1	Extension of bacterial rDNA sequencing to concurrent epigenetic analysis and its
2	application to 16S meta-epigenetics
3	
4	Motoi Nishimura ^{a*} , Tomoaki Tanaka ^b , Syota Murata ^a , Akiko Miyabe ^a , Takayuki Ishige ^a , Kenji
5	Kawasaki ^a , Masataka Yokoyama ^b , Satomi Tojo-Nishimura ^b , Kazuyuki Matsushita ^b
6	
7	¹ Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital,
8	Chiba, Japan
9	² Department of Molecular Diagnosis, Graduate School of Medicine, Chiba University, Chiba,
10	Japan
11	
12	Running Head: Extending rDNA sequencing to 16S meta-epigenetics
13	
14	*Address correspondence: Motoi Nishimura
15	Division of Laboratory Medicine, Clinical Genetics and Proteomics, Chiba University Hospital
16	Chiba, Japan
17	Email: ZXA03460@nifty.ne.jp

2

18 Abstract

19 Although polymerase chain reaction (PCR) amplification and sequencing of the 16S rDNA 20 region has been used in a wide range of scientific fields, it does not provide DNA methylation information. We describe a simple add-on method to investigate 5-methylcytosine residues in the 21 bacterial 16S rDNA region from clinical samples or flora. Single-stranded bacterial DNA after 22 bisulfite conversion was preferentially amplified with multiple displacement amplification 23 24 (MDA) at pH neutral, and the 16S rDNA region was analyzed using nested bisulfite PCR and sequencing. 16S rDNA bisulfite sequencing can provide clinically important bacterial DNA 25 26 methylation status concurrently with intact 16S rDNA sequence information. We used this 27 approach to identify novel methylation sites and a methyltransferase (M. MmnI) in Morganella morganii. Next, we analyzed bacterial flora from clinical specimens of small amount and 28 identified different methylation motifs among *Enterococcus faecalis* strains. The method 29 developed here, referred to as "add-on" to the conventional 16S rDNA analysis, is the most 30 31 clinically used bacterial identification genetic test, which provides additional information that could not be obtained with the conventional method. Since the relationship between drug 32 resistance in bacteria and DNA methylation status has been reported, bacterial epigenetic 33 34 information would be useful in clinical testing as well. Our analysis suggests that M. MmnI has a 35 promotive effect on erythromycin resistance. 16S rDNA bisulfite PCR and sequencing coupled 36 with MDA at pH neutral is a useful add-on tool for analyzing 16S meta-epigenetics.

37

Keywords: DNA methylation, DNA methyltransferase, bacterial epigenetics, microbiome, drug
 resistance, 16S rDNA

3

40 Introduction

Bacterial 16S rDNA (rRNA) gene sequencing has enabled the simple estimation of bacterial 41 42 species by genetic testing and opened the door to microbiome analysis. Although bacterial 16S rDNA sequencing analyzes a relatively small region, it does not require bacterial culture and can 43 estimate bacterial species with fairly high accuracy. Combined with short-read next-generation 44 45 sequencing (NGS), 16S rDNA gene amplicon-based metagenomic analysis of bacterial 46 communities is possible and relatively straightforward (1). At present, 16S rDNA sequencing has 47 been widely incorporated in the field of science, including food analysis (2-4), environmental surveys (5, 6), and clinical tests (7-10). 48 Metagenomic analysis of bacterial DNA has been further developed in recent years and 49 50 has been combined with epigenomic analysis (11), leading to the discovery of new methylation 51 motifs and novel DNA methylases (12-14). However, this new meta-epigenomic technique is 52 based on sequencing the whole genome and/or all nucleic acids in a sample. Thus, it loses the 53 advantages of 16S rDNA analysis, which analyzes a narrow region of bacterial DNA but can identify a wide range of bacterial genera or species even from small-volume samples (15). 54 55 Here, we hypothesize that combining 16S rDNA sequencing with bisulfite polymerase

chain reaction (PCR) (16) can add DNA methylation information to 16S rDNA analysis while
retaining the existing benefits. Furthermore, since 16S rRNA is has several hairpin structures
(17), and a palindrome sequence can form a hairpin structure, 16S rDNA may contain
palindromic nucleotide sequences. Prokaryotic DNA methyltransferases recognize palindromic
DNA sequences (18), hence 16S rDNA may be a region where DNA methylation is detected.
Because the degree of methylation and the number of methylation sites on bacterial DNA differ
greatly depending on the species (19), we designed primer sequences for the bisulfite PCR used

63	in this combination analysis, including a degenerated universal primer (Figure 1) targeting the
64	16S rDNA region that detects 0% to 100% methylcytosine content at the primer site. This
65	universal primer set can target both bisulfite-treated and non-bisulfite-treated bacterial genomic
66	DNA (Figure 1), therefore bisulfite PCR and sequencing can provide information on the
67	methylation status of the 16S rDNA sequence in parallel with the targeted 16S rDNA sequence
68	itself.

69 Materials and methods

70 Bacterial strains, clinical specimens, and DNA extraction

Escherichia coli DNA adenine methyltransferase (dam)+/dcm+ (NEB 5-alpha competent E. coli, 71 72 #C2987) and dam-/dcm- (dam-/dcm- competent E. coli, #C2925) strains were purchased from 73 NEB (Ipswich, MA, USA) and cultured in Luria-Bertani (LB) medium. Clinical isolates, namely 74 K. oxytoca, M. morganii, P. mirabilis, P. aeruginosa, S. epidermidis, Serratia liquefaciens, and 75 E. faecalis, were cultured on plate agar for routine bacterial identification using MALDI-TOF mass spectrometry (Biotyper, Bruker Daltonics GmbH, Leipzig, Germany) at Chiba University 76 77 Hospital (20). Enterococcus faecalis NBRC strains were purchased from the National Institute of Technology and Evaluation (Tokyo, Japan). Bacterial flora from patient urine samples was 78 washed twice with phosphate-buffered saline and separated via centrifugation at $3,000 \times g$ for 5 79 80 min at a temperature of 20 °C to 25 °C. Each patient underwent routine clinical bacteriuria tests in which bacterial species were cultured on plate agar and identified using a Biotyper instrument. 81 Bacterial DNA was extracted from either culture medium or separated bacterial flora using an 82 83 innuPREP Bacteria DNA kit (Analytik Jena GmbH, Jena, Germany) according to the manufacturer's protocol. 84

5

86 Bisulfite PCR coupled with MDA at pH neutral

87	Approximately half of the extracted bacterial DNA was subjected to bisulfite treatment using an
88	innuCONVERT Bisulfite Basic kit (Analytik Jena). The remaining intact DNA was amplified
89	with conventional MDA using a TruePrime WGA Kit (4basebio, Madrid, Spain). The bisulfite-
90	converted DNA was amplified using MDA at neutral pH using the same kit. In MDA at pH
91	neutral, bisulfite-converted single-stranded DNA was amplified untreated with alkaline by
92	mixing the alkaline solution with an acidic solution prior to DNA input. In conventional MDA,
93	intact double-stranded DNA was denatured with alkaline solution before the acid addition and
94	amplification. MDA products from bisulfite-converted or unconverted bacterial DNA were
95	subjected to nested PCR with the primer sets shown in Figure 1. The universal 16S rDNA
96	bisulfite PCR primer sets were designed using the ApE (A plasmid Editor,
97	https://jorgensen.biology.utah.edu/wayned/ape/) and Primer 3 (http://bioinfo.ut.ee/primer3-
98	0.4.0/) software under the following five conditions: i) targeting the V4–V5 region of 16S rDNA;
99	ii) relatively few degenerate nucleotides (R (A, G) or Y (C, T)); iii) primer length > 20
100	nucleotides; iv) prospects of priming more bacterial species, as expected from the results of
101	BLAST targeting 16S rDNA sites; and v) an expected product size of 364 bp and 377 bp for <i>E</i> .
102	coli, which is within the read length of the Ion PGM sequencer.
103	Bisulfite PCR was performed using the primer sets and nested PCR (Figure 1) utilizing

KOD -Multi & Epi- DNA polymerase (TOYOBO, Tokyo, Japan) at a final concentration of 0.02
U/μL. In nested PCR, the final primer concentrations were 0.6 μM in both the first and second
PCR steps. The cycling conditions were as follows: 94 °C for 2 min and 15 cycles (first reaction)
or 20 cycles (second reaction) at 98 °C for 10 s, Tm °C for 30 s, and 68 °C for 15 s; Tm °C was
56 °C for the positive strand in the first PCR step, 42 °C for the negative strand in the first PCR

step, and 52 °C for the second PCR step. Between the two reaction steps, excessive primers were

removed with an enzymatic protocol using exonuclease I (NEB) and quick CIP (NEB).

109

110

111	
112	Sanger and NGS
113	Sanger sequencing was performed using a 3500xL Genetic Analyzer (Thermo Fisher Scientific,
114	Waltham, MA, USA). A BigDye Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher
115	Scientific) was used for the cycle sequencing reaction. NGS was performed using an Ion Plus
116	Fragment Library Kit, a Hi-Q View OT2 Kit, a Hi-Q View Sequencing Kit, or an Ion 318 Chip
117	Kit v2 (Thermo Fisher Scientific) and a benchtop Ion PGM system according to the
118	manufacturer's protocol. The DNA fragmentation step was skipped when using the Ion Plus
119	Fragment Library Kit. The Sanger sequencing data and Ion Torrent BAM files were analyzed
120	using CLC Genomics Workbench (Qiagen, CLC bio, Aarhus, Denmark), including running
121	BLAST against the NCBI database (downloaded in May 2021).
122	
123	Plasmid preparation
124	To determine the DNA methyltransferase gene responsible for the consecutive methylation in the
125	M. morganii 16S rDNA region (Figure 2B), we selected M.Mom25830ORF6305P and
126	M.Mom25830ORF2065P (designated as M. MmnI in this paper) as candidate genes by searching
127	against a gold-standard dataset in the Restriction Enzyme Database (NEB REBASE) (21). The
128	genes were cloned into the pCold III-Mor1 expression vector between the SacI (Takara Bio) and
129	XbaI (Takara Bio) restriction sites. For the M.Mom25830ORF6305P-expressing plasmid, the
130	gene-specific oligonucleotide primers used were 5'-GGTGAACGGTTCAGACGACT-3' and 5'-

- 131 CCTGCGCTACTGTTTCGGTA-3' in the first round of nested PCR and 5'-
- 132 ATATGGAGCTCATGAAAAACACTGTTAATTT-3' and 5'-
- 133 TACCTATCTAGATCACGTGAAACTTTCAAGACC-3' in the second round of PCR. For the
- 134 M.Mom25830ORF2065P-expressing plasmid (designated pCold III-M. MmnI, Figure 3A), the
- 135 gene-specific oligonucleotide primers used were 5'-TGTTTTTCCGGCCTTCCTGT-3' and 5'-
- 136 CATCGGATTTTCAGCCGCTG-3' in the first round of nested PCR and 5'-
- 137 CATATGGAGCTCATGATTTTGAAAAAACACCC-3' and 5'-
- 138 TACCTATCTAGATTATTTTACCGGCGGTATTG-3' in the second round of PCR. The entire
- 139 cloned gene fragments in both plasmids were Sanger-sequenced.
- 140 The pCold III –Mor1 expression vector was constructed from pCold III vector (Takara
- 141 Bio, Kyoto, Japan) at the NgoMIV (NEB) site by inserting the *M. morganii* 16S rDNA V4–V5
- 142 region sequence with the following additional NgoMIV site: 5'-
- 144 GAGTCAGATGTGAAATCCCCGGGGCTTAACCCGGGAATTGCATCTGATACTGGTCAGC
- 145 TAGAGTCTTGTAGAGGGGGGGGAGAATTCCATGTGTAGCGGTGAAATGCGTAGAGAT
- 146 GTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCAGGTG
- 147 CGAAAGCGTGGGGGGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCTGTAAACGA
- 148 TGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGTC
- 149 GACCGCCTGGGGAGTACGGCCGCAAGGTTAAAACTCAAATGAATTGCCGGC-3'.
- 150

151 Experimental verification of DNA methyltransferase activity

- 152 To verify the function of the M. MmnI gene, the plasmids were transformed into *E. coli* dam+/
- 153 dcm+ (NEB 5-alpha competent *E. coli*, #C2987) and dam-/ dcm- (dam-/dcm- competent *E. coli*,

154	#C2925) strains. The <i>E. coli</i> strains were cultured in LB broth (Thermo Fisher Scientific)
155	supplemented with 100 mg/L ampicillin (FUJIFILM Wako Pure Chemical Corporation, Osaka,
156	Japan). Plasmid DNA was isolated using the FastGene Xpress Plasmid PLUS Kit (Nippon
157	Genetics, Tokyo, Japan). SacI was used to linearize the pCold III-M. MmnI plasmid DNA,
158	which was then inactivated by heat at 70 °C. The methylation status was assayed via enzymatic
159	digestion using DNA-methylation-sensitive SmaI (NEB) and -insensitive MspI (NEB) restriction
160	enzymes (Figure 3B). Unmethylated pCold III-M. MmnI plasmid DNA was prepared by
161	amplification using a Repli-g mini kit (Qiagen). We further verified the methylated motifs of M.
162	MmnI. Briefly, half of the pCold III-M. MmnI plasmid DNA extracted from the transformed <i>E</i> .
163	coli dam-/dcm- cells was subjected to bisulfite conversion. Both converted and unconverted
164	DNA were subjected to restriction digestion followed by agarose gel electrophoresis (Figure 3B)
165	and to Sanger sequencing as described above (Figure 3C).
166	

167 *Statistical analysis*

All statistical analyses, including calculation of standard deviations, were performed using Excel
2016 (Microsoft, Redmond, WA, USA) with the add-in software Statcel 3 (OMS Publishing Inc.,
Saitama, Japan).

171

172 *Ethics*

The present study design, including the associated consent forms and procedures (according to
the Ethics Guidelines for Medical Research for Humans in Japan), was approved by the Human
Ethics Committee of Chiba University (No. 685). Urine samples were obtained from patients

who provided written informed consent, and the samples were then irreversibly anonymizedaccording to the requirements of the ethics committee.

178

179 Results

There are difficulties in using bisulfite PCR on denatured DNA with bisulfite treatment and in 180 sequencing the PCR products during 16S rDNA analysis. One reason for this is that the target 181 182 DNA is denatured, becomes single-stranded by bisulfite treatment, and is damaged. Bisulfite 183 treatment for methylcytosine-selective hydrolysis causes a significant level of target degradation 184 (22). Even if the target DNA is not damaged, double-stranded DNA (dsDNA) is often more easily amplified than single-stranded DNA (ssDNA) (Supplementary Figure S1). Thus, in 16S 185 186 rDNA bisulfite PCR, treated target ssDNA is at risk of being less amplified than non-denatured 187 contaminated dsDNA. Further, the possibility of bacterial contamination from the lab environment cannot be completely ignored, especially because contaminating bacteria naturally 188 189 has double-stranded 16S rDNA. To reduce the contamination risk and repair degraded DNA and taking advantage of the 190 fact that ssDNA can be preferentially amplified using neutral conditions via multiple 191 displacement amplification (MDA at pH neutral, Supplementary Figure S1), which is usually 192

193 performed using DNA treated in alkaline conditions, we performed bisulfite PCR of the 16S

194 rDNA region.

Meta-epigenomics analysis assumes that when methylation analysis is randomly
performed on DNA molecules in a sample, each sequence is not necessarily a sequence that can
directly infer the species from which it originates. Even before meta-epigenomics, there are

198	examples of epigenomic studies of isolated and cultured bacteria (23,24). Whole genomic
199	bisulfite-treated genomic DNA of the E. coli K-12 strain has been sequenced (23). A recently
200	published epigenomics method using methylated-cytosine selective restriction enzymes (24),
201	unlike previous meta-epigenomic analyses (11), does not require a single-molecule sequencer
202	and does not change the large-scale analysis of non-targeted, random DNA molecules.
203	Because the sequence information of the 16S rDNA region is powerful for identifying
204	bacterial species, this analysis has been widely adopted in clinical tests and biome analysis. If
205	DNA methylation analysis can be performed completely in parallel with conventional 16S rDNA
206	analysis, then DNA methylation information can be obtained by targeting regions that contain
207	information that can more efficiently lead to the identification of bacterial species.
208	Here, we report that 16S rDNA bisulfite PCR coupled with MDA at pH neutral enables
209	16S meta-epigenetic analysis by extending 16S rDNA sequencing to concurrent epigenetic
210	analysis, which enables the discovery of novel methylation motifs and DNA methylases.
211	Although Chiba University Hospital is a medium-sized university hospital in Japan, its
212	laboratory routinely performs more than 50,000 bacterial identification tests per year. In this
213	study, clinical specimens prior to isolation and culture in bacterial identification tests and
214	cultured isolates were used for 16S rDNA meta-epigenetic analysis. Specifically, the bacterial
215	flora was isolated from urine samples by centrifugation. Next, bacterial DNA was extracted and
216	used for microbiome analysis. Bacterial DNA was also extracted from cultured isolates. 16S
217	rDNA methylation analysis was performed on all samples (Materials and methods).
218	The target region for bisulfite PCR coupled with MDA at pH neutral was the 16S rDNA
219	V4-V5 region. This is because the V4 region is a target for popular 16S rDNA analysis kits
220	[Illumina HiSeq sequencer (25)] but is also convenient for testing the ability to detect 5-

221	methylcytosine. For example, in Escherichia coli, the V4-V5 region contains five DNA cytosine
222	methyltransferase (dcm) methylation sites (CC(A/T)GG), which were calculated from the NCBI
223	NC_000913 genomic sequence. This region was used because the target region size can be
224	designed to fit into the read length of a short-read next-generation sequencer, such as a Thermo
225	Fischer Scientific Ion PGM sequencer (Thermo Fisher Scientific, Waltham, MA, USA).
226	To increase the specificity of bisulfite PCR for this region, a universal primer set for
227	nested PCR was designed for each of the positive-sense (+) and negative-sense (-) strands
228	(Figure 1), thereby allowing effective 16S rDNA bisulfite PCR. Next, the bisulfite PCR products
229	were analyzed using benchtop NGS (Ion PGM) or Sanger sequencing (Materials and methods).
230	To perform bisulfite PCR coupled with MDA at pH neutral, we extracted genomic DNA
231	from dcm+ and dcm- E. coli strains. Next, DNA was treated with bisulfite and amplified with
232	MDA at pH neutral. Untreated DNA was amplified with normal MDA as a control. The MDA
233	product was digested with the restriction enzymes MluCI (NEB, Ipswich, MA, USA) and
234	Sau3AI (Takara Bio, Kyoto, Japan) to determine whether the bisulfite-treated DNA was
235	amplified. The MluCI recognition site is AATT and the Sau3AI recognition site is GATC.
236	Therefore, in the amplified product using DNA that has undergone bisulfite treatment, which
237	converts unmethylated cytosine to uracil, many of the Sau3AI recognition sites will disappear,
238	whereas the number of MluCI recognition sites will increase. As shown in Supplementary Figure
239	S2A, the MDA product showed little change when digested with Sau3AI and was completely
240	digested with MluCI, compared to the undigested condition. This result indicates that almost all
241	amplified DNA was derived from bisulfite-converted DNA and that amplification from
242	unconverted DNA was negligible.

243	The MDA products amplified using DNA extracted from a clinical isolate (Klebsiella
244	oxytoca) and or using DNA extracted from a clinical microbiome sample (urine-derived bacteria)
245	showed the same trend of being less digestible by Sau3AI and more digestible by MluCI
246	(Supplementary Figure S2B, S2C), suggesting that the converted DNA was amplified similarly
247	to the previously tested E. coli genomic DNA.
248	Next, 16S rDNA bisulfite PCR was performed on the amplified MDA products at pH
249	neutral using a nested primer set (Figure 1) and the resulting products were sequenced. Of the 5
250	dcm methylation sequences [CC(A/T)GG] in the E. coli 16S rDNA V4-V5 region (Figure 2A),
251	the difference in methylation between dcm+ and dcm- strains was detected at all dcm
252	methylation sites. Thus, bisulfite sequencing coupled with MDA at pH neutral was able to detect
253	cytosine methylated by dcm methylase in the target region.
254	Clinical isolates prepared for antibiotic sensitivity testing were then used as a template
255	for MDA at pH neutral and for testing the downstream product (Supplementary Figure S2B).
256	The MDA product was subjected to 16S rDNA bisulfite PCR and sequencing. In genomic DNA
257	from K. oxytoca, methylation of CC(A/T)GG sites was detected (Supplementary Figure S3A),
258	similar to sites in dcm+ E. coli, as previously reported (26). Besides K. oxytoca, genomic DNA
259	was extracted from clinical isolates of several species, including Proteus mirabilis, Pseudomonas
260	aeruginosa, and Staphylococcus epidermidis, and was subjected to 16S rDNA bisulfite
261	sequencing. Within the target region, methylcytosine was not detected in P. mirabilis
262	(Supplementary Figure S3B). We observed partial methylation in <i>Pseudomonas aeruginosa</i> and
263	S. epidermidis (Supplementary Figure S3C, D). For Morganella morganii, we observed
264	methylation at the CC(A/T)GG sequence and four methylated residues at two consecutive SmaI
265	sites that were encompassed by a palindrome-like structure (Figure 2B).

13

266	Clinical microbiome DNA was successfully amplified with MDA at pH neutral
267	(Supplementary Figure S2C), and 16S rDNA bisulfite PCR and sequencing were performed on
268	the MDA products. DNA extracted from the bacterial flora in urine samples was used as the
269	clinical microbiome sample. These clinical samples were simultaneously subjected to isolation
270	culture and routine bacterial identification tests. As in the clinical isolate experiment, the results
271	of the 16S rDNA bisulfite sequencing were consistent with those of bacterial identification tests
272	by isolation culture and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF)
273	mass spectrometry (Supplementary Table S1). These results also indicated that there may be
274	diversity in the methylation of the genomic DNA fragment that appears to be from Enterococcus
275	faecalis in microbiome sample number 10_1379 (Figure 2C).
276	Although constitutive genomic DNA methylation at the GCWGC and CCGG sites of an
277	E. faecalis isolate was previously reported (27), methylation at the CC(A/T)GG site, as detected
278	in this study, has not been reported. It is difficult to determine from the data shown in Figure 2C
279	whether the diversity of methylation at the CC(A/T)GG site is due to mixing <i>E. faecalis</i> isolates
280	with different genomic DNA methylation, because Figure 2C can be interpreted to reflect that
281	methylation at the CC(A/T)GG site varies from cell to cell, even in the same strain. Additionally,
282	it is possible that genomic DNA fragments from unknown or known different bacterial species
283	with the same sequence as <i>E. faecalis</i> were mixed and analyzed in Figure 2C. Therefore, we
284	conducted an experiment using clinical isolates and NBRC bank strains of E. faecalis to verify
285	whether there is diversity in stable DNA methylation in <i>E. faecalis</i> . Indeed, the genomic DNA
286	methylation at the CC(A/T)GG site in <i>E. faecalis</i> was different among isolates and strains
707	(Supplementary Figure S4)

287 (Supplementary Figure S4).

14

288 In *M. morganii*, four methylated residues at two consecutive SmaI sites within a palindrome-like structure were detected, suggesting the presence of an uncharacterized DNA 289 290 cytosine-methyltransferase (Figure 2B). Since DNA methylation within such palindrome-like sequences has functional implications other than the restriction-modification system (28), we 291 searched for the enzyme responsible for the consecutive methylation. 292 M.Mom25830ORF6305P and M.Mom25830ORF2065P, which are presumed to encode DNA 293 294 methyltransferases in *M. morganii*, were identified using the REBASE database. Next, these genes were each cloned into pCold III expression plasmids along with the palindrome-like 295 structure. These constructs were expressed in the E. coli dcm- strain using a previously 296 297 described method ((11), Figure 3A). The results showed that in M.Mom25830ORF6305P, digestion of the extracted plasmid with SmaI was possible and methylation within the 298 palindrome-like structure did not occur. In M.Mom25830ORF2065P, digestion with SmaI was 299 blocked, indicating methylation of the palindrome-like structure (Figure 3B). Bisulfite 300 301 sequencing of the palindrome-like structure confirmed the consecutive methylation (Figure 3C). The product of the M.Mom25830ORF2065P gene was designated as methyltransferase MmnI 302 (M. MmnI). 303

Among the known bacterial DNA methylation sites in the SmaI site, SpyI methylase (M. SpyI) causes similar consecutive methylation with 5-methylcytosine (29). M. SpyI recognizes CCAGG, CCTGG, CCCGG, and CCGGG sequences, resulting in consecutive methylation at the SmaI site (29). Similarly, in the plasmid encoding M. MmnI, methylation was found at these four sequences, suggesting that M. MmnI recognizes these four sequences, and that there is partial homology between the amino acid sequences of M. MmnI and M. SpyI (Supplementary Figure

310	S5). Based on these results, we concluded that M. MmnI is the enzyme responsible for the four
311	methylated residues at two consecutive SmaI sites within the palindrome-like structure.
312	Since M. SpyI is associated with erythromycin (EM) resistance (29), we investigated
313	whether M. MmnI is also related to the responsiveness of <i>M. Morganii</i> to EM (30). The
314	transformed E. coli dcm- strain containing the M. MmnI expression plasmid was estimated to
315	have a slightly higher IC ₅₀ (50 % growth-inhibitory concentration, approximately 70 mg/L) for
316	EM than that of the <i>E. coli</i> dcm- strain with the plasmid lacking the M. MmnI open reading
317	frame (approximately 32 mg/L) (Supplementary Figure S6).

318

319 Discussion

320 The 16S rDNA bisulfite PCR and sequencing method coupled with MDA at neutral pH presented in this paper allows the combination of DNA methylation analysis and 16S rDNA 321 analysis via a universal bisulfite PCR primer set. Thus, analysis of various bacteria (Figure 2A, 322 323 B, and Supplementary Figure S3) and bacterial flora can be performed using small-volume clinical samples. In contrast with meta-epigenomics (11), where all non-targeted nucleic acid 324 sequences in a sample are analyzed randomly using a single-molecule sequencer, our method 325 targets 16S rDNA analysis and can be described as "16S rDNA meta-epigenetics". Although the 326 former method provides comprehensive DNA sequence information, including methylcytosine 327 328 and methyladenine, it requires large sample sizes, for example, 30 L of lake water (11). In 329 contrast, our method can analyze only 2 mL of urine. Obtaining DNA methylation information in 330 the 16S rDNA region is remarkably efficient in identifying the bacteria, from which the 331 methylation originates. However, our method detects methylcytosine but not methyladenine. Since 16S rDNA meta-epigenetics can simultaneously infer species and identify DNA 332

16

methylation patterns, our results allow us to infer that *E. faecalis* has various methylation
patterns depending on the strain or isolate (Figure 2C).

335 Sequencing of 16S rDNA has been practically incorporated into clinical testing. In clinical laboratories, 50,000 bacterial isolation, culture, and identification tests are conducted 336 annually at our hospital alone, and countless specimens are discarded after testing worldwide. 337 The method reported here can be added on to the conventional 16S rDNA identification test and 338 339 enables DNA methylation analysis of various bacterial species in these discarded specimens. It is 340 important to note that these bacteria were alive at the time of disposal, which means that if DNA methylation is detected using this method (Figure 2B), then living bacteria can be recovered and 341 342 prepared for further analysis (Figure 3). As shown in Supplementary Figure S3C and D, a partial methylation pattern was detected in both gram-negative (P. aeruginosa) and gram-positive (S. 343 epidermidis) bacteria. Partial methylation in bacterial genomes was reported in several epigenetic 344 studies (23,31). These studies reported that partial DNA methylation may have some significance 345 346 in relation to bacterial growth (23). Such cases are among the targets for future verification and further research. 347

348 In addition, we found that M MmnI from *M. morganii* methylates four consecutive SmaI 349 sites in the palindrome-like sequence within the 16S rDNA region (Figures 2B and 3) and that 350 M. MmnI may contribute to EM resistance. M. morganii is naturally resistant to EM (30). M. 351 SpyI, a DNA methyltransferase with properties similar to M. MmnI, is associated with EM-352 resistant S. pyogenes strains. However, EM resistance has been primarily explained by other drug resistance genes genetically linked to M. SpyI (29). It was recently reported that knockout of 353 dcm DNA methyltransferase, which recognizes CCAGG and CCTGG sequences, suppresses E. 354 coli growth at lower EM concentrations (32). Therefore, DNA methyltransferases that recognize 355

356	CCAGG and CCTGG sequences may be modifying factors in EM resistance, if not the main
357	factor. The relationship between bacterial responses to antibiotics and DNA methylation status
358	(33) is an important subject for future analysis by 16S rDNA meta-epigenetics.
359	The 16S rDNA region is not large, but it is a prominent informative region that has been
360	targeted for microbiome analysis. Our 16S rDNA bisulfite PCR and sequencing method will
361	enable the simultaneous detection of (i) bacterial species and (ii) associated DNA methylation
362	patterns directly from small amounts of bacterial flora specimens or specimens after isolation,
363	culture, or drug resistance tests. Further, our method will facilitate the detection of unknown
364	DNA methylation patterns and the identification of the responsible methyltransferases. In clinical
365	laboratories, 16S rDNA bisulfite PCR and sequencing will contribute to the elucidation of the
366	relationship between DNA methylation and clinically valuable information such as drug
367	resistance.
368	
369	Acknowledgements
370	We would like to thank Editage (www.editage.com) for English language editing. This work was
371	supported by JSPS KAKENHI Grant Numbers JP21H02823 and JP18K07408.
372	
373	Competing interest
374	The authors declare no competing interest

18

375 **References**

376	1)	Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R.
377		2012. Experimental and analytical tools for studying the human microbiome. Nat Rev
378		Genetics 13:47–58.
379	2)	Yang S, Shan CS, Xu YQ, Jin L, Chen ZG. 2021. Dissimilarity in sensory attributes, shelf
380		life and spoilage bacterial and fungal microbiota of industrial-scale wet starch noodles
381		induced by different preservatives and temperature. Food Res Int 140:109980.
382	3)	Huang J, Guo Y, Hou Q, Huang M, Zhou X. 2020. Dynamic changes of the bacterial
383		communities in roast chicken stored under normal and modified atmosphere packaging. J
384		Food Sci 85:1231–1239.
385	4)	Bindu A, Lakshmidevi N. 2021. Identification and in vitro evaluation of probiotic
386		attributes of lactic acid bacteria isolated from fermented food sources. Arch Microbiol.
387		203:579–595.
388	5)	Uyar E, Sağlam Ö. 2021. Isolation, screening and molecular characterization of
389		biosurfactant producing bacteria from soil samples of auto repair shops. Arch Microbiol.
390		DOI: 10.1007/s00203-021-02483-4.
391	6)	Ye J, Qian H, Zhang J, Sun F, Zhuge Y, Zheng X. 2021. Combining culturing and 16S
392		rDNA sequencing to reveal seasonal and room variations of household airborne bacteria
393		and correlative environmental factors in Nanjing, Southeast China. Indoor Air 31:1095-
394		1108.
395	7)	Rueca M, Fontana A, Bartolini B, Piselli P, Mazzarelli A, Copetti M, Binda E, Perri F,

396 Gruber CE, Nicastri E, Marchioni L. 2021. Investigation of nasal/oropharyngeal microbial

397		community of COVID-19 patients by 16S rDNA sequencing. Int J Environ Res Public
398		Health 18:2174.
399	8)	Hong JS, Kim D, Kang DY, Park BY, Yang S, Yoon EJ, Lee H, Jeong SH. 2019.
400		Evaluation of the BD phoenix M50 automated microbiology system for antimicrobial
401		susceptibility testing with clinical isolates in Korea. Microb Drug Resist 25:1142–1148.
402	9)	Loong SK, Khor CS, Jafar FL, AbuBakar S. 2016. Utility of 16S rDNA sequencing for
403		identification of rare pathogenic bacteria. J Clin Lab Anal 30:1056–1060.
404	10)	Yao T, Wang Z, Liang X, Liu C, Yu Z, Han X, Liu R, Liu Y, Liu C, Chen L. 2021.
405		Signatures of vaginal microbiota by 16S rRNA gene: potential bio-geographical
406		application in Chinese Han from three regions of China. Int J Legal Med 135:1213–1224.
407	11)	Hiraoka S, Okazaki Y, Anda M, Toyoda A, Nakano SI, Iwasaki W. 2019. Metaepigenomic
408		analysis reveals the unexplored diversity of DNA methylation in an environmental
409		prokaryotic community. Nat Commun 10:159.
410	12)	Tourancheau A, Mead EA, Zhang XS, Fang G. 2021. Discovering multiple types of DNA
411		methylation from bacteria and microbiome using nanopore sequencing. Nat Methods
412		18:491–498.
413	13)	Fu J, Zhang J, Yang L, Ding N, Yue L, Zhang X, Lu D, Jia X, Li C, Guo C, Yin Z, Jiang
414		X, Zhao Y, Chen F, Zhou D. 2021. Precision methylome and in vivo methylation kinetics
415		characterization of Klebsiella pneumoniae. Genomics Proteomics Bioinformatics. DOI:
416		10.1016/j.gpb.2021.04.002.
417	14)	Leonard MT, Davis-Richardson AG, Ardissone AN, Kemppainen KM, Drew JC, Ilonen J,
418		Knip M, Simell O, Toppari J, Veijola R, Hyöty H. 2014. The methylome of the gut

20

419	microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei. Front
420	Microbiol 5:361.

- 421 15) Chen P, Bandoy DJD, Weimer BC. Bacterial epigenomics: Epigenetics in the age of
- 422 population genomics. 2020. In Tettelin H, Medini D (eds), The pangenome: Diversity,
- 423 dynamics and evolution of genomes. Springer, Cham.
- 424 16) Masser DR, Stanford DR, Freeman WM. 2015. Targeted DNA methylation analysis by
 425 next-generation sequencing. J Vis Exp 96:52488.
- 426 17) Noller HF, Woese CR. 1981. Secondary structure of 16S ribosomal RNA. Science

427 212:403–411.

- I8) Zinoviev VV, Yakishchik SI, Evdokimov AA, Malygin EG, Hattman S. 2004. Symmetry
 elements in DNA structure important for recognition/methylation by DNA [amino]methyltransferases. Nuc Acids Res 32:3930–3934.
- 431 19) Estibariz I, Overmann A, Ailloud F, Krebes J, Josenhans C, Suerbaum S. 2019. The core
- 432 genome m5C methyltransferase JHP1050 (M. Hpy99III) plays an important role in

433 orchestrating gene expression in *Helicobacter pylori*. Nuc Acids Res 47:2336–2348.

- 434 20) Segawa S, Nishimura M, Sogawa K, Tsuchida S, Murata S, Watanabe M, Matsushita K,
- 435 Kamei K, Nomura F. 2015. Identification of *Nocardia* species using matrix-assisted laser
- desorption/ionization-time-of-flight mass spectrometry. Clin Proteomics 12:6.
- 437 21) Roberts RJ, Vincze T, Posfai J, Macelis D. 2010. REBASE—a database for DNA
- 438 restriction and modification: enzymes, genes and genomes. Nucl Acids Res 38:D234–
- 439 D236.

440	22)	Tanaka K, Okamoto A. 2007. Degradation of DNA by bisulfite treatment. Bioorg Med
441		Chem Lett 17:1912–1915.
442	23)	Kahramanoglou C, Prieto AI, Khedkar S, Haase B, Gupta A, Benes V, Fraser GM,
443		Luscombe NM, Seshasayee AS. 2012. Genomics of DNA cytosine methylation in
444		Escherichia coli reveals its role in stationary phase transcription. Nat Commun 3:886.
445	24)	Anton BP, Fomenkov A, Wu V, Roberts RJ. 2021. Genome-wide identification of 5-
446		methylcytosine sites in bacterial genomes by high-throughput sequencing of MspJI
447		restriction fragments. PloS One 16:e0247541.
448	25)	Gohl DM, Vangay P, Garbe J, MacLean A, Hauge A, Becker A, Gould TJ, Clayton JB,
449		Johnson TJ, Hunter R, Knights D, Beckman KB. 2016. Systematic improvement of
450		amplicon marker gene methods for increased accuracy in microbiome studies. Nat
451		Biotechnol 34:942–949
452	26)	Gomez-Eichelmann MC, Levy-Mustri AL, Ramirez-Santos JE. 1991. Presence of 5-
453		methylcytosine in CC (A/T) GG sequences (Dcm methylation) in DNAs from different
454		bacteria. J Bacteriol 173:7692–7694.
455	27)	Huo W, Adams HM, Zhang MQ, Palmer KL. 2015. Genome modification in Enterococcus
456		faecalis OG1RF assessed by bisulfite sequencing and single-molecule real-time
457		sequencing. J Bacteriol 197:1939–1951.
458	28)	Furuta Y, Namba-Fukuyo H, Shibata TF, Nishiyama T, Shigenobu S, Suzuki Y, Sugano S,
459		Hasebe M, Kobayashi I. 2014. Methylome diversification through changes in DNA
460		methyltransferase sequence specificity. PLoS Genetics 10:e1004272.

461	29)	Euler CW, Ryan PA,	Martin JM, Fischetti VA	A. 2007. SpyI, a DNA methyltransfera	ase
-	- /		·····		

- 462 encoded on a mefA chimeric element, modifies the genome of *Streptococcus pyogenes*. J
- 463 Bacteriol 189:1044–1054.
- 464 30) Stock I, Wiedemann B. 1998. Identification and natural antibiotic susceptibility of
- 465 *Morganella morganii*. Diagn Microbiol Infect Dis 30:153–165.
- 466 31) Korba BE, Hays JB. 1982. Partially deficient methylation of cytosine in DNA at CCATGG
- sites stimulates genetic recombination of bacteriophage lambda. Cell 28:531–541.
- 468 32) Chen Z, Wang H. 2021. Antibiotic toxicity profiles of *Escherichia coli* strains lacking
- 469 DNA methyltransferases. ACS Omega 6:7834–7840.
- 470 33) Yuan W, Zhang Y, Riaz L, Yang Q, Du B, Wang R. 2021. Multiple antibiotic resistance
- 471 and DNA methylation in Enterobacteriaceae isolates from different environments. J Hazard
- 472 Mater 402:123822.

23

473 **Figure Captions**

474	Figure 1. 16S rDNA bisulfite PCR and primer sets. The bacterial 16S rDNA V4-V5 region
475	was targeted using bisulfite PCR. Nested PCR primer sets were designed to amplify both intact
476	and bisulfite-converted DNA. The primer sites were chosen to cover several bacterial species and
477	reduce degenerate nucleotides. *MDA at pH neutral was used for the amplification and repair of
478	bisulfite-converted DNA. When amplifying unconverted DNA, the normal MDA method was

- used. MDA; multiple displacement amplification. R; A or G. Y; C or T. "m" means a
- 480 methylcytosine base.

481

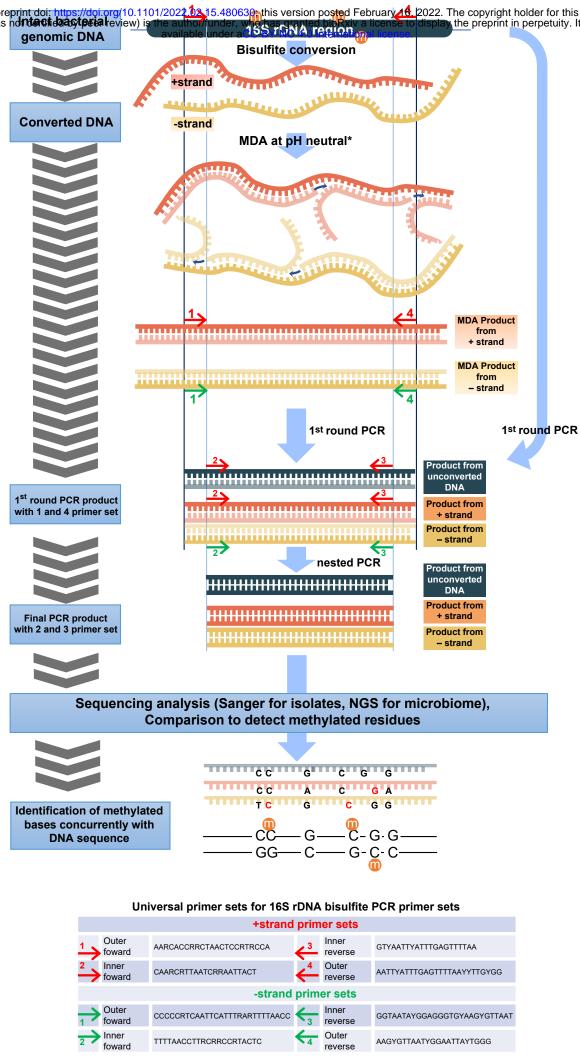
Figure 2. Sequencing the 16S rDNA bisulfite PCR product from clinical isolates and 482 483 microflora simultaneously provides rDNA sequence information and methylation status. Extracted DNA was treated with bisulfite and amplified with MDA at pH neutral. DNA without 484 bisulfite treatment was amplified using normal MDA. Bisulfite PCR was performed using MDA 485 486 products as templates, and the resulting PCR products were sequenced. A) Sanger sequencing of bisulfite PCR products from genomic DNA of dcm+ and dcm- E. coli. The left side of the figure 487 488 shows a typical CC(A/T)GG site targeted by dcm methylase and the right half shows another 489 typical CC(A/T)GG site. The difference between dcm+ and dcm- E. coli becomes apparent with bisulfite treatment, as shown by the black and green arrows. Green arrows indicate G to A 490 491 conversion resulting from bisulfite conversion and unmethylated cytosine in the negative-sense strand. The black arrow (not converted) indicates the existence of 5-methylcytosine in the 492 negative-sense strand. B) Summary of bisulfite sequencing from a clinical isolate of Morganella 493 494 *morganii*. The red boxes indicate 5-methylcytosine in the negative-sense strand. The blue boxes indicate 5-methylcytosine in the positive-sense strand. Note that the four methylated residues at 495

496	the two SmaI sites (CCCGGG) are underlined in green. The four methylation residues exist in a
497	palindrome-like structure, as indicated by the light blue arrows. The reference sequence was
498	retrieved from NCBI NR_028938.1. C) Implications of diversity in genomic DNA methylation
499	status of <i>E. faecalis</i> from a microflora sample. 16S rDNA bisulfite-converted sequencing of
500	MDA products indicated diverse DNA methylation at the CC(A/T)GG site (purple boxes) of the
501	genomic DNA fragment that appears to be from <i>E. faecalis</i> in sample number 10_1379
502	(Supplementary Table S1). In the purple boxes, the letters G written in black in the bisulfite-
503	converted sequences indicate 5-methylcytosine in the negative-sense strand. The reference
504	sequences in the top two columns were retrieved from NCBI NC_000913 (E. coli) and NCBI
505	NR_114782.1 (E. faecalis) and are the intact sequences, not bisulfite-converted sequences. The
506	reference sequence in the third column from the top is the bisulfite-converted sequence (G>A),
507	assuming that the reference <i>E. faecalis</i> sequence does not contain methylated cytosine.

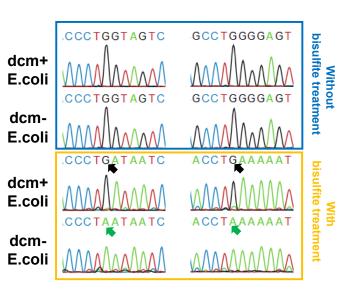
508

509 Figure 3. M. MmnI is responsible for four methylated residues at two consecutive SmaI

sites within a palindrome-like structure. A) Graphical scheme of pColdIII-M. MmnI (renamed


from M.Mom25830ORF2065P) plasmid construction. B) Restriction digestion of the pColdIII-

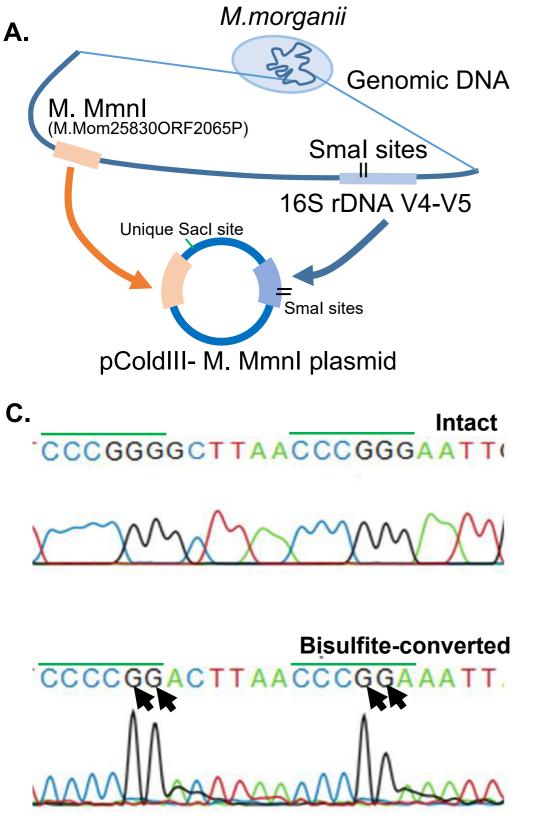
512 M. MmnI plasmid evaluated via agarose gel electrophoresis. MspI and SmaI were used, where

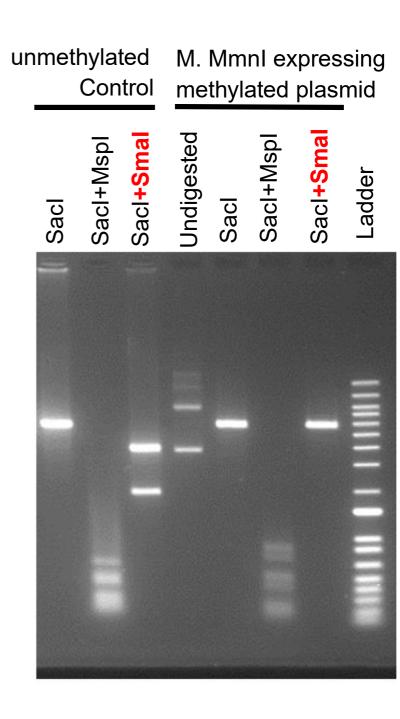

the plasmid contained 37 CCGG and two CCCGGG target sites. Plasmid DNA was linearized

using a unique SacI site. Thermo Fisher E-Gel 1 kb plus ladder was employed as a size marker.

- 515 Control unmethylated DNA was prepared using a Repli-g kit (QIAGEN). C) Bisulfite
- sequencing of the palindrome-like structure confirmed the presence of four methylated residues
- 517 in the two consecutive SmaI sites within the structure. The two SmaI sites are overlined in green.
- 518 Black arrows indicate 5-methylcytosine in the negative-sense strand.

A; E.coli strains




B; M. morganii clinical isolate

C; E. faecalis positive biome sample

	380 I	400	420	440 I	460	480 I	500 I
E. Coli (intact)	AGA - TA - CCCTGG -	TAG-TCCACGCCGTAAA-CGA	TG T - C - GA C - T1	GGAGGTTG-T-GCCCT	T - GAGGCGTGGCTTCCGGAG	CTAA - CGCG - TTAAG - TCGA	CCGCCTGGGGAG TACGC
E.Faecalis (intact)	AGA - TA - CCCTGG -	TAG-TCCACGCCGTAAA-CGA	TGAG - TGCTAAG - TGT1	GGAGGG TTT - CCGCCCT	T - CAG TG - CTGC - A - G - 0	CAAA - CGCA - TTAAG - CACT	CCGCCTGGGGAG TACGA
E.FaecalisG>A (unmethylated	. AAA - TA - <u>CCCTAA -</u>	TAA - TCCACACCATAAA - CAA	TAAA - TACTAAA - TATI	AAAAAA TTT - CCACCCT	T - CAA TA - CTAC - A - A - 0	CAAA - CACA - TTAAA - CACT	CCACCTAAAAAA TACAA
		TAA-TCCACACCATAAAACAA	TAAAATACTAAA - TATI	AAAAAAAA - TTT - CCACCCT	T - CAA TA - CTAC - A - A - 0	CAAA - CACA - TTAAA - CACT	
		TAA - TCCACACCATAAA - CAA					
		TAA - TCCACACCATAAA - CAA					
		TAA - TCCACACCATAAA - CAA					
		TAA - TCCACACCATAAA - CAA					
5		TAA - TCCACACCATAAA - CAA					
a D	AAA-TA-GCCTGA-			AAAAAAA TTT - CCACCCT			
in M	AAA-TA-GCCTGA-			AAAAAAA TTT - CCACCCT			
<u> </u>	AAA-TA-CCCTGA- AAAATA-CCCTGA-	TAA - TCCACACCATAAA - CAA		AAAAAA TTT - CCACCCT		CAAA-CACA-TTAAA-CATT	
nc		TAA - TCCACACCATAAAACAA					
		TAA - TCCACACCATAAA - CAA					
biome lencinç		TAA - TCCACACCATAAA - CAA					
-		TAA - TCCACACCATAAA - CAA					
E E	ΑΑΑΑΤΑ-ΟССΤΑΑ-	TAA - TCCACACCATAAA - CAA		AAAAAAA TTT - CCACCCT		CAAA - CACA - TTAAA - CACT	
	ΑΑΑ-ΤΑ-ΟССΤΑΑ-	TAA - TCCACACCATAAA - CAA	TAAA - TACTAAA - TATI	AAAAAA TTT - CCACCCT	T - CAA TA - CTAC - A - AAO	CAAA - CACA - TTAAA - CACT	CCACCTGAAAAA TACAA
<u>o</u> o	ΑΑΑ-ΤΑ-ΟССΤΑΑ-	TAA - TCCACACCATAAA - CAA	TAAA - TACTAAA - TATI	AAAAATTT-CCACCCT	T - CAA TA - CTAC - A - A - 0	CAAA - CACA - TTAAA - CACT	CCACCTGAAAAA TACAA
Š Ľ	4AA-TA-CCCTAA-	TAA - TCCACACCATAAA - CAA	TAAA - TACTAAA - TATI	AAAAAA TTT - CCACCCT	T - CAA TA - CTAC - A - A - 0	CAAA - CACA - TTAAA - CACT	
		TAA - TCCACACCATAAA - CAA				CAAA - CACA - TTAAA - CACT	
ads Ifite		TAAATCCACACCATAAAACAA					
		TAA - TCCACACCATAAA - CAA					
ead: sulfit		TAA-TCCACACCATAAA-CAA					
e n	AAAATA-QCCTAA-			AAAAAA TTT - CCACCCT		CAAA - CACA - TTAAA - CACT	
ω Π	4AA-TA-CCCTAA- 4AA-TA-CCCTAA-			AAAAAAA TTT - CCACCCT			
<u>is</u>		TAA - TCCACACCATAAA - CAA				СААА - САСА - ТТААА - САСТ СААА - САСА - ТТААА - САСТ	
ഗമ		TAA - TCCACACCATAAA - CAA				CAAA - CACA - TTAAA - CACT	
0,7	AAA - TA - CCCTAA -				T - CAA TA - CTAC - A - A - 0		
U U		TAA - TCCACACCATAAA - CAA					
		TAA - TCCACACCATAAA - CAA					
		TAA - TCCACACCATAAA - CAA				CAAA - CACA - TTAAA - CACT	
— —	ΑΑΑ-ΤΑ-ΟССΤΑΑ-	TAA-TCCACACCATAAAACAA	TAAAATACTAAA - TATI	AAAAAA TTT - CCACCCT	T - CAA TA - CTAC - A - A - 0	CAAA - CACA - TTAAA - CACT	CCACCTAAAAAA TACAA
	ΑΑΑ-ΤΑ-ΟССΤΑΑ-	TAA-TCCACACCATAAAACAA	ΤΑΑΑΑΤΑΟΤΑΑΑ - ΤΑΤΙ	AAAAAAA TTT - CCACCCT	T - CAA TA - CTAC - A - A - 0	CAAA - CACA - TTAAA - CACT	CCACCTΑΑΑΑΑΑΑ-ΤΑCAA
	AAAATA-CCCTAA-	TAA-TCCACACCATAAAACAA	TAAA - TACTAAA - TATT	AAAAAAA TTT - CCACCCT		CAAA - CACA - TTAAA - CACT	
		TAA - TCCACACCATAAA - CTA			TACTA TAACAA A - A - 0	CTAA - CACAATTAA ΤΑΤΑ	CCACCTAAAAAA TACAA
	4AA-TA-GCCTAA-	TAA - TCCACACCATAAA - CAA	TAAAATACTAAA - TATI	AAAAAAA TTT - CCACCCT	T - CAA TA - CTAC - A - A - 0	CAAA - CACA - TTAAA - CACT	ССАССТАААААА - ТАСАА

Β.