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Figure S7. Additional details for COVID-19 analysis and ISG factor comparison. 
(A) Comparing gene expression-factor 1 association T-statistics (by linear model) between 

the COVID-19 dataset and the SLE dataset. Dashed blue lines represent adjusted p-
values of 0.01. Gene labels highlight some genes that are highly significant in both 
datasets as well as some genes that are significant only in the SLE dataset. 

(B) The number of shared and dataset-specific factor 1 associated genes (includes positive 
and negative associations) between the COVID-19 dataset and the SLE dataset. 

(C) Enrichment of endopeptidase complex genes among SLE-specific factor 1 significant 
genes compared to COVID-19-specific factor 1 genes. The hypergeometric test was used 
to calculate p-values 

(D) Factor 2 associations with cell subtype proportions for IL22+ Th cells (top left) and terminal 
effector Tc cells (top right). Also showing subtype proportion associations for proliferating 
cell populations with factor 2 (bottom). The p-values were calculated using linear model 
F-tests after transforming the proportions to balances (Methods). 

(E) Structure of a COVID-19 scRNA-seq dataset by van der Wijst et al. that we used for 
validating the factor 2 multicellular pattern identified in the Stephenson et al. dataset. 

(F) Correlations between loadings from factor 2 of the Stephenson et al. dataset to loadings 
from factors of van der Wijst et al. dataset decomposition. The right annotation shows the 
factor-severity association significance for the van der Wijst et al. decomposition. The 
significance p-values of the disease severity associations were calculated using linear 
model F-tests. 

 
Discussion 
Transcriptional response of complex biological tissues to different conditions or diseases can 
involve coordinated changes across multiple cell types. These multicellular events may represent 
the joint reactions of multiple cell types to a common set of stimuli as well as the cell-cell 
interactions that contribute to the associated phenotypes. Here, we developed a single-cell 
computational tool, scITD, to identify coordinated multicellular patterns of expression variation 
across individuals. Our approach can be applied to any scRNA-seq dataset with multiple samples, 
though it is best geared for use with datasets consisting of many source donors. We validated 
that the tool can extract meaningful and accurate multicellular patterns using simulated data as 
well as data from an in vitro IFN-beta stimulation experiment. We also developed a component of 
our method to infer cell-cell interactions and showed that it outperformed a widely used LR 
inference strategy.  
 
The primary use cases for scITD involve the study of inter-individual variation within different types 
of sample collections, including those sampling normal individuals, case-control studies, or 
disease subtyping studies. In this study, we principally applied the tool to discover multicellular 
patterns that stratify SLE patients. From this dataset, we extracted a multicellular pattern involving 
ISG expression that separated SLE patients from the healthy controls. This pattern was 
significantly associated with the presence of autoantibodies and SLE disease activity, 
recapitulating similar associations from previous studies. Our method uniquely allowed us to 
identify additional cell-type-specific biological processes co-occurring with ISG expression 
(including B cell activation, Treg expansion, etc.) suggestive of interactions between circulating 
cell types. By further connecting the other factors to clinical metadata, we were able to identify a 
multicellular pattern that was linked to increased frequency of lupus nephritis among the patients 
positive for anti-dsDNA autoantibodies. While several of the cell-type-specific components of this 
multicellular pattern have been previously validated and linked to lupus nephritis (e.g., P38 MAPK 
signaling and ICOSLG signaling from myeloid cells to T cells), our analysis suggests that these 
pathways may be important in explaining why anti-dsDNA autoantibodies are necessary but 
insufficient to cause these severe symptoms in SLE.  
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We further showed that our method can yield insightful patterns in other large patient cohorts by 
applying it to a COVID-19 scRNA-seq dataset. We extracted a factor consisting of pan-cell-type 
ISG expression that separated healthy donors from a subset of COVID-19 patients. This ISG 
multicellular pattern appeared to play a protective role in the disease as the critically ill patients 
had reduced ISG expression. We compared this ISG pattern to that from the SLE dataset and 
identified cell-type-specific differences that may be connected to the chronic nature of SLE. 
Another factor from the COVID-19 dataset was strongly associated with the continuous spectrum 
of disease severity and displayed a more complex multicellular pattern of expression. We 
demonstrated that this pattern was also predictive of COVID-19 severity in an independently 
generated scRNA-seq dataset, highlighting the robustness and generalizability of the extracted 
multicellular patterns. Lastly, we highlighted a high-confidence LR interaction involving the ligand 
IL16 expressed in T cells and interacting with the CD4 receptor on cMonocytes. This interaction 
appeared to be downregulated for the most severe COVID-19 patients, highlighting a need for 
follow-up studies elucidating its role in this disease and evaluating its therapeutic potential. 
 
Finally, this work can be extended in several directions. For one, scITD can be applied to more 
thoroughly investigate how different technologies, processing techniques, and disease models 
impact expression jointly within each cell type. We briefly demonstrated how scITD can be used 
in this way, showing that ambient RNA within 10X Chromium lanes tends to alter expression 
across all cell types. More work in this area could lead to better-informed designs of batch-
correction methods tailored for various scenarios. In another application area, it may also be 
valuable to connect the scITD multicellular patterns with genetic variants. By further applying 
techniques such as Mendelian randomization, it will be possible to test causal hypotheses for 
genes that may be upstream drivers of the observed patterns. Another use case for the scITD is 
in the study of multi-tissue patterns of gene expression (as opposed to multi-cell type patterns). 
Since scITD uses scRNA-seq data at the pseudobulk-level, the tool can be directly applied to bulk 
RNA-seq datasets generated from multiple donors with multiple tissue types (e.g., the GTEx 
studies). This could allow one to connect gene expression changes in the blood with the 
expression states of less accessible tissues. Overall, scITD offers a novel approach to single-cell 
data analysis, extending our ability to study the complex biological processes that stratify 
individuals in health and disease. 
 
Methods 
scITD pipeline and details 
The first step is to transform a gene-by-cells UMI counts matrix into a pseudobulked tensor for 
decomposition. For cells of a given sample and cell type, all counts for each gene are summed 
and divided by the total counts from all genes. Then, the trimmed-mean of M values (TMM) 
method in edgeR (Robinson et al., 2010) is used to adjust library sizes of the pseudobulked counts 
and the data are normalized and log-transformed. Before this previous step, we only retain donors 
with at least a minimum number of cells in all cell types, as the Tucker decomposition does not 
allow for NA values in the tensor. Next, we then compute a measure of normalized variance for 
each gene, as is calculated in the R package, pagoda2 (Barkas et al., 2021). Overdispersed 
genes are selected from each cell type and each gene-by-sample matrix is reduced to the union 
of overdispersed genes from all cell types. After normalization, the data are centered and unit 
scaled across samples. We then rescale genes by their normalized variance calculated 
previously. This is done by multiplying the expression by the normalized variance value to some 
power. The power should be set to 0.5 for the resulting variance to equal the normalized variance. 
We note that increasing the value of the power slightly (often between 1-2) can sometimes 
improve the quality of the decomposition. Finally, the pseudobulked cell-type matrices are stacked 
together to form the tensor.  
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Next, we apply the Tucker tensor decomposition to the resulting tensor. For this, we use the R 
package, rTensor (Li et al., 2018), which implements Higher-Order Orthogonal Iteration (HOOI) 
to compute the Tucker decomposition. The formal algorithmic procedure for HOOI can be viewed 
in the following publication (Sheehan and Saad, 2007). For our case with three dimensions, HOOI 
outputs three separate factor matrices and a core tensor that can be multiplied together to 
reconstruct the approximation of the starting tensor. The three separate factor matrices are of 
dimensions donors-by-donor factors, genes-by-gene factors, and cell-types-by-cell-type factors. 
The core tensor is of dimensions donor factors-by-gene factors-by-cell-type factors. The standard 
data reconstruction using these objects is as follows: 
 
 𝑋 ≈ 𝐺 ×! 𝐴 ×" 𝐵 ×# 𝐶 (1) 
 
Here, 𝑋 is the reconstructed tensor, 𝐴 is the donor factor matrix, 𝐵 is the gene factor matrix, 𝐶 is 
the cell type factor matrix, and 𝐺 is the core tensor. The operator ×$ indicates multiplication of the 
matrix on the right side of the operator by the tensor on the left side of the operator along the nth 
mode of the tensor. We then rearrange the terms in the above equation to yield a “donor-centric” 
view of the decomposition. To do this, we compute a loadings tensor by multiplying the core tensor 
only by the gene factor- and cell type factor matrices. This is valid to do because the order of 
multiplication does not matter when reconstructing the data, as long as the multiplication mode 
also changes accordingly (Kolda and Bader, 2009). This reordering and simplification appear as 
follows: 
 
 𝑋 ≈ 𝐺 ×! 𝐴 ×" 𝐵 ×# 𝐶 
 = 𝐺 ×" 𝐵 ×# 𝐶 ×! 𝐴 (2) 
 = (𝐺 ×" 𝐵 ×# 𝐶) ×! 𝐴  
 = 𝐹 ×! 𝐴  
 
Here, 𝐹 is the loadings tensor of dimensions donor factors-by-genes-by-cell types, the rest of the 
terms are the same as in the previous equation. In Figure 1B, this reconstruction is shown 
backward as 𝐴 ×! 𝐹 simply to demonstrate how the tensor times matrix multiplication yields the 
reconstructed tensor of correct dimensions. As noted previously, the Tucker decomposition to a 
given number of factors does not have one unique solution. The factor matrices can be rotated 
by any non-singular square matrix, and as long as the core tensor is counter-rotated by the inverse 
of the rotation matrix, the reconstruction error will remain unchanged. The core tensor can also 
be rotated similarly as long as the factor matrices are counter-rotated accordingly. Taking 
advantage of this property, several groups have found that rotating the factor matrices with 
independent component analysis (ICA) can improve the interpretability of the factors (Bro; Unkel 
et al., 2011; Zhou and Cichocki, 2012). Here, we explored the use of various rotations. One such 
approach we tested was applying ICA rotation to the donor scores matrix, and counter-rotating 
the core tensor before generating the final donor-centric view of the decomposition. As a note, we 
needed to normalize the rotated donor scores matrix because ICA does not preserve lengths. 
After rotating the donor scores matrix, the core tensor is counter-rotated as follows: 
 
 𝐺0 = 𝑋 ×! 𝐴1% ×" 𝐵% ×# 𝐶% (3) 
 
Here, 𝐺0 is the new core tensor, 𝐴1% is the transpose of the ICA rotated (normalized) donor factor 
matrix, 𝐶% is the transpose of the cell type factor matrix, 𝐵% is the transpose of the gene factor 
matrix. Then, we substitute 𝐺0 for 𝐺 when calculating the loadings tensor 𝐹 in equation 2.  
 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.16.480703doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.16.480703
http://creativecommons.org/licenses/by-nc/4.0/


 34 

The primary approach used in most analyses of this study involves a two-step rotation procedure 
which is a hybrid of ICA and varimax applied to the distinct components that make up the loadings 
tensor. The intuition behind this approach is to create a core tensor, where each donor factor 
represents some combination of biologically distinct gene sets (gene factors) in the different cell 
types. Furthermore, donor factors of the core tensor should be rotated to a simple structure to 
make the multicellular patterns more modular. This helps to ensure that each gene factor only 
partakes primarily in one donor factor. This can be achieved by applying varimax to the core 
tensor. However, it is also necessary to ensure that all gene factors are independent of one 
another. Otherwise, the optimized core tensor may still yield donor factor loadings with similar 
sets of relevant genes. To accomplish this, we apply rotations in two separate steps. In the first 
step, we apply ICA applied to the gene factor matrix and counter-rotate the core tensor (equation 
4A). In the second step, we optimize the core tensor by the varimax rotation and counter-rotate 
the donor matrix (equation 4B). This is calculated as follows: 
 
Step 1 𝐺0 = 𝑋 ×! 𝐴% ×" 𝐵0% ×# 𝐶% (4A) 
 
Step 2 𝑋(!) ≈ 𝐴 ∗ 𝑅%!" ∗ 𝑅% ∗ 𝐺0(!) ∗ 4𝐶 ⊗ 𝐵06% 
 = 4𝐴 ∗ 𝑅%!"6 ∗ 7𝑅% ∗ 𝐺0(!) ∗ 4𝐶 ⊗ 𝐵06%8 (4B) 
 = 𝐴1 ∗ 𝐹0(!) 
 
Here, all variables are as previously described, with the addition of 𝐵0 , which represents the ICA 
rotated gene factor matrix, and 𝑅 which now represents the orthonormal rotation matrix found by 
varimax when applied to 𝐺0(!)% . The symbol ⊗ is the Kronecker product. For this approach, we use 
the identity matrix for 𝐶. For all of our analyses, we also set the ranks of 𝐶 equal to the number of 
cell types, since we used a relatively small number of cell types. To project a multicellular pattern 
onto new data to obtain donor scores (as in Figure 7F), we first compute loadings as 𝐹(!) = 𝐺0(!) ∗
4𝐶 ⊗ 𝐵06% without rotating the core. Then, we calculate the new donor scores by 𝐴()*+ = 𝑋(!) ∗
𝐹(!)% . Then, the columns of the new scores are normalized to a magnitude of 1 and are rotated by 
applying the varimax rotation matrix from the core optimization as 𝐴1()*+ = 𝐴()*+ ∗ 𝑅%

!".  
 
For visualization purposes, we order the factors in the donor scores matrix from highest to lowest 
explained variance. To calculate the variance explained by a given factor, we first compute the 
reconstructed tensor 𝑋9 using only the selected factor. Then variance explained is simply the 
calculation for the coefficient of variation: 
 

 explained	variance( = 	 1 −
,-.-/#,$

%

‖-‖$
%  (5) 

 
The subscript 𝑝 indicates the factor used for reconstructing the data. The subscript 𝐹 on the 
double brackets indicates the Frobenius norm. In the loadings matrices, we also display the 
amount of variance explained by each cell type component. To compute explained variance for 
individual cell type components within a factor, all values of the reconstructed tensor for all other 
cell types not under consideration are set to 0: 
 

 explained	variance(,2 = 	 1 −
,-.3/#,',$

%

‖-‖$
% , 𝑌94,+,5 = K𝑋

94,+,5 , 		𝑘 = 𝑐
0, 								𝑘 ≠ 𝑐

 (6) 
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The subscript	𝑐 refers to the cell type being used for calculating explained variance. The subscripts 
𝑖, 𝑗, 𝑘 refer to the donor, gene, and cell type index of the tensor, respectively. 
 
Simulation study 
To generate the simulations we used the R package, Splatter (Zappia et al., 2017). Specifically, 
we applied the Splatter to generate four subpopulations for each of the two cell types (Figure 2A). 
To generate a set of four subpopulations, two separate group simulations were run and 
concatenated together. Each simulation generated two groups of cells separated by some DE 
genes. Half of the cells from the first population of the first simulation were matched to those of 
the first population in the second simulation. Likewise, half of the cells from the second population 
of the first simulation were matched to the other half of the cells from the first population of the 
second simulation and so on. We then assigned groups of donors (by those with upregulation of 
each multicellular pattern) randomly to cells from the specified cell subpopulations.  
 
We ran the data through the standard scITD pipeline. However, in this analysis, we did not reduce 
the tensor to only the most variable genes, so that it would be possible to use all genes in the 
AUC calculation. We computed the Tucker decomposition to two donor factors and four gene 
factors, as suggested by our rank determination method. We then calculated gene significance 
p-values for each cell type in each factor. This was done using linear model F-tests with 
expression as the explanatory variable and donor scores as the response variable. This technique 
is also used in the main dataset analyses below to identify significant genes per factor. Then, we 
used these p-values to calculate the ROC AUC for predicting ground truth DE genes that 
distinguish each of the two multicellular patterns. We further subsampled the simulated dataset 
to varying sizes to determine the sensitivity of our method to a reduced signal-to-noise ratio. 
 
SLE dataset processing 
The SLE scRNA-seq dataset was originally demultiplexed using an updated version of demuxlet 
(Kang et al., 2018), and quality control measures were applied using Scanpy (Wolf et al., 2018) 
with the default parameters. We further filtered out cells with over 10% of their UMIs attributed to 
mitochondrial genes. This dataset originally contained over 200 donors with transcriptomes from 
over 1.2 million cells. To make it possible to use this dataset with scITD in its current framework, 
we reduced the dataset down to one sample per donor, used only the largest cell clusters, and 
restricted it to only those donors with at least 20 cells in each major cell cluster. Cell clusters and 
annotations from the original study were used. This left us with 171 donors and 632,733 cells. 
The median number of cells per donor for B, NK, Th, Tc, cDC, cMonocytes, and ncMonocytes 
were 421, 264, 1145, 688, 50, 939, and 144 cells respectively. According to our simulation study 
discussed previously, these quantities were more than sufficient to extract multicellular patterns 
with high accuracy. We formed the expression tensor using the standard scITD pipeline, and we 
also applied ComBat batch correction (Johnson et al., 2007) at the level of 10X lanes to each cell-
type slice of the tensor. For our primary SLE analysis, we used the hybrid rotation method and 
decomposed the data into 7 donor factors and 20 gene factors. We used the same ranks 
parameters for the decomposition run on only the SLE donors. We used the SLE-only 
decomposition to compare factor 1 cMonocyte dysregulated genes with DE genes from the IFN-
beta experiment. We then computed associations between the donor scores for each factor and 
the metadata variables displayed in Figure 2C using linear model F-tests with donor scores as 
the response variable. The statistical tests used for computing associations between factor donor 
scores and the other clinical variables depended on the type of the variable being tested. For the 
ordinal variables such as SLEDAI score and SLICC score, we employed the ordinal logistic 
regression with the “probit” method, and p-values were calculated using the resulting t-statistics. 
For binary variables such as the presence of symptoms or prednisone use, we employed a logistic 
regression with a chi-square test for significance. We only tested the binary variables that were 
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present in at least 20 donors. Multiple hypothesis test correction was applied with the BH 
procedure. To test for the association of factor 2 with the co-occurrence of lupus nephritis and 
anti-dsDNA autoantibodies, we first removed any donor scores for donors that did not have anti-
dsDNA autoantibodies present. Then we used a sliding window of size 19 to calculate the number 
of donors within the window that also had lupus nephritis. To calculate a p-value we randomly 
shuffled donor scores and computed the Spearman correlation between the donor scores and the 
sliding window count. We repeated this procedure 10000 times to generate a null distribution of 
correlation values. The null distribution was then used to calculate a p-value, by counting the 
number of null instances with a larger correlation than the one we observed with the unshuffled 
data.  
 
IFN-beta experiment data processing 
We only kept the cell barcodes labeled as singlets and used the cell-type annotations ascribed 
by the authors who generated the data (Kang et al., 2018). DE analysis results were also used 
directly from the original paper where the data were generated. We ran the Tucker decomposition 
to extract two donor factors, four gene factors. We used the ICA rotation method on donor scores 
for this dataset, although the results were practically identical when obtained using the other 
rotations as well. The downsampling procedure was performed as described above with the 
simulated data, except that instead of AUC, we report the Spearman correlation between the 
loadings and log2FC values from the DE analysis. 
 
Procedure for rank determination 
To help determine the appropriate ranks to decompose the tensor to, we developed a method 
similar to those commonly used with matrix decompositions. The method works by unfolding the 
starting tensor along a given mode and computing the SVD to an increasing number of factors. 
The reconstruction error is calculated for each decomposition. Then, we repeat this procedure 
multiple times but with a shuffled version of the tensor. The shuffling is done by randomly 
reassigning cells to donors before tensor formation. This procedure allows us to evaluate when 
the reduction in real explained variance no longer exceeds that of the randomized scenario.  
 
Procedure for stability analysis 
To test the stability of our decomposition, we designed a procedure whereby the data tensor is 
subsampled to some fraction of donors. For our analysis, we subsampled to 85% of the donors. 
We then recomputed the decomposition to the same number of factors. The new factors found 
on the subsampled data were then linked back to the original factors by identifying, for each 
original factor, which new factor had the highest absolute value correlation with it. We repeated 
this procedure 500 times and report the max correlations for each original factor with the new 
factors from the subsampled data. 
 
Procedure for GSEA 
To compute enriched gene sets among genes prioritized within each cell type for a given factor, 
we use the R package FGSEA (Korotkevich et al., 2021). In tests of applying GSEA directly to an 
individual column of a factor loadings matrix, we noticed some spurious results appear as a result 
of the low-magnitude non-significant loadings being biased toward either positive or negative 
loadings. To avoid getting these false-positive hits, we compute a new value for each gene. This 
is calculated as the sum of unit scaled expression values multiplied by donor scores as follows:  
 
 𝑆6,2,( = ∑ 𝐸6,2,7 ∗ 𝐹(,77  (7) 
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Here, 𝑆6,2,8 is the new score for gene 𝑔 in cell type 𝑐 for factor 𝑝. 𝐸6,2,7 is the scaled expression of 
gene 𝑔 in cell type 𝑐 for donor 𝑑. And 𝐹(,7 is the donor score for factor 𝑓 and donor 𝑑. We then 
apply GSEA to the new gene scores for each cell-type factor combination and apply BH multiple 
hypothesis test corrections. This has shown to be much more robust in preventing false-positive 
enriched gene sets, while still yielding gene sets that are expected based on the significant genes. 
 
Procedure for cell proportion analyses 
To systematically identify shifts in subtype composition, we first aligned cells across the 10X lane 
batch variable using Conos (Barkas et al., 2019). Then we subclustered each major cell 
population to varying resolutions using the findSubcommunities function from Conos. To get 
marker genes that distinguish the cell subclusters, we used the getDifferentialGenes function. 
Marker genes were plotted using the DotPlot function in Seurat (Satija et al., 2015). To test for 
associations between a factor and cell subtype composition, we calculated the cell proportions 
for each donor as the number of their cells from a given subcluster divided by the total number of 
cells from the corresponding major cell cluster. Next, we convert these proportions to balances 
using the isometric log-ratio transformation (Egozcue et al., 2003). This converts the dependent 
set of proportions to an independent set of p-1 variables, where p is the number of cell subtypes 
for a given major cell cluster. By making this conversion, it allows one to use these variables with 
standard statistical tests that require covariates to be independent. As a note, we also add a 
pseudocount of 1 to each cell proportion numerator to avoid infinities when calculating balances. 
Then, we use the balances as explanatory variables in a multiple linear regression against the 
donor scores of each factor. An F-test is used to determine whether a given cell type composition 
is significantly associated with a factor. The procedure is the same for computing the significance 
of factor associations with the overall major cell type composition.  
 
Procedure for LR analysis 
For this analysis, we used a database of protein ligands and receptors from CellChat (Jin et al., 
2021). We first identified clusters of co-expressed genes in the pseudobulk data for each cell type 
using the R package WGCNA (Langfelder and Horvath, 2008). Specifically, we used the signed 
network and TOM similarity matrix with a module tree cut height of 0.25. Then, we calculated the 
association between each module eigengene and each ligand from the list of cognate LR pairs. 
This is only done if the receptor was present in the module cell type to some minimal level 
(expressed in at least 5 cells for each of the top 15% of donors by ligand expression). Filtering 
was applied such that we only tested ligands where at least 1% of donors have scaled-adjusted 
expression above 0.2 (the same is applied to both ligands and receptors in the LR association 
test below). This removed ligands where high expression is observed in only a few donors or if 
the ligand has low normalized variance across donors. We also only tested for interactions 
between different cell types, as we would likely find many false-positive associations between 
ligands and modules found in the same cell type (due to regulation of the ligand by the same 
upstream transcription factor regulating the module). The association p-values were calculated 
by a linear model F-tests with the module eigengene as the response variable and the scaled 
expression of a ligand as the explanatory variable. P-values were adjusted using the BH 
procedure. When the CellChat database listed multiple receptor components as required for a 
specific LR interaction, we required all components of the receptor complex to be expressed. The 
heatmap in Figure 4B only includes rows with at least one adjusted p-value below 5.0x10-11 and 
columns with at least one adjusted p-value below 0.001 to reduce the number of results for visual 
purposes. Finally, we computed the overrepresentation of gene sets within gene co-expression 
modules of interest. We employed the hypergeometric test to determine whether a module 
contained a significantly higher proportion of genes from specific gene sets compared to the rest 
of the genes not found in the module but still included in the analysis. For the B_m1 enrichment 
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tests, we included gene sets from GOBP, KEGG, and Reactome databases. For benchmarking 
our approach, we compared it to a standard LR association method and a random selection of 
LR channels. The LR association test inferred an LR interaction if the expression of the ligand 
from one cell type was significantly associated (adjusted p-value < 0.05) with the expression of 
its cognate receptor in another cell type. For the scITD LR inference method, we used a more 
stringent adjusted p-value of 0.0001 to make the number of inferred interactions roughly the same 
for at least one of the LR pair databases (CellChat database in this case). To demonstrate that 
our method could enrich for a more confident set of LR interactions, we used NicheNet regulatory 
potential scores for each ligand. For a given LR channel consisting of a ligand, a source cell type, 
and a target cell type, we first identified the top 200 genes in the target cell type by the highest 
absolute value Pearson correlation with the ligand’s expression in the source cell type. Then, we 
compared the regulatory potential scores for these top 200 genes with those from all other genes. 
We used a Wilcoxon rank-sum test to test for differences in regulatory potential scores between 
these two groups. As a note, we also applied the normalize_correlation function from the spqn 
package to correct for gene-gene correlation biases with mean expression (Wang et al., 2020). 
 
Batch factor analyses 
To calculate the soup profile for batch dmx_YE_7-19, we calculated the fraction of each gene’s 
UMI counts over the total using all empty droplets with 10 or fewer UMIs. GC content from each 
gene was retrieved using the EDASeq package in R (Risso et al., 2011). To test whether the 
upregulated genes of a given batch factor had a significant association with GC content, we used 
a two-sample t-test comparing GC contents for upregulated genes versus all other genes included 
in the analysis. For the non-batch factors, we arbitrarily selected the positive loading direction to 
call upregulated genes. After removing batch effects and retesting for GC associations, we tested 
both directions for GC content associations. 
 
Factor rotation comparisons 
To evaluate the impact of different factor rotations on the output we compared our hybrid rotation 
loadings to ICA on donor scores. We used the full SLE dataset for this analysis. For the loadings 
rotations, we ran the Tucker decomposition to extract 7 donor factors and 20 gene factors as in 
our main SLE analysis. For the donor scores rotation, we ran the Tucker decomposition to extract 
9 donor factors and 20 gene factors because the explained variance was distributed more evenly 
among the factors for this rotation compared to the loadings rotation. To calculate ISG 
associations with each factor, we calculated the linear model r-squared value for regressing each 
ISG against the factor donor scores. The core set of ISGs used included ISG15, IFI27, IRF7, 
HERC5, LY6E, MX1, OAS2, OAS3, RSAD2, USP18, and GBP5, which were also used to 
represent ISG expression in a previous study (Davenport et al., 2018). For the ethnicity 
association strength comparison, we used the factor from each rotation that was most strongly 
associated with ethnicity. We evaluated the statistical significance of the associations using linear 
model F-tests. 
 
Stephenson et al. COVID-19 data preprocessing and analysis 
We used the quality-controlled data that was made publicly available (Stephenson et al., 2021). 
A few donors had multiple samples taken at various time points. We kept only the samples labeled 
with collection day “D0”, so that the dataset contained 1 sample per donor. We also excluded 
patients with other diseases besides COVID-19, and we also excluded the healthy donors given 
LPS. We used the previous annotations labeled as “full_clustering” and grouped cell subtypes to 
form the major cell type clusters. Specifically, for B cells we included “B_exhausted”, 
“B_immature”, “B_naive”, “B_non-switched_memory”, and “B_switched_memory”. For 
cMonocytes, we included “CD14_mono” and “CD83_CD14_mono”. For Th cells we included 
“CD4.CM”, “CD4.EM”, “CD4.IL22”, “CD4.Naive”, “CD4.prolif”, “CD4.Tfh”, and “CD4.Th1”. For Tc 
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cells, we included “CD8.EM”, “CD8.Naive”, “CD8.Prolif”, and “CD8.TE”. For NK cells we included 
“NK_16hi”, “NK_56hi”, and “NK_prolif”. We also noticed that some of the cells previously labeled 
as “B cells” clustered with the plasmablasts and expressed the same gene and protein markers 
as the plasmablasts. Therefore, these were excluded from the B-cell pseudobulks. After removing 
donors with less than 2 cells in any of the included cell types, we were left with 103 donors and 
452,740 cells from the major cell populations used in the analysis. The median number of cells 
per donor for B, Tc, Th, NK, and cMonocytes were 386, 558, 573, 593, and 717 cells, respectively. 
The samples were processed at one of three different sites including Cambridge, NCL, and 
Sanger. Therefore, we applied ComBat batch correction to account for these technical differences 
as was done with the SLE dataset. We ran the Tucker decomposition to 9 donor factors and 26 
gene factors using our hybrid rotation method. To compare the interferon factor from this dataset 
to that of the SLE dataset, we computed the association T-statistics for all genes that were present 
in both datasets against the first factors For the genes which were significant only for SLE factor 
1 but not COVID factor 1, we computed enriched GO gene sets using the union of significant 
factor 1 genes from both datasets as the background with a hypergeometric test. We further used 
the FGSEA package for computing enrichment of donors by status (COVID-19, healthy, or 
COVID-19 critical) in either high or low factor one scores. For enrichment of critical patients in 
factor 1, we removed the healthy donors. 
 
van der Wijst et al. COVID-19 data preprocessing and analysis 
We used the quality-controlled data that was made publicly available (van der Wijst et al., 2021). 
We removed cases that were negative for SARS-CoV-2. We only used samples measured at day 
0, such that we retained 1 sample per donor. Broad cell clusters and annotations were used from 
the original study. After removing donors with less than 2 cells in any of the included cell types, 
we were left with 60 donors and 166,970 cells from the major cell populations used in the analysis. 
The median number of cells per donor for B, Tc, Th, NK, and cMonocytes were 208, 459.5, 637, 
278.5, and 747 cells, respectively. We also applied ComBat batch correction at the level of 10X 
lanes. Finally, we ran the Tucker decomposition to 10 donor factors and 30 gene factors using 
our hybrid rotation method. To project the factor 2 pattern from the Stephenson et al. dataset, we 
used the intersection of genes from the tensors of both datasets and carried out the projection as 
described above. We used Fisher’s method to compute the meta-analysis p-value combining the 
severity-association test with that of the larger dataset. To compare factor 2 loadings to the factor 
loadings from the van der Wijst et al. decomposition, we computed Spearman correlations for 
each cell type separately. 
 
Data Availability 
The IFN-beta stimulation dataset can be found in the Gene Expression Omnibus (GEO) at 
accession number GSE96583. The count-matrices for the SLE scRNA-seq dataset are available 
in GEO at accession GSE137029. The Stephenson et al. COVID-19 dataset is publicly available 
at https://www.covid19cellatlas.org/index.patient.html, titled “COVID-19 PBMC Ncl-Cambridge-
UCL”. The van der Wijst et al. COVID-19 dataset can be found at 
https://cellxgene.cziscience.com/collections/7d7cabfd-1d1f-40af-96b7-26a0825a306d . 
 
Code Availability 
Our computational method, scITD, and its associated tutorials can be found at 
https://github.com/kharchenkolab/scITD. scITD is also available on The Comprehensive R 
Archive Network (CRAN) at https://cloud.r-project.org/web/packages/scITD/index.html. The code 
used to produce all figures in this paper can be found at https://github.com/j-mitchel/scITD-
Analysis/tree/main/figure_generation.  
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