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Abstract 
Future applications of synthetic biology will rely on deploying engineered cells outside of lab 
environments for long periods of time. Currently, a significant roadblock to this application is the 
potential for deactivating mutations in engineered genes. A recently developed method to protect 
engineered coding sequences from mutation is called Constraining Adaptive Mutations using 
Engineered Overlapping Sequences (CAMEOS). In this chapter we provide a workflow for utilising 
CAMEOS to create synthetic overlaps between two genes, one essential (infA) and one non-essential 
(aroB), to protect the non-essential gene from mutation and loss of protein function. In this 
workflow we detail the methods to collect large numbers of related protein sequences, produce 
multiple sequence alignments (MSAs), use the MSAs to generate Hidden Markov Models and 
Markov Random Field models, and finally generate a library of overlapping coding sequences 
through CAMEOS scripts. To assist practitioners with basic coding skills to try out the CAMEOS 
method, we have created a virtual machine containing all the required packages already installed, 
that can be downloaded and run locally. 
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1 Introduction 
Synthetic biology has led to an explosion in designed genomic parts driving the production of novel 
functions and molecules [1]. This is done through the construction of genetic circuits with natural  or 
engineered genes controlled by regulatory elements [2]. To make the design of engineered genomes 
easier, most genome design approaches seek to refactor genomes to remove genetic overlaps and 
cryptic regulation [3-8], however this does not necessarily provide evolutionary stability to 
designs[9]. In fact, engineered genes and synthetic architectures often place a deleterious growth 
burden on the expression host [10-12]. Thus, hosts which have lost the engineered gene have a 
growth advantage, and over time become the dominant population. This phenomenon has led to 
ways to constrain evolution by tying the expression of the engineered part to the expression of an 
essential host component, thus linking organism survival to the retention of the engineered 
component [13,14]. Design stability is crucial as many future applications for synthetic biology 
technologies are predicated on usage outside laboratories, such as engineered nitrogen fixation in 
cereal endophytes [15] and cleaning environmental pollutants [16,17]. 
 A novel way to add genetic stability to engineered genomes is called Constraining Adaptive 
Mutations using Engineered Overlapping Sequences (CAMEOS) which seeks to emulate the 
condensed and overlapped coding sequence architecture found primarily in bacteriophage and 
bacteria [3,18,4,7,19]. This computational approach uses Hidden Markov Models (HMMs) and 
Random Markov Fields (MRFs) to determine protein residue diversity at a given position, and 
residue-residue contacts across the proteins, to generate overlapped coding sequences containing 
two proteins [20].  
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Figure 1 | CAMEOS workflow 
(A) The first step in the CAMEOS workflow is to create and curate MSA for the two target proteins. 
This process requires downloading protein family libraries from Pfam or InterPro, aligning these 
sequences through FAMSA or MAFFT, removing outliers via OD-seq, and repeating the alignment. (B) 
The second step is creating protein structure models (HMM and MRF) through hmmer and 
CMMpred. (C) The final step uses the CAMEOS scripts to generate the synthetic overlapping proteins 
and the library of the overlapping coding sequences. 
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The foundation for the creation of protein generative models (HMMs and MRFs) is a 
multiple sequence alignment (MSA) [21]. For the accurate production of these models the MSA must 
encompass thousands to tens of thousands of sequences (Figure 1A). There are multiple algorithms 
available for performing protein alignments such as ClustalW [22], FAMSA [23], and MAFFT [24] all 
of which perform differently.  
 Following the creation of an MSA of the two proteins to be co-encoded, HMMs and MRFs 
are generated (Figure 1B). A HMM operates by searching for patterns in a sequence space and 
calculates the probability of a pattern, or state, occurring (e.g. G, C, A, and T having a 25 % chance) 
and the transition probability of changing states (e.g. 75 % change of moving from state 1 to state 2). 
The hidden component is the transitions between states inside an observed sequence. The role of 
the HMM is to represent protein sequence conservation across protein family members [25,26]. A 
MRF is an undirected graphical probability model and represents combinations of independent 
assumptions which more directed models, such as Bayesian modelling, cannot accurately depict 
[25,26]. The role of the MRF is to represent intra-protein residue-residue coupling which may be 
crucial to protein function. 
 As the HMM detects conserved direct relationships and the MRF detects conserved indirect 
relationships, these models together create a fuller picture crucial of protein sequence and structure 
in targeted proteins [26]. HHMs are used in CAMEOS to create co-encoding solutions that are 
subsequently used as seeds in a second step where long-range interactions between protein 
residues are assessed with the MRFs [20]. 

In this chapter, we describe the steps needed to use CAMEOS to design de novo overlapped 
genes. We detail the processes to assemble sequences, and generate multiple sequence alignments, 
create HMMs and MRFs, run scripts included in the CAMEOS directory to pre-process the input data 
into the correct formats, and finally, to run the CAMEOS algorithm itself (Figure 1C). 
 
 
2 Materials 
 
2.1 Hardware 
Intel Core i7-4770 3.40GHz with 4 cores and 32 GB RAM 
 
2.2 Software 

1. Ubuntu v20.10: https://ubuntu.com/download/desktop  
2. hh-suite (v3.3.0) [27], an open-source package for sensitive protein sequence searching 

based on the pairwise alignment of Hidden Markov models (HMMs). GitHub: 
https://github.com/soedinglab/hh-suite  

3. GCC v4.4+, a C compiler written for the GNU operating system. Website: 
https://gcc.gnu.org/  

4. CMake v2.8+, an open-source cross-platform tool family to build, test, and package 
software. Website: https://cmake.org/  

5. CCMpred [28], an open-source package for learning protein residue-residue contacts for 
building Markov Random Fields (MRF). GitHub: https://github.com/soedinglab/CCMpred  

6. CAMEOS [20], an open-source package to generate de novo overlapped sequences. GitHub: 
https://github.com/BiosecSFA/CAMEOS  

7. Julia (v1.4.1), a dynamic language for technical computing. With packages: BioAlignments, 
BioSymbols, Logging, StatsBase, JLD, Distributions, ArgParse, and NPZ.  

8. Python (v3.9.5), an open-source cross-platform programming language. Website: 
https://www.python.org/  

9. HDF5 (v1.10.6), a data software library and file format to manage, process, and store 
heterologous data. Website: https://www.hdfgroup.org/solutions/hdf5/  
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10. gzip (v1.10), a data compression program for the GNU operating system. Website: 
https://www.gnu.org/software/gzip/  

11. hmmer v3+ [29], an open-source package for searching biological sequence databases for 
homologous sequences. GitHub: https://github.com/EddyRivasLab/hmmer  

12. zlib1g-dev (v1.2.11) and groovy, a compression deflation method found in gzip and PKZIP, 
Website: https://packages.ubuntu.com/bionic/zlib1g-dev 

13. OD-seq, an MSA analysis software package which detects outlier sequences. Download: 
http://www.bioinf.ucd.ie/download/od-seq.tar.gz  

14. FASTX-Toolkit (v0.0.14), a collections of command line stools for Short-Reads FASTA/FASTQ 
files preprocessing. GitHub: https://github.com/agordon/fastx_toolkit 

15. MAFFT (v7.310), a multiple sequence alignment program for Unix-like operating systems. 
Website: https://mafft.cbrc.jp/alignment/software/ 
https://anaconda.org/bioconda/mafft  

16. FAMSA (v1.6.2), an algorithm for large-scale multiple sequence alignments. Website: 
https://github.com/refresh-bio/FAMSA 
https://anaconda.org/bioconda/famsa 

 
 
3 Methods 
 
Here, we describe the overall workflow to go from a pair of proteins we want to overlap to the 
output of DNA sequences that can be synthesized and tested in a wet lab. Complementary 
information to what is presented here can be found in the excellent manual.pdf file within the 
original CAMEOS GitHub repository (https://github.com/wanglabcumc/CAMEOS/tree/master/doc). 
Throughout this Methods section we use code that was downloaded from a fork of the original 
CAMEOS GitHub repository on 1 Dec 2021 (https://github.com/BiosecSFA/CAMEOS) that improved 
the original code in several ways. For details see notes 
(https://github.com/wanglabcumc/CAMEOS/pull/2). For a more comprehensive description of the 
development and theoretical underpinnings of the CAMEOS method, please see the original 
publication by Blazejewski et al. [20]. 
 
 
3.1 Choose protein sequences to overlap 
 
The choice of which two proteins to overlap is nearly limitless, but there will be constraints based on 
sequence similarity and compatibility at the amino acid and DNA (coding sequence) level. The 
CAMEOS method was originally used to generate two sets of E. coli sequence pairs (CysJ-InfA and 
IlvA-CcdB), via >7,500 designs. A subset of these designs that were experimentally characterised 
showed that protein function and activity was maintained in both co-encoded proteins across their 
designs [20]. Additionally, 5.8 million theoretical overlaps between 199 essential genes and 49 non-
essential biosynthetic gene sequences were computed. These analyses showed that 9 % of their 
computationally analysed subset contained pseudo-likelihood scores exceeding the experimentally 
characterised sequence pairs. From this, it was inferred that 80 % of the biosynthetic genes could be 
encoded with at least one essential gene. In this chapter we will use the infA (translation initiation 
factor IF-1) and aroB (3-dehydroquinate synthase) E. coli coding sequences (Notes 1 and 2) originally 
included as examples with the CAMEOS code on GitHub. All following examples will be just for InfA 
but it should be assumed that, where appropriate, the same process must also be done for AroB 
sequences. Additionally, because the AroB protein is longer, the analyses of this protein will take 
longer and may require more computational resources. 
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3.2 Download target protein and coding sequences 
There are several sources of very large multiple sequence alignments (MSAs) that can be used as a 
starting point for a CAMEOS experiment. We will focus here on Pfam [30] and InterPro [31] 
databases, which are both large collections of protein families created and hosted by EMBL-EBI. 
We will use these databases as sources of large numbers of homologous sequences we can use to 
produce our own high-quality MSAs that are then fed into the CAMEOS workflow. 
 
1. To determine how many protein sequences at minimum we will need for our alignments we can 
approximate using this formula: N/sqrt(L) > ~200  
Where N is number of sequences in MSA, sqrt() is the square root, and L is the length of protein of 
interest in amino acids (https://github.com/wanglabcumc/CAMEOS). For InfA with a length of 72 aa, 
the minimum number of sequences in the MSA would need to be N = sqrt(72) x 200 ≥ 1,697. For 
AroB, with a length of 362 amino acids, the minimum number would be more than double at 3,805 
sequences. This number of sequences could be fulfilled from either Pfam or InterPro, but we will 
detail how to download sequences from InterPro as it provides a higher number. 
 
2. First navigate to: https://www.ebi.ac.uk/interpro/search/text/  
 
3. Keyword search for ‘IF-1’ since this is the protein encoded by infA gene (Note 3). 
 
4. Potentially more accurate searching can also be done using the amino acid sequence of the 
protein of interest. In this case you would use the 'Search -> By Sequence' menu option of InterPro 
and enter the FASTA sequence of the protein you were interested in identifying the protein family of 
(Figure 2A).  
 
5. Click on 'ACCESSION' link (IPR004368) for ‘Translation initiation factor IF-1’ from InterPro under 
the 'SOURCE DATABASE' heading. 
 
6. Click on Proteins (46K) header, within this tab. Further filtering of the family can be performed to 
separate “reviewed” and “unreviewed” sequences. However, as the 634 reviewed proteins falls 
beneath the > 1,697 sequences required, we will continue with the unfiltered data. 
 
7. Click on triangle portion of blue Export button on right hand side of page. 
 
8. Hover the cursor over the Generate button beside the FASTA entry and you will see a popup 
window with ‘See more download options’ (Figure 2B). Click the button. 
 
9. On the new page that opens, the ‘Choose a main data type’ header should be ‘Protein’ 
 
10. Scroll down and under ‘Select Output Format’ heading change to ‘FASTA’ 
 
11. Scroll down to bottom of page and click the Generate button (Notes 4 and 5). 
 
12. When the data is ready for download the ‘Download’ button will light up (Figure 2C). Click this 
button and name the file infA.fasta 
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Figure 2 | InterPro website 
navigation 
(A) Search using the protein 
sequence of choice in the InterPro 
search bar to identify the protein 
family of the target protein. (B) 
After selecting the search results 
and navigating to the protein 
family, move to the Protein tab on 
the webpage, find the Export 
function, and click on the See 
More Download Options when 
hovering over the FASTA Generate 
button. (C) On this page, select the 
chosen data outputs and click 
Download. 
 
 
 
 
 
 
 
 
3.3 Gathering additional sequences with HHBlits 
While InterPro and PFam are excellent resources for downloading the sequences of protein families, 
sometimes more sequences are required to train the protein models than are provided by these 
sources. A way of gathering additional sequences is using the HHblits tool within HH-suite which 
iteratively searches sequences to detect similarities building high quality MSAs [27]. There are two 
methods for using HHblits for gathering aligned sequences: either using HHblits command hhblits 
on a CLI, or via the HHblits webtool. 

The HHblits webtool (https://toolkit.tuebingen.mpg.de/tools/hhblits) will be discussed first 
as it is the simpler approach, although it offers fewer user input options. The tool requires a single 
protein sequence of interest or a MSA as the starting point. Additionally, the user is able to specify 
the following search parameters: (1) the Expect (E) value cut-off for inclusion, the (2) number of 
HHblits search iterations performed, the (3) minimum probability in the hitlist, and the (4) maximum 
number of target hits. All modification options are available within a dropdown menu and the 
default settings are clearly noted. Within a few minutes of submission, HHblits will return results 
listing the: (1) number of hits, (2) their identity, and (3) the alignment of those sequences (Figure 
3A). For the downstream processes, the user must navigate to the “Query Template MSA” tab and 
download the full MSA file by clicking the option “Download Full MSA”. The file generated from this 
is in a protein.a3m file format and can be easily used with MAFFT without conversion to an 
protein.msa file extension (Figure 3B). 

The other option to gather more sequences using the HHblits algorithm is to download the 
hh-suite package from GitHub directly (Note 6) and run hhblits from a CLI. The associated manual 
on hhsuite is very detailed and easy to use, however the tool requires a large downloaded 
sequence database (50+ GB) to function.  

 

(A)

(B)

(C)
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Figure 3 | HHblits webserver outputs 
(A) Once HHblits has queried the user input sequence, the server generates a visualisation output 
aligning returned sequences to the input sequence within the Results tab. (B) MSA (in the .a3m 
format) for the sequence search are accessed via the Query Template MSA tab and can be 
downloaded in Reduced or Full formats. 

 
 
 

(A)

(B)
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3.4 Gathering additional sequences with PSI-BLAST 
An complementary approach to the protein domain focused databases InterPro and Pfam, and the 
search tool HHblits, is the algorithm Position-Specific Iterative BLAST, or PSI-BLAST. PSI-BLAST is a 
publicly available database search tool hosted by NCBI which performs an iterative search function 
against a protein query. Detailed instructions for PSI-BLAST are on the NCBI website and in this 
reference [32]. PSI-BLAST has some advantages over the previously mentioned tools as it provides 
increased sequence coverage by trading off poorer identity coverage. This is important as building 
the HMM will require a low number of gaps to generate a HMM profile that is usable with CAMEOS.  

PSI-BLAST is an easy to use tool requiring a single protein sequence input. To use the PSI-
BLAST function, users navigate to the protein BLAST (blastp) on NCBI, enter the input protein in the 
Query Sequence section, and select the PSI-BLAST algorithm in the Program Selection section. From 
the original input PSI-BLAST will generate search results matching the input protein limited by either 
sequence counts (default = 500), or by E value cut off (default is 0.005). These settings can be 
modified in the algorithm parameters on the initial search page to expand or constrict the available 
results from the first iteration. The initial results are used to seed the second iteration which is 
controlled by selecting the number of sequences to add in the “Run PSI-BLAST iteration 2” input.  
Search results can be filtered after by Percentage Identity, E value, Query coverage, and threshold 
cut offs. Further iterations can be performed to expand the sequence counts. All results can be 
downloaded from the browser as either aligned or unaligned sequences in FASTA format.  
 
 
3.5 Perform multiple sequence alignment using MAFFT 
The original CAMEOS publication used the FAMSA aligner [23] in concert with OD-seq [33] to remove 
outliers >2 standard deviations away from the sequences in a dataset, followed by manual removal 
of alignment positions when less than 50% of entries were aligned amino acids. Alternatively, we 
present another method below using the MAFFT aligner that seems to produce comparable results 
with less manual intervention. 
 
1. Because the MAFFT aligner is not as efficient as FAMSA with large numbers of sequences 
(>10,000) it may be necessary to take a subsample of the files obtained from InterPro. The fasta-
subsample tool in the MEME Suite [34] is an easy way to do this. Because of interference between 
different tools used in this protocol we used the Conda environment and package manager [35] to 
create a new environment just to run the MEME suite. All tools we use in this protocol were within 
the Ubuntu Linux operating system. After starting up a CLI: 
 
(base) $ conda activate meme 
 
Then from within that Conda environment where MEME suite has been installed you can use the 
fasta-subsample tool. Navigate to the folder containing the infA.fasta file, then using the CLI: 
(meme) $ fasta-subsample infA.fasta 10000 >infA_sub_10000.fasta 
 
Where: 
10000    The number of sequences you wish to sub-sample 
infA.fasta   The FASTA file containing more sequences than you require 
>infA_sub_10000.fasta  A command to store the results of the subsampling into a file called 
    infA_sub_10000.fasta 
 
You can check that there are actually 10,000 FASTA files within this newly created file using the 
grep command and pipe the results to the wc command: 
 
(meme) $ grep -o '>' infA_sub_10000.fasta | wc -l 
10000 
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2. Running the MAFFT tool within our (base) environment on the newly created sub-sampled FASTA 
file of InfA sequences. 
 
(base) $ time mafft --add infA_sub_10000.fasta --keeplength infA.fasta 
>infA.msa 
 
We use the time command to show us how long the alignment process took after it has completed. 
The --add flag is used to adding unaligned full-length sequence(s) into an existing alignment. In this 
case we are not adding to an alignment but using the sub-sampled InfA sequences in the file 
infA_sub_10000.fasta. This is done so that the alignment does not contain too many gaps and is 
relative to the target sequence. The --keeplength flag is used to chop off the ends of alignments 
that go over the E. coli InfA target sequence (infA.fasta), which simulates the effects of manual 
pruning (Note 7). 
 
3. The sequence alignment may contain outlier sequences that would reduce the accuracy of the 
CAMEOS designs. To remove outlier sequences from the MSA we will use OD-seq [33] on the 
alignment (Note 8). 
 
$ OD-seq -s 2 -i infA.msa -c infA_trim.msa 
 
Where: 
OD-seq  The program that removes outlier sequences 
-s  Flag to specify number standard deviations or greater from the mean the sequences 
  need to be to remove from the alignment (in this case two standard deviations is 
  selected). 
-i  Flag to specify input file name (infA.msa) 
-c  Flag to specify the output file name for sequences with average distance of less than 
  two standard deviations to the rest of the sequences in the alignment   
  (infA_trim.msa) 
-o  (optional) Flag to specify the output file name for sequences with average distance 
  of more than two standard deviations to the rest of the sequences in the alignment. 
 
4. The MAFFT alignment is then repeated to align the sequences that were not removed by OD-seq. 
 
5. The FASTA formatted output of MAFFT (and FAMSA) is not directly compatible with the CAMEOS 
scripts so must be converted to a single-line FASTA format. For CAMEOS to recognize the MSA files, 
each sequence, including gap characters (-), must occupy only one line (Note 9). We will use the 
fasta_formatter command of FASTX-Toolkit (Note 10) to do this: 
 
$ fasta_formatter -i infA_trim.msa -o infA.msa -w 0 
 
Where: 
fasta_formatter  Tool used to reformat FASTA sequences 
-i   Flag to specify input file name (infA_trim.msa) 
-o   Flag to specify output file name (infA.msa) 
-w   Flag to specify the max. sequence line width for output FASTA file. The 0 
   means that sequences lines will not be wrapped and all amino acids will  
   appear on the same line. 
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3.6 Creation of a Protein Generative Model 
Before two protein sequences can be artificially overlapped with the CAMEOS algorithm, each 
protein sequence must be analysed to create both a HMM and a MRF representation. This is done so 
that the CAMEOS algorithm can determine regions of the proteins where sequence flexibility and 
long-range interactions (residue-residue contacts) are amenable to coding sequence overlap in 
different reading frames. Unless otherwise stated, we assume the proteinA.msa and 
proteinB.msa files (in our case infA.msa and aroB.msa) are within the main/ sub-folder of the 
CAMEOS script folder and your CLI program's present working directory (pwd) is also main/ 
 
 
3.6.1 Training HMM using hmmer 
1. Using our generated infA.msa and aroB.msa files we will first generate hidden Markov models 
(HMMs) of each protein using hmmer (http://hmmer.org/) command hmmbuild. 
 
$ hmmbuild infA.hmm infA.msa 
 
Where: 
hmmbuild The function of hmmer that builds a HMM 
infA.hmm Output file name 
infA.msa Input file name 
 
2. Inspect the resulting information generated in the CLI to determine if the HMM was generated 
correctly. The CAMEOS script is able to use .hmm files that are incomplete without raising an error, 
but the end results of the process will be incorrect. An indication that your HMM files are not correct 
is the final engineered protein sequences generated will include gaps and will be shorter than the 
actual protein sequences put into the script in the proteins.fasta file. 
 To ensure these errors do not occur, your HMM must be of the same length as the input 
protein.  In the hmmbuild output check that 'alen' and 'mlen' are the same value (72 in this case) 
and that this value is the same as the length of the protein in amino acids (72 aa in this case is the 
full length of InfA). 
 

 
3. The generated .hmm file is then compressed to create the final .hmm/.h3f/.h3i/.h3m/.h3p files 
CAMEOS requires, using the hmmpress command of the hmmer package. 
 
$ hmmpress infA.hmm 
 
Where: 
hmmpress The function of hmmer that prepares an HMM database 
infA.hmm Input file name 

# hmmbuild :: profile HMM construction from multiple sequence 
alignments  
# HMMER 3.3 (Nov 2019); http://hmmer.org/  
# Copyright (C) 2019 Howard Hughes Medical Institute. 
# Freely distributed under the BSD open source license. 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
# input alignment file:   slyD.msa  
# output HMM file:    slyD.hmm 
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  
 
# idx name  nseq  alen  mlen  eff_nseq  re/pos  description 
#-------------------------------------------------------------------
1  infA   1586  72    72  0.52      0.592 
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3.6.2 Training Markov Random Field using CCMpred 
The MRF model for each protein will be trained using CCMpred [28] to create residue-residue 
contact predictions. These models are for later use in assessing the impact of protein sequence 
changes and their long-range interactions within a protein family. 
 
1. First we must convert the MSA files to a format that is compatible with CCMpred (only sequences, 
no FASTA headers) using an inverse-match grep command: 
 
$ grep -v ">" infA.msa > infA.ccm 
 
Where: 
grep  A command-line utility for searching lines that match a regular expression. 
-v  Inverse-match flag 
">"  The string to match in the input file 
infA.msa Input file  
>  Save results of grep to a file 
infA.ccm Output file name 
 
 
2. Next we invoke CCMpred to generate a .raw matrix file. 
 
$ ccmpred -t 1 -r infA.raw -n 100 infA.ccm infA.mat 
 
Where: 
ccmpred The ccmpred command 
-t 1  (optional) Depending on the number of CPUs you have available for the   
  computation, you may want to use a value >1 (default) here to complete the  
  calculation faster 
-r  Store raw prediction matrix in RAWFILE format flag 
infA.raw The output raw file 
-n 100  Compute a maximum of NUMITER operations [default: 50] 
infA.ccm The input file name 
infA.mat The matrix output file 
 
3. The .raw file is not in the correct format expected by the CAMEOS scripts, so it must be converted 
to an internal MRF file format using a Julia [36] language script (convert_ccm_to_jld.jl). The 
script generates a Julia Data File (.jld) file that is used when the main.jl CAMEOS Julia script is run 
later: 
 
$ julia convert_ccm_to_jld.jl infA.raw infA.jld 
 
Where: 
julia   Runs script with Julia 
convert_ccm_to_jld.jl Name of script to run 
infA.raw  Input file name 
infA.jld   Output file name 
 
The .jld files must then be transferred to the jlds/ sub-folder or the main.jl script will fail when 
run later. 
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3.6.3 Summarizing pseudolikelihoods/energies 
 
1. Next we must summarize the data from CCMpred into formats that work with the CAMEOS 
scripts. The pseudolikelihoods and energies of the proteins are used in the optimization process and 
so these values are calculated using the energies_and_psls.jl script that will output two files: 
psls_protein.txt and energy_protein.txt into the psls/ and energies/ sub-folders, 
respectively. These folders must already exist within the main/ folder or the main.jl script will fail 
when run. In our example the files would be named psls_infA.txt and energy_infA.txt 
 
The script is run: 
 
$ julia energies_and_psls.jl infA infA.jld infA.msa 
 
Where: 
julia   Runs script with Julia 
energies_and_psls.jl Name of script to run 
infA   The name of the protein 
infA.jld   Input Julia Data File name. Note, this was generated in the previous step. 
infA.msa  Input MSA file name. Note, this was generated in a previous step. 
 
 
3.6.4 Setting up folder structure 
The main.jl script requires all the input files to be in a certain folder structure or it will fail. Within 
the main/ folder the correct subfolder structure is: 
 
energies/ 
Containing: energy_infA.txt and energy_aroB.txt files. 
 
hmms/ 
Containing: infA.hmm, infA.hmm.h3f, infA.hmm.h3i, infA.hmm.h3m, infA.hmm.h3p, 
aroB.hmm, aroB.hmm.h3f, aroB.hmm.h3i, aroB.hmm.h3m, and aroB.hmm.h3p files. 
 
jlds/ 
Containing: infA.jld and aroB.jld 
 
NOTE: as of the time of this writing (early 2022) GitHub does not host these files correctly and 
instead of aroB.jld being ~464.9 MB and infA.jld being ~18.3 MB, they instead are 134 bytes 
and 133 bytes, respectively. The reduced-size files will cause an error if used as-is. Two options to 
get around this limitation of GitHub are to download the correct files here: 
https://cloudstor.aarnet.edu.au/plus/s/jpM0fvly0Y2r4Wi 
 Alternatively, if you run the CAMEOS process from the beginning, as described in this 
chapter, you will generate your own aroB.jld and infA.jld files of the correct size. 
 
msas/ 
Containing: infA.msa and aroB.msa 
 
output/ 
Containing: nothing. The folder is empty at the start of the script. 
 
psls/ 
Containing: psls_infA.txt and psls_aroB.txt 
Additionally, within the main/ folder the following files are required: 
cds.fasta, proteins.fasta, runfile.txt 
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3.6.5 Running CAMEOS 
1. The last step before running the main CAMEOS script is to modify the file containing the run 
parameters. Here, we call the file runfile.txt but you can name it whatever makes sense to you. 
The file contains the parameters used during the main.jl script execution and controls aspects of 
the CAMEOS process, such as how many seeds to optimize and how many iterations to perform. 
 These parameters must be adjusted carefully because they can have dramatic effects, such 
as significantly extending runtime. 
 
The runfile.txt parameter file has the following structure: 
 
output/ infA aroB jlds/infA.jld jlds/aroB.jld hmms/infA.hmm
 hmms/aroB.hmm 100 p1 250 
 
The file is tab-delimited (each unit of text is separated by a tab character) and stores the following 
information (Note 11), where: 
 
output/   Directory where output files are stored 
infA   Gene/Protein A name 
aroB   Gene/Protein B name 
jlds/infA.jld  Path to .jld file containing MRF (CCMpred data) for Gene A 
jlds/aroB.jld  Path to .jld file containing MRF (CCMpred data) for Gene B 
hmms/infA.hmm Path to HMM file (hmmer data) for Gene A 
hmms/aroB.hmm Path to HMM file (hmmer data) for Gene B 
100   Number of seeds to optimize 
p1   Frame. This parameter should not be modified 
250   Number of iterations of algorithm 
 
The time the CAMEOS method takes to complete depends on a number of factors such as sequence 
lengths, seed value, and iteration value. 
 
To run CAMEOS using the main.jl script, navigate to the main/ folder and type: 
 
$ julia main.jl runfile.txt 
 
Where: 
julia  Runs script with Julia 
main.jl  The script to run 
runfile.txt A file containing the parameters used during the CAMEOS run 
  
After a successful run, text will be displayed on the CLI, similar to: 
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3.6.6 Evaluating CAMEOS Results 
 
1. In the output/ subfolder, a number of files are created from a successful CAMEOS run. The 
top_twelve_BC.fa (where BC is barcode of the run. In our example above it would be 
top_twelve_G8wCDktg.fa) file contains the best three co-encodings of the two genes of interest 
from the best score of proteinA (InfA in our example) and proteinB (AroB in our example). 
Additionally, the file also contains co-encodings (CDS overlaps) with the best overall score. 
 Although in most instances the script will just fail if the initial files are not of the correct type 
and location, we have seen a few cases where output is generated but is erroneous. For example, if 
the MSA files that are used have more characters in them than the sequences in the 
proteins.fasta file, the output sequences that are generated will have gaps in them. Therefore, 
careful analysis of the output sequences should be done before synthesizing the DNA to make the 
constructs. 
 
2. An additional script (from: https://github.com/BiosecSFA/CAMEOS) can be used to summarize the 
information from the .jld output file into FASTA and comma separated values (CSV) files, which are 
generally easier to look through. 
 
With the CLI's present working directory as main/, execute the following code: 
 
$ julia outparser.jl infA aroB BC --fasta 
 
Where: 
julia  Runs script with Julia 
outparser.jl Julia script that parses the CAMEOS output into easier to analyse files 
infA  The name of the first protein co-encoded 
aroB  The name of the second protein co-encoded 
BC   Barcode from your CAMEOS run (e.g. G8wCDktg) 
--fasta  Generates a FASTA file of the results in addition to a CSV 
--just-fullseq  (optional): this flag can be used in addition to the --fasta flag to create a FASTA file 
  that only contains the full sequence. 
 

Running CAMEOS using parameters specified in runfile.txt 
CAMEOS parameters are:  
output/ infA aroB jlds/infA.jld jlds/aroB.jld hmms/infA.hmm
 hmms/aroB.hmm 100 p1 250 
 
The random barcode on this run is: G8wCDktg 
CAMEOS tensor built 
Evaluating HMM seeds 
Beginning long-range optimization. 
Step 0 of 250... 
Step 50 of 250... 
Step 100 of 250... 
Step 150 of 250... 
Step 200 of 250... 
1038.885614 seconds (262.57 M allocations: 310.487 GiB, 1.38% gc 
time) 
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Figure 4 | Aligned CAMEOS AroB and InfA outputs 
(A) The eight highest scoring CAMEOS designs incorporated InfA within AroB within two regions, at 
the 5` and 3` ends. (B) AroB designs aligned to the wild-type AroB sequence showing the locations 
where residues were modified. (C) InfA designs aligned to the wild-type InfA sequence showing the 
locations where residues were modified. 
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2. In the example of infA encoded within the aroB gene, we can see the top scoring hits are located 
in either the 5` or 3` regions of aroB (Figure 4A). Within the 5` region, three InfA variant designs 
modified the AroB sequence on average 14% to enable the co-encoding of InfA into AroB. A similar 
result was observed in the 3` region of aroB as the five InfA variants there modified AroB on average 
13%. 
 Despite being in two distinct regions, all designs incorporated a new residue at position 30. 
In most designs this was lysine, however in designs 1 and 20 an arginine and tryptophan were 
incorporated respectively (Figure 4B). While no crystal structure is available for E. coli AroB, on 
UniProt an Alphafold simulation is publicly available predicting the protein structure [37,38]. The 
inserted AroB residue is incorporated 5` adjacent to a proline residue which terminates a predicted 
alpha helix. All three modified residues have some favourability to form alpha helices, therefore it is 
likely that the modification either continues the alpha helix one residue or has a secondary 
structural effect. Overall, AroB is predicted to be a highly structured protein, therefore all modified 
residues will interact with existing secondary structures. For example, in the 5` region containing 
InfA designs the existing structure is a combination of alpha helices and beta sheets, while the 3` 
region containing InfA designs is populated with predominantly alpha helices with a single beta 
sheet. Due to its short size, InfA had more significant modifications to its sequence as on average 
45% of the amino acid identities were altered (Figure 4C). Unlike AroB, InfA has an experimentally 
characterised structure which is dominated by a beta barrel with a single short alpha helix [39]. 
Therefore, due to InfA’s small size and highly structured topology, all residue changes would be 
members of an existing beta sheet or alpha helix. 
 
3. Differences in the co-encodings can also be seen when considering the predicted translation 
efficiencies of infA from within the aroB sequence. Using the RBS Calculator [40] on the top five 
designs we see a nearly 8-fold difference between predicted translation efficiency of the worst and 
best infA designs. Similarly, there is a 9-fold difference for aroB (Figure 5A). The correlation between 
aroB and infA translation initiation rates in this case is due to the N-terminal location of infA co-
encoding. If infA is co-encoded more C-terminally, the two CDS translation initiation rates (TIRs) are 
not connected, with aroB displaying a strong TIR (5,577 AU) and infA displaying a range of TIRs (1 - 
286 AU), although 20 - 5,577-fold lower than aroB (Figure 5B). For reference, in the infA natural E. 
coli genomic context, it has a predicted TIR of 1,211 (AU) which is at least 4-fold higher than the best 
CAMEOS encoding. 
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Figure 5 | Predicted Translation Efficiencies for CAMEOS designs 
(A) Using RBS Calculator on the top 5 N-terminal designs of infA/aroB overlap we see a strong 
correlation between aroB translation initiation rate (TIR) and the downstream infA TIR. This effect is 
likely due to the close proximity of the start codons and ribosome binding sites of the co-encoded 
coding sequences. (B) Using RBS Calculator on other aroB/infA co-encodings where the start codons 
and RBSs are spaced further apart shows no correlation between TIRs but does show as before, a 
wide range of infA TIRs. 
 
 
3.7 Putting it all together 
 
As we have outlined, the successful completion of co-encoding two proteins in the same DNA 
sequence in different reading frames, is a complex and multistep process. One of the most 
burdensome barriers to entry for molecular biologists is access to a computer running Linux and the 
installation of all the tools needed. 
 To ease this process and enable scientists without strong computational backgrounds to use 
the CAMEOS algorithm, we have created a virtual machine which comes pre-loaded with all the tools 
used in this protocol and can be easily run on a computer using Windows or macOS operating 

0

20

40

60

80

100

120

140

160

0 500 1000 1500 2000 2500 3000 3500 4000

inf
A 

TI
R

(A)

(B)

aroB TIR

y = 0.042x - 2.2
R² = 0.97

0 1000 2000 3000 4000 5000 6000
aroB TIR

0

50

100

150

200

250

300

350

inf
A 

TI
R

aroBinfA AroBInfA

AroB InfA

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.15.480625doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.15.480625


 18 

systems. The virtual machine file is ~20GB large so ensure you have plenty of room on your disk and 
a fast internet connection. The disk size of the virtual machine is 50GB, so as you add data to your 
virtual machine ensure you have at least 75GB free on your computer's disk. 
 
Access the .ova file which contains the virtual machine (called 'overlap') here: 
https://cloudstor.aarnet.edu.au/plus/s/8ooJ7SHTt463KE5 
 
The starting password for the Ubuntu operating system on the virtual machine is: overlap 
We strongly suggest you change the password once you start using the virtual machine. 
 
To check that the overlap.ova file downloaded correctly on macOS, start up a CLI such as Terminal 
in the directory you downloaded the file to and run: 
$ md5 overlap.ova 
 
To check that the overlap.ova file downloaded correctly on Linux, start up a CLI such as Terminal 
in the directory you downloaded the file to and run: 
$ md5sum overlap.ova 
 
To check that the overlap.ova file downloaded correctly on Windows, start up a CLI such as 
Command Prompt in the directory you downloaded the file to and run: 
C:\> certutil -hashfile overlap.ova MD5 
 
The result of these commands should be: b8f894df3305507bdee6e992ac87d75f 
 
If your result does not match, then it is likely that the download was interrupted and the 
overlap.ova file was corrupted. Please try to download again. In the future, if the link to this 
resource becomes broken, please check our lab website for details:  
https://www.jaschke-lab.science/ 
 
The virtual machine .ova file (overlap.ova) can be booted up using the free Oracle VM Virtualbox 
software. 
 
2. We have also created a script in the shell language Bash that can be used to accomplish all the 
previously described steps automatically, reducing the chances of human error from moving all 
these files around and using tools with certain parameters. This Bash script is called 
run_cameos.sh and is stored within the main/ folder of the CAMEOS code on the overlap.ova 
virtual machine. To just download the Bash script please find it here: 
https://cloudstor.aarnet.edu.au/plus/s/Q09KhQAQCaNimdj 
 
To use the script to perform a run of CAMEOS, you need to open the run_cameos.sh script in a 
text editor, and specify the protein names you are working on by changing the two variables 
specifying the protein names: 
 
proteinA=infA 
protein=aroB 
 
Then save and close the run_cameos.sh script file. Next, open a CLI in the main/ folder and run 
the script by: 
 
$ bash run_cameos.sh 
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As the script is running it will display updates on which tool is being run and its progress in the CLI 
window. Once the run is done it will display information on where the output files are located and 
how long the script took to run. 
 
 
4 Notes 
 

1. More information on these coding sequences can be seen on the Ecocyc database [41] here: 
https://ecocyc.org/gene?orgid=ECOLI&id=EG10504 
https://biocyc.org/gene?orgid=ECOLI&id=EG10074 

2. Only E. coli sequences have been used with CAMEOS before, although in principle nothing is 
preventing other prokaryote coding sequences from being used, any sequence differing 
from the standard codon table or E. coli codon usage would need to manually optimize the 
code. 

3. Text to enter will be supplied with single quotes ‘text to be entered’ and the quotes should 
not be included unless specifically stated. 

4. Depending on the number of sequences this process may take more than 1 hour to generate 
the data. 

5. The FASTA sequences could also be downloaded programmatically using the available 
Application Programming Interface (API) using Python, Perl, or JavaScript. InterPro makes 
this process easier by automatically generating the code needed, but this method is outside 
the scope of the current article. 

6. The HH-suite GitHub page has a detailed wiki page with examples of how to run their script 
and is accessible via https://github.com/soedinglab/hh-suite/wiki 

7. https://mafft.cbrc.jp/alignment/server/add.html 
8. Although available through Bioconductor for the R language, we used the CLI version 

available here from the original publication:  
http://www.bioinf.ucd.ie/download/od-seq.tar.gz 

9. Some multiple sequence aligners (MAFFT and FAMSA, for example) create output with 50 or 
80 characters per line separated by newline (\n) characters, which is not suitable for use in 
the CAMEOS script. 

10. The FASTX-toolkit is available for download through both GitHub 
(https://github.com/agordon/fastx_toolkit) and through a website 
(http://hannonlab.cshl.edu/fastx_toolkit/).  

11. The names used for proteins A and B must be identical to those used in the 
proteins.fasta and cds.fasta files in the FASTA header (e.g. >infA). The file names of 
the files storing the energies and pseudolikelihoods must also include the same identifier 
(e.g. energy_infA.txt and psls_infA.txt). Lastly, use a short identifier, such as the 3-
4 letter gene name, because output files and folders will be named with these identifiers. 
For reference, the CAMEOS publication (Figure S2) showed the effects of using different 
values for Number of Iterations. Most of the tested variants did not display dramatically 
improved summed pseudolikelihood scores after ~300 iterations. The Frame value p1 should 
not be altered as it is the only option currently supported. 
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