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Abstract

Technological advances and data availability have enabled artificial
intelligence-driven tools that can increasingly successfully assist in
identifying species from images. Especially within citizen science, an
emerging source of information filling the knowledge gaps needed to
solve the biodiversity crisis, such tools can allow participants to rec-
ognize and report more poorly known species. This can be an impor-
tant tool in addressing the substantial taxonomic bias in biodiversity
data, where broadly recognized, charismatic species are highly over-
represented. Meanwhile, the recognition models are trained using
the same biased data, so it is important to consider what additional
images are needed to improve recognition models. In this study, we
investigated how the amount of training data influenced the perfor-
mance of species recognition models for various taxa. We utilized
a large Citizen Science dataset collected in Norway, where images
are added independently from identification. We demonstrate that
while adding images of currently under-represented taxa will gener-
ally improve recognition models more, there are important deviations
from this general pattern. Thus, a more focused prioritization of data
collection beyond the basic paradigm that “more is better” is likely
to significantly improve species recognition models and advance the
representativeness of biodiversity data.

Keywords: Image recognition, Taxonomic bias, Value of Information, Citizen
science

Introduction

Addressing the current crisis related to the loss of biodiversity necessarily in-
volves addressing several fundamental knowledge gaps1,2. Currently there are
vast spatial, temporal and especially taxonomic gaps and biases in global pri-
mary biodiversity data sets, and these biases are limiting our understanding
of the earth’s biosphere3–6. Automatic or semi-automatic observation methods
based on image recognition hold great promise in solving some of the taxonomic
biases currently experienced7. This can involve various observation methods
ranging from remotely operated vessels to camera traps and citizen science pro-
grams8–10. Citizen science (observations made by non-professional volunteers11)
has emerged as a very large source of biodiversity data with the potential to
fill gaps in our current knowledge about the occurrence of species in time and
space12–14. Several citizen science programs, e.g. iNaturalist, eBird, iSpot,
etc.15 contribute data on vast scales and in amounts that cannot feasibly be ac-
quired in any other way, with the added benefit of educating and engaging the
general public16–18. Some of the main concerns related to citizen science data are
reliability of the taxon identifications reported19,20, and the over-representation
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of more charismatic species21–23. Improving the quality of citizen science data
is thus a vital step in addressing the knowledge gaps in our understanding of
the earth’s biosphere.

Machine learning tools can help citizen scientists recognize more species and
provide a quality control mechanism that helps to reduce the risk of species
misidentification7, but their performance is inherently linked to the quality of
the data used to train them. Such tools are increasingly used to help citizen
scientists identify species from images24–26, and in doing so, help address the
aforementioned issues in citizen science data to some degree by providing an
independent way to verify identifications, and helping citizen scientists report
a broader range of taxa than they would otherwise be familiar with27. Obser-
vations accompanied by images can be used for training an image recognition
model for use in the field, and generally one would use images provided by cit-
izen scientists as training data for models to be used by citizen scientists, as
the context and general type of such images is most similar to the intended use.
Deep neural networks are designed to draw inferences from novel data by gener-
alized patterns observed in training data28, and as such generalization requires
a lot of training data, they in turn depend heavily on the data corpus citizen
science contributions provide. In this manner, citizen science and automated
image recognition are increasingly interdependent, with image recognition mod-
els helping citizen scientists collect data to expand our knowledge base, whilst
themselves also depending on the collection of more images in order to improve
the next generation of recognition models.

While some species are readily recognized with limited experience, others re-
quire extensive experience with many specimens to obtain the necessary knowl-
edge. Machine learning is no different from human learning in this respect;
different amounts of training data are required depending on the distinctness of
species’ characteristics. Therefore, there can be substantial differences between
taxa in the number of images required per species for the best achievable model
performance, depending on species’ distinctiveness, the variation in appearance,
the various angles and contexts in which photos are taken, the extent to which
a species’ behavior is suited for high quality documentation, etc.27,29,30 As a
result, the marginal value of adding a new image to the training set is not equal
across taxa, but varies both because the size of the existing training set is dif-
ferent, and the fact that some species are more distinct than others. Thus it is
important to consider the informational value of added citizen science observa-
tions with images.

In this study, we use a large Norwegian citizen science project as an example
to investigate the nature of the bias in citizen science image data, and how
this relates to the value of data for image recognition models. One way to
evaluate this is by using the concept of Value of Information; “the increase
in expected value that arises from making the best choice with the benefit of a
piece of information compared to the best choice without the benefit of that same
information”31. Considering training data for image recognition models for
citizen science in the Value of Information framework allows us to identify the
most effective prioritization of data collection for improving recognition models,

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480847doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480847
http://creativecommons.org/licenses/by/4.0/


rather than simply adding more for all taxa, or more for taxa that are currently
the most under-represented. First, we evaluate whether the biases generally
found in observation data are the same within citizen science observations with
images, or if there are different biases that need to be taken into account. Then
we train multiple image recognition models for different taxa, with a gradually
increasing number of images per species, allowing us to quantify and compare the
effects of adding more training data between taxa. Using these performances,
we estimate the Value of Information of adding training data for each taxon,
relative to the amount of images that are currently available. Finally, comparing
this Value of Information to the amount of over- or under-representation of these
taxa, we demonstrate that mobilizing images with a higher Value of Information
provides an alternative, data-driven and efficient approach compared to simply
prioritizing images of the currently most under-represented taxa.

Results

Taxonomic bias in Citizen Science observations with or
without images

It has been well documented in a global context that particularly charismatic
taxonomic classes have many times more reported observations per species than
those that are considered less charismatic5. We find the same pattern when con-
sidering classes within the totality of GBIF mediated observations for Norway
from all sources (figure 1a). When limiting this analysis to only observations
with images that originate from the citizen science platform Species Observation
Service32, a different pattern emerges (figure 1b). Perhaps most eye-catchingly,
Insecta are the most under-represented taxon in the totality of Norwegian obser-
vations, but the 3rd most over-represented when limiting the analysis to citizen
science images. We performed a similar analysis for the 12 taxonomic orders
used in the machine learning part of this study (figure 4), revealing biases in
relative presentation per species at this finer taxonomic scale for citizen science
observations with images; the data available for training out recognition models.

Image recognition performance and the Value of Informa-
tion

When training image recognition models, the amount of training data provided
to the model determines how well the model is able to recognize species in the
test images. For all orders, as models are provided with more images per species,
their performance (as measured by the F1 scores) increases. Comparing the per-
formances for each order with the lowest and highest number of training images
per species, as well as the gradual performance increase over intermediate num-
bers of training images, it is clear that the 12 orders have distinct performance
curves (figure 2). From this it follows that the increase in performance at any
given point on these curves - the Value of Information of adding images at that
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(a) (b)

Figure 1: The per-species representation of observations in Norway per class, using all GBIF
data (a) or only GBIF mediated citizen science data with images (b). The 0-line is where the
values would be if the average number of observations per species in that class was equal to
the average number of observations per species over all classes combined. Plotted here on an
inverse hyperbolic sine-transformed scale, sorted by the per-species representation in subplot
(a).

point - also differs between orders. Combined with widely different amounts of
currently available observations between orders, the estimated VoI of an image
added to the images that are currently available for that order also varies widely
(figure 3).

Combining VoI and taxonomic bias

After obtaining the per-species over- and under-representations, as well as the
current expected Value of Information of additional images, we can compare
the two values for each order in the experiment. Plotting the taxonomic bias
of the orders used in this experiment together with their estimates for their
respective estimated VoI, it is clear that current under- or over-representation
of the order is not the determining factor for the expected value of additional
observations. While the VoI of under-represented orders is generally higher,
differences between orders in their learning curves cause some orders to have a
higher or lower VoI than just their overall over- or under-representation would
indicate (figure 4).
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Figure 2: The performance (F1 score) vs the train set size. Lines are the fitted Von Berta-
lanffy Growth Function-curves per order. See the Supplementary Information for an interpre-
tation of such curves.

Figure 3: The VoI (F1 increase) for each order as the result of adding a single image for a
single species, versus the average number of images available per species. Dotted lines mark
the average number of images per species currently available for the respective order, from
which the current expected VoI (marked with x) is derived. Colors denote each order as in
figure 2.
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Figure 4: The relative per-species representation in Norwegian citizen science observations
with images, and their Value of Information (VoI). The areas of the circles are relative to
their respective VoI, defined as the current expected performance increase (in F1 score) for
one added observation with images for that order. If the VoI of adding data was mainly
determined by the current relative over- or under-representation of a taxon, one would expect
circles to gradually increase for more under-represented orders in the lower part of the graph.
Numerical values provided in the Supplementary Information.

Discussion

We set out to investigate the taxonomic bias in citizen science data, in particular
when accompanied by images, using a large Norwegian citizen science project
as an example case. Such images can be used to train deep neural networks for
image recognition, helping citizen scientists by verifying species identifications
and address some of the inherent taxonomic bias. By examining how the per-
formance of recognition models increases as it is provided with more images in
an experimental setup, we can estimate how much we expect models to improve
when adding more images to those currently available for each taxon. Compar-
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ing this Value of Information to the taxonomic bias within citizen science image
data, we propose data prioritization strategies based on what additional data
would improve recognition models the most. Such strategies would be more
efficient than merely focusing more on taxa for which there are currently fewer
images available.

Taxonomic bias

The taxonomic biases within citizen science observations considered in the cur-
rent study follow a similar pattern to what has been found across biodiversity
data in general5. However, when only considering citizen science observations
with images, these trends are less pronounced; plants and fungi have relatively
higher percentages of observations with images than for example birds (figure
1b). This indicates that while birds are still the most reported group also
within citizen science observations with images, bird observations are generally
less commonly documented with images. The reverse is true for the Insecta,
which are so abundant in the citizen science image data as to be the 3rd most
overrepresented class in that context. This is in stark contrast to what has
been found for the totality of GBIF mediated observations globally5 and in the
Norwegian context we examined here, where the Insecta are the single most
under-represented class.

Analyzing the taxonomic biases for the orders used in the machine learning
part of this study sheds some light on the underlying mechanisms. While all
orders within Aves are over-represented regardless of the nature of the observa-
tions considered, the Insecta are more diverse in their bias.

We hypothesize that this disparity between taxonomic bias in all data versus
that in citizen science data with images is most likely a combination of the be-
havior of the species and the kind of citizen scientists reporting the observations.
There are distinctly different types of citizen scientists, with their own contribu-
tion patterns33. For casual reporters lacking specialized equipment, charismatic
butterflies and flowering plants are more readily photographed opportunistically
than birds. Meanwhile, a group of quite persistent ornithologists report the bulk
of the bird observations in the dataset. This is typically a group reporting in a
structured manner, more often based on local inventories and checklists, where
reporting with images is less common than with opportunistic observations.

Image recognition and Value of Information

There are clearly differences between orders in the rates at which image recog-
nition improves as more images are made available per species (figure 2). These
differences between orders manifest in both initial performances, the rate at
which performances change, and the maximum performance achieved. This in-
dicates that, as is the case for humans, it requires more experience to learn to
identify species within certain taxa than others, while the reliability with which
species are correctly identified once the necessary knowledge has been acquired
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also differs. The differences between orders in this regard is not necessarily di-
rectly linked to the taxon’s characteristics alone, however. Image quality and
composition can vary between taxa depending on factors such as specimens’
behavior or lack thereof, physical size, and the kind of citizen scientist generally
photographing the species.

The VoI estimates for each of the orders provides equally diverse results.
For any given number of images per species, orders differ in the expected per-
formance increase at that point, as do the relative rates at which these perfor-
mances change as data is added. As a consequence, there is a range of varying
estimates for the VoI for each order, depending on both the number of im-
ages currently available per species, and the way the VoI per additional image
declines as more images are already available to the model.

Combining taxonomic biases and the Value of Information

As we have an estimate of how over- or under-represented the orders with which
the recognition models have been trained are relative to one another, as well as
a per-order estimate of the VoI per added image, we can address the question
whether models are best improved by adding more image data equally across
orders, if one should ideally prioritize under-represented orders, or if there is a
prioritization to be made based on order-specific differences. As shown in figure
4, there are distinct differences in the Values of Information per order, and these
do not merely correlate with their respective over- or under-representation. The
plant orders of Asparagales and Lamiales clearly have a higher VoI despite their
slight over-representation when compared to the other orders in this experiment.
The fungi order Polyporales also gains more than twice the VoI per additional
image in comparison to the fourth-most valuable order, the Lecanorales. We
conclude that, from a VoI perspective, these are the orders for which a recog-
nition model would benefit the most per image added, also when compared to
other, more under-represented orders.

Conclusions

Based on the Value of Information for image recognition models, a citizen sci-
entist or citizen science project manager wishing to maximize their impact in
this regard might want to focus on orders with the highest expected VoI per
image added, rather than simply on the order with the lowest number of images
per species. Observations with images of other orders, while in some cases less
well-represented in the available image data, appear to provide less VoI per ob-
servation added. As citizen scientists are in large part motivated by a desire to
advance scientific knowledge34, communicating such considerations can be an
important part of community engagement.

In generalizing these findings, the following has to be noted:

• The taxa identified here as having the highest expected VoI per image
added are examples from the limited subset of orders used within this
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experiment. As illustrated by the observed variation in per-species rep-
resentation and VoI between orders that belong to the same class, it is
evident that generalization of a class like Insecta fails to give insight into
intra-class variation. It is likely that a similar principle applies to orders,
where for example a taxonomic group like Norwegian warblers likely has
a different VoI curve than the more readily distinguished titmice. Such
differences will remain hidden from view when analyzing passerine birds
as a single taxonomic group.

• Our findings are derived from Norwegian species reported on a single Nor-
wegian citizen science portal. The diversity of species within the same
orders can differ in other regions, affecting the VoI curves. Different por-
tals will also differ in the way they accommodate reporting observations
with images, and in general attract different types of users23. All of this
is likely to have an effect on the proportion of observations accompanied
by photographic evidence and the quality thereof. Such factors also affect
the nature of newly added data, including its expected VoI.

• Models were trained on species for which at least 220 observations with
images were available. This is not a random subset of all the species within
an order, and likely to be biased towards charismatic species and those
that are more readily identifiable from an image. This can lead to an
overestimation in terms of learning rate and thus the VoI curve, especially
within orders in which relatively few species have the data availability we
selected for here. Then again, future observations to be added to the data
will be prone to the same biases, in which case the VoI of such an addition
will be lower than it would be for a truly random species.

Regardless of the specific taxa and derived values, our findings demonstrate
that a more informed decision is possible when choosing to focus on certain
taxa for data collection. Prioritization of taxa for which to mobilize additional
data can be informed by considering its expected Value of Information, rather
than simply prioritizing those that are currently the most under-represented
numerically.

Training machine learning models requires a lot of data, certainly when
context, morphology and phenology vary, such as when classifying in situ images.
Data collection in machine learning generally is a matter of harvesting whatever
one can to provide the model with more data. Within (citizen) science, the
collection of images mainly serves as secondary data, providing documentation
for the occurrence it accompanies. With the more widespread use of image
recognition models as both a user tool and a mechanism for quality control, it
is time to view images as data in and of themselves. Such a shift calls not only
for conscious choices when it comes to the Value of Information in images, but
increased implementation of data practices such as persistent storage, metadata
standardization and the other FAIR data principles35 to enable more apt usage
of image data for current and novel applications.
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Methods

In the current study we utilize an extensive network and data from Citizen Sci-
ence in order to test for among taxa variation in biases and Value of Information
in image recognition training data. We use data from Norway as an example
dataset due to the complete spatial and taxonomic coverage of the citizen science
data, reported both with and without images. An advantage of this particular
citizen science project is that no image recognition model has been available to
the reporters and that data have been bulk-verified by experts. This ensures
that the models trained in this experiment are not trained on the output result-
ing from the use of any model, but with identifications and taxonomic biases
springing from the knowledge and interest of human observers. Moreover, the
authoritative Norwegian taxonomy allows for analyses on taxonomic coverage.

In an exploration procedure we determined the taxonomic level of orders to
be suitable examples of taxa with a sufficiently wide taxonomic diversity, and
enough data in the dataset to be evaluated for models in this experiment. For
the selected orders, as well as the classes used by Troudet et al.5, we acquired
taxon statistics and observation data from the Global Biodiversity Information
Facility, GBIF, the largest aggregator of biodiversity observations in the world36.
The authoritative taxonomy for Norway was downloaded from the Norwegian
Biodiversity Information Centre. In the experimental procedure, models were
trained for 12 distinct orders, artificially restricting these models to different
amounts of data. In the data analysis stage, model performances relative to the
amount of training data were fitted for each order, allowing the estimation of a
Value of Information. Using the number of observations per species on GBIF,
and the number of species known to be present in Norway from the Norwegian
Species Nomenclature Database, we calculated relative taxonomic biases.

Exploration

Initial pilot runs were done on 8 species groups, using different subset sizes of
observations for each species, and training using both an Inception-ResNet-v237

as well as an EfficientNetB338 architecture for each of these subsets. These
initial results indicated that the Inception-ResNet-v2 performance was more
robust and generally higher, so subsequent experiments were done using this
architecture. The number of observations which still improved the accuracy of
the model was found to be between 150 and 200 in the most extreme cases, so
the availability of at least 220 observations with images per species was chosen
as an inclusion criteria for the further experiment. This enabled us to set aside
at least 20 observations per species as a test dataset for independent model
analysis.

From a Darwin Core Archive file of Norwegian citizen science observations
from the Species Observation Service with at least one image32, a per species
tally was generated. We then calculated how many species, with a minimum of
220 such observations, would, at a minimum, be available per taxon if a grouping
was made based on each taxon rank level with the constraint of resulting in at
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least 12 distinct taxa. For each taxonomic level, we calculated how many species
having at least 220 such observations were available per taxon when dividing
species based on that taxon level. When deciding on the appropriate taxon level
to use, we limited the options to taxon levels resulting in at least 12 different
taxa.

A division by order was found to provide the highest minimum number of
species (17) per order within these constraints, providing 12 orders. The next
best alternative was the family level, which would contain 15 species per family,
covering 12 of the 267 eligible families.

Data collection

We retrieved the number of species represented in the Norwegian data through
the GBIF API, for both all observations, all citizen science observations, and all
citizen science observations with images for the 12 selected orders and the classes
used by Troudet et al.5. We also downloaded the Norwegian Species Nomen-
clature Database for all kingdoms containing taxa included in these datasets.
Observations with images were collected from the Darwin Core Archive file used
in the exploration phase, filtering on the selected orders. For these orders, all
images were downloaded and stored locally.

Experimental procedure

For each selected order, a list of all species with at least 220 observations with
images was generated from the Darwin Core Archive file32. Then, runs were
generated according to the following protocol (figure 5):

1. From a taxonomically, alphabetically sorted list, a subset of 17 consecutive
species starting from a random index was selected. If the end of the list
was reached with fewer than 17 species selected, selection continued from
the start of the list. The taxonomic sorting ensures that closely related
species (belonging to the same family or genus), bearing more similarity,
are more likely to be part of the same experimental set. This ensures that
the classification task is not simplified for taxa with many eligible species.

2. Each of the 220+ observations for each species were tagged as being either
test, training or validation data. A random subset of all but 200 were
assigned to the test set. The remaining 200 observations were, in a 9:1
ratio, randomly designated as train or validation data, respectively. In all
cases, images from the same observation were assigned to the same subset,
to keep the information in each subset independent from the others. The
resulting lists of images are stored as the test set and 200-observation task.

3. The 200 observations in the train and validation sets were then repeatedly
reduced by discarding a random subset of 25% of both, maintaining a val-
idation data proportion of ≤10%. The resulting set was saved as the next
task, and this step was repeated as long as the resulting task contained a
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Test

Train

Validation

Model "200"

(180)

(20)

(n - 200)

(135)

(15)

-25%

Model "150"

-25% ... (10)

(2)

-25%

Model "12"8 more models

minimum of 20 images
for performance tests of all model sizes

Randomly select 17 adjacent species

For every selected species, divide images for model training

or

Figure 5: Data selection and subdivision. Each run is generated by selecting 17 taxonomi-
cally adjacent species per order, and randomly assigning all available images of each selected
species to that run’s test-, train- or validation set. Training data are used as input during
training, using the validation data to evaluate performance after each training round in order
to adjust training parameters during training. The test set is used to measure model perfor-
mance independently after the model is finalized28. For each subsequent model in that run,
train and validation data are reduced by 25%. The test set is not reduced, and used for all
models within a run.

minimum of 10 observations per species. The test set remained unaltered
throughout.

Following this protocol results in a single run of related training tasks with
200, 150, 113, 85, 64, 48, 36, 27, 21, 16 and 12 observations for training and
validation per species. The seeds for the randomization for both the selection
of the species and for the subsetting of training- and validation datasets were
stored for reproducibility. The generation of runs was repeated 5 times per order
to generate runs containing tasks with different species subsets and different
observation subsetting.

Then, a Convolutional Neural Network (CNN) based on Inception-ResNet-
v237 (see the Supplementary Information for model configuration) was trained
using each predesignated train/validation split. When the learning rate had
reached its minimum and accuracy no longer improved on the validation data,
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training was stopped and the best performing model was saved. Following this
protocol, each of the 12 orders were trained in 5 separate runs containing 11
training tasks each, thus producing a total of 660 recognition models. After
training, each model was tested on all available test images for the relevant run.

Data analysis

The relative representation of species within different taxa were generated by
dividing the number of species present in the GBIF data for Norway within
each taxon by the number of accepted species within that taxon present in the
Norwegian Species Nomenclature Database39, in line with Troudet et al.5.

As a measure of model performance, we use the F1 score, the harmonic mean
of the model’s precision and recall, given by

F1 =
tp

tp+ 1
2 (fp+ fn)

where tp, fp and fn stand for true positives, false positives and false nega-
tives, respectively. The F1 score is a commonly used metric for model evaluation,
as it is less susceptible to data imbalance than model accuracy28.

The Value of Information (VoI) can be generically defined as “the increase
in expected value that arises from making the best choice with the benefit of
a piece of information compared to the best choice without the benefit of that
same information”31. In the current context, we define the VoI as the expected
increase in model performance (F1 score) when adding one image-documented
observation. To estimate this, for every order included in the experiment, the
increase in average F1 score over increasing training task sizes were fitted using
the Von Bertalanffy Growth Function, given by

L = L∞(1− e−k(t−t0)).

where L is the average F1 score, L∞ is the asymptotic maximum F1 score,
k is the growth rate, t is the number of observations per species, and t0 is
a hypothetical number of observations at which the F1 score is 0. The Von
Bertalanffy curve was chosen as it contains a limited number of parameters
which are intuitive to interpret, and fits the growth of model performance well.

The estimated increase in performance at any given point is then given by the
slope of this function, i.e. the result of the differentiation of the Von Bertalanffy
Growth Curve, given40 by

dL

dt
= bke−kt

where
b = L∞ekt0 .

Using this derivative function, we can estimate the expected performance
increase stemming from one additional observation with images for each of the
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species within the order. Filling in the average number of citizen science obser-
vations with images per Norwegian species in that order for t, and dividing the
result by the total number of Norwegian species within the order, provides the
VoI of one additional observation with images for that order, expressed as an
average expected F1 increase.
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Supplementary Information

Code availability

All code used in this study for the experiment and the generation of graphs
provided in this manuscript is available on https://github.com/WouterKoch/

citizen_science_VoI.

Image recognition model configuration

Models were trained in Python 3.941, using TensorFlow42 and Keras43 to train
a new recognition model based on the Inception-ResNet-v2 architecture37 for
every dataset. A dense classification layer using softmax activation replaced the
top layer of the Inception-ResNet-v2 model as a new top layer, with 17 nodes to
classify each of the 17 species. For the loss function we used standard categorical
cross entropy loss.

Color channels of input images were normalized between -1 and 1, and were
scaled to 256×256 pixels, cropping the image to become square if needed. Train-
ing data were augmented by shearing up to a factor of 0.2, zooming up to a fac-
tor of 0.2, rotating up to 90 degrees, and randomly flipping horizontally or not.
Validation and test images were only normalized and squared, not augmented.

In the first training stage, the weights of the original Inception-ResNet-v2
layers were frozen, training only the newly added top layer. This was done for 2
epochs with a learning rate of 1 · 10−3. This has an equivalent effect as learning
rate warm-up.

In the second training stage, all layers were trained. This was done for a
maximum of 200 epochs, with an initial learning rate of 1 · 10−4. The learn-
ing rate was multiplied by 0.1 when the validation loss did not improve for 3
consecutive epochs. The minimum of the learning rate was set to 1 · 10−8.

After each epoch, model performance was evaluated using the validation set,
saving the weights of the current model to disk as the latest checkpoint if the
accuracy for the validation set had improved since the last saved checkpoint.
Finally, when the model did not reduce its loss for 8 consecutive epochs, training
was stopped. The most recently stored checkpoint was then used as the final
recognition model for that dataset, and its performance measured using the test
data.
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Taxonomic order result metrics

Order Bias in cs data with img VoI (F1 increase ·106)

Asparagales 5259 13.05
Lamiales 3879 9.36

Polyporales -11060 4.11
Lecanorales -106853 1.72
Agaricales -22932 1.52

Diptera -110248 1.42
Coleoptera -51782 1.09

Passeriformes 28630 0.73
Odonata 13075 0.32

Lepidoptera 145110 0.17
Charadriiformes 57421 0.13

Anseriformes 49501 0.02

Table 1: Orders used in the machine learning experiment, their over- or under-representation
among citizen science observations with images (relative to all orders having an equal average
amount of such observations per species), and the Value of Information as measured by the
expected F1 increase for adding one picture to the number of images currently available.
Sorted by VoI (descending). These are the numerical values for figure 4.
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Von Bertalanffy Growth Curves

L

L∞

t0
t

k
L = L∞ (1 - e-k(t - t0))

Figure 6: Visualization of the Von Bertalanffy Growth Curve parameters. Curves were fitted
using the Levenberg-Marquardt (Least Squares) algorithm. Residuals were plotted for each
taxon and not found to be heterogeneous in their distribution.

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480847doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480847
http://creativecommons.org/licenses/by/4.0/

