlowJo software (Tree Star, Inc., Ashland, OR). 
 
Intracellular cytokine staining. Lymphocytes were isolated from the lungs of VSV-OVA-
challenged mice and stimulated ex vivo with OVA peptide 1 mM) in the presence of Golgi-Plug (BD 
Biosciences) for 5 hours. Following incubation, cells were harvested and antigen specific CD8+ T 
cells were assessed for the expression of TNF and IFNg by flow cytometry. 
 
CD8 T cell enrichment and adoptive transfer. Splenocytes were harvested from CD2rtTA x CA-
IKK2 mice and polyclonal CD8 T cells were purified by magnetic selection (CD8 T cell isolation kit 
by Miltenyi Biotech Auburn, CA). 5x105 CD8 polyclonal or 104 OT-1Thy1.1XIKK2CAfl/fl xGzBCre 

monoclonal naïve T cells were adoptively transferred into congenic C57BL/6 mice 1 day prior to 
intranasal infection with influenza or VSV-OVA virus respectively. 
 
In vitro culture and cytokine stimulation. Splenocytes isolated from OT-1Thy1.1XIKK2CAfl/fl 
xGzBCre mice were stimulated with 20 nM OVA peptide for 48 hours at a concentration of 1x106 
cells/ml. TGFb (R&D Systems, Minneapolis, MN) was then added to a final concentration of 50 
ng/ml. At 30 minutes and 24 hours post TGFb stimulation, cells were harvested for analysis by flow 
cytometry and western blotting.  Splenocytes from CD2rtTA x DN-IKK2 mice were stimulated in 
vitro at 1x106 cells/ml with 10 mg/ml anti-CD3 (clone 145-2C11) and 10 mg/ml anti-CD28 (clone 
37.51) (ThermoFisher Scientific, Waltham, MA). Following 24 hours of stimulation, cells were 
divided and incubated in the presence or absence of 125 ng/ml recombinant TNF (R&D Systems, 
Minneapolis, MN) for 24 additional hours. The cells were again divided and incubated in the 
presence or absence of 50 ng/ml TGFb (R&D Systems, Minneapolis, MN). Cells were harvested at 
30 minutes and 24 hours post addition of TGFb and analyzed by flow cytometry. 
 
Western blotting. In vitro stimulated cells were lysed in lysis buffer containing 10mM HEPES, 
10mM KCl, 0.1mM EDTA, 0.2mM EGTA, 0.5% NP40, 1mM DTT, 2 mM Na3VO4, 20 mM NaF, 1 
mg/ml Leupeptin, 1 mg/ml Aprotonin, 1 mM PMSF. Samples were resolved on a 10% SDS-PAGE 
gel and transferred to nitrocellulose membrane. Membranes were blocked with Blotting Grade 
Blocker (Bio-Rad, Hercules, CA) and probed with specific primary and secondary antibodies. Blots 
were imaged on a Li-Cor Odyssey XF (Li-Cor, Lincoln, NE) and analyzed using Image Studio (Li-
Cor, Lincoln, NE). 
 
 
Statistical analysis. Statistical analysis was performed using the Prism software (GraphPad). Data 
are presented as mean +/- standard deviation. Statistical significance to compare two quantitative 
groups was evaluated using a two-tailed t test. A value for significance of p< 0.05 was used 
throughout the study, and statistical thresholds of 0.05, 0.005, 0.0005, as well as 0.0001 are 
indicated in the figures signified via asterisks (as described in the figure legends). 
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Figures and Tables 
 

 
Figure 1. NFkB signaling differentially regulates T cell memory subset diversity. Groups of 
control, CD2rtTA x CA-IKK2 or CD2rtTA x DN-IKK2 mice (n³3 mice per group) were infected with 
influenza x31. From day 5-30 p.i., mice were fed a doxycycline containing diet (control 
littermates+dox, CA-IKK2ON or DN-IKK2ON CD8 T cells) or control diet (CD2rtTA x CA-IKK2; 
CD2rtTA x DN-IKK2 or control littermates fed with regular chow) (A). At 30 days p.i., the numbers 
of influenza NP366-374-specific central (CD8+ Db-NP-tet+ CD44hi CD62Lhi TCM) (B) and effector 
(CD8+ Db-NP-tet+ CD44hi CD62Llo TEM) (C) memory subsets were distinguished by flow cytometry 
in mediastinal lymph nodes. (D-F) Resident memory T cells (TRM) were identified in x31-infected 
mice by intravascular staining with CD45.2-specific, PE-labeled antibody injection prior to 
euthanasia. Frequencies and numbers of NP366-374-specific (D) and PA224-233-specific (E) CD8 TRM-
cells were determined in lungs (Db-NP/PA-tetramers+ CD8+ CD45.2-) by flow cytometry. (F) 
Frequencies and numbers of NP366-374-specific CD8+ TRM in the spleens. Representative data 
shown from 3 independent experiments. (G) Groups of control or CD2rtTA x CA-IKK2 (CA-IKK2ON) 
mice were infected with VSV. Mice were fed a doxycycline-containing diet from days 5 – 30 p.i.. At 
30 days p.i., VSV-specific CD8+ TRM (Kb-N-tet+ CD8+ CD45.2-) were identified in the lungs and 
kidneys of infected mice by iv. labelling. Representative data from 3 independent experiments. * p 
< 0.05, ** p < 0.01, *** p < 0.001, n.s. not significant. 
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Figure 2. Impairment in the generation of CD8 TRM under enhanced NFkB signals is T cell 
intrinsic. (A) Groups of control or CD2rtTA x CA-IKK2 mice were infected intranasally with 
influenza x31 (15000 pfu). From day 5-30 p.i, mice were fed a doxycycline containing diet (CA-
IKK2ON) or control diet. (B-C) Number of total and resident CD8 and CD4 memory T cells (TRM) in 
the lungs of infected mice, the latter determined by intravascular staining. (D) Total and Influenza 
virus NP311-325-specific CD4 positive T cells determined by flow cytometry upon Influenzax31 
infection (5000pfu). (E) CD8+ naïve T cells from CD2rtTAxCA-IKK2 mice were adoptively 
transferred to congenic host mice. The recipients were infected with influenza x31. Groups of 
recipients were fed doxycycline-containing or control diets from days 5-30 p.i. At day 30 p.i., 
frequency and number of lung CD8+ donor TRM cells were determined i by intravenous labeling with 
anti-CD8b PE-labelled antibodies. (F) OT-1 naïve CD8+ T cells isolated from OT-
1xIKK2CAfl/flxGzBCre mice were adoptively transferred to congenic hosts followed by intranasal 
VSV-OVA infection. At 30 days p.i., lung donor OT-1 cells were identified by intravascular staining. 
n ≥ 2 experiments with n³3 mice per group. ** p < 0.01, *** p < 0.001, n.s. not significant. 
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Figure 3. Enhancing NFkB signaling reduces TRM and compromises protection against 
heterologous infection.  (A) CD8 naive T cells from male OT-1xIKK2CAfl/flxGzBCre or OT-1 
littermate control naïve cells were adoptively transferred into groups of congenically marked male 
and female hosts, followed by intranasal VSV-OVA infection. Rejection of circulating cells was 
determined in all mice at day 10 p.i. (B). Frequency of circulating donor OT-1 CD8 T cells was 
assessed in the mediastinal lymph nodes at day 30 p.i., (C) and lung-resident, donor CD8 T-cells 
were determined by intravascular staining. (D). Frequency of IFNg and TNF double positive OT-1 
CD8+ TRM expressors at day 30 p.i. upon ex vivo antigen stimulation (E). A subset of mice from 
each group (n=5) were challenged with influenza PR8-OVA. Virus titers in the lungs were 
determined 2.5 days post-challenge (f). Data shown in pooled from ≥ 2 experiments, n=10 mice 
per group, per experiment. * p < 0.05, *** p < 0.001, n.s. not significant. 
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Figure 4. NFkB signaling regulates CD8 TRM transcriptional programming. (A) Experimental 
Procedure. (B) Groups of control or CD2rtTA x CA-IKK2 mice (n³3mice per group) were infected 
with influenza x31 and treated (CA-IKK2ON) or not with a doxycycline diet from day 5-30 p.i. Control 
and CA-IKK2ON Influenza-specific CD8 TRM cells were identified by intravascular labelling and 
NP366-374-specific and PA224-233-specific tetramers, and anti-CD8 antibodies by flow cytometry. Dot 
plot shows frequency of CD8+ CD69+ control and CA-IKK2ON T cells at day 10 and day 30 p.i.. 
Graph shows number of influenza specific lung TRM cells at day 10 and 30 p.i.. (C) Frequency and 
number of CD69 positive NP366-374-specific CD8 TRM at 10- (top) and 30-days p.i. (bottom) in lung. 
(D) Number of Influenza specific-CD103+ CD8 TRM cells was determined among NP366-374-specific 
and PA224-233-specific CD8+ T cell populations in the lungs 30 days p.i. (E) Expression of CXCR3 
in CD69lo and CD69hi populations at day 30 p.i. in lung influenza specific CD8 TRM. (F) Frequencies 
and numbers of circulating, NP366-374-specific CD8 T cells determined at day 30 p.i. in lung (G) 
Expression of lung CD8 TRM – associated transcription factors and CD122 determined at 30 days 
p.i.Data is representative of ≥ 2 independent experiments. * p < 0.05, ** p < 0.01, *** p < 0.001, **** 
p < 0.0001, n.s. not significant. 
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Figure 5. TNF and NFkB signaling inhibit TGFb signaling and downstream TRM markers, 
CD103 and Runx3. (A-C) Splenocytes from OT-1 (control) or OT-1xIKK2fl/flxGzBCre mice (CA-
IKK2ON samples) were stimulated for 48 hours with OVA peptide to generate effector CD8 T cells 
that were next stimulated with TGFb (A) Expression of Runx3 and CD103 (MFI) were determined 
24 hours after. (B) Histograms show phosphorylated levels of Smad2/3 30 minutes following TGFb 
stimulation on control (blue) or CA-IKK2ON CD8 T cells. (C) phospho-Smad2 and -ERK1/2, 
expression of Smad7 and loading control tubulin were determined by immunoblot with specific 
antibodies after 30 minutes of TGFb stimulation. (D-I) Splenocytes from CD2rtTA x DN-IKK2 and 
control mice were stimulated with anti-CD3/ CD28-specific antibodies. 1 day later, cells were 
treated or not with TNF and doxycycline for another 24 hours. TGFb was then added to indicated 
samples. Histograms show phospho-Smad2/3 and Runx3 levels on CD8 T cells 30 minutes post-
TGFb addition (D). (E) Dot plots show frequency of CD8+ CD103+ CD8 T cells in the conditions 
shown. (F-H) Levels of phospho-Smad2/3, Runx3, Blimp-1, Tbet and Eomes as well as % of 
CD103+ CD8 T cells were determined 24 hours post- TGFb stimulation. (i) Working model. Data 
shown is pooled from ≥ 2 experiments of n≥ 3 independent experiments. * p < 0.05, ** p < 0.01, *** 
p < 0.001, **** p < 0.0001, n.s. not significant. 
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Figure 6. Increasing NFkB signaling at memory improves CD8 TRM survival.  Groups of control 
or CD2rtTA x CA-IKK2 mice (n ≥ 3 mice per group) were infected with influenza x31. At day 30 p.i. 
mice were fed a doxycycline (CA-IKK2ON) or a control containing diet for 15 days. (A) Frequencies 
and numbers of influenza specific CD8 TRM identified by intravascular staining in lungs.  (B) Bcl2 
and CD122 expression on lung CD8 TRM. (C) Frequency of circulating NP366-374-specific CD8 T cells 
determined in the lungs by intravascular labeling. (D-E) Frequency, ratio and number of NP366-374-
specific CD8+ TCM (CD8+ Db-NP-tet+ CD44hi CD62Lhi) and TEM in mediastinal lymph nodes. 
(Representative data shown from ≥ 2 experiments. * p < 0.05, n.s. not significant. 
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