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26 Abstract

27 Bovine respiratory disease (BRD), the leading disease complex in beef cattle production 

28 systems, remains highly elusive regarding diagnostics and disease prediction. Previous research 

29 has employed cellular and molecular techniques to describe hematological and gene expression 

30 variation that coincides with BRD development. Here, we utilized weighted gene co-expression 

31 network analysis (WGCNA) to leverage total gene expression patterns from cattle at arrival and 

32 generate hematological and clinical trait associations to describe mechanisms that may predict 

33 BRD development.

34 Gene expression counts of previously published RNA-Seq data from 23 cattle (2017; 

35 n=11 Healthy, n=12 BRD) were used to construct gene co-expression modules and correlation 

36 patterns with complete blood count (CBC) and clinical datasets. Modules were further evaluated 

37 for cross-populational preservation of expression with RNA-Seq data from 24 cattle in an 

38 independent population (2019; n=12 Healthy, n=12 BRD). Genes within well-preserved modules 

39 were subject to functional enrichment analysis for significant Gene Ontology terms and 

40 pathways. Genes which possessed high module membership and association with BRD 

41 development, regardless of module preservation (“hub genes”), were utilized for protein-protein 

42 physical interaction network and clustering analyses.

43 Five well-preserved modules of co-expressed genes were identified. One module 

44 (“steelblue”), involved in alpha-beta T-cell complexes and Th2-type immunity, possessed 

45 significant correlation with increased erythrocytes, platelets, and BRD development. One module 

46 (“purple”), involved in mitochondrial metabolism and rRNA maturation, possessed significant 

47 correlation with increased eosinophils, fecal egg count per gram, and weight gain over time. 

48 Fifty-two interacting hub genes, stratified into 11 clusters, may possess transient function 

49 involved in BRD development not previously described in literature. This study identifies co-

50 expressed genes and coordinated mechanisms associated with BRD, which necessitates further 

51 investigation in BRD-prediction research.

52

53 Author Summary
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54 Bovine respiratory disease (BRD), the leading disease in beef cattle, is a highly dynamic disease 

55 complex. Through simultaneous sequencing of thousands of genes active in the blood of cattle at 

56 arrival, we pursued the co-expression patterns of these genes to evaluate associations with BRD 

57 development and severity overtime. This approach allows for a better understanding of gene 

58 expression active in cattle at arrival, and the discovery of new molecules and biological 

59 complexes that may predict BRD before the onset of clinical signs. Our work provides evidence 

60 that genes related to T-cells, a type of immune cell, are strongly co-expressed when cattle arrive 

61 to beef production system, and correlate with increased red blood cell (RBC) factors and BRD 

62 development. Further analysis shows that genes involved in cellular energy production and the 

63 respiratory electron transport are strongly co-expressed when cattle arrive to beef production 

64 system, and correlate with increased eosinophils, a type of immune cell, and weight gain 

65 overtime. Additionally, using genes which strongly correlate with BRD development and 

66 severity overtime, we identify a novel protein interaction complex that may drive future research 

67 for discovering new ways to manage and treat BRD in beef cattle.

68

69 Introduction

70 Despite decades of research involved in discovering novel management tools, developing 

71 interventional systems, and advancing antimicrobial therapeutics, bovine respiratory disease 

72 (BRD) remains the leading cause of morbidity and mortality in beef cattle operations across 

73 North America [1,2,3]. Due to its widespread prevalence, BRD is considered one of the most 

74 economically devastating components of beef cattle production systems [2,3,4]. BRD is a 

75 polymicrobial, multifactorial disease complex, incorporating infectious agents, host immunity, 

76 and environmental elements as predisposing factors [5,6,7]. Previous research over the past 

77 several decades has greatly detailed these factors and risks associated with BRD, yet there is 

78 minimal evidence that overall rates of disease have improved [5,8,9,10]. Furthermore, diagnostic 

79 evaluation of BRD often relies on visual signs attributed to the disease complex, which are 

80 commonly non-specific to airway and lung disease, and lack clinical sensitivity [11,12]. 

81 Therefore, data driven approaches which capture the biological intricacies associated with 

82 clinical BRD development and provide candidate molecular targets capable of stratifying or 
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83 predicting risk of disease and/or production loss would offer a more precise method of managing 

84 BRD.

85 Clinical BRD progression and severity often presents as an acute inflammatory disease 

86 [13]. However, molecular and cellular changes precede physiological changes in terms of disease 

87 development. As such, identifying consistent molecular and/or cellular components that relate to 

88 BRD development would allow for the development of rapid diagnostics capable of being 

89 performed with cattle at the time of facility arrival. Such a tool could facilitate precision 

90 medicine practices in stocker and feedlot operations and improve both speed and success of 

91 targeted therapy. Accordingly, hematological samples are ideal, as they represent a relatively 

92 noninvasive, cost effective, and readily obtainable source that reflects dynamic biological 

93 processes throughout the body [14,15]. 

94 Previous research has investigated cellular and molecular components that may indicate 

95 or predict clinical BRD. Richeson and colleagues, utilizing complete blood count (CBC) 

96 variables and castration status at facility arrival, identified significant associations with BRD in 

97 calves with comparatively decreased numbers of eosinophils and increased numbers of 

98 erythrocytes [16]. When evaluating the relationships between cytokine gene expression and CBC 

99 data in cattle with concurrent BRD, Lindholm-Perry and colleagues discovered that cattle with 

100 BRD possessed a comparative increase in numbers of neutrophils, decrease in numbers of 

101 basophils, and increased expression of CCL16, CXCR1, and CCR1 [17]. Recent RNA sequencing 

102 studies, performed by both our group and others, have identified mechanisms and candidate 

103 biomarkers in whole blood associated with BRD development [18,19,20]. However, these 

104 studies primarily sought to identify differentially expressed genes (DEGs) between cattle that 

105 were or were not treated for BRD based on clinical signs. Focus on identifying DEGs meant that 

106 much of the data generated by these studies was neglected. Therefore, we aimed to leverage 

107 global gene expression patterns across high-risk cattle, and incorporate available cellular-level 

108 hematological data from the same cattle, to infer mechanisms associated with BRD development 

109 with a more holistic approach.

110 As gene expression operates in tandem with biological regulatory networks and 

111 complexes, investigation of gene co-expression levels may reveal transcriptional coordination, 

112 distinguish protein production relationships, and measure cellular composition and function 
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113 relevant to specific disease states such as BRD [21,22]. This analysis approach falls into the field 

114 of systems biology, where, in contrast to reductionist biology, molecular components are pieced 

115 and scaled together to better understand disease and generate novel hypotheses [23,24]. In this 

116 respect, we sought to build networks of co-expressed genes, utilizing the full structure of 

117 previously published gene expression data [20], and discover relationships between gene 

118 expression and cellular hematological components, which may elucidate and/or further confirm 

119 genes and mechanisms related to BRD development or resistance.

120

121 Materials and Methods

122 Animal enrollment 

123 All animal use and procedures were approved by the Mississippi State University Animal 

124 Care and Use Committee (IACUC protocol #17-120) and carried out in accordance with relevant 

125 IACUC and agency guidelines and regulations. This study was carried out in accordance with 

126 Animal Research: Reporting of In Vivo Experiments (ARRIVE) guidelines 

127 (https://arriveguidelines.org). This study was conducted in accompaniment with previous work 

128 focused on differential gene expression analysis and candidate biomarker validation [20]; the 

129 RNA-Seq data of these animals were previously deposited in the National Center for 

130 Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database under accession 

131 number GSE161396. Of the 24 cattle from the 2017 population having RNA-Seq data, one 

132 individual (ID: 162-2017_S24; GSM4906455) was not incorporated into the network analysis 

133 due to missing CBC data. The following clinical data were recorded for each animal: at-arrival 

134 fecal egg counts per gram via modified-Wisconsin procedure (FEC-d0), body weight in pounds 

135 (WT) at arrival, Day 12, Day 26, and Day 82, average daily weight gain at each time point 

136 (ADG), growth rate (slope of weight over days recorded; GR), at-arrival castration status (Sex), 

137 at-arrival rectal temperature (Temp-d0), development of clinical BRD within 28 days post-arrival 

138 (BRD), number of clinical BRD treatments (Treat_Freq), and timing to first BRD treatment 

139 (Risk_Days). Clinical data for these cattle are found in Supplemental Table S1.

140
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141 Hematology analysis

142 Approximately 6 mL of whole blood was collected at arrival into K3-EDTA glass blood 

143 tubes (BD Vacutainer; Franklin Lakes, NJ, USA) via jugular venipuncture. Blood samples were 

144 stored at 4°C and analyzed the same day of collection with the flow cytometry-based Advia 

145 2120i hematology analyzer (Siemens Healthcare Diagnostics Inc., Tarrytown, NY, USA), testing 

146 for the following parameters: white blood cells (WBC; K/μL), erythrocytes (RBC; M/μL), 

147 hemoglobin (HGB; g/dL), hematocrit (HCT; %), mean corpuscular volume (MCV; fL), mean 

148 corpuscular hemoglobin (MCH; pg), mean corpuscular hemoglobin concentration (MCHC; 

149 g/dL), red blood cell distribution width (RDW; %), and platelets (PLT; K/μL). Blood smear 

150 staining was performed with a Hematek 3000 Slide Stainer (Siemens Healthcare Diagnostics 

151 Inc., Tarrytown, NY, USA) via Wright-Giemsa stain reagents. Stained blood smears were 

152 evaluated for leukocyte distribution via a manual 300-count white blood cell differential by 

153 trained clinical pathology technical staff at Mississippi State University College of Veterinary 

154 Medicine. Neutrophil, eosinophil, basophil, monocyte, and lymphocyte percentages were 

155 recorded, with accompanying neutrophil-to-lymphocyte ratios (NL Ratio). Hematology data for 

156 these cattle are found in Supplemental Table S2.

157

158 RNA-Seq data processing and normalization

159 The gene-level raw count matrix generated from our previous research was utilized for 

160 this study [20]. Briefly, RNA was isolated via Tempus Spin RNA Isolation Kits (Thermo Fisher 

161 Scientific; Waltham, MA, USA), following manufacturer’s protocol. TruSeq RNA Library Kit 

162 v2 (Illumina; San Diego, CA, USA) was utilized for mRNA sequencing library preparation, 

163 following manufacturer’s protocol. Single-lane, high-throughput RNA sequencing was 

164 performed with NovaSeq 6000 S4 reagent kit and flow cell (Illumina). Sequence read files were 

165 quality assessed and trimmed with FastQC v0.11.9 [25] and Trimmomatic v0.39 [26], 

166 respectively. Reference-guided (Bos taurus; ARS-UCD1.2) read mapping, indexing, and gene-

167 level assembly were performed with HISAT2 v2.2.1 [27,28] and StringTie v2.1.2 [29,30], 

168 respectively. The python program prepDE.py [31] was utilized for gene-level count matrix 

169 construction.
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170 Raw gene counts were imported to R v4.0.4 and processed with the filterByExpr toolkit 

171 [32], removing genes with a minimum total count of less than 200 and counts-per-million (CPM) 

172 below 1.0 across a minimum of 12 libraries. Libraries were normalized with the trimmed mean 

173 of M-values method (TMM) [33,34] and converted into log2-counts per million values 

174 (log2CPM). A total of 12,795 genes were identified after count processing and were utilized for 

175 weighted network analysis.

176

177 Weighted gene co-expression network analysis (WGCNA)

178 Weighted network analysis was performed with the R package WGCNA v1.70.3 [35]. 

179 Clinical and hematology trait data were compiled and aligned to each respective sample library. 

180 To remove any outlier sample, canonical Euclidean distance-based network adjacency matrices 

181 were estimated and used to identify outliers based on standardized connectivity. Estimated 

182 adjacency matrices had network connectivity standardized with the provided equation [36]:

183 𝑍.𝑘𝜇 =  𝑠𝑐𝑎𝑙𝑒(𝑘)𝜇 =
𝑘𝜇 ― 𝑚𝑒𝑎𝑛(𝑘)

√𝑣𝑎𝑟(𝑘) .

184 Samples with a standardized connectivity < -5.0 were considered outliers and to be removed 

185 from further analysis; no samples were considered outliers in this study (Supplemental Figure 

186 S1). An adjacency matrix was constructed from the calculated signed Pearson coefficients 

187 between all genes across all samples. We utilized signed networks as they better capture gene 

188 expression trends (up- and down-regulation) and classify co-expressed gene modules which 

189 improve the ability to identify functional enrichment, when compared to unsigned networks 

190 [24,35,36,37]. Soft thresholding was used to calculate the power parameter (β) required to 

191 exponentially raise the adjacency matrix, to reach a scale-free topology fitting index (R2) of 

192 >80%; β = 8 was selected for this study. The relationship between each unit β and R2 is seen in 

193 Supplemental Figure S2. Co-expression modules were constructed with the automatic, one-step 

194 blockwiseModules function within the WGCNA R package, using the following parameters: 

195 power = 8, corType = “pearson,” TOMType = “signed,” networkType = “signed,” 

196 maxBlockSize = 12795, minModuleSize = 30, mergeCutHeight = 0.25, and pamRespectsDendro 

197 = FALSE; all other parameters were set to default. Constructed co-expression modules were 

198 assigned a color by the WGCNA R package, with any gene not assembling into a specific 
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199 module placed in the “grey” module. Module-trait associations were identified with Pearson 

200 correlation between module eigengene (ME; first principal component of the co-expression 

201 matrix [38] and clinical and hematology data). Modules were considered weakly or strongly 

202 correlated with each trait having a p-value < 0.10 and |R| > 0.3 or p-value < 0.05 and |R| > 0.4, 

203 respectively. Color scaling was performed with the Bioconductor package viridis v0.6.1 [39] to 

204 allow ease of visual interpretation for individuals with color blindness.

205

206 Cross-population module preservation analysis

207 Based on our previous work, it can be inferred that host gene expression captured at 

208 facility arrival is variable across BRD severity cohorts [20,40,41]. Therefore, we assessed 

209 whether the at-arrival co-expression patterns and modules found in this study were well 

210 preserved across an RNA-Seq data set from an independent population of cattle. We investigated 

211 cross-populational module preservation across the whole blood transcriptomes of cattle 

212 previously assessed for differential gene expression (GSE161396; 2019 population (n=24)) with 

213 the modulePreservation function found within the WGCNA R package. The gene-level raw 

214 count matrix from previous analysis [20] was utilized and processed, filtered, and normalized in 

215 identical procedures as the 2017 RNA-Seq data set (see RNA-Seq data processing and 

216 normalization section); a total of 12,803 genes were identified in the 2019 data set after count 

217 processing and normalization. Permutation testing (n=200 permutations) was conducted to assess 

218 the significance of module preservation across the 2017 and 2019 RNA-Seq data sets, utilizing 

219 the two composite statistical measurements Zsummary and medianRank scores [36,42]. Briefly, 

220 the identified modules within the test network are randomly permuted n times, where, for each 

221 permuted index, the mean and standard deviation is calculated for defining the corresponding Z 

222 statistic [42,43]. Through the combination of additional preservation statistics (average of 

223 Zdensity and Zconnectivity), the calculated Zsummary statistic determines the level of mean 

224 connectivity among all genes within a module (i.e., network density) across the two data sets 

225 [24,42]. Higher Zsummary values indicate a stronger level of module preservation between data 

226 sets but is dependent on the number of genes within the module (i.e., module size) [42]. To 

227 further evaluate preservation in a module size-independent manner, medianRank scores are 

228 calculated from the mean connectivity and density measurements observed from each module 
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229 and assigned a rank score [42]. Lower medianRank values indicate a stronger level of module 

230 preservation between data sets. For this study, any module possessing Zsummary > 10 and 

231 medianRank < 5 was considered highly preserved.

232

233 Functional enrichment analysis of preserved modules

234 WebGestalt 2019 [44] (WEB-based Gene SeT AnaLysis Toolkit; accessed September 13, 

235 2021) was utilized for over-representation analysis to identify enriched Gene Ontology (GO) 

236 biological processes, cellular components, molecular functions, and pathways from genes found 

237 in each module considered well preserved. Pathway enrichment analysis was performed with the 

238 pathway database Reactome [45]. Human (Homo sapiens) gene orthologs and functional 

239 databases were utilized for GO term and pathway enrichment analyses. Over-representation 

240 analysis parameters within WebGestalt 2019 included between 3 and 3000 genes per category, 

241 Benjamini-Hochberg (BH) procedure for multiple hypothesis correction, adjusted p-value (FDR) 

242 cutoff of 0.05 for significance, and a total of 10 expected reduced sets of the weighted set cover 

243 algorithm for redundancy reduction.

244

245 BRD-associated hub gene identification and network analyses

246 Hub genes are those genes found within a module (eigengenes) that possess high 

247 connectivity which may exhibit a greater degree of biological significance in respect to 

248 significantly associated clinical traits, when compared to all other eigengenes [38,46,47]. Here, 

249 we sought to identify hub genes found from modules which are significantly associated with any 

250 of the clinical BRD categories (BRD, Treat_Freq, and Risk_Days). This was performed in the 

251 WGCNA R package with two procedures. First, Pearson correlation between gene expression 

252 and module eigengenes was calculated, resulting in the level of module membership (kME) for 

253 each gene. Second, the Pearson correlation between individual gene expression level and clinical 

254 trait was calculated, resulting in the level of gene significance (GS) for each gene. Any gene 

255 possessing kME and GS values > 0.7 and > 0.3, respectively, were considered hub genes for 

256 clinical traits [36]. All BRD-associated hub genes were used for network construction of known 

257 and predicted protein-protein interactions with the Search Tool for the Retrieval of Interacting 
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258 Genes (STRING) database v11.5 [48], utilizing bovine (Bos taurus) annotations. STRING 

259 analysis was performed with the physical subnetwork setting, where edges only display protein 

260 interactions that have evidence of binding to or forming a physical complex. Any interaction 

261 above a combined score (confidence) of 0.200 was incorporated into the complete network prior 

262 to network clustering; disconnected nodes were removed from the network. The Markov Cluster 

263 (MCL) algorithm was utilized for network clustering due to its superior performance in complex 

264 extraction without the need of additional parameter tuning [49]. Hub genes within the interaction 

265 network were placed into distinct clusters based on MCL clustering of the distance matrix 

266 acquired from the combined interaction scores, using a MCL inflation parameter of 1.4.

267

268 Statistical analysis

269 Clinical and hematology data (described in animal enrollment and hematology analysis) 

270 were compared between cattle treated for naturally-acquired clinical BRD within the first 28 

271 days following facility arrival (BRD) and those never being diagnosed nor treated (Healthy). 

272 Residual normality was assessed in R v4.0.4 with the Shapiro-Wilk test [50], with an a priori 

273 level of significance set at 0.10; neutrophil percentage (Neu%), eosinophil percentage (Eos%), 

274 basophil percentage (Baso%), lymphocyte percentage (Lymph%), neutrophil-to-lymphocyte 

275 ratio (NL ratio), FEC-d0, MCHC, RDW, and Sex were considered non-normally distributed. 

276 Differences in normally distributed variables between BRD and Healthy cattle were assessed 

277 with the Student’s t-test. Differences in non-normally distributed variables were assessed with 

278 the Welch’s t-test; differences between the two groups with respect to Sex was assessed with 

279 Pearson’s chi-square test with Yates’ continuity correction. Differences between BRD and 

280 Healthy cattle were considered significant having a p-value < 0.05.

281

282 Results

283 Statistical analysis of clinical and hematological parameters

284 Descriptive statistics for the clinical and hematological data are provided in Table 1. 

285 Regarding the hematological parameters, average values of Lymph%, RDW, and PLT were 
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286 outside of the internal reference intervals for both BRD and Healthy cattle. In this study, RBC 

287 was considered significantly higher at arrival in BRD cattle compared to Healthy cattle; no other 

288 parameter was considered significantly different between the two groups. Regarding clinical 

289 data, BRD cattle possessed significantly lower weight gain by end of study (ADG-d82; 2.273 

290 lbs/day in BRD and 2.946 lbs/day in Healthy) and lower calculated slopes of weight gain over 

291 time (Growth Rate; 2.370 in BRD and 2.995 in Healthy); no other clinical parameter was 

292 considered significantly different between the two groups.

293

294 Table 1. Statistical analysis of hematological and clinical traits between BRD and Healthy 

295 groups.

Variable Internal 

Reference

BRD

mean (s.d.)

Healthy

mean (s.d.)

p-value

Neu% 37.000 – 80.000 35.917 (5.547) 37.213 (9.748) 0.717

Eos% 0.000 – 12.000 3.944 (3.237) 2.635 (1.616) 0.251

Baso% 0.000 – 2.500 0.193 (0.213) 0.151 (0.218) 0.658

Mono% 0.000 – 12.000 8.862 (4.603) 8.363 (4.507) 0.805

Lymph% 10.000 – 50.000 51.083 (4.756) 51.635 (11.928) 0.893

NL Ratio N/A 0.711 (0.141) 0.859 (0.660) 0.504

WBC (K/μL) 4.000 – 12.000 7.430 (2.722) 7.320 (1.292) 0.913

RBC (M/μL) 5.000 – 9.990 9.605 (0.568) 9.032 (0.676) 0.047

HGB (g/dL) 7.700 – 15.000 13.075 (1.071) 12.491 (0.906) 0.194

HCT (%) 25.000 – 45.000 36.125 (3.269) 35.000 (2.534) 0.391

MCV (fL) 36.000 – 55.000 37.725 (3.843) 38.845 (2.851) 0.460

MCH (pg) 12.000 – 22.000 13.625 (1.112) 13.855 (0.806) 0.597

MCHC 

(g/dL)

32.000 – 40.000 36.225 (1.190) 35.691 (0.977) 0.272

RDW (%) 11.600 – 14.800 29.258 (2.362) 27.564 (3.023) 0.171

PLT (K/μL) 200.000 – 900.000 1413.083 (506.885) 1149.000 (401.516) 0.203

FEC-d0 N/A 761.250 (768.795) 618.364 (408.492) 0.597
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ADG-d12 N/A 0.667 (1.604) 2.167 (1.838) 0.059

ADG-d26 N/A 1.917 (1.204) 2.710 (0.948) 0.110

ADG-d82 N/A 2.273 (0.599) 2.946 (0.432) 0.008

Growth Rate N/A 2.370 (0.554) 2.995 (0.435) 0.009

Temp-d0 (F°) N/A 103.333 (0.712) 103.291 (0.667) 0.890

Sex N/A 10 bulls, 2 steers 10 bulls, 1 steer 1.000

296 Means, standard deviations (in parentheses), and statistical probability values of differences in 

297 hematological and clinical parameters between BRD (n=12) and Healthy (n=11) cattle. 

298 Parameters were considered significantly different with p-values < 0.05.

299

300 Weighted gene co-expression network construction

301 The remaining filtered genes (n=12,795) were used for WGCNA network and module 

302 construction. The resulting network identified a total of 41 color-coded modules of co-expressed 

303 genes, excluding the grey module which incorporates uncorrelated genes (n=1,235) (Figure 1). 

304 Across the 41 assigned modules, the turquoise module possessed the largest number of co-

305 expressed genes (n=2,503) and the lightsteelblue1 module possessed the smallest number of co-

306 expressed genes (n=38); the average size of each module was approximately 282 genes. The 

307 complete list of genes and module assignment is found in Supplemental Table S3. 

308

309 Figure 1. Cluster dendrogram of 12,795 genes generated through dissimilarity metrics (1-

310 TOM) and hierarchical clustering.
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311  

312

313 Automated block-wise module detection of interconnected genes were grouped into 41 unique 

314 color-coded modules, excluding the grey module (uncorrelated genes). The x-axis corresponds to 

315 the gene-module assignment and the y-axis (Height) depicts the calculated distance between co-

316 expressed genes from hierarchical average linkage clustering.

317

318 Module-trait relationship with hematological and clinical datasets

319 Pearson correlation heatmaps were generated to assess the relationship between all 

320 modules and hematological clinical datasets. Regarding hematological data, several significant 

321 relationships of interest exist (Figure 2). The tan module possessed the highest number of 

322 significant correlations with the hematological data (8), followed by turquoise, pink, lightgreen, 

323 and lightcyan modules (7). With respect to RBC, considered significantly higher at arrival in 

324 BRD cattle compared to Healthy cattle, six modules were strongly correlated: paleturquoise (R = 

325 0.44, p = 0.03), lightcyan (R = 0.51, p = 0.01), green (R = 0.41, p = 0.05), steelblue (R = 0.50, p 

326 = 0.01), brown (R = -0.45, p = 0.03), turquoise (R = 0.49, p = 0.02). Additionally, seven modules 

327 were considered weakly correlated with RBC: magenta (R = 0.32, p = 0.10), darkgreen (R = 

328 0.36, p = 0.09), lightsteelblue1 (R = -0.36, p = 0.09), blue (R = 0.36, p = 0.10), saddlebrown (R = 
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329 0.36, p = 0.09), orangered4 (R = -0.33, p = 0.10), tan (R = -0.36, p = 0.09). Regarding modules 

330 correlating with RBC, three modules possessed significant associations with multiple related red 

331 cell indices (HGB, HCT, MCV, MCH, MCHC, and RDW): saddlebrown, steelblue, and 

332 lightcyan. Saddlebrown was strongly associated with MCV (R = -0.63, p =0.001) and MCH (R = 

333 -0.62, p =0.001), and weakly associated with HCT (R = -0.31, p = 0.10) and MCHC (R = 0.36, p 

334 = 0.10). Steelblue was strongly associated with RDW (R = 0.70, p = 2e-04) and weakly 

335 associated with HGB (R = 0.35, p = 0.10) and MCHC (R = 0.40, p = 0.06). Lightcyan was 

336 strongly associated with HGB (R = 0.47, p = 0.02) and RDW (R = 0.51, p = 0.01) and weakly 

337 associated with HCT (R = 0.38, p = 0.08).

338

339 Figure 2. Module-trait relationships between co-expression modules and hematological 

340 traits.
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341

342 Pearson correlations between each of the unique color-coordinated modules and hematological 

343 traits are visualized and represented as a heatmap. Each row represents a distinct co-expression 

344 module, and each column represents hematological traits as follows: white blood cells (WBC; 

345 K/μL), erythrocytes (RBC; M/μL), hemoglobin (HGB; g/dL), hematocrit (HCT; %), mean 

346 corpuscular volume (MCV; fL), mean corpuscular hemoglobin (MCH; pg), mean corpuscular 

347 hemoglobin concentration (MCHC; g/dL), red blood cell distribution width (RDW; %), and 
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348 platelets (PLT; K/μL). Cells are represented by how positive (yellow/white) or negative 

349 (purple/black) the correlation is between module and hematological trait, respectively.

350 The relationships between modules and clinical data are found in Figure 3. With respect 

351 to all clinical disease associations (BRD, Treat_Freq, and Risk_Days), five modules possessed 

352 significant correlations: steelblue, mediumpurple3, royalblue, orange, and violet. Steelblue was 

353 strongly associated with BRD (R = 0.41, p = 0.05) and Risk_Days (R = -0.41, p = 0.05). 

354 Mediumpurple3 was weakly associated with Treat_Freq (R = -0.40, p = 0.06). Royalblue was 

355 weakly associated with Treat_Freq (R = -0.40, p = 0.06). Orange was weakly associated with 

356 BRD (R = -0.39, p = 0.07), Treat_Freq (R = -0.34, p = 0.10), and Risk_Days (R = 0.38, p = 0.07). 

357 Violet was weakly associated with Treat_Freq (R = -0.38, p = 0.07). Regarding production traits 

358 (ADG-d12, ADG-d26, ADG-d82, and GR), ten modules possessed significant correlations: 

359 darkgreen, skyblue, darkturquoise, darkmagenta, purple, yellowgreen, orange, orangered4, 

360 darkred, and lightyellow. However, to mitigate unexplained variation which may confound 

361 differences in ADG-d12 and ADG-d26, coupled with the lack of significance between disease 

362 cohorts, eight modules correlating with ADG-d82 and GR were prioritized. Darkred was strongly 

363 associated with ADG-d82 (R = 0.50, p = 0.02) and GR (R = 0.50, p = 0.02). Orangered4 was 

364 strongly associated with ADG-d82 (R = 0.41, p = 0.05) and weakly associated with GR (R = 

365 0.38, p = 0.07). Orange was strongly associated with ADG-d82 (R = 0.43, p = 0.04) and GR (R = 

366 0,41, p = 0.05). Yellowgreen was strongly associated with ADG-d82 (R = 0.41, p = 0.05) and 

367 GR (R = 0.42, p = 0.05). Purple was weakly associated with GR (R = 0.32, p = 0.10). 

368 Darkmagenta was weakly associated with ADG-d82 (R = -0.34, p = 0.10). Skyblue was weakly 

369 associated with GR (R = -0.36, p = 0.10). Darkgreen was weakly associated with ADG-d82 (R = 

370 -0.32, p = 0.10). Notably, orange was the only module which possessed significant correlations 

371 with both disease-associated and weight gain traits. However, orange did not possess any 

372 significant correlations with hematological traits.

373

374 Figure 3. Module-trait relationships between co-expression modules and clinical traits.
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375

376 Pearson correlations between each of the unique color-coordinated modules and clinical traits are 

377 visualized and represented as a heatmap. Each row represents a distinct co-expression module, 

378 and each column represents clinical traits as follows: at-arrival fecal egg counts per gram via 

379 modified-Wisconsin procedure (FEC-d0), body weight in pounds (WT) at arrival, Day 12, Day 

380 26, and Day 82, calculated average daily weight gain at each time point (ADG), growth rate 

381 (slope of weight over days recorded; GR), at-arrival castration status (Sex), at-arrival rectal 
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382 temperature (Temp-d0), development of clinical BRD within 28 days post-arrival (BRD), 

383 number of clinical BRD treatments (Treat_Freq), and timing to first BRD treatment (Risk_Days). 

384 Cells are represented by how positive (yellow/white) or negative (purple/black) the correlation is 

385 between module and clinical trait, respectively.

386

387 Cross-populational network preservation analysis

388 Module preservation analysis identified five modules considered well preserved across 

389 the 2017 and 2019 populations: black (size = 432; Zsummary = 39.772; medianRank = 4), purple 

390 (size = 296; Zsummary = 34.773; medianRank = 2), lightgreen (size = 123; Zsummary = 23.291; 

391 medianRank = 1), tan (size = 222; Zsummary = 17.559; medianRank = 5), and steelblue (size = 

392 59; Zsummary = 11.555; medianRank = 3) (Figure 4). Notably, steelblue was the only well-

393 preserved module which possessed significant association with BRD-related clinical traits.

394 Figure 4. Cross-populational module preservation analysis.

395

396 The medianRank and Zsummary values across all modules are depicted through the scatterplot 

397 x- and y-axes, respectively. Zsummary values > 10.0 and medianRank values < 5.0, indicated by 

398 dashed lines, denote that a module identified with the 2017 gene expression data is well 

399 preserved across the 2019 gene expression data.
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400

401 Functional enrichment analysis of well-preserved modules

402 To explore the functionality and biological relevance of the five well preserved modules, 

403 we performed over-representation analysis with all genes from each module (black, purple, 

404 lightgreen, tan, and steelblue; Supplemental Table S4). Analysis of genes from the black module 

405 revealed 47 biological process terms, 49 cellular component terms, 17 molecular function terms, 

406 and five significantly enriched pathways. Biological processes identified from genes within the 

407 black module were related to neutrophil activity and degranulation, aldehyde metabolism, 

408 nitrogen compound response and catabolism, and cellular transport. Cellular components 

409 identified from genes within the black module involved intracellular and extracellular vesicles, 

410 secretory granules, cellular junctions, and lysosomes. Molecular functions identified from genes 

411 within the black module involve cytokine, enzyme, and calcium-dependent protein binding, 

412 aldehyde dehydrogenase (NAD) activity, and interleukin-1 receptor activity. Enriched pathways 

413 identified from genes within the black module involved neutrophil degranulation, metabolic 

414 disease, and signaling via tyrosine kinase receptor. 

415 Analysis of genes from the purple module revealed 54 biological process terms, 46 

416 cellular component terms, 16 molecular function terms, and 40 significantly enriched pathways. 

417 Biological processes identified from genes within the purple module involved mitochondrial 

418 processes (cristae formation, respiratory chain complex assembly), non-coding RNA processing 

419 and maturation, cellular protein transport, and metabolic processes and biosynthesis. Cellular 

420 components identified from genes within the purple module involved cell substrate and adhesion 

421 junction, ribosomes, cytoplasmic side of endoplasmic reticulum, mitochondrial inner membrane 

422 and envelope, and the 48S preinitiation complex. Molecular functions identified from genes 

423 within the purple module involved mRNA/rRNA binding, ubiquitin ligase inhibition, ATP 

424 synthase activity, and NADH dehydrogenase. Enriched pathways identified from genes within 

425 the purple module involved infectious disease/viral infection, amino acid metabolism, translation 

426 initiation/termination, rRNA processing, and ATP synthesis and respiratory electron transport.

427 Analysis of genes from the lightgreen module revealed 38 biological process terms, 49 

428 cellular component terms, three molecular function terms, and one significantly enriched 

429 pathway. Biological processes identified from genes within the lightgreen module involved 
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430 leukocyte/neutrophil differentiation, activation, and degranulation, tissue remodeling, cell 

431 secretion and exocytosis, phagocytosis and micropinocytosis, dendritic cell activation, and 

432 interleukin-8 secretion. Cellular components identified from genes within the lightgreen module 

433 involved lysosome, secretory/azurophil granule, vesicular/vacuolar membrane, granule lumen, 

434 and macropinosome. Molecular functions identified from genes within the lightgreen module 

435 involved symporter activity, potassium-chloride symporter activity, and phosphatidylinositol 

436 binding. The single enriched pathway identified from genes within the lightgreen module was 

437 neutrophil degranulation.

438 Analysis of genes from the tan module revealed 35 biological process terms, 32 cellular 

439 component terms, four molecular function terms, and two significantly enriched pathways. 

440 Biological processes identified from genes within the tan module involved B-cell activation, 

441 receptor signaling, and regulation, immunoglobulin production, cytokine production, positive 

442 regulation of interferon-gamma production, and mononuclear cell proliferation. Cellular 

443 components identified from genes within the tan module involved MHC class II protein 

444 complex, lytic vacuole membrane, clathrin-coated endocytic vesicle, endosomal membrane, and 

445 B-cell receptor complex. Molecular functions identified from genes within the tan module 

446 involved MHC class II receptor activity, MHC class II protein complex binding, and peptide 

447 antigen binding. Enriched pathways identified from genes within the tan module were antigen 

448 activates B-cell receptor (BCR) leading to generation of second messengers and CD22-mediated 

449 BCR regulation.

450 Analysis of genes from the steelblue module revealed three biological process terms, 

451 three cellular component terms, no molecular function terms, and no significantly enriched 

452 pathways. Biological processes identified from genes within the steelblue module were cell 

453 surface receptor signaling pathway, negative regulation of fibroblast growth factor receptor 

454 signaling pathway, and antigen receptor-mediated signaling pathway. Cellular components 

455 identified from genes within the steelblue module involved side of membrane, plasma membrane 

456 part, and alpha-beta T cell receptor complex.

457

458 BRD-associated hub gene identification and in silico protein-protein interaction and clustering 

459 analyses

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480640doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480640
http://creativecommons.org/licenses/by/4.0/


460 Hub gene identification analysis included co-expressed genes from the following 

461 modules: violet (54), orange (68), royalblue (100), mediumpurple3 (41), and steelblue (59). The 

462 kME and GS value cutoffs within each module resulted in 24, 46, 30, 22, and 32 BRD-associated 

463 hub genes from the violet, orange, royalblue, mediumpurple3, and steelblue modules, 

464 respectively (Supplemental Table S5). These resulting hub genes were further utilized for 

465 physical subnetwork protein-protein interactions and network clustering. After removal of all 

466 disconnected nodes, the interaction network demonstrated significant connectivity between 52 

467 proteins across 11 distinct clusters with high inter-nodal connectivity (Figure 5); these gene 

468 products and their combined interaction scores are found in Supplemental Table S6. These 

469 connected gene products demonstrate possible at-arrival biomolecular complexes associated with 

470 BRD development and severity.

471

472 Figure 5. Protein-protein interaction network of interconnected BRD-associated hub genes.

473
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474 Interaction score analysis reveals 52 genes, with high intramodular and BRD-trait relationship, 

475 which possess high connectivity. Interconnected gene products (nodes) were further grouped into 

476 distinct clusters based on their interaction scores (edges). Edge thickness represents the level of 

477 interaction confidence between nodes.

478

479 Discussion

480 While at-arrival management practices are somewhat dependent upon anticipated risk of 

481 BRD development, both inter- and intra-herd level disease prevalence is highly variable [5,51]. 

482 To counter this variability, beef production systems will often administer antimicrobials and/or 

483 immunostimulants at arrival to reduce the risk of clinical BRD development and associated 

484 production losses [52,53]. However, immunostimulant administration alone as a metaphylactic 

485 protocol for controlling BRD appears to have minimal impact on rates of morbidity [54,55,56]. 

486 Metaphylactic use of antimicrobials at arrival reduces risk of morbidity and mortality across beef 

487 production systems, however this management practice is variable in efficacy, in both rates of 

488 disease across cattle populations and in pharmacological choice, and the practice is suspected to 

489 drive expansion of antimicrobial resistance, a growing societal concern [52,57,58]. Given this 

490 background, our research group and others have focused on evaluating host transcriptomes at 

491 arrival, to better characterize host-driven mechanisms and develop candidate mRNA biomarkers 

492 associated with clinical BRD outcomes [18,19,20]. These studies have provided valuable 

493 information regarding cattle treated based on clinical signs of BRD, but these studies heavily rely 

494 on semi-objective evaluation of BRD cases and may miss underlying subclinical or 

495 misdiagnosed disease. As such, the underlying host mechanisms involved in BRD development 

496 remain disputed. Therefore, to identify at facility arrival genes and mechanisms which may 

497 represent the variable development of BRD cases and leverage the total expression profile of 

498 individual cattle, we employed a systems biology approach with weighted co-expression network 

499 analysis. This methodology allows us to identify networks of genes exclusively co-expressed, 

500 and to evaluate said networks in a reduced manner in order to identify molecules and 

501 mechanisms of interest for future BRD prediction studies. Importantly, co-expression network 

502 analysis serves as a complementary, yet distinct, approach to identifying genes and mechanisms 

503 associated with disease status, when compared to differential expression analyses. The network 
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504 approach performed in this study evaluates and identifies genes that are strongly coordinated in 

505 terms of expression, and determines correlation with overlapping metadata (clinical data), 

506 whereas differential expression analyses typically follow a pairwise approach to determine level 

507 of effect and probability of gene differences between groups. Co-expression network analyses 

508 consider greater biological context when evaluating gene expression differences, compared to 

509 more traditional pairwise approaches. Additionally, through utilization of hematological 

510 parameters, we could capture changes in the cellular composition of whole blood as they may 

511 relate to cellular and gross pathophysiology across individuals.

512 While we recognize that dynamic changes captured in whole blood may not completely 

513 encompass biomolecular characteristics seen within lung tissue, whole blood serves as a practical 

514 and easily obtainable sample for respiratory and inflammatory disease diagnostics [59,60]. After 

515 initial statistical assessment of CBC data, we identified that both BRD and Healthy cattle 

516 possessed comparable lymphocytosis, thrombocytosis, and erythrocytic macrocytosis; the 

517 distribution of these values were not considered significantly different between the two groups. 

518 Notably, mild to moderate levels of dehydration, a common condition in newly arrived post-

519 weaned beef animals, may cause elevated changes in hematocrit levels and lymphocytes [61,62]. 

520 Lymphocytosis and thrombocytosis may also result from host responses to infection or 

521 inflammation. Additionally, reticulocytosis (i.e., immature erythrocytosis) is the most common 

522 cause of erythrocytic macrocytosis [61] and was noted as a common feature found across all 

523 blood samples submitted for analysis. While these cattle did not possess physiological nor 

524 hematological evidence of hemolysis or blood loss upon facility arrival, this finding may be 

525 associated with early regenerative anemia, systemic inflammation, or mineral deficiencies 

526 [61,62,63]. Furthermore, blood-borne pathogens were not reported from blood smear assessment. 

527 Nevertheless, it does not rule out the possibility of mild/subclinical intraerythrocytic pathology 

528 or asymptomatic convalescence that may result in these increased hematological changes. Such 

529 pathology is often caused by parasitic diseases such as anaplasmosis, a common infectious 

530 disease of cattle across the United States [64,65]. It is plausible that these findings indicate that 

531 cattle at facility entry are undergoing similar physiological changes as it relates to stressful 

532 and/or pathogenic events (long-distance transportation, co-mingling, etc.) and underlying 

533 genomic mechanisms serve to resolve or prolong deleterious physiological conditions that result 

534 in BRD.
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535 With respect to distributions, we identified that RBCs were significantly increased in 

536 cattle that would go on to develop BRD versus those that did not. Although this result was 

537 identified in a relatively small number of cattle, it corresponds with the work of Richeson and 

538 colleagues [16]. As discussed within their prior research, elevated RBCs may indicate 

539 dehydration and subsequent predisposition with BRD development [5,16]. Interestingly, we were 

540 able to identify one well-preserved co-expression module which possessed significant 

541 correlations with RBCs, RDW, PLT, BRD, and Risk_Days (i.e., shorter time to first treatment): 

542 steelblue. Upon further investigation, we discovered that the genes within this module were 

543 related to antigen receptor-mediated signaling (BLK, CD247, CD276, CD3G, GATA3, and 

544 PLEKHA1) and negative regulation of fibroblast growth factor receptor signaling (CREB3L1, 

545 GATA3, and WNT5A), and specifically components of alpha-beta T-cell receptor complexes 

546 (CD247 and CD3G). The upregulation of IL-7R and associated signaling molecules, which 

547 include CD3G and CD247, initiate NOTCH-dependent proliferation of T-cell precursors [66]. 

548 Furthermore, elevated levels of BLK and GATA3 tend to skew the immune response towards 

549 Th2-type immunity [67,68,69]. In terms of RBC relationship, previous research has 

550 demonstrated that Th2-stimulated bone marrow T-cells promote erythroid differentiation and 

551 lead to the development of erythroblasts [70]. Additionally, CXCL12, also identified within the 

552 steelblue module and previously identified as a differentially expressed gene associated with 

553 BRD development [20], is involved in Th2-cell migration and immune response [70,71]. 

554 HNRNPH3, found within the steelblue module, has previously been identified as a key 

555 transcription factor associated with clinical BRD [18]. Lastly, several genes identified in the 

556 steelblue module were also found in the “turquoise” module identified by Hasankhani and 

557 colleagues [24], which enriched positive regulation of activated T-cell proliferation and 

558 Th1/Th2-cell differentiation pathways. While this study cannot elucidate the exact mechanistic 

559 components nor temporality of molecular events, it suggests that promotion of Th2-mediated T-

560 cells at arrival shares a common mechanism with RBC elevation and risk of BRD development. 

561 Our previous research has indicated that genes elevated at arrival in cattle that eventually 

562 develop BRD interact, and may enhance, TLR-4 and IL-6 responses [20,40,72], which may 

563 contribute to the co-expressed pattern related to Th2-mediated T-cell development [73]. Overall, 

564 this pattern of Th2-mediated immunity is strongly associated with clinical BRD development and 
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565 timing to first treatment, and may further strengthen the depiction that early Th2 responses 

566 indicate clinical disease development and lung pathology [74,75].

567 While steelblue was the only well-preserved BRD-associated module detected, four other 

568 modules were determined to be well-preserved across populations and warranted specific 

569 functional enrichment investigation: black, purple, lightgreen, and tan. Genes within the black 

570 module, largely involved with neutrophil activation and degranulation, IL-1 activity, and 

571 metabolic disease, was only significantly associated with hemoglobin and erythrocyte parameters 

572 (HGB, HCT, MCV, and MCH); notably, the black module did not possess any significant 

573 associations with clinical variables. This may indicate that neutrophilic and IL-1 activity was not 

574 indicative of BRD within this population of cattle, and/or additional disease-associated variables 

575 were not recorded in this study. Genes within the purple module, associated with increased 

576 eosinophil percentage, decreased neutrophil-lymphocyte ratio, decreased MCV and MCH, 

577 increased at-arrival fecal parasitic egg count, and increased growth rate (weight gain over 82 

578 days), largely enriched for mitochondrial function and aerobic metabolism and RNA processing. 

579 Importantly, this module possessed positive association to weight gain independent of BRD 

580 development. Previous research has investigated many of these ribosomal protein-encoding 

581 genes for their potential for immune effector capacity [76] and cell regulation [77], however this 

582 marks the first time, to our knowledge, that they have been implicated in contributing to weight 

583 gain potential in high-risk cattle. Notably, one gene (RPS26) has been previously identified as a 

584 differentially decreased marker in the diseased lungs of cattle experimentally challenged with 

585 BRD-associated pathogens [78,79]. Similar to the black module, genes identified within the 

586 lightgreen module were associated with hemoglobin and erythrocyte parameters, but additionally 

587 positively correlated with neutrophil percentage and neutrophil-lymphocyte ratio, and negatively 

588 correlated with basophil percentage; likewise, the lightgreen module did not possess significant 

589 associations with clinical variables. Lastly, the tan module, possessing several significant 

590 hematological associations, and was negatively correlated with castration status at arrival, 

591 possessed genes which enriched for B-cell receptor complexes and regulation and interferon-

592 gamma production. Unfortunately, the underlying physiological impact of co-expressed genes 

593 identified within the black, lightgreen, and tan modules were not captured in this study. As this 

594 study was primarily focused on BRD development and severity, the genes within these three 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.16.480640doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480640
http://creativecommons.org/licenses/by/4.0/


595 modules may possess a role in other disease complexes or immune-mediated events, such as 

596 gastrointestinal or apoptotic/necrotic diseases.

597 Utilizing hub gene and interaction network analyses, we further identified genes related 

598 to BRD development and severity. Here, we detected and mapped 52 genes into a protein-protein 

599 interaction network, further stratified into 11 distinct clusters based on their combined interaction 

600 scores. This procedure helps describe the physical relationship that multiple BRD-associated 

601 gene products possess with one another in a more holistic approach. Here, we may infer that 

602 these interactions possess accompanying transient functions involved in BRD development not 

603 previously described in literature. As such, these predicted protein-protein network interactions 

604 may infer potential modular units which participate in BRD development or resistance [80,81]. 

605 Further evidence of the associative importance related to BRD development exists with these 

606 genes, as CXCL12 [20], TLL2 [20], ALOX15 [18,20,40], and LOC100298356 [72,78,79,82] have 

607 been previously identified as differentially expressed when comparing cattle with and without 

608 BRD development. Proteomic approaches have detailed that proteins infrequently operate as 

609 single biological entities and, when involved in similar biological functions, interact in dynamic, 

610 yet organized complexes [83,84,85,86]. As such, these findings provide candidate protein 

611 complexes related to BRD development and severity, which warrants further investigation for 

612 avenues of confirmation in larger populations of cattle and novel therapeutic target development.

613

614 Conclusions

615 This study was conducted to utilize systems biology methodology to further establish 

616 genes, mechanisms, and coordinated biological complexes associated with dynamic 

617 hematological changes and BRD development. Utilizing our previously published RNA-Seq data 

618 and WGCNA, we identified five well-preserved modules of highly co-expressed genes with 

619 significant associations with hematological and clinical traits in cattle at facility arrival. The 

620 “steelblue” module, containing genes involved in alpha-beta T cell receptor complex and 

621 negative regulation of fibroblast growth factor receptor signaling, possessed significant positive 

622 correlations with erythrocyte count, platelet count, red cell width, and BRD diagnosis, and 

623 negative correlation with days at risk for BRD. The “purple” module, containing genes involved 
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624 in mitochondrial processes and non-coding RNA processing and maturation, possessed 

625 significant correlation with increased eosinophil percentage, decreased neutrophil-lymphocyte 

626 ratio, and increased growth rate (weight gain over time). Protein-protein interaction network and 

627 clustering analyses of BRD-related hub genes identified possible at-arrival biological complexes 

628 strongly associated with BRD development; many of these hub genes have been described as 

629 differentially expressed genes in previous BRD research. Through this holistic molecular 

630 approach, we provide genes, mechanisms, and predicted protein complexes associated with BRD 

631 development and performance which are warranted for future analyses targeted in predicting 

632 BRD at facility arrival.
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670 Supplemental Figure S2: Soft threshold (β) selection for signed weighed correlation network 

671 construction through scale free topology (SFT) plot analysis

672 A) SFT index R2 (y-axis) at increasing soft threshold powers (β; x-axis). The value β=8 was 

673 selected, seen where the saturation curve is above 0.8 (orange horizontal line). B) Increasing soft 

674 threshold powers (β; x-axis) with respect to decreasing mean connectivity (y-axis). The goal of 
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675 selecting a value β is to maximize scale independence (i.e., suppress low correlations) while 

676 simultaneously minimizing loss in mean connectivity.
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