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Summary 
Tissue- and organism-level biological processes often involve coordinated action of multiple 
distinct cell types. Current computational methods for the analysis of single-cell RNA-sequencing 
(scRNA-seq) data, however, are not designed to capture co-variation of cell states across 
samples, in part due to the low number of biological samples in most scRNA-seq datasets. Recent 
advances in sample multiplexing have enabled population-scale scRNA-seq measurements of 
tens to hundreds of samples. To take advantage of such datasets, here we introduce a 
computational approach called single-cell Interpretable Tensor Decomposition (scITD). This 
method extracts “multicellular gene expression patterns” that vary across different 
biological samples. These patterns capture how changes in one cell type are connected to 
changes in other cell types. The multicellular patterns can be further associated with known 
covariates (e.g., disease, treatment, or technical batch effects) and used to stratify heterogeneous 
samples. We first validated the performance of scITD using in vitro experimental data and 
simulations. We then applied scITD to scRNA-seq data on peripheral blood mononuclear cells 
(PBMCs) from 115 patients with systemic lupus erythematosus and 56 healthy controls. 
We recapitulated a well-established pan-cell-type signature of interferon-signaling that was 
associated with the presence of anti-dsDNA autoantibodies and a disease activity index. We 
further identified a novel multicellular pattern that appears to potentiate renal involvement for 
patients with anti-dsDNA autoantibodies. This pattern was characterized by an expansion of 
activated memory B cells along with helper T cell activation and is predicted to be mediated by 
an increase in ICOSLG-ICOS interaction between monocytes and helper T cells. Finally, we 
applied scITD to two PBMC datasets from patients with COVID-19 and identified reproducible 
multicellular patterns that stratify patients by disease severity. Overall, scITD is a flexible method 
for exploring co-variation of cell states in multi-sample single-cell datasets, which can yield new 
insights into complex non-cell-autonomous dependencies that define and stratify disease. 
 
Introduction 
Gene expression is a defining feature that distinguishes different cell types. However, gene 
expression profiles derived from the same cell type can also vary across individuals, driven by a 
combination of genetics and environment. Most often, gene expression is compared between 
individuals in case-control studies or is used to infer sample subgroupings. Alternatively, studies 
such as the Genotype-Tissue Expression (GTEx) project have revealed the genetic basis of 
tissue-specific gene expression by mapping natural genetic variation associated with expression 
differences in human populations (Consortium, 2015; Melé et al., 2015). Applications of single-
cell RNA-sequencing (scRNA-seq) have so far focused on the characterization of transcriptional 
differences among different cell types and cell states, and analysis of inter-individual variation has 
been hampered by small sample sizes and the presence of technical batch effects that are often 
difficult to separate from biological variation. Experimentally, this stimulated the development of 
multiplexed designs where samples from multiple individuals could be profiled in one run, thereby 
reducing confounding by technical batches (Kang et al., 2018; Stoeckius et al., 2018). Analytically, 
a variety of approaches have been developed to perform dataset alignment (Butler et al., 2018; 
Haghverdi et al., 2018; Barkas et al., 2019; Stuart et al., 2019). These tools establish 
correspondence between samples, effectively treating the difference between individuals as a 
problem to be overcome. These differences (e.g., between cases and controls or genetically 
different individuals) are often central for the downstream biological interpretation, but relatively 
few approaches exist to explore them systematically. 
 
The existing methods to compare single-cell transcriptomes between individuals generally require 
pre-defined groups of samples such as in case/control studies. Comparisons between sample 
groups can be made using cell-level data or aggregated counts for all cells within a given type or 
cluster (often referred to as a “pseudobulk” operation) (Chen et al., 2020; Crowell et al., 2020). 
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After computing the pseudobulk profiles, differential expression (DE) tools designed for bulk RNA-
seq analysis can be used to compare sample groups one cell type/cluster at a time. Pseudobulk 
analysis has been demonstrated to provide a superior balance of robustness, performance, and 
runtime (Crowell et al., 2020; Squair et al., 2021) and has been used in several single-cell case-
control studies to date (Kang et al., 2018; Mathys et al., 2019; Corridoni et al., 2020; Liu et al., 
2021; Ren et al., 2021; van der Wijst et al., 2021). 
 
However, case-control DE approaches are unable to stratify patients into subgroups and do not 
account for expression dysregulation that may occur jointly in multiple cell types. Patient 
subgrouping is of interest when the covariate defining a group has not been well-captured (e.g., 
disease status has been only partially recorded or recorded with errors) or when additional 
heterogeneity across samples exists. There is a lack of unsupervised single-cell analysis methods 
designed for capturing inter-individual variation. Standard matrix decomposition methods such as 
principal components analysis (PCA) and non-negative matrix factorization can, in principle, be 
used to describe gene expression variation across pseudobulk samples one cell type/cluster at a 
time. However, as we will illustrate, it is more informative to consider inter-individual variation 
within multiple cell populations jointly. Such a joint decomposition would more naturally describe 
scenarios where different cell types respond specifically to the same external signals. It would 
also improve our ability to infer dependencies between transcriptional programs across cell types 
(e.g., due to cell-cell communication or interaction) (Browaeys et al., 2020; Cabello-Aguilar et al., 
2020; Efremova et al., 2020; Jin et al., 2021). For example, a sample undergoing an innate 
immune response may display increased chemokine expression in myeloid cells and increased 
expression of chemotaxis genes in neutrophils, as these processes tend to occur together. 
Overall, by extracting such patterns of gene expression variation, we hypothesize that we can 
better characterize the molecular bases of complex phenotypes. 
 
Here, we developed an unsupervised computational method, called single-cell Interpretable 
Tensor Decomposition (scITD), that can infer multicellular patterns of gene expression (Figure 
1A). We define a “multicellular pattern” to be a collection of genes in various cell types that co-
vary together across samples. The multicellular patterns inferred by scITD can be linked with 
various clinical annotations, genetics, technical batch effects, and other sample metadata, leading 
to a richer understanding of the system under study.  
 
We first assessed the performance of scITD using simulated and real data from an in vitro 
experiment. Then, we applied scITD to investigate inter-individual heterogeneity in peripheral 
blood mononuclear cell (PBMC) expression using a dataset with 115 systemic lupus 
erythematosus (SLE) patients and 56 healthy controls. SLE is a heterogeneous autoimmune 
disease that can manifest with a wide array of symptoms and has few available targeted therapies 
(Fava and Petri, 2019; Allen et al., 2021). We identified six multicellular patterns of gene 
expression that stratify SLE patients, and we show that these are associated with clinical variables 
including disease activity and nephritis, one of the most severe complications of SLE. These 
patterns were examined in depth to identify channels of intercellular communication and changes 
in cell-type composition. We also applied scITD to a PBMC dataset consisting of 83 patients with 
COVID-19 and 20 healthy controls, revealing multicellular patterns associated with disease 
severity. These were validated in an independent study of 49 COVID-19 patients and 11 controls, 
pointing to conserved mechanisms in IL-16 signaling that could lead to new therapeutic 
opportunities. Finally, we compared multicellular patterns from the COVID-19 dataset to those 
from the SLE dataset, revealing similarities and differences in type-1 interferon-stimulated gene 
response that predispose individuals to autoimmunity but may be protective in acute viral 
infection. 
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Results 
Approach and evaluation of performance 
To extract multicellular patterns that vary across individuals, we first generate normalized 
pseudobulk expression profiles per sample per cell type (Methods). When 𝐶 cell populations from 
𝑁 samples are collapsed into pseudobulk profiles, the dataset can be represented as a 3-
dimensional matrix – a tensor 𝑇 with dimensions 𝑁 × 𝐺 × 𝐶, where 𝐺 is the number of genes 
(Figure 1B left). Key to scITD, to capture recurrent patterns of transcriptional variation across 
individuals, we applied Tucker tensor decomposition (Tucker, 1966) to extract the 𝐾 most 
informative factors. In this context, each factor consists of two elements (Figure 1A middle). The 
first element is a gene-by-cell type matrix of loadings values, representing a multicellular pattern 
(Figure 1B right and 1E right), and the second element is a vector of sample scores indicating the 
relative amount of the multicellular pattern present in each sample (Figure 1B middle and 1E left). 
Therefore, the output structure for a decomposition to 𝐾 factors consists of a factor-by-gene-by-
cell type (𝐾 × 𝐺 × 𝑆) tensor (Figure 1B right) and a sample-by-factor (𝑁 × 𝐾) matrix (Figure 1B 
middle). We will refer to the former as the “loadings tensor” and the latter as the “sample scores 
matrix” or “donor scores matrix” (if there is only one sample per donor). These two data objects 
can be multiplied together to reconstruct an approximation of the original gene expression tensor, 
𝑇. This representation has a notable advantage, in that each horizontal slice of the loadings tensor 
represents a multicellular pattern of gene expression that varies across samples according to the 
corresponding sample scores. 
 
We first demonstrate scITD by applying it to a dataset with one primary driving source of variation 
across samples. This dataset consists of 16 samples of PBMCs from SLE patients, half of which 
were stimulated in vitro with interferon-beta (IFN-beta) (Kang et al., 2018) (Figure 1C). For 
simplicity of the demonstration, we limited the analysis to just classical monocytes (cMonocytes) 
and CD4+ T cells (Th cells). Differential expression (DE) between stimulated and control samples 
revealed both shared and cell-type-specific gene expression changes (Figure 1D). For example, 
the gene MX1 becomes upregulated in both cell types after IFN-beta stimulation, whereas ANXA5 
becomes upregulated specifically in the monocytes. After applying scITD to this dataset, we 
examined the sample scores and loadings matrix for the first factor (Figure 1E). The scores for 
this factor perfectly separate the IFN-beta stimulated samples from the control samples (Figure 
1E left). The corresponding factor slice of the loadings tensor reveals a similar pattern with both 
shared and cell-type-specific perturbed genes (Figure 1E right). Next, we computed associations 
between sample scores of factor 1 and the expression of each gene in each cell type to determine 
the genes with statistically significant contributions in the loadings matrix. The Benjamini-
Hochberg (BH) procedure was used for multiple hypothesis test correction here as well as for 
other p-value adjustments throughout the study (Benjamini and Hochberg, 1995). The gene 
expression-factor associations showed a high concordance with the p-values obtained from the 
regular DE analysis (Figure 1F). Similarly, we observed a high correlation between the factor 
loadings for all genes and the log fold-change values from the DE analysis (Figure 1G). This basic 
example demonstrates that scITD can accurately extract multicellular expression patterns that 
involve both shared and cell-type-specific genes. 
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Figure 1. General overview of scITD and demonstration of functionality. 
(A) The overall goal of scITD. The tool takes clustered and annotated scRNA-seq data from 

multiple samples/donors as input (left). scITD then identifies multicellular patterns of gene 
expression that vary across the samples (middle). These patterns can be further analyzed 
to reveal biological processes that are jointly active in multiple cell types (right). 

(B) Structure of the output from scITD (middle and right) applied to a single-cell pseudobulk 
expression tensor (left). An approximation of the expression tensor is reconstructed when 
the sample scores matrix (middle) and loadings tensor (right) are multiplied together. 
Sample scores and loadings for one factor are highlighted in green. 

(C) scRNA-seq data from an IFN-beta stimulation experiment and t-SNE plot with cells colored 
by their corresponding sample stimulation condition. 

(D) Sample-level pseudobulk gene expression of DE genes between control and IFN-beta 
stimulated samples. Rows are genes and columns are pseudobulked samples. Genes 
that are significant in at least one of the two cell types below an adjusted p-value of 0.01 
were included. Genes are grouped (left annotation) by the cell types where they were DE 
across conditions. A few DE genes are shown labeled on the right. 

(E) The sample scores (left) and loadings (right) for factor 1 after applying scITD to the IFN-
beta stimulation data. Samples in the sample scores vector are labeled by their condition. 
Only loadings for significant genes in each of the two cell types are shown in the loadings 
heatmap (Methods). Rows of the loadings heatmap are hierarchically clustered. The same 
DE gene callouts from (D) are shown as labels on the right. 

(F) Comparison of DE adjusted p-values (from D) to gene expression-factor 1 sample score 
association p-values (Methods). Each point is a gene in one of the two cell types. The 
dashed red lines are located at an adjusted p-value of 0.05. 

(G) Comparison of DE log2 fold-change values (from D) to loadings values from factor 1. Each 
point is a gene in one of the two cell types. The Spearman correlation is shown in the 
upper-right corner. Red dots represent genes that are significantly associated with factor 
1 at an adjusted p-value < 0.05. 

 
To further evaluate the performance of scITD, we simulated a scRNA-seq dataset with 40 donors 
(1 sample per donor) and two cell types (Figure S1A left). The dataset was designed to include 
two multicellular patterns that varied across donors (Figure S1A right), and each pattern involved 
mostly different genes in each cell type. scITD correctly prioritized the relevant donors and genes 
involved in each pattern (Figure S1B, S1C, and S1D). We further downsampled the simulated 
and IFN-beta datasets to assess the impact of cell number on performance, and we observed 
good performance above an average of 60 cells per donor per cell type (Figure S1E and S1G). 
We also developed an approach to determine the appropriate number of factors into which the 
initial tensor should be decomposed (Methods). When applying this approach to the simulated 
dataset, it recommended a dimensionality that yielded accurate recovery (high AUCs) of true DE 
genes (Figure S1F and S1D). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.16.480703doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480703
http://creativecommons.org/licenses/by-nc/4.0/


 7 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.16.480703doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480703
http://creativecommons.org/licenses/by-nc/4.0/


 8 

Figure S1. Evaluating the performance of scITD with simulated data. 
(A) UMAP of the simulated scRNA-seq dataset with two cell types (left). Also shown are two 

multicellular patterns that separate groups of donors (right). Arrows point to the cells from 
donors with upregulation of a given multicellular pattern. 

(B) Donor scores matrix after applying scITD to extract two factors. Rows are hierarchically 
clustered. Labels indicating which donors were assigned to have upregulation of each 
multicellular pattern are shown on the left annotation.  

(C) Loadings matrices for the two factors limited to significant genes only. The left matrices 
show the loading values, the middle matrices show the association significance p-values 
of each gene in each cell type with the factor, and the right matrices show the true DE 
genes in each cell type (as set with simulation parameters). Rows are hierarchically 
clustered. 

(D) ROC curves and AUC values for predicting ground truth DE genes in each cell type from 
each gene’s expression-factor association p-value. 

(E) Performance of the method on the simulated dataset downsampled to a varying average 
number of cells per donor per cell type. AUC is computed the same way as in (D) and is 
shown for each multicellular pattern as distinct colors. Each point represents a different 
downsampling iteration (n=5), and the line is the mean AUC at a given dataset size. 

(F) Rank determination by SVD applied to the full simulated dataset. The left plots show the 
relative error when performing SVD on the unfolded tensor to varying numbers of factors. 
Mode 1 error refers to the reconstruction error when SVD is run on the tensor unfolded 
along the donor dimension. Mode 2 error refers to the reconstruction error when the SVD 
is run on the tensor unfolded along the gene dimension. The right plots show the change 
in relative error when incrementing the number of factors. Green bars show the results for 
the full simulated dataset, whereas purple bars show the results for the dataset after 
randomly shuffling cell-to-donor assignments (n=50 shuffling iterations). Error bars for the 
shuffled samples represent standard deviation. 

(G) Spearman correlations between loadings and log2FC from the IFN-beta experiment data 
downsampled to a varying average number of cells per donor per cell type. Each point 
represents a different downsampling iteration (n=5), and the line is the mean Spearman 
correlation at a given dataset size. 

 
Analysis of an SLE dataset identifies novel multicellular patterns that stratify patients 
Next, we applied scITD to a large scRNA-seq dataset of PBMCs from 115 SLE patients and 56 
healthy donors (Figure 2A). We focused our analysis on 7 cell types annotated at a coarse-grained 
level so that we would have a sufficient number of cells per donor per cell type (Figure 2B left). 
After transforming expression counts to pseudobulked counts, we further applied batch correction, 
as groups of donors were pooled and processed together in different 10X Chromium lanes 
(Methods). We then applied scITD to extract 7 factors, several of which were significantly 
associated with metadata variables such as SLE status, sex, ethnicity, and age (Figure 2C). 
 
We first investigated factor 1, which had a strong association with SLE status and explained the 
most variation in the dataset (Figure 2C). The loadings matrix for this factor (Figure 2D top) 
revealed a core expression program consisting of interferon-stimulated genes (ISGs) impacting 
multiple cell types. Since the ISGs had large positive loadings, the interpretation is that they are 
upregulated in donors with large positive sample scores (Figure 2D top and 2E). Therefore, this 
factor distinguishes SLE patients from healthy donors and delineates those patients who have 
high ISG expression across all cell types. Interferon signaling has been reported by many other 
groups in the context of SLE, and it is often present in roughly half of all SLE patients (Baechler 
et al., 2003; Bennett et al., 2003; Crow et al., 2003; Han et al., 2003; Hooks et al., 2010; Nehar-
Belaid et al., 2020). 
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Applying gene set enrichment analysis (GSEA) per cell type for this factor (Figure 2D bottom) 
yielded enrichment of the “response to type I interferon” gene set in all cell types as well as other 
gene sets enriched in specific cell types, especially monocytes. Some of the monocyte-specific 
gene sets included interleukin (IL)-1 production, IL-6 production, IL-10 production, and TNF 
production among others (Figure 2D bottom). These may simply represent the monocyte-specific 
responses to interferon. Supporting this, roughly 70% of the significant genes in cMonocytes were 
differentially expressed for this cell type in the IFN-beta stimulation experiment discussed above 
(adjusted p-values < 0.05). The ISG-high donors also showed higher expression of genes from 
various other biological processes including cell-cycle in CD8+ T cells (Tc), apoptosis in NK and 
Tc cells, and proteolysis in multiple cell types (Figure 2D bottom). Certain proteasome subunits 
(PSMB8, PSMB9, and PSMB10) are reported to be upregulated by interferon during infections, 
functioning to enhance antigen presentation (Yang et al., 1992; Shin et al., 2006). Interestingly, 
these SLE patients also had upregulation of a pathway for regulatory T cell differentiation (Figure 
2D bottom) marked by the elevated expression of the canonical Treg transcription factor, FOXP3, 
among helper T cells in these donors (Figure 2D top). Consistent with this, we observed a 
significant increase in Treg cell proportions (Tregs are a subcluster within Th cells) for donors with 
high factor 1 scores (p-value=8.7x10-19). Previous studies have also shown increased numbers 
of Tregs in SLE patients compared to healthy donors and often accompanying high ISG 
expression (Suen and Chiang, 2012; Ferreira et al., 2019). In addition to this finding, we also 
found a significant reduction in the proportion of naïve Th cells for donors with high ISG expression 
(p-value = 0.001). Whereas the naïve Th association was also shown in the main analysis of this 
dataset (Perez et al.), the Treg association was not previously described. This highlights the ability 
of scITD to identify coordinated cell-type-specific transcriptional modules within a cohort of 
patients with autoimmunity. 
 
When using scITD on the data without any batch correction, we were able to isolate batch effects 
into distinct factors (Figure 2F). Notably, the number of batch-associated factors remained stable 
when continually increasing the total number of factors. Therefore, a user can apply scITD to non-
batch-corrected data and then choose to analyze the factors that are not batch-associated. 
However, this also provides a unique opportunity to explicitly study the multicellular nature of 
batch effects. We demonstrated this using our SLE dataset and showed that 10X Chromium lane-
associated factors often have consistent expression patterns across different cell types (Figure 
S2A and S2B). We further analyzed these patterns for associations with gene-level attributes 
such as GC-content, ambient RNA expression, or gene ontologies. For example, 10X lane-
associated genes shared between cell types were more likely to be present at higher fractions in 
droplets containing ambient RNA compared to the cell-type-specific genes (Figure S2C). This 
analysis provides a unique use case for scITD to examine how batch effects impact multiple cell 
types and may eventually pave the way for improved batch-correction techniques.  
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Figure 2. SLE scRNA-seq dataset overview and scITD analysis. 
(A) Description of the SLE PBMC dataset. 
(B) UMAP of single-cell gene expression from the SLE dataset, showing the coarse clustering 

used in the downstream analyses (left) and cell subtype annotations (right). 
(C) Donor scores heatmap with metadata association p-values annotated at the top. The p-

values were calculated using univariate linear model F-tests. Rows are grouped by the 
sex of each donor, and this is shown on the right of the heatmap. Columns are ordered by 
explained variance for each factor, and this is displayed at the bottom of the heatmap. 

(D) Loadings matrix for factor 1 limited to only significant genes (top) with select GSEA 
enriched gene sets in each cell type (bottom). GSEA p-values were calculated using the 
FGSEA R package with Gene Ontology Biological Process (GOBP) gene sets. The top 
annotation shows the percent of overall explained variance for each cell type of the factor. 
The genes highlighted with different colors are a few leading-edge genes for the gene sets 
with corresponding colors. The rows of both heatmaps are hierarchically clustered. 

(E) Expression of the ISG, IFI6, in Th cells plotted against donor scores for factor 1. Each 
point is a donor. Points are colored by the donor’s SLE status. The p-value was calculated 
using a linear model F-test. Arrows at the bottom highlight a few of the other biological 
processes that co-occur with ISG expression. 

(F) The number of batch-associated factors (r2 > 0.5) at a given total number of factors 
extracted from the SLE dataset when no batch correction is applied. 

 
One unique attribute of the Tucker tensor decomposition is that the factors can be rotated to 
improve their interpretability (Unkel et al., 2011; Zhou and Cichocki, 2012). Therefore, we 
compared rotations applied to either the loadings or the donor scores of the SLE decomposition 
(Figure S3A) (Methods). We show that by rotating the loadings, the factor patterns become less 
similar to one another and more modular (Figure S3B). This independence enables us to interpret 
individual factors as functionally interconnected multicellular patterns. In contrast, a rotation of the 
donor scores can produce factors that more strongly stratify patients into groups, although the 
multicellular patterns become less modular (Figure S3C and S3B). From a user perspective, it is 
important to keep these distinctions in mind and to select an appropriate rotation based on the 
goals of the analysis. For most analyses in this study, we opted to use a rotation on loadings. 
 
In addition to identifying multicellular patterns broadly associated with disease status, scITD can 
also be used to identify those that stratify samples, which may be particularly useful for studying 
a heterogeneous disease like SLE. Therefore, we next applied scITD to only the samples from 
SLE patients to help identify multicellular patterns that may be associated with various clinical 
annotations. The resulting decomposition yielded factors that were highly similar to the previous 
ones (Figure S4C). Factors 1, 2, 3, and 7 involve multiple cell types, factors 4 and 5 primarily 
involve cytotoxic T cells (Tc) and Th cells, and factor 6 shows consistent expression variation for 
all cell types, as this factor is associated with sex (Figure S4A and S4B). We further demonstrated 
that the factors have high stability by randomly subsampling to 85% of the donors, recomputing 
the decomposition, and assessing factor correlations with those from the full SLE-only 
decomposition (Figure S4D). 
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Figure S2. Analysis of technical effects through extracted batch-associated factors. 

(A) Donor scores matrix for a decomposition of the SLE dataset without applying batch-effect 
removal. Also shown are p-values for associations between the factor scores and 10X 
lane (top). The p-values were calculated using univariate linear model F-tests. Columns 
are ordered by explained variance, shown as a bottom annotation. Rows are grouped by 
10X lane, shown as an annotation on the right side. 

(B) Loadings matrices for two factors associated with 10X Chromium lanes limited to the 
significant genes only. Rows are hierarchically clustered. 
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(C) Analysis of factor 1 loadings for association with ambient RNA content of batch 
dmx_YE_7-19. The left plot shows the association between all genes that are upregulated 
in this batch and their fractional representation in the ambient RNA “soup” for the batch. 
The right plot shows ambient RNA fractions for genes that were significantly upregulated 
across all cell types compared to those upregulated only in some cell types. Associations 
are calculated by two-sample t-tests for (G-H). “NS genes” for (G-H) includes all genes 
that were not significantly upregulated. 

(D) Associations between upregulated genes in each factor and GC content. This is shown 
separately for the batch-associated factors (top) or non-batch-associated factors (bottom).  

 

 
Figure S3. Comparing the impact of different factor rotations. 

(A) The two general approaches taken to rotating factors. Either the loadings are rotated to 
maximize some criterion (top), or the donor scores are rotated to maximize some criterion 
(bottom). In either case, the non-optimized component of the decomposition output is 
counter-rotated to preserve the original reconstruction error. 

(B) Average ISG-factor score associations (r-squared) for the loadings rotation (top) and 
donor scores rotation (bottom). The ISGs used are ISG15, IFI27, IRF7, HERC5, LY6E, 
MX1, OAS2, OAS3, RSAD2, USP18, and GBP5. A separate r-squared value is calculated 
for each cell type. The error bars represent the standard deviation across this set of genes. 

(C) Comparing the strength of association for the ethnicity-associated factor from the loadings 
rotation (top) and the donor scores rotation (bottom). The p-values were calculated using 
univariate linear model F-tests. 
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Figure S4. Applying scITD to the SLE-only portion of the dataset. 
(A) Donor scores heatmap with metadata association p-values annotated at the top. The p-

values are calculated using univariate linear model F-tests. Columns are ordered by 
explained variance for each factor, which is shown at the bottom. Rows are hierarchically 
clustered. 

(B) Loadings matrices for all factors of the decomposition, reduced to only the significant 
genes in each cell type. Top annotations represent explained variance for each cell type 
of the factor. Rows are hierarchically clustered. Genes that have the strongest 
associations with each factor are shown as labeled callouts. 

(C) Pearson correlations between factors from the SLE-only dataset and factors from the full 
dataset decomposition. The left heatmap shows correlations between factor donor scores 
of the two decompositions. The right heatmap shows correlations between factor loadings 
for the two decompositions. Rows and columns are hierarchically clustered. 

(D) Stability analysis results for the SLE-only decomposition over 500 iterations. In each 
iteration, the dataset was subsampled to 85% of the donors. Values represent the 
maximum absolute value factor-factor correlation coefficients for each of the original 
factors mapped to the factors from each subsampled dataset decomposition. This is 
shown separately for max donor score correlations (left) and max loadings correlations 
(right). 

 
Next, we associated these seven factors (from the SLE-only decomposition) with 41 clinical 
features including SLE symptoms and medication use. One of these is the SLE disease activity 
index (SLEDAI), which is a composite score derived from 24 manifestations and immunologic 
features spanning 9 organ systems (Bombardier et al., 1992). Factor 1, which was again 
described by pan-cellular ISG expression, was significantly associated with the presence of anti-
dsDNA and anti-smith autoantibodies (Figure 3A) as well as higher SLEDAI scores (Figure 3B). 
The connection between higher ISG expression and these clinical features has been previously 
shown in several studies (Hooks et al., 1979; Bennett et al., 2003; Kirou et al., 2005; Nikpour et 
al., 2008; Weckerle et al., 2011). The Pearson correlation between factor 1 sample scores and 
SLEDAI was 0.321, which is similar to that which was observed in other studies (Catalina et al., 
2019; Enocsson et al., 2021; Juárez-Vicuña et al., 2021). 
 
Lupus nephritis is one of the most severe complications of SLE, and anti-dsDNA autoantibodies 
are a critical though insufficient component to its development (Yung and Chan, 2015). Therefore, 
we sought to identify multicellular patterns that are associated with nephritis when autoantibodies 
are present. Factor 2 exhibited a significant association with the frequency of lupus nephritis 
among SLE patients who were positive for anti-dsDNA autoantibodies (Figure 3C). The frequency 
of patients with nephritis was computed using a sliding window along the factor scores to calculate 
the number of patients positive for lupus nephritis among those positive for anti-dsDNA 
autoantibodies (Methods). Notably, there is no association in patients negative for anti-dsDNA 
autoantibodies, and co-occurrence of anti-smith autoantibodies with lupus nephritis for this factor 
was less significant (p-value ~ 0.05). This finding suggests that the factor 2 multicellular pattern 
might exacerbate the adverse effects of anti-dsDNA autoantibodies specifically, leading to lupus 
nephritis. GSEA analysis reveals that factor 2 is enriched for stress response as well as altered 
cell cycle, apoptosis, cell migration, and cell adhesion pathways in multiple cell types (Figure 3D). 
Directionally, the genes in these pathways were overexpressed in the patients with high factor 2 
scores. The observation of p38 MAPK signaling in several cell types was also intriguing because 
there is evidence that this pathway is an important mediator in the development of lupus nephritis, 
acting in concert with anti-dsDNA autoantibodies (Iwata et al., 2003; Yung et al., 2010; Liu et al., 
2016). 
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Figure 3. SLE decomposition factor associations with clinical covariates. 

(A) Factor 1 associations with anti-dsDNA autoantibody presence (left) and anti-smith 
autoantibody presence (right). The significance of each association was computed using 
logistic regression with a likelihood-ratio test. 

(B) Factor 1 association with SLEDAI score. Statistical significance was calculated using an 
ordinal logistic regression (Methods). The line is a linear model. 
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(C) Factor 2 association with frequency of lupus nephritis among patients positive for anti-
dsDNA autoantibodies. A sliding window was used to compute the percent of patients 
within the window that had lupus nephritis (Methods). Each point represents the sliding 
window center. 

(D) Factor 2 select enriched gene sets computed for each cell type. Enrichment significance 
was calculated using the FGSEA R package with GOBP gene sets (also applies to G). 
Rows are hierarchically clustered. 

(E) Factor 3 association with prednisone use. The significance of each association was 
computed using logistic regression with a likelihood-ratio test. 

(F) Factor 3 association with prednisone dose. The outlier with the highest prednisone dose 
was not included in the calculation of the linear model p-value but is still shown in the plot. 
The p-value was calculated using a linear model F-test. The line is a linear model. 

(G) Factor 3 select enriched gene sets computed for each cell type. Enrichment significance 
was calculated using the FGSEA R package with GOBP gene sets. Rows are 
hierarchically clustered. 

 
Association analysis of treatment revealed that factor 3 was strongly associated with both the use 
and dosage of the corticosteroid prednisone (Figure 3E and 3F). GSEA analysis for this factor 
confirmed the expected enrichment of corticosteroid and hormone response genes in multiple cell 
types (Figure 3G). There were also several enriched pathways specific to Th cells. We further 
noted that several of the SLE patients taking prednisone did not have high scores for this factor. 
In fact, the SLE patient taking the highest prednisone dose had practically none of this multicellular 
pattern (Figure 3F). These few individuals may exhibit resistance to prednisone, as previous 
reports have shown that up to a third of SLE patients may have some degree of resistance to the 
medication (Luijten et al., 2013). Overall, this illustrates one of the main benefits of using scITD 
over simple DE analyses, as DE would be underpowered to detect the prednisone-associated 
genes with such outliers. 
 
Inference of ligand-receptor (LR) interactions reveals potential mediators of multicellular 
patterns  
We also sought to identify LR interactions that are candidate mediators of the multicellular 
patterns identified by scITD. Our approach to inferring LR interactions differs from standard 
approaches in several ways. Most single-cell LR methods identify interactions based on the 
upregulation of ligands and their cognate receptors in pairs of cell clusters without regard to the 
sample of origin. Here, we explicitly test for interactions that are differentially active between 
samples. This is done by associating ligand expression in a source cell type with the expression 
of WGCNA co-expression gene modules in a target cell type, which we use as a proxy to 
represent the downstream effects of an LR signaling event (Figure 4A) (Methods). Applying this 
strategy to the SLE samples, we identified a set of ligands and gene modules significantly 
associated with each other across samples (Figure 4B left). These candidate interactions can be 
further associated with the inferred multicellular patterns (Figure 4B right). We further 
demonstrated that our approach enriches for plausible LR interactions and outperforms a 
standard LR inference approach (Methods) (Figure S5A and S5B). 
 
Next, we more closely examined several of the top candidate LR interactions. One such prediction 
is the interaction of the ligand TNFSF13B expressed from cMonocytes with its cognate receptor 
on B cells. Specifically, we identified a positive association between monocytic expression of the 
ligand and a co-expression gene module in the B cells, B_m1 (Figure 4B blue arrows and 4C left). 
The protein that TNFSF13B codes for is more commonly referred to as the B-lymphocyte 
stimulator (BLyS) or B-cell activating factor (BAFF). Notably, this protein is the target of the 
recently developed therapeutic, belimumab, which acts to reduce B cell activation and 
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autoantibody production in SLE (Allen et al., 2021). Here, the genes in the associated B_m1 co-
expression module were significantly enriched for genes in B-cell receptor activation gene sets 
as well as differentiation and cell-cycle gene sets (adjusted p-values < 0.05), as would be 
expected from BAFF stimulation. We observed that donors with high ISG expression (high factor 
1 scoring donors) had significantly higher expression of TNFSF13B (Figure 4B right and 4C right). 
This is consistent with previous reports that the TNFSF13B ligand is itself a known target 
upregulated by interferon (Sjöstrand et al., 2016). As we have shown, connecting our LR inference 
results to our scITD multicellular patterns enables contextualization of candidate interactions, 
improving our confidence in them. 
 
Another particularly strong candidate that we identified is the ICOSLG-ICOS interaction from 
cMonocytes to Th cells (Figure 4D). Specifically, we found that donors with higher ICOSLG 
expression in cMonocytes had significantly higher expression of gene module Th_m5 in Th cells. 
The Th_m5 gene module was enriched for genes involved in T-cell receptor activation, cell cycle, 
and p38 MAPK pathways (Figure 4E) consistent with the known co-stimulatory role for ICOSLG-
ICOS binding in T cell activation (Dodeller and Schulze-Koops, 2006; Wikenheiser and 
Stumhofer, 2016). We also observed that genes in the Th_m5 module had significantly higher 
NicheNet regulatory potential scores compared to genes in other modules (Figure 4F). For a given 
ligand, genes with higher regulatory potential scores are more likely to be downstream targets of 
that ligand (Browaeys et al., 2020). Therefore, this result is consistent with the hypothesis that 
donors who overexpress ICOSLG have increased functional ICOSLG-ICOS signaling between 
monocytes and Th cells. We also noted that the donors with increased ICOSLG expression had 
significantly higher scores for factor 2 (Figure 4B right and 4D right), suggesting the interaction 
between ICOSLG-ICOS may promoting T cell proliferation and MAPK activation to increase the 
frequency of lupus nephritis (Figure 4G). Corroborating this result, a previous study showed that 
T cell ICOS stimulation by myeloid cells contributed to the development of lupus nephritis and 
was mediated by increased T cell survival (Teichmann et al., 2015).  
 
We also identified a significant interaction channel that appeared active for donors with functional 
prednisone response. Specifically, we found that the ligand THBS1 in cDCs was positively 
correlated with the Th_m9 co-expression module (Figure 4H left). The THBS1 ligand itself was 
also positively correlated with factor 3 donor scores, indicating that it is overexpressed with 
functional prednisone response (Figure 4H right). Similar to factor 3 (Figure 3G), module Th_m9 
was significantly enriched (adjusted p-values < 0.01) for genes involved in response to hormone 
(e.g., KLF9, TXNIP) and regulation of T cell activation (e.g., SOCS1, NFKBIZ). Previous studies 
have also shown that dendritic cell-derived THBS1 can promote Treg development when 
interacting with integrin-associated protein (CD47) (Grimbert et al., 2006). Therefore, we tested 
for an association between the factor 3 scores and Treg proportions. This association was 
statistically significant (p-value = 0.002), with a relative expansion of this Th subpopulation in the 
prednisone patients. Unlike the factor 1-high donors, however, the factor 3-high patients did not 
have increased ISG expression. We also observed significantly higher THBS1 regulatory potential 
scores for genes in the Th_m9 gene module compared to genes in all other modules (p-value = 
2.8x10-8), supporting the inference of this interaction. These results highlight a high confidence 
shift in intercellular communication upon prednisone use that may mechanistically contribute to 
its anti-inflammatory effects. 
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Figure 4. LR approach overview and inference of interactions in SLE multicellular patterns. 
(A) LR interaction inference model. The bottom text describes the linear model used to test 

whether ligand expression in a source cell type is significantly associated with a co-
expression gene module in a receptor-bearing cell type across donors (Methods). 

(B) Results of the scITD LR analysis using the CellChat LR pair database (left). Rows are 
ligand hits from various source cell types. Columns are gene co-expression modules from 
various target cell types. Rows are grouped by source cell type and columns are grouped 
by target cell type. Values in the main body of the heatmap indicate adjusted p-values for 
ligand-module associations. Only the top significant results are shown (Methods). Rows 
and columns are clustered within each block. Also shown are ligand-factor association 
adjusted p-values (right). Arrows highlight a single ligand-module combination that is 
displayed in more detail in (C). 

(C) Association between gene module B_m1 and expression of ligand TNFSF13B in 
cMonocytes (left). Association between TNFSF13B expression in cMonocytes with donor 
scores for factor 1 (right). The line is a linear model (also applies to D and H). 

(D) Association between gene module Th_m5 and expression of ligand ICOSLG in 
cMonocytes (left). Association between ICOSLG expression in cMonocytes with donor 
scores for factor 2 (right).  

(E) Enriched gene sets in module Th_m5. Adjusted p-values are shown in green boxes. 
Enrichment was tested using the hypergeometric test with gene sets from GOBP and 
BioCarta. Only results with adjusted p-values less than 0.005 are shown. 

(F) ICOSLG-target gene regulatory potential scores (from NicheNet) are shown for genes in 
the Th_m5 module or all other modules. The Wilcoxon rank-sum test was used to test for 
a difference in medians between the two groups. 

(G) Diagram of ICOSLG-ICOS interaction. 
(H) Association between gene module Th_m9 and expression of ligand THBS1 in cDCs (left). 

Association between THBS1 expression in cDCs with donor scores for factor 3 (right). 
 

 
 
Figure S5. Validation of the scITD LR inference approach using NicheNet regulatory potential 
scores. 

(A) LR channels inferred using scITD with the CellChat LR pair database. The height of each 
bar indicates the adjusted p-value (calculated with the Wilcoxon rank-sum test) comparing 
NicheNet regulatory potential for the top 200 potential target genes to the rest (Methods). 
The red bar indicates an adjusted p-value of 0.05. 
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(B) The number of inferred LR channels using scITD compared to a simple LR pair association 
approach (left). The plot on the right shows the fraction of inferred LR channels with 
significant NicheNet enrichment (as calculated in G). The “random” method is a random 
selection of 250 LR channels as a background comparison. Error bars are the standard 
error of the mean. 

 
Factors often involve shifting cell subtype compositions across donors 
Different scenarios may underlie the inter-individual transcriptional variation captured by the 
scITD factors. The variation may represent differences in gene expression within a given cell type 
(e.g., different activation states of CD4 T cells), or it may reflect altered proportions of cell 
subtypes (e.g., regulatory versus effector CD4 T cells) in different samples. We implemented a 
strategy to identify cell subtype “compositional shifts” in an automated fashion (Figure 5A). For a 
given major cell type, we first perform subclustering to various resolutions. As finer resolution 
clusters may capture disease-specific expression states, we generally check that non-canonical 
subtypes are present to a minimal extent in the samples from healthy donors. For a given 
subclustering, we can then test whether the estimated cell subtype proportions are significantly 
associated with a given factor. This is demonstrated with the major Th cell cluster using the SLE-
only portion of the dataset (Figure 5B). We found that certain subclustering resolutions yielded 
significant associations with the factor scores, indicating that compositional shifts likely contribute 
to the observed inter-individual variation.  
 
We then selected a single subclustering resolution for each major cell population to investigate 
cell subtypes further (Figure 5C, 5D, S6A, and S6B). Firstly, we observed that donors with high 
factor 1 scores (those who had high ISG expression) tended to have lower fractions of the Th_1 
subtype (Figure 5E and 5F). This subtype overexpressed genes such as CCR7 and SELL 
indicating that it likely represents naïve Th cells (Figure 5D left). This result is consistent with the 
aforementioned shift in naïve Th cells when using the previously ascribed subtype annotations. 
Factor 1 donor scores were also significantly associated with altered proportions of B cell 
subtypes (Figure 5G). Specifically, the ISG expressing patients appeared to have expanded 
populations of activated memory B cells and transitional B cells. Markers for the activated memory 
B cells, B_4 (Figure 5D right), match those from a recent single-cell study of healthy individuals 
(King et al., 2021). The transitional B cell subtype (B_3) was annotated by marker genes, CD72 
and TCL1A, identified from previous studies (Shen et al., 2020; Stewart et al., 2020). These 
findings are also consistent with our observation of TNFSF13B upregulation in these patients 
(identified in our LR analysis), as BAFF has been shown to enhance survival of these B cell 
subtypes (Hsu et al., 2002). Transitional B cells have previously been shown to be at increased 
proportions in SLE patients and they are known to play a role in regulating Th differentiation and 
reducing their proliferation (Simon et al., 2016; Dieudonné et al., 2019; Liu et al., 2019; Zhou et 
al., 2020). Along these lines, we expected to see reduced Th numbers overall. Therefore, we 
tested whether factor 1 donor scores were also associated with the composition of the major cell 
types. We observed a significant overall association, with the Th cells at reduced proportions for 
the SLE patients with high ISG expression (Figure 5H). Analysis of cell subtype compositional 
shifts with the other factors also yielded several significant associations with relevant connections 
to their corresponding multicellular patterns (Figure S6C-G). 
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Figure 5. Identifying cell-type-composition associations with factors. 
(A) Pipeline for testing cell subtype compositional shifts at various subclustering resolutions. 
(B) Th subtype composition-factor associations for various subclustering resolutions. The p-

values are calculated using multiple linear regression with an F-test. The response 
variable is the factor donor score and the regressors are balances calculated from the cell 
subtype proportions for each donor (Methods). 

(C) UMAP plots of subclusters for Th cells (left) and B cells (right) that were used in further 
analyses. 

(D) Marker genes for Th cell subclusters (left) and B cell subclusters (right). Marker genes 
were determined from DE tests between subclusters using Conos (Barkas et al., 2019). 

(E) Th_1 subcluster (naïve Th cells) proportions plotted against factor 1 donor scores. The 
line is a linear model. 

(F) Associations between all Th cell subcluster proportions and factor 1 donor scores. The 
standard error is used for the error bounds, and the p-value is calculated as in (B). This 
also applies to (G-I). 

(G) Association between factor 1 donor scores with proportions of B cell subclusters.  
(H) Associations between factor 1 donor scores and donor proportions of the major cell types. 
(I) Cell subtype proportion associations with factor 6, the sex-associated factor. The red bar 

indicates a .001 adjusted p-value. 
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Figure S6. Additional cell composition analysis. 

(A) UMAP plots of subclusters for cMonocyte cells (left) and Tc cells (right) that were used in 
further analyses. 

(B) Marker genes for cMonocyte subclusters (left) and Tc cell subclusters (right). Marker 
genes were determined from DE tests between subclusters using Conos. 

(C) Association significance between B cell subcluster proportions and factor 2. The standard 
error is used for the error bounds, and the p-value is calculated as in (Figure 5B). This 
also applies to (D-G). 

(D) Association significance between cMonocyte subcluster proportions and factor 3. 
(E) Association significance between Th subcluster proportions and factor 3. 
(F) Association significance between Tc subcluster proportions and factor 4. 
(G) Association significance between Th subcluster proportions and factor 4. 
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scITD extracts multicellular patterns of gene expression associated with COVID-19 
severity 
Next, we applied scITD to analyze a large scRNA-seq dataset consisting of 83 COVID-19 patients 
and 20 healthy controls (Stephenson et al., 2021). The patients demonstrated varying degrees of 
disease severity at the time of sample collection, ranging from asymptomatic to critical. We again 
limited our analysis to the major cell populations (Figure 6A). Similar to our SLE analysis, the 
decomposition of this data yielded one factor characterized by pan-cell type ISG expression 
(factor 1) (Figure 6C). High ISG expression was seen in a subset of the COVID-19 patients but 
not in the healthy controls (Figure 6D). Interestingly, the patients with critical disease also had 
significantly lower ISG expression compared to other patients (Figure 6D). This may be partially 
due to the presence of anti-interferon autoantibodies as indicated by recent reports (Bastard et 
al., 2020; Wang et al., 2021; van der Wijst et al., 2021).  
 
As ISG seems to play opposite roles in COVID-19 (protective role) compared to SLE (pathogenic 
role), we aimed to identify differences in ISG expression between acute viral infection and 
autoimmunity. In comparing the ISG multicellular patterns extracted from the COVID-19 dataset 
versus the SLE dataset, we found many overlapping significant genes per cell type (Figure 6E, 
S7A, and S7B), and the most strongly associated canonical ISGs (e.g., IFI6, MX1, XAF1, etc.) 
were all significant in both datasets (Figure 6E and S7A). However, the ISG multicellular pattern 
in the SLE dataset contained many genes that were not significant in the COVID dataset (Figure 
S7B). These SLE-specific factor 1 genes were enriched for biological processes such as ATP 
metabolic process (Tc cells), cell activation (NK cells), and cell-cell adhesion (NK cells) among 
others (Figure 6F). Enrichment of ATP metabolic processes in Tc cells is particularly intriguing as 
one recent SLE study demonstrated striking metabolic changes in Tc cells that take place only in 
response to chronic interferon exposure and were absent with short-term exposure (Buang et al., 
2021). As a negative control, we compared the ISG factor of this COVID-19 dataset to that of 
another COVID-19 scRNA-seq dataset (van der Wijst et al., 2021) and observed no significant 
gene sets among the dataset-specific genes. We also noticed that many of the SLE-unique factor 
1 genes represented components of the proteasome, including the immunoproteasome subunit, 
PSMB10, upregulated in all cell types analyzed. While proteasome subunits are significantly 
upregulated with ISGs in both COVID-19 and SLE (Figure 2D and 6C), there appears to be a far 
stronger enrichment of these genes in the SLE ISG factor (Figure 6G). This was observed for Tc 
cells, Th cells, and NK cells (Figure S7C). Two genetic studies of ISG expression in SLE found a 
significant variant in PPM1H, a gene that can remove proteolysis signals (Kariuki et al., 2010; 
Ghodke-Puranik et al., 2020). Therefore, genetics or other disease-specific factors may play a 
role in differentiating the ISG multicellular pattern in SLE from that seen in other illnesses. 
 
Unlike the ISG factor, factor 2 of the COVID-19 decomposition significantly stratified patients 
along a continuous spectrum disease severity (Figure 7A). The multicellular pattern for this factor 
consisted of multiple cell-type-specific biological processes including cell-cycle (NK and T cells) 
and various signaling cascades (in cMonocytes, NK, and T cells) among others (Figure 7B). We 
further examined this factor for associations with cell proportions. We found that the more severe 
patients had reduced proportions of activated Th cells (IL22+) as well as increased proportions of 
terminal effector Tc cells (Figure S7D). Similar subcluster proportion associations were also 
reported in the original study that generated this dataset (Stephenson et al., 2021). We also found 
that the factor 2-high donors had significantly increased proportions of proliferating Th cells, Tc 
cells, and NK cells (Figure S7D). This is consistent with the observed enrichment of cell-cycle 
processes in these cell types for these patients (Figure 7B).  
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Figure 6. scITD extracts an ISG pattern from a COVID-19 dataset. 
(A) UMAP plot of single-cell gene expression from Stephenson et al. (2021) colored by the 

major cell types used in the scITD analysis (top left), cell subtype annotations (bottom), 
and source donors (top right). 

(B) Donor scores plot with metadata associations (top) and ordered by the explained variance 
of each factor (bottom). Association p-values were calculated using univariate linear model 
F-tests. Rows are hierarchically clustered. 

(C) Factor 1 loadings for significant genes (top) and select enriched gene sets (bottom). 
Enrichment significance was calculated using the FGSEA R package with GOBP gene 
sets (also applies to G). Rows of the loadings heatmap are hierarchically clustered. Green-
colored genes are the top leading-edge genes identified in the enrichment of the 
Response to Type I Interferon pathway. 

(D) Association between COVID-19 status and factor 1 scores (top). FGSEA running 
enrichment tests were used to calculate enrichment of patient groups at either end of the 
factor 1 donor scores. 

(E) Comparing gene expression-factor 1 association T-statistics (by linear model) between 
the COVID-19 dataset and the SLE dataset. Dashed blue lines represent adjusted p-
values of 0.01. Gene labels highlight some genes that are highly significant in both 
datasets as well as some genes that are significant only in the SLE dataset. 

(F) GO gene set overrepresentation analysis of SLE-specific ISGs compared to all 
upregulated ISGs identified from both datasets.  

(G) Enrichment of proteosome-component genes (endopeptidase complex gene set) in ISG-
high patients of either the COVID-19 decomposition (left) or the SLE decomposition (right). 
FGSEA was used to calculate p-values. 

 
By further applying our LR inference technique, we identified a strong candidate LR interaction 
connected to this multicellular pattern. The interaction included the ligand IL16 expressed from 
Th cells interacting with the CD4 receptor on cMonocytes. Specifically, we observed high 
correlations between IL16 expression in Th cells and various co-expression gene modules in 
cMonocytes, including cMono_m14 (Figure 7D right). Module cMono_m14 was significantly 
enriched for MHC Class II genes (Figure 7E), indicating a possible role of Th derived IL16 in 
regulating the expression of these genes in monocytes. Corroborating this, earlier studies have 
shown that IL16 can upregulate monocytic MHC Class II genes, including HLA-DR (Cruikshank 
et al., 1987). Here, we further found Th IL16 to be downregulated in donors with high factor 2 
scores (Figure 7D left), and the factor 2 multicellular pattern shows that these donors also have 
downregulation of HLA-DR expression in monocytes (Figure 7B top). Interestingly, reduced 
expression of HLA-DR in monocytes has also been found in patients with sepsis, a process that 
shares many of the same pathophysiological features as severe COVID-19 (Winkler et al., 2017; 
Olwal et al., 2021). Two recent studies have also identified reduced levels of HLA-DR protein on 
monocytes of critically ill COVID-19 patients (Giamarellos-Bourboulis et al., 2020; Spinetti et al., 
2020). Given our result and the prior literature, further studies should be conducted to determine 
whether reduced IL16 contributes to increased COVID-19 severity via reduced HLA-DR 
expression.  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.16.480703doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480703
http://creativecommons.org/licenses/by-nc/4.0/


 28 

 
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.16.480703doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480703
http://creativecommons.org/licenses/by-nc/4.0/


 29 

Figure 7. Analysis of a COVID-19 severity associated multicellular pattern. 
(A) Association between COVID-19 severity at sample collection and factor 2 donor scores 

from the decomposition of the Stephenson et al. COVID-19 dataset. The significance of 
the association was calculated with a linear model F-test. 

(B) Factor 2 loadings from the decomposition of the Stephenson et al. dataset. The heatmap 
is limited to significant genes only (top). Also shown are select enriched gene sets 
(bottom). Rows the loadings heatmap are hierarchically clustered. 

(C) Donor scores from projecting the factor 2 pattern onto the van der Wijst et al. dataset. The 
association p-value was calculated the same way as in (A). The color legend is also the 
same as in (A). 

(D) A potential LR interaction between IL16-CD4 (Th cells to monocytes) identified in the 
Stephenson et al. dataset. Shown is the association between IL16 expression in Th cells 
with donor scores for factor 2 (left). Also shown is the association between gene module 
cMono_m14 and expression of ligand IL16 in Th cells (right). The line is a linear model. 

(E) Top enriched GO gene sets in co-expression module cMono_m14 from the Stephenson 
et al. dataset (adjusted p-values < 0.009). 

(F) The IL16-CD4 interaction identified in the van der Wijst et al. dataset. Shown is the 
association between IL16 expression in Th cells with donor scores for factor 5 (the COVID-
19 severity-associated factor for this dataset) (left). Also shown is the association between 
gene module cMono_m4 and expression of ligand IL16 in Th cells (right). The line is a 
linear model. 

(G) Top enriched GO gene sets in co-expression module cMono_m4 from the van der Wist et 
al. dataset (adjusted p-values < 0.005). 

 
Finally, we aimed to replicate this severity-associated multicellular pattern by analyzing another 
COVID-19 scRNA-seq dataset. The test dataset (van der Wijst et al., 2021) consisted of a smaller 
number of donors but included the same cell types and a similar range of disease severity (not 
including asymptomatic or mild cases) (Figure S7E). We projected the factor 2 pattern extracted 
from the Stephenson et al. dataset onto the van der Wijst et al. dataset and similarly found that 
this pattern significantly stratified patients by disease severity (Figure 7C). A meta-analysis 
combining the result from these two datasets yielded a Fisher p-value of 4.3x10-17. The severe 
and critical patients in the test dataset also had significantly reduced IL16 expression in their Th 
cells (Figure 7F left) matching our observation from the Stephenson et al. data. Similarly, IL16 
was again positively associated with a co-expression module in cMonocytes (Figure 7F right) that 
was enriched for MHC Class II genes (Figure 7G). The consistency of these results across 
independently generated datasets bolsters our confidence in the connection between this 
multicellular pattern and COVID-19 disease severity and highlights the conserved nature of a 
potentially crucial cell-cell interaction. 
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Figure S7. Additional details for COVID-19 analysis and ISG factor comparison. 
(A) Comparing gene expression-factor 1 association T-statistics (by linear model) between 

the COVID-19 dataset and the SLE dataset. Dashed blue lines represent adjusted p-
values of 0.01. Gene labels highlight some genes that are highly significant in both 
datasets as well as some genes that are significant only in the SLE dataset. 

(B) The number of shared and dataset-specific factor 1 associated genes (includes positive 
and negative associations) between the COVID-19 dataset and the SLE dataset. 

(C) Enrichment of endopeptidase complex genes among SLE-specific factor 1 significant 
genes compared to COVID-19-specific factor 1 genes. The hypergeometric test was used 
to calculate p-values 

(D) Factor 2 associations with cell subtype proportions for IL22+ Th cells (top left) and terminal 
effector Tc cells (top right). Also showing subtype proportion associations for proliferating 
cell populations with factor 2 (bottom). The p-values were calculated using linear model 
F-tests after transforming the proportions to balances (Methods). 

(E) Structure of a COVID-19 scRNA-seq dataset by van der Wijst et al. that we used for 
validating the factor 2 multicellular pattern identified in the Stephenson et al. dataset. 

(F) Correlations between loadings from factor 2 of the Stephenson et al. dataset to loadings 
from factors of van der Wijst et al. dataset decomposition. The right annotation shows the 
factor-severity association significance for the van der Wijst et al. decomposition. The 
significance p-values of the disease severity associations were calculated using linear 
model F-tests. 

 
Discussion 
Transcriptional response of complex biological tissues to different conditions or diseases can 
involve coordinated changes across multiple cell types. These multicellular events may represent 
the joint reactions of multiple cell types to a common set of stimuli as well as the cell-cell 
interactions that contribute to the associated phenotypes. Here, we developed a single-cell 
computational tool, scITD, to identify coordinated multicellular patterns of expression variation 
across individuals. Our approach can be applied to any scRNA-seq dataset with multiple samples, 
though it is best geared for use with datasets consisting of many source donors. We validated 
that the tool can extract meaningful and accurate multicellular patterns using simulated data as 
well as data from an in vitro IFN-beta stimulation experiment. We also developed a component of 
our method to infer cell-cell interactions and showed that it outperformed a widely used LR 
inference strategy.  
 
The primary use cases for scITD involve the study of inter-individual variation within different types 
of sample collections, including those sampling normal individuals, case-control studies, or 
disease subtyping studies. In this study, we principally applied the tool to discover multicellular 
patterns that stratify SLE patients. From this dataset, we extracted a multicellular pattern involving 
ISG expression that separated SLE patients from the healthy controls. This pattern was 
significantly associated with the presence of autoantibodies and SLE disease activity, 
recapitulating similar associations from previous studies. Our method uniquely allowed us to 
identify additional cell-type-specific biological processes co-occurring with ISG expression 
(including B cell activation, Treg expansion, etc.) suggestive of interactions between circulating 
cell types. By further connecting the other factors to clinical metadata, we were able to identify a 
multicellular pattern that was linked to increased frequency of lupus nephritis among the patients 
positive for anti-dsDNA autoantibodies. While several of the cell-type-specific components of this 
multicellular pattern have been previously validated and linked to lupus nephritis (e.g., P38 MAPK 
signaling and ICOSLG signaling from myeloid cells to T cells), our analysis suggests that these 
pathways may be important in explaining why anti-dsDNA autoantibodies are necessary but 
insufficient to cause these severe symptoms in SLE.  
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We further showed that our method can yield insightful patterns in other large patient cohorts by 
applying it to a COVID-19 scRNA-seq dataset. We extracted a factor consisting of pan-cell-type 
ISG expression that separated healthy donors from a subset of COVID-19 patients. This ISG 
multicellular pattern appeared to play a protective role in the disease as the critically ill patients 
had reduced ISG expression. We compared this ISG pattern to that from the SLE dataset and 
identified cell-type-specific differences that may be connected to the chronic nature of SLE. 
Another factor from the COVID-19 dataset was strongly associated with the continuous spectrum 
of disease severity and displayed a more complex multicellular pattern of expression. We 
demonstrated that this pattern was also predictive of COVID-19 severity in an independently 
generated scRNA-seq dataset, highlighting the robustness and generalizability of the extracted 
multicellular patterns. Lastly, we highlighted a high-confidence LR interaction involving the ligand 
IL16 expressed in T cells and interacting with the CD4 receptor on cMonocytes. This interaction 
appeared to be downregulated for the most severe COVID-19 patients, highlighting a need for 
follow-up studies elucidating its role in this disease and evaluating its therapeutic potential. 
 
Finally, this work can be extended in several directions. For one, scITD can be applied to more 
thoroughly investigate how different technologies, processing techniques, and disease models 
impact expression jointly within each cell type. We briefly demonstrated how scITD can be used 
in this way, showing that ambient RNA within 10X Chromium lanes tends to alter expression 
across all cell types. More work in this area could lead to better-informed designs of batch-
correction methods tailored for various scenarios. In another application area, it may also be 
valuable to connect the scITD multicellular patterns with genetic variants. By further applying 
techniques such as Mendelian randomization, it will be possible to test causal hypotheses for 
genes that may be upstream drivers of the observed patterns. Another use case for the scITD is 
in the study of multi-tissue patterns of gene expression (as opposed to multi-cell type patterns). 
Since scITD uses scRNA-seq data at the pseudobulk-level, the tool can be directly applied to bulk 
RNA-seq datasets generated from multiple donors with multiple tissue types (e.g., the GTEx 
studies). This could allow one to connect gene expression changes in the blood with the 
expression states of less accessible tissues. Overall, scITD offers a novel approach to single-cell 
data analysis, extending our ability to study the complex biological processes that stratify 
individuals in health and disease. 
 
Methods 
scITD pipeline and details 
The first step is to transform a gene-by-cells UMI counts matrix into a pseudobulked tensor for 
decomposition. For cells of a given sample and cell type, all counts for each gene are summed 
and divided by the total counts from all genes. Then, the trimmed-mean of M values (TMM) 
method in edgeR (Robinson et al., 2010) is used to adjust library sizes of the pseudobulked counts 
and the data are normalized and log-transformed. Before this previous step, we only retain donors 
with at least a minimum number of cells in all cell types, as the Tucker decomposition does not 
allow for NA values in the tensor. Next, we then compute a measure of normalized variance for 
each gene, as is calculated in the R package, pagoda2 (Barkas et al., 2021). Overdispersed 
genes are selected from each cell type and each gene-by-sample matrix is reduced to the union 
of overdispersed genes from all cell types. After normalization, the data are centered and unit 
scaled across samples. We then rescale genes by their normalized variance calculated 
previously. This is done by multiplying the expression by the normalized variance value to some 
power. The power should be set to 0.5 for the resulting variance to equal the normalized variance. 
We note that increasing the value of the power slightly (often between 1-2) can sometimes 
improve the quality of the decomposition. Finally, the pseudobulked cell-type matrices are stacked 
together to form the tensor.  
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Next, we apply the Tucker tensor decomposition to the resulting tensor. For this, we use the R 
package, rTensor (Li et al., 2018), which implements Higher-Order Orthogonal Iteration (HOOI) 
to compute the Tucker decomposition. The formal algorithmic procedure for HOOI can be viewed 
in the following publication (Sheehan and Saad, 2007). For our case with three dimensions, HOOI 
outputs three separate factor matrices and a core tensor that can be multiplied together to 
reconstruct the approximation of the starting tensor. The three separate factor matrices are of 
dimensions donors-by-donor factors, genes-by-gene factors, and cell-types-by-cell-type factors. 
The core tensor is of dimensions donor factors-by-gene factors-by-cell-type factors. The standard 
data reconstruction using these objects is as follows: 
 
 𝑋 ≈ 𝐺 ×! 𝐴 ×" 𝐵 ×# 𝐶 (1) 
 
Here, 𝑋 is the reconstructed tensor, 𝐴 is the donor factor matrix, 𝐵 is the gene factor matrix, 𝐶 is 
the cell type factor matrix, and 𝐺 is the core tensor. The operator ×$ indicates multiplication of the 
matrix on the right side of the operator by the tensor on the left side of the operator along the nth 
mode of the tensor. We then rearrange the terms in the above equation to yield a “donor-centric” 
view of the decomposition. To do this, we compute a loadings tensor by multiplying the core tensor 
only by the gene factor- and cell type factor matrices. This is valid to do because the order of 
multiplication does not matter when reconstructing the data, as long as the multiplication mode 
also changes accordingly (Kolda and Bader, 2009). This reordering and simplification appear as 
follows: 
 
 𝑋 ≈ 𝐺 ×! 𝐴 ×" 𝐵 ×# 𝐶 
 = 𝐺 ×" 𝐵 ×# 𝐶 ×! 𝐴 (2) 
 = (𝐺 ×" 𝐵 ×# 𝐶) ×! 𝐴  
 = 𝐹 ×! 𝐴  
 
Here, 𝐹 is the loadings tensor of dimensions donor factors-by-genes-by-cell types, the rest of the 
terms are the same as in the previous equation. In Figure 1B, this reconstruction is shown 
backward as 𝐴 ×! 𝐹 simply to demonstrate how the tensor times matrix multiplication yields the 
reconstructed tensor of correct dimensions. As noted previously, the Tucker decomposition to a 
given number of factors does not have one unique solution. The factor matrices can be rotated 
by any non-singular square matrix, and as long as the core tensor is counter-rotated by the inverse 
of the rotation matrix, the reconstruction error will remain unchanged. The core tensor can also 
be rotated similarly as long as the factor matrices are counter-rotated accordingly. Taking 
advantage of this property, several groups have found that rotating the factor matrices with 
independent component analysis (ICA) can improve the interpretability of the factors (Bro; Unkel 
et al., 2011; Zhou and Cichocki, 2012). Here, we explored the use of various rotations. One such 
approach we tested was applying ICA rotation to the donor scores matrix, and counter-rotating 
the core tensor before generating the final donor-centric view of the decomposition. As a note, we 
needed to normalize the rotated donor scores matrix because ICA does not preserve lengths. 
After rotating the donor scores matrix, the core tensor is counter-rotated as follows: 
 
 𝐺0 = 𝑋 ×! 𝐴1% ×" 𝐵% ×# 𝐶% (3) 
 
Here, 𝐺0 is the new core tensor, 𝐴1% is the transpose of the ICA rotated (normalized) donor factor 
matrix, 𝐶% is the transpose of the cell type factor matrix, 𝐵% is the transpose of the gene factor 
matrix. Then, we substitute 𝐺0 for 𝐺 when calculating the loadings tensor 𝐹 in equation 2.  
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The primary approach used in most analyses of this study involves a two-step rotation procedure 
which is a hybrid of ICA and varimax applied to the distinct components that make up the loadings 
tensor. The intuition behind this approach is to create a core tensor, where each donor factor 
represents some combination of biologically distinct gene sets (gene factors) in the different cell 
types. Furthermore, donor factors of the core tensor should be rotated to a simple structure to 
make the multicellular patterns more modular. This helps to ensure that each gene factor only 
partakes primarily in one donor factor. This can be achieved by applying varimax to the core 
tensor. However, it is also necessary to ensure that all gene factors are independent of one 
another. Otherwise, the optimized core tensor may still yield donor factor loadings with similar 
sets of relevant genes. To accomplish this, we apply rotations in two separate steps. In the first 
step, we apply ICA applied to the gene factor matrix and counter-rotate the core tensor (equation 
4A). In the second step, we optimize the core tensor by the varimax rotation and counter-rotate 
the donor matrix (equation 4B). This is calculated as follows: 
 
Step 1 𝐺0 = 𝑋 ×! 𝐴% ×" 𝐵0% ×# 𝐶% (4A) 
 
Step 2 𝑋(!) ≈ 𝐴 ∗ 𝑅%!" ∗ 𝑅% ∗ 𝐺0(!) ∗ 4𝐶 ⊗ 𝐵06% 
 = 4𝐴 ∗ 𝑅%!"6 ∗ 7𝑅% ∗ 𝐺0(!) ∗ 4𝐶 ⊗ 𝐵06%8 (4B) 
 = 𝐴1 ∗ 𝐹0(!) 
 
Here, all variables are as previously described, with the addition of 𝐵0 , which represents the ICA 
rotated gene factor matrix, and 𝑅 which now represents the orthonormal rotation matrix found by 
varimax when applied to 𝐺0(!)% . The symbol ⊗ is the Kronecker product. For this approach, we use 
the identity matrix for 𝐶. For all of our analyses, we also set the ranks of 𝐶 equal to the number of 
cell types, since we used a relatively small number of cell types. To project a multicellular pattern 
onto new data to obtain donor scores (as in Figure 7F), we first compute loadings as 𝐹(!) = 𝐺0(!) ∗
4𝐶 ⊗ 𝐵06% without rotating the core. Then, we calculate the new donor scores by 𝐴()*+ = 𝑋(!) ∗
𝐹(!)% . Then, the columns of the new scores are normalized to a magnitude of 1 and are rotated by 
applying the varimax rotation matrix from the core optimization as 𝐴1()*+ = 𝐴()*+ ∗ 𝑅%

!".  
 
For visualization purposes, we order the factors in the donor scores matrix from highest to lowest 
explained variance. To calculate the variance explained by a given factor, we first compute the 
reconstructed tensor 𝑋9 using only the selected factor. Then variance explained is simply the 
calculation for the coefficient of variation: 
 

 explained	variance( = 	 1 −
,-.-/#,$

%

‖-‖$
%  (5) 

 
The subscript 𝑝 indicates the factor used for reconstructing the data. The subscript 𝐹 on the 
double brackets indicates the Frobenius norm. In the loadings matrices, we also display the 
amount of variance explained by each cell type component. To compute explained variance for 
individual cell type components within a factor, all values of the reconstructed tensor for all other 
cell types not under consideration are set to 0: 
 

 explained	variance(,2 = 	 1 −
,-.3/#,',$

%

‖-‖$
% , 𝑌94,+,5 = K𝑋

94,+,5 , 		𝑘 = 𝑐
0, 								𝑘 ≠ 𝑐

 (6) 
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The subscript	𝑐 refers to the cell type being used for calculating explained variance. The subscripts 
𝑖, 𝑗, 𝑘 refer to the donor, gene, and cell type index of the tensor, respectively. 
 
Simulation study 
To generate the simulations we used the R package, Splatter (Zappia et al., 2017). Specifically, 
we applied the Splatter to generate four subpopulations for each of the two cell types (Figure 2A). 
To generate a set of four subpopulations, two separate group simulations were run and 
concatenated together. Each simulation generated two groups of cells separated by some DE 
genes. Half of the cells from the first population of the first simulation were matched to those of 
the first population in the second simulation. Likewise, half of the cells from the second population 
of the first simulation were matched to the other half of the cells from the first population of the 
second simulation and so on. We then assigned groups of donors (by those with upregulation of 
each multicellular pattern) randomly to cells from the specified cell subpopulations.  
 
We ran the data through the standard scITD pipeline. However, in this analysis, we did not reduce 
the tensor to only the most variable genes, so that it would be possible to use all genes in the 
AUC calculation. We computed the Tucker decomposition to two donor factors and four gene 
factors, as suggested by our rank determination method. We then calculated gene significance 
p-values for each cell type in each factor. This was done using linear model F-tests with 
expression as the explanatory variable and donor scores as the response variable. This technique 
is also used in the main dataset analyses below to identify significant genes per factor. Then, we 
used these p-values to calculate the ROC AUC for predicting ground truth DE genes that 
distinguish each of the two multicellular patterns. We further subsampled the simulated dataset 
to varying sizes to determine the sensitivity of our method to a reduced signal-to-noise ratio. 
 
SLE dataset processing 
The SLE scRNA-seq dataset was originally demultiplexed using an updated version of demuxlet 
(Kang et al., 2018), and quality control measures were applied using Scanpy (Wolf et al., 2018) 
with the default parameters. We further filtered out cells with over 10% of their UMIs attributed to 
mitochondrial genes. This dataset originally contained over 200 donors with transcriptomes from 
over 1.2 million cells. To make it possible to use this dataset with scITD in its current framework, 
we reduced the dataset down to one sample per donor, used only the largest cell clusters, and 
restricted it to only those donors with at least 20 cells in each major cell cluster. Cell clusters and 
annotations from the original study were used. This left us with 171 donors and 632,733 cells. 
The median number of cells per donor for B, NK, Th, Tc, cDC, cMonocytes, and ncMonocytes 
were 421, 264, 1145, 688, 50, 939, and 144 cells respectively. According to our simulation study 
discussed previously, these quantities were more than sufficient to extract multicellular patterns 
with high accuracy. We formed the expression tensor using the standard scITD pipeline, and we 
also applied ComBat batch correction (Johnson et al., 2007) at the level of 10X lanes to each cell-
type slice of the tensor. For our primary SLE analysis, we used the hybrid rotation method and 
decomposed the data into 7 donor factors and 20 gene factors. We used the same ranks 
parameters for the decomposition run on only the SLE donors. We used the SLE-only 
decomposition to compare factor 1 cMonocyte dysregulated genes with DE genes from the IFN-
beta experiment. We then computed associations between the donor scores for each factor and 
the metadata variables displayed in Figure 2C using linear model F-tests with donor scores as 
the response variable. The statistical tests used for computing associations between factor donor 
scores and the other clinical variables depended on the type of the variable being tested. For the 
ordinal variables such as SLEDAI score and SLICC score, we employed the ordinal logistic 
regression with the “probit” method, and p-values were calculated using the resulting t-statistics. 
For binary variables such as the presence of symptoms or prednisone use, we employed a logistic 
regression with a chi-square test for significance. We only tested the binary variables that were 
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present in at least 20 donors. Multiple hypothesis test correction was applied with the BH 
procedure. To test for the association of factor 2 with the co-occurrence of lupus nephritis and 
anti-dsDNA autoantibodies, we first removed any donor scores for donors that did not have anti-
dsDNA autoantibodies present. Then we used a sliding window of size 19 to calculate the number 
of donors within the window that also had lupus nephritis. To calculate a p-value we randomly 
shuffled donor scores and computed the Spearman correlation between the donor scores and the 
sliding window count. We repeated this procedure 10000 times to generate a null distribution of 
correlation values. The null distribution was then used to calculate a p-value, by counting the 
number of null instances with a larger correlation than the one we observed with the unshuffled 
data.  
 
IFN-beta experiment data processing 
We only kept the cell barcodes labeled as singlets and used the cell-type annotations ascribed 
by the authors who generated the data (Kang et al., 2018). DE analysis results were also used 
directly from the original paper where the data were generated. We ran the Tucker decomposition 
to extract two donor factors, four gene factors. We used the ICA rotation method on donor scores 
for this dataset, although the results were practically identical when obtained using the other 
rotations as well. The downsampling procedure was performed as described above with the 
simulated data, except that instead of AUC, we report the Spearman correlation between the 
loadings and log2FC values from the DE analysis. 
 
Procedure for rank determination 
To help determine the appropriate ranks to decompose the tensor to, we developed a method 
similar to those commonly used with matrix decompositions. The method works by unfolding the 
starting tensor along a given mode and computing the SVD to an increasing number of factors. 
The reconstruction error is calculated for each decomposition. Then, we repeat this procedure 
multiple times but with a shuffled version of the tensor. The shuffling is done by randomly 
reassigning cells to donors before tensor formation. This procedure allows us to evaluate when 
the reduction in real explained variance no longer exceeds that of the randomized scenario.  
 
Procedure for stability analysis 
To test the stability of our decomposition, we designed a procedure whereby the data tensor is 
subsampled to some fraction of donors. For our analysis, we subsampled to 85% of the donors. 
We then recomputed the decomposition to the same number of factors. The new factors found 
on the subsampled data were then linked back to the original factors by identifying, for each 
original factor, which new factor had the highest absolute value correlation with it. We repeated 
this procedure 500 times and report the max correlations for each original factor with the new 
factors from the subsampled data. 
 
Procedure for GSEA 
To compute enriched gene sets among genes prioritized within each cell type for a given factor, 
we use the R package FGSEA (Korotkevich et al., 2021). In tests of applying GSEA directly to an 
individual column of a factor loadings matrix, we noticed some spurious results appear as a result 
of the low-magnitude non-significant loadings being biased toward either positive or negative 
loadings. To avoid getting these false-positive hits, we compute a new value for each gene. This 
is calculated as the sum of unit scaled expression values multiplied by donor scores as follows:  
 
 𝑆6,2,( = ∑ 𝐸6,2,7 ∗ 𝐹(,77  (7) 
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Here, 𝑆6,2,8 is the new score for gene 𝑔 in cell type 𝑐 for factor 𝑝. 𝐸6,2,7 is the scaled expression of 
gene 𝑔 in cell type 𝑐 for donor 𝑑. And 𝐹(,7 is the donor score for factor 𝑓 and donor 𝑑. We then 
apply GSEA to the new gene scores for each cell-type factor combination and apply BH multiple 
hypothesis test corrections. This has shown to be much more robust in preventing false-positive 
enriched gene sets, while still yielding gene sets that are expected based on the significant genes. 
 
Procedure for cell proportion analyses 
To systematically identify shifts in subtype composition, we first aligned cells across the 10X lane 
batch variable using Conos (Barkas et al., 2019). Then we subclustered each major cell 
population to varying resolutions using the findSubcommunities function from Conos. To get 
marker genes that distinguish the cell subclusters, we used the getDifferentialGenes function. 
Marker genes were plotted using the DotPlot function in Seurat (Satija et al., 2015). To test for 
associations between a factor and cell subtype composition, we calculated the cell proportions 
for each donor as the number of their cells from a given subcluster divided by the total number of 
cells from the corresponding major cell cluster. Next, we convert these proportions to balances 
using the isometric log-ratio transformation (Egozcue et al., 2003). This converts the dependent 
set of proportions to an independent set of p-1 variables, where p is the number of cell subtypes 
for a given major cell cluster. By making this conversion, it allows one to use these variables with 
standard statistical tests that require covariates to be independent. As a note, we also add a 
pseudocount of 1 to each cell proportion numerator to avoid infinities when calculating balances. 
Then, we use the balances as explanatory variables in a multiple linear regression against the 
donor scores of each factor. An F-test is used to determine whether a given cell type composition 
is significantly associated with a factor. The procedure is the same for computing the significance 
of factor associations with the overall major cell type composition.  
 
Procedure for LR analysis 
For this analysis, we used a database of protein ligands and receptors from CellChat (Jin et al., 
2021). We first identified clusters of co-expressed genes in the pseudobulk data for each cell type 
using the R package WGCNA (Langfelder and Horvath, 2008). Specifically, we used the signed 
network and TOM similarity matrix with a module tree cut height of 0.25. Then, we calculated the 
association between each module eigengene and each ligand from the list of cognate LR pairs. 
This is only done if the receptor was present in the module cell type to some minimal level 
(expressed in at least 5 cells for each of the top 15% of donors by ligand expression). Filtering 
was applied such that we only tested ligands where at least 1% of donors have scaled-adjusted 
expression above 0.2 (the same is applied to both ligands and receptors in the LR association 
test below). This removed ligands where high expression is observed in only a few donors or if 
the ligand has low normalized variance across donors. We also only tested for interactions 
between different cell types, as we would likely find many false-positive associations between 
ligands and modules found in the same cell type (due to regulation of the ligand by the same 
upstream transcription factor regulating the module). The association p-values were calculated 
by a linear model F-tests with the module eigengene as the response variable and the scaled 
expression of a ligand as the explanatory variable. P-values were adjusted using the BH 
procedure. When the CellChat database listed multiple receptor components as required for a 
specific LR interaction, we required all components of the receptor complex to be expressed. The 
heatmap in Figure 4B only includes rows with at least one adjusted p-value below 5.0x10-11 and 
columns with at least one adjusted p-value below 0.001 to reduce the number of results for visual 
purposes. Finally, we computed the overrepresentation of gene sets within gene co-expression 
modules of interest. We employed the hypergeometric test to determine whether a module 
contained a significantly higher proportion of genes from specific gene sets compared to the rest 
of the genes not found in the module but still included in the analysis. For the B_m1 enrichment 
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tests, we included gene sets from GOBP, KEGG, and Reactome databases. For benchmarking 
our approach, we compared it to a standard LR association method and a random selection of 
LR channels. The LR association test inferred an LR interaction if the expression of the ligand 
from one cell type was significantly associated (adjusted p-value < 0.05) with the expression of 
its cognate receptor in another cell type. For the scITD LR inference method, we used a more 
stringent adjusted p-value of 0.0001 to make the number of inferred interactions roughly the same 
for at least one of the LR pair databases (CellChat database in this case). To demonstrate that 
our method could enrich for a more confident set of LR interactions, we used NicheNet regulatory 
potential scores for each ligand. For a given LR channel consisting of a ligand, a source cell type, 
and a target cell type, we first identified the top 200 genes in the target cell type by the highest 
absolute value Pearson correlation with the ligand’s expression in the source cell type. Then, we 
compared the regulatory potential scores for these top 200 genes with those from all other genes. 
We used a Wilcoxon rank-sum test to test for differences in regulatory potential scores between 
these two groups. As a note, we also applied the normalize_correlation function from the spqn 
package to correct for gene-gene correlation biases with mean expression (Wang et al., 2020). 
 
Batch factor analyses 
To calculate the soup profile for batch dmx_YE_7-19, we calculated the fraction of each gene’s 
UMI counts over the total using all empty droplets with 10 or fewer UMIs. GC content from each 
gene was retrieved using the EDASeq package in R (Risso et al., 2011). To test whether the 
upregulated genes of a given batch factor had a significant association with GC content, we used 
a two-sample t-test comparing GC contents for upregulated genes versus all other genes included 
in the analysis. For the non-batch factors, we arbitrarily selected the positive loading direction to 
call upregulated genes. After removing batch effects and retesting for GC associations, we tested 
both directions for GC content associations. 
 
Factor rotation comparisons 
To evaluate the impact of different factor rotations on the output we compared our hybrid rotation 
loadings to ICA on donor scores. We used the full SLE dataset for this analysis. For the loadings 
rotations, we ran the Tucker decomposition to extract 7 donor factors and 20 gene factors as in 
our main SLE analysis. For the donor scores rotation, we ran the Tucker decomposition to extract 
9 donor factors and 20 gene factors because the explained variance was distributed more evenly 
among the factors for this rotation compared to the loadings rotation. To calculate ISG 
associations with each factor, we calculated the linear model r-squared value for regressing each 
ISG against the factor donor scores. The core set of ISGs used included ISG15, IFI27, IRF7, 
HERC5, LY6E, MX1, OAS2, OAS3, RSAD2, USP18, and GBP5, which were also used to 
represent ISG expression in a previous study (Davenport et al., 2018). For the ethnicity 
association strength comparison, we used the factor from each rotation that was most strongly 
associated with ethnicity. We evaluated the statistical significance of the associations using linear 
model F-tests. 
 
Stephenson et al. COVID-19 data preprocessing and analysis 
We used the quality-controlled data that was made publicly available (Stephenson et al., 2021). 
A few donors had multiple samples taken at various time points. We kept only the samples labeled 
with collection day “D0”, so that the dataset contained 1 sample per donor. We also excluded 
patients with other diseases besides COVID-19, and we also excluded the healthy donors given 
LPS. We used the previous annotations labeled as “full_clustering” and grouped cell subtypes to 
form the major cell type clusters. Specifically, for B cells we included “B_exhausted”, 
“B_immature”, “B_naive”, “B_non-switched_memory”, and “B_switched_memory”. For 
cMonocytes, we included “CD14_mono” and “CD83_CD14_mono”. For Th cells we included 
“CD4.CM”, “CD4.EM”, “CD4.IL22”, “CD4.Naive”, “CD4.prolif”, “CD4.Tfh”, and “CD4.Th1”. For Tc 
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cells, we included “CD8.EM”, “CD8.Naive”, “CD8.Prolif”, and “CD8.TE”. For NK cells we included 
“NK_16hi”, “NK_56hi”, and “NK_prolif”. We also noticed that some of the cells previously labeled 
as “B cells” clustered with the plasmablasts and expressed the same gene and protein markers 
as the plasmablasts. Therefore, these were excluded from the B-cell pseudobulks. After removing 
donors with less than 2 cells in any of the included cell types, we were left with 103 donors and 
452,740 cells from the major cell populations used in the analysis. The median number of cells 
per donor for B, Tc, Th, NK, and cMonocytes were 386, 558, 573, 593, and 717 cells, respectively. 
The samples were processed at one of three different sites including Cambridge, NCL, and 
Sanger. Therefore, we applied ComBat batch correction to account for these technical differences 
as was done with the SLE dataset. We ran the Tucker decomposition to 9 donor factors and 26 
gene factors using our hybrid rotation method. To compare the interferon factor from this dataset 
to that of the SLE dataset, we computed the association T-statistics for all genes that were present 
in both datasets against the first factors For the genes which were significant only for SLE factor 
1 but not COVID factor 1, we computed enriched GO gene sets using the union of significant 
factor 1 genes from both datasets as the background with a hypergeometric test. We further used 
the FGSEA package for computing enrichment of donors by status (COVID-19, healthy, or 
COVID-19 critical) in either high or low factor one scores. For enrichment of critical patients in 
factor 1, we removed the healthy donors. 
 
van der Wijst et al. COVID-19 data preprocessing and analysis 
We used the quality-controlled data that was made publicly available (van der Wijst et al., 2021). 
We removed cases that were negative for SARS-CoV-2. We only used samples measured at day 
0, such that we retained 1 sample per donor. Broad cell clusters and annotations were used from 
the original study. After removing donors with less than 2 cells in any of the included cell types, 
we were left with 60 donors and 166,970 cells from the major cell populations used in the analysis. 
The median number of cells per donor for B, Tc, Th, NK, and cMonocytes were 208, 459.5, 637, 
278.5, and 747 cells, respectively. We also applied ComBat batch correction at the level of 10X 
lanes. Finally, we ran the Tucker decomposition to 10 donor factors and 30 gene factors using 
our hybrid rotation method. To project the factor 2 pattern from the Stephenson et al. dataset, we 
used the intersection of genes from the tensors of both datasets and carried out the projection as 
described above. We used Fisher’s method to compute the meta-analysis p-value combining the 
severity-association test with that of the larger dataset. To compare factor 2 loadings to the factor 
loadings from the van der Wijst et al. decomposition, we computed Spearman correlations for 
each cell type separately. 
 
Data Availability 
The IFN-beta stimulation dataset can be found in the Gene Expression Omnibus (GEO) at 
accession number GSE96583. The count-matrices for the SLE scRNA-seq dataset are available 
in GEO at accession GSE137029. The Stephenson et al. COVID-19 dataset is publicly available 
at https://www.covid19cellatlas.org/index.patient.html, titled “COVID-19 PBMC Ncl-Cambridge-
UCL”. The van der Wijst et al. COVID-19 dataset can be found at 
https://cellxgene.cziscience.com/collections/7d7cabfd-1d1f-40af-96b7-26a0825a306d . 
 
Code Availability 
Our computational method, scITD, and its associated tutorials can be found at 
https://github.com/kharchenkolab/scITD. scITD is also available on The Comprehensive R 
Archive Network (CRAN) at https://cloud.r-project.org/web/packages/scITD/index.html. The code 
used to produce all figures in this paper can be found at https://github.com/j-mitchel/scITD-
Analysis/tree/main/figure_generation.  
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