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ABSTRACT

As rapid progress in sequencing technology since last decade, numerous mechanisms underlying cell functions and devel-
opmental processes have been revealed as complex regulations of gene expressions. Since single-cell RNA sequencing
(scRNA-seq) made high-resolution transcriptomic view increasingly accessible, precise identification of gene regulatory network
(GRN) describing cell types and cell states became achievable. However, extracting key regulatory elements, including gene
regulatory pathways (GRPs), transcription factors (TFs), and targetomes, that accurately and completely reflects functionality
changes in biological phenomena remains challenging. Herein, we describe AGEAS, an semi-supervised automated machine
learning (AutoML) based genetic regulatory element extraction system that assesses importances of GRPs in resulting
biological phenomena, such as cell type differentiation, physiological and pathological development, and reconstructs GRNs
with extracted important GRPs for comprehensive inference. With several case studies in divergent research areas, we show
that AGEAS can indeed extract informative regulatory elements and reconstruct networks to indicate regulatory changes in
biological phenomena of interest.

Availability and implementation
The AGEAS code is available at https://github.com/JackSSK/Ageas.

Introduction
As high-resolution sequencing technologies become increasingly applicable and accessible, an efficient and robost analytical
system capable of extracting key genetic features responsible for cell types and cell states difference with limited prior biological
knowledge also become highly demanded. Several methodologies like SCENIC1 already demonstrated informativeness and
robustness in studying cellular phenotypes with GRN analysis. Regulons, collections of a TF and corresponding targetomes,
can successfully address cell identities with more comprehensive information compared with differential expressing genes
(DEGs).1, 2 Even though limited computational methods are capable of completely and precisly extracting key genetic
regulatory elements in biological process of interest, Mogrify3 and CellNet4 have demonstrated GRN based methods can help
to analyze cell type differentiation and to implement cell reprogramming. However, both methods may require large scale of
additional background data to be applicable in other studies such as analyzing physiological or pathological development of
selected cell type. The scREMOTE5 published in 2022 is a potential method to extract generalized regulatory elements since
limited background data is required with sequencing data representing sample classes. But prior knowledge on key TFs and
marker genes is indispensable. A regulation trajectory of DEGs or regulons showing significant activity difference after GRN
reconstruction would be able to reveal the developmental pathways as generalized approach. Due to general gene regulatory
nature of TFs, numerous noisy signals are expected. Therefore, here we present AGEAS, an algorithm with feasibility in
extracting key regulatory elements for biological phenomena of interest and can potentially promote further discoveries, even
with scarce prior knowledge.

Several reasons motivated us to develop semi-supervised AutoML based method. Firstly, accurate labeling of regulatory el-
ements’ relatedness in biological phenomena would require extensive prior knowledge may be unavailable. While unsupervised
clustering can potentially extract factors playing important roles, this approach may focus on specific aspects with regulatory
elements showing similar patterns and result in losing comprehensiveness. As a result, we chose to apply biological phenomena
associating sample classes, such as cell types and cell states which should be easily retrievable, as labels for classification
models to predict with masked GRN as input and then interpret success predictions to extract key regulatory elements. Secondly,
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it is also hard to guarantee comprehensiveness when developing a generalized classification model in differentiating GRNs,
considering that capturing few significant differences would be sufficient for the model to reach outstanding accuracy. Hence,
an extraction system with multiple independent classification models implemented with various algorithms should be helpful
to recover from potential comprehensiveness loss. Thirdly, the process of interpreting all success prediction made by every
classification model and integrating corresponding interpretation results may be computational expensive. Thus, applying an
AutoML-based model and feature selection procedure that can effectively decrease interpretation cost would be necessary to
increase feasibility of the method.

To evaluate the performance of AGEAS, we primarily applied it on studying somatic cell reprogramming process and
further addressed performance in analyzing 3 other biological processes in cell subtype differentiation, physiological and
pathological development.

Method
The basic principle of AGEAS is to find key regulatory elements associated with biological phenomena of interest through
analyzing how well-performing classification models distinguish GRNs of sample with the phenomena from those without.
To reconstruct sufficient GRNs for each class, RNA-seq based expression data is segmented into subsets while each one
is analogized as a pseudo-sample having discrete expression data. The pseudo-sample GRNs (psGRNs) are reconstructed
accordingly; thus, classification models can be trained, evaluated, and interpreted with GRPs as input factors. With heavily
weighted GRPs and corresponding genes repeatedly obtained from interpretations of successful sample class predictions, GRNs
could be formed and potentially play an important role in differentiating the studying sample classes. The overall workflow can
be summarized in Figure 1. By default, four separate extractor units in workflow run in parallel after data preprocessing part in
order to increase output stability considering the stochastic nature of AGEAS, and all extracted regulatory elements are used to
form GRNs, which will later be combined into one atlas. The following sections describe each step of AGEAS in more depth.

Step 1:Data preprocessing
The main purpose of this step is to build pseudo-samples and to reconstruct corresponding pseudo-sample GRNs (psGRNs).
For each sample class, gene expression matrices (GEMs) with the same class label are concatenated as one comprehensive
expression matrix. With comprehensive GEMs, a meta-level GRN (meta-GRN) is reconstructed before psGRNs to provide
generic guidance on reconstruction. In general, the workflow of this step can be summarized in Figure 2.

Reconstruct meta-GRN
Firstly, genes included in the comprehensive GEMs are assessed and determined whether having potential to form informative
GRPs with other genes. Commonly, DEGs are considered as important factors of studying phenomena. Here we apply
the Mann-Whitney U rank test (MWW) implemented by SciPy6 to exclude genes with indistinguishable expression level
distribution across GEMs of different classes. The p-value for rejecting null hypothesis, that expression profile underlying
class 1 samples is the same as the expression profile underlying class 2 samples, is set to 0.05 by default. Furthermore, a log2
fold change (log2FC) filter is implemented in AGEAS. However, enabling the log2FC filter is not encouraged, considering
that upstream TFs indirectly regulate key genes associated with phenomena of interest may not be significantly differential
expressed. The log2FC filter shall mostly be used to decrease meta-GRN’s total degree in a compromising position caused by
limited computational resources. After differential expression based filters, a standard deviation (σ ) filter is applied to exclude
genes with low expression level or merely affected by dynamic expression status of other genes. By default, the σ threshold is
set to 1.0, the lowest expression level in raw gene count matrix gained from RNA-seq data. The threshold value should be
adjusted based on prior knowledge of input GEMs, for example, the normalization method applied to the GEMs.

With candidate genes passing filters above, some gene pairs are formed and evaluated by the potential of representing
GRPs. To reduce overall computational complexity, a gene pair shall be formed with at least one TF, which could be the
regulatory source of GRP. If not further specified, a TF list will be retrieved from integrated TRANSFAC7 dataset according to
the provided species information. Utilizing genetic interaction database like GTRD8 and BioGRID9, AGEAS checks whether
the binding ability of gene pair is confirmed or not. By default, if the TF recorded has at least one binding site within target
gene’s promoter range (-1000 to +100) by Chromatin Immunoprecipitation Sequencing (ChIP-seq) dataset retrieved from
GTRD8, the potential GRP gene pair will be passed to expression correlation assessment. For TFs not covered by interaction
database, GRNBoost210-like algorithm is initiated to predict potential regulatory target genes. The prediction importance
threshold can either be set manually or automatically based on recorded interactions as:

T hreshold = min(GA(M1, t) ⊎ GA(M2, t), 1
g )

Here GA() denotes GRNBoost210-like algorithm; M1 denotes concatenated class 1 samples GEM with genes passed filters;
M2 denotes concatenated class 2 samples GEM with genes passed filters; t denotes the TF having largest amount of recorded
interaction in dataset; g denotes total amount of unique genes in all samples passed filters.
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After potential GRP gene pairs are obtained, an expression correlation filter is used to exclude gene pairs with low
covariance. To assess expression correlation, AGEAS applies Pearson’s Correlation coefficient11 (PCC), one of the widely
adopted methods.12 With default setting, gene pairs can reach absolute correlation coefficient of 0.2 and p-value lower than
0.05 are included in meta-GRN as validated GRP.

Reconstruct psGRNs
The comprehensive GEMs are divided into sample subsets, and sliding window algorithm (SWA) is used to build pseudo-samples.
With SWA, we can gain GEMs of i-th pseudo-sample through:

SWA(i) =
{

x j
j+k
j=i∗p

}
, j+ k < l

Here l denotes number of samples in a comprehensive GEM which can be expressed as
{

x j
l
j=0

}
; k denotes window size; p

denotes padding stride.
If sample amount is considerably low or imbalanced, customized window size and padding stride can be applied to generate

sufficient pseudo-samples for later classifier training and assessment processes. Utilizing meta-GRN, psGRNs are reconstructed
with GEMs of pseudo-sample. Each GRP gene pair in meta-GRN is formed with expression data in pseudo-sample and is
filtered by the same PCC filter in meta-GRN reconstruction process.

After all pseudo-samples have been used to reconstruct psGRN, every psGRN can be represented as a matrix comprised of
GRPs’ PCC values. The order of GRPs in each psGRN is also unified through adding GRPs included in other psGRNs with 0.0
PCC value.

Step 2: Classification model selection
The primary goal of AGEAS is to gain insights from multiple models as divergent as possible instead of developing optimized
classification model for psGRN classification. Thus, this step is designed to select model configurations capable of predicting
psGRN’s masked sample class label. Considering the limited computational resources, the portion of less efficient model
configurations shall be pruned at the cost of potentially losing insight in sample class difference. Therefore, we apply a simple
Hyperband13-based algorithm 1 which performs a grid search for well-performing classification models with varying model
training resources and pruning aggressiveness.

Algorithm 1: Model selection algorithm
Input: R,C, I (default I = 3), αmax(default αmax = 0.9), kmin(default kmin = 0.5)
αlow = 1

(2I−1) ;

for i ∈ {0,1, ..., I −1} do
if i == I −1 then

α = αmax;
else

al pha = 2iαlow;
end
r = αR;
P = /0;
for c ∈C do

p = run_then_evaluate(c,r,R);
Append p to P;

end
k = max(1−α,kmin);
C = top_con f igs(C,P,k);

end
Return: C

The model selection algorithm requires five inputs (1)R, the maximum amount of training resource, equivalent to all
available psGRNs (2)C, the total set of provided classification model configurations (3)I, the number of iterations for model
pruning (default set as 3) (4)αmax, the maximum portion of R can be fed to single model (default set as 0.95) (5)kmin, the
minimum portion of remaining model configurations will be kept by single pruning iteration (default set as 0.5). Furthermore,
two required functions need to be defined based on input model configurations:

• run_then_evaluate(c,r,R): trains classification model initialized using configuration c for the allocated resource r, then
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returns prediction accuracy (ACC), the area under a receiver operating characteristic curve (AUROC)14 score, and total
cross-entropy loss (LCE ) calculated through predicting sample class for all psGRNs R.

• top_con f igs(C,P,k): takes a set of model configurations C with associated evaluation results P and returns configurations
with ACC, AUROC score, or LCE reaching top k portion.

By default, AGEAS initializes with 128 model configurations utilizing 9 integrated classification algorithms listed in Table 1.

Algorithm #λ Categorical Continuous # Configs
Implemented with Pytorch15

Transformer 14 4 10 32
1D Convolutional Neural Network (1D-CNN) 10 2 8 32
Hybrid Convolutional Neural Network (Hybrid-CNN) 10 2 8 32
Gated Recurrent Unit (GRU) 10 4 6 4
Long Short-Term Memory (LSTM) 11 4 7 4
Standard Recurrent Neural Network (RNN) 11 5 6 4

Implemented with XGBoost16

Gradient Boosted Decision Trees (GBDT) 18 5(1) 13(4) 16

Implemented with scikit-learn17

Random Forests (RF) 14 5(1) 9(1) 2
Support Vector Machine (SVM) 7 4 3(3) 2

Table (1) Classification model algorithms integrated in AGEAS with corresponding numbers of hyperparameter and preset
model configurations. Categorical hyperparameters and continuous numerical hyperparameters are clarified beside total
number of hyperparameters (#λ ). Conditional hyperparameters required for selected other hyperparameters are shown in
brackets. # Configs indicates the default total number of configurations.

The general architecture designs of 1D-CNN and Hybrid-CNN are implemented based on 1D-CNN and 2D-Hybrid-CNN
in a recent cancer type prediction study.18 However, taking one convolution layer and adjacent max-pooling layer as a layer set,
we implemented both CNN models with flexibility on the number of layer set, which is fixed in the original paper. An example
of 1D-CNN with two convolution layer sets is illustrated in Figure 3.

For transformer models, the embedding layer and positional encoding layer designed for input data tokenization in standard
architecture19 are replaced with a single linear layer in AGEAS, considering psGRNs are already represented as numerical data
matrix while GRPs should barely have positional relationships in the matrix.

Step 3: Feature selection
With selected well-performing models, AGEAS already can start repetition of model training and interpretation in Step 4 to
extract key GRPs. However, the few uninformative GRPs in training psGRNs could be pruned in advance to save computational
resource. Furthermore, to prevent classification models from focusing on a small group of GRPs regardless of training psGRNs,
GRPs draw excessive attention shall be separated from psGRNs to improve extraction comprehensiveness. Thus, in this step,
AGEAS iteratively trains classification models with dynamic αmax portion of psGRNs and obtains feature importance scores as
described in subsection below to exclude GRPs either scored considerably high or relatively low.

More specifically, at each iteration, GRPs with z-scores ranked at the bottom b portion (default set as 0.1) are discarded.
Also, an i-th ranked GRP will be separated from psGRNs and passed to Step 5 directly if it has a z-score fulfilling the condition:

Zi
score ≥ max(Zthread

score , Zi−1
score
3 ,3 · IQR)

The Zthread
score denotes input z-score threshold (default set as 3.0), and IQR stands for interquartile range calculated at the beginning

of each iteration. With this criterion, AGEAS ensures only GRPs draw significantly more attention be selected by each iteration,
despite different data distribution of z-score scaled importance values.

By default, AGEAS iterates this feature selection step for three times.

Feature importance estimation
AGEAS applies concept of The Shapley value20 for estimating the importance of each input feature, equivalent to GRP of input
psGRN, in any kind of classification model when making predictions. Specific Shapley value calculation or approximation
methods are implemented with SHAP21 and applied to different algorithms as shown in Table 2. We utilize softmax function to
normalize feature importance scores and define the normalization function as:
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T (X) = so f tmax({F(x)} ,x ∈ X)
Here X denotes the total set of all features, and F(x) denotes importance score estimation method. If the feature importance can
be approached with internalized method f (x), F(x) is set as:

F(x) = f (x)
∑x′∈X f (x′)

Otherwise, F(x) is defined utilizing correctly classified input samples S, equivalent to psGRNs, with Shapley values φ of
feature x when predicting sample s as class c1 or class c2:

F(x) = ∑s∈S

∣∣∣φ x
c1,s

∣∣∣+∣∣∣φ x
c2,s

∣∣∣
2

After all selected classification models M have been interpreted, we can integrate the feature importance matrices weighted by
the corresponding models’ LCE to one matrix A as:

A =
{

∑m∈M(1−Lm
CE)Tm(x)

}
,x ∈ X

Then, generalized importance values are obtained through z-score calculation and later sorted descendingly:
Zscore =

{
a−Ā
σA

}
,a ∈ A

Algorithm SHAP21 Method
Transformer Gradient Explainer
1D-CNN Deep Explainer
Hybrid-CNN Deep Explainer
GRU Gradient Explainer
LSTM Gradient Explainer
RNN Gradient Explainer
GBDT* Tree Explainer
RF Tree Explainer
SVM* Linear Explainer / Kernel Explainer

Table (2) Classifier algorithms with applicable Shapley value approximation methods. Algorithms marked with * have
internalized feature importance estimation methods which will be applied with higher priority than Shapley value based
methods. GBDT implemented with XGBoost16 can have feature importance approximated by the average weight gain at each
split involving the feature. Linear SVM implemented with scikit-learn17 can have importance scores estimated with feature
coefficients or using Linear Explainer. However, the feature coefficient estimation should be inappropriate for SVM with kernel
function, While feature importance scores should be approximated with Kernel Explainer only.

Step 4: Top GRP extraction
To extract GRPs capable of effectively defining sample class differences, AGEAS iteratively initializes classification models
with configurations kept from Step 2, trains them with randomly selected αmax portion of rescaled psGRNs from Step 3, and
interprets every models’ accurate predictions with methods mentioned in subsection. At each iteration, AGEAS receives a
feature importance matrix A re-scaled by z-score and adds up each GRP’s score accordingly from matrix A′ kept from previous
iteration if available. Then, top a, by default 100, ranked GRPs, whose scores are also greater than 0.0, are compared with GRPs
extracted from A′ by the same setting. If changing portion of GRPs for top scored GRP sets from A and A′ is less than d, by
default 0.05, AGEAS will consider the GRP extraction result of current iteration consistent with previous iteration. Extraction
loop will terminate if AGEAS encounters n (default set as 3) continuous consistent result or runs out of preset iteration number
(default set as 10). All feature importance scores in matrix A from last iteration are divided by the total iteration number
processed, and top a ranked GRPs are considered as important GRPs for sample class differentiation.

Step 5: Key network reconstruction
Analogizing every GRP previously extracted in Step 4 or separated as outlier in Step 3 as a directional edge connecting a TF
vertex with a targetome vertex, AGEAS attempts to reconstruct a GRN graph representing regulatory differences between query
sample classes. Since there is no guarantee on whether all extracted GRP edges can be connected or not, some regulatory
relationships between gene vertices could be absent. Hence, AGEAS utilizes meta-GRN gained from Step 1 to find GRPs,
which can further elucidate the regulatory relationships, and to use those GRPs as supportive edges.

For a limited iteration time (default set as 1), AGEAS exhaustively searches meta-GRN for TFs which can directly interact
with any gene already covered in extracted GRPs and add the returned TFs as new vertices. Next, any GRP in meta-GRN
capable of connecting two distinct vertices will be included as supportive GRP in extraction result. After expansion procedure
above, the extracted GRN graph represents key genetic regulatory differences between input sample classes.
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Results
To assess predictive power of utilizing extraction result of AGEAS, we primarily applied AGEAS to study somatic reprogram-
ming of induced pluripotent stem cells (iPSC) in mice,22 a milestone discovery of cell plasticity.23 With σ thread set to 2.0 for
constraining total GRP amount in psGRNs, we use public scRNA-seq based GEMs of embryonic stem cells (ESCs) and mouse
embryonic fibroblasts (MEFs) shown in Table 4 as inputs. The extraction result can be summarized as TF regulons, and TFs
with highest regulatory degree in extracted GRN atlas are marked as top TFs (Figure 4a).

Among top TFs, Pou5f1 (Oct4) associates with GRPs extracted as important differential regulatory element between MEF
and ESC more than any other TFs, while forming largest regulon and having expression pattern significantly favoring ESC.
Thus, we infer Pou5f1 is the key regulatory element associated with ESC identity. Extensive studies already addressed Pou5f1’s
important role in pluripotency maintenance.24–26 Moreover, to implement cell reprogramming of iPSC, Nanog and Sox2 are
noteworthy, since they closely interact with Pou5f1 in extracted network, have high regulatory degrees, and are differently
expressed in ESC. Multiple previous studies confirmed that all of Oct4, Nanog, and Sox2 are playing important roles to induce
cell conversion from somatic cell to iPSC.22, 27–30 Cebpb, Hdac2, and Smc3, extracted as top TFs directly affecting Pou5f1
expression, were also reported with relevant functions.31–33

Therefore, we infer that the investigation of TFs as common regulatory sources in important differential GRPs and
corresponding regulons can effectively reflect differences between cell types or cell states. To further address AGEAS’s
applicability and limitation, we applied AGEAS to three other scRNA-seq based studies in distinct research areas. With default
settings described in Method section above, we evaluated AGEAS’s performance in following scenarios with public dataset
(Table 4):

• Dopaminergic neuron differentiation:

We address the applicability of AGEAS on cell subtype differentiation problems by analyzing the difference between
human iPSC-derived radial glial / neuronal co-culture as neural progenitors34 and tyrosine hydroxylase (TH) expressing
purified dopaminergic neurons (DANs).

From extracted TFs (Figure 4b), we hypothesized that ISL1, ELF3, and PBX3 play important roles in DAN differentiation
due to their high regulatory degree in extracted important GRPs. Previously, ISL1 was determined essential for
differentiation of prethalamic DANs.35 ELF3 was found to be the neuronal precursor cell marker associated with neural
stem cell development.36 This is consistent with ELF3’s high expression level in neuronal co-culture samples. Moreover,
a DAN development study reported that PBX3 is required for correct differentiation of neuroblast, production of radial
glial cell, into midbrain DAN and survival of midbrain DAN.37

Through stratifying all extracted GRPs, we only found that HDAC2 and RBPJ can potentially regulate all of ISL1, ELF3,
and PBX3. Few reports demonstrated the association of HDAC2 with neurogenesis of radial glial cells.38, 39 Nevertheless,
HDAC2’s role in DAN differentiation is yet to be clarified. RBPJ was reported to be essential for DAN survival and
to affect DAN development by regulating ASCL1, a essential factor in neurogenesis.40, 41 The original research where
we retrieved scRNA-seq data from also demonstrated that ASCL1 is a necessary factor to regulate DA neurotransmitter
selection.34 Although AGEAS extracted ASCL1 as one of the top TFs, no direct regulatory relationship between RBPJ
and ASCL1 was identified.

• Postnatal cardiomyocyte maturation:

To address the performance of AGEAS to analyze cell physiological development, scRNA-seq data of cardiomyocytes
(CMs) in postnatal day 7 mice (P7) and day 28 mice (P28) are used as inputs for extracting key genetic regulatory
elements in postnatal CM maturation.

As indicated by important differential GRPs, we first investigated Sp1 and Esr1 (ERα) that also have top regulatory
degrees and considerably differential expression profiles (Figure 4c). Previous studies demonstrated that Sp1 promotes
CM hypertrophy42 and maturation of electrophysiology, Ca2+ handling.43, 44 Esr1 was found modulating myocardial
development for postnatal cardiac growth.45, 46

Beside the inter-regulation between Sp1 and Esr1, three other top TFs (Srf, Cebpb, Rest) and two TFs forming relatively
small regulons (Gata4, Prox1), are expected to interact with both Sp1 and Esr1 based on extraction network. All five TFs
were found to have CM maturation related functions. (Table 3)

• Hepatic stellate cell activation in CCl4 induced liver fibrosis:

Here we address AGEAS’s applicability on cell pathological development studies through analyzing hepatic stellate
cells (HSCs) and portal fibroblasts (PFs) simulating activated HSCs in mice liver administrated with chronic carbon
tetrachloride (CCl4) for six weeks.
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Gene Function
Srf Regulate sarcomere genes and broadly impact almost every aspect of CM maturation44

Cebpb Repress CM proliferation and hypertrophy47, 48

Rest (Nrsf) Repress CM hypertrophy; Prevent dilated cardiomyopathy49

Prox1 Repress CM hypertrophy; Prevent dilated cardiomyopathy50

Gata4 Promote CM proliferation and hypertrophy51

Table (3) TFs interacting with both Sp1 and Esr1 order by regulatory degree in extracted GRNs.

Based on extracted important GRPs, we identified Mef2c, Jun, and JunD as potential representatives of key regulatory
elements in HSC activation (Figure 4d). As the TF extracted with most important GRPs, Mef2c has been well-documented
as the key regulator in HSC activation.52–54 Extensive studies also found Jun and JunD, functional components of the
AP1 TF complex, are essential for fibrosis-related HSC activation and profibrogenic process.55–58

Analyzing TF regulons of Mef2c, Jun, and JunD, we believe that Mef2c is targetome of JunD and the inter-regulatory
element of Jun. While no regulatory relationship between JunD and Jun determined, three extracted top TFs (Lhx2, Nfib,
JunB) can potentially affect expressions of both JunD and Jun. JunB, another functional component of AP1, is also
reported to affect HSC activation59. Furthermore, Lhx2 was found indispensable for quiescent HSCs.60, 61 Although little
literature had addressed Nfib’s role in HSC, Nfib was reported to be the anti-apoptotic gene for cell proliferation during
CCl4 induced liver damage.62

Conclusion
In summary, AGEAS shows robustness in extracting key regulatory elements in several biological studies. Key TFs inferred
by important differential GRPs and regulon analysis in all four in silico cases were confirmed informative to reveal main
functionalities responsible for biological process of interest. Furthermore, the direct extractions of ISL1 in DAN differentiation
and JunD in HSC activation demonstrated that AGEAS is neither focusing solely on the regulatory degrees in reconstructed
meta-GRN nor the expression differences between sample classes. Overall, we anticipate that AGEAS is useful in providing
insightful regulatory information and in promoting pioneer researches that reveal complicated mechanism behind biological
phenomena.

Discussion
Considering the rapid development of both sequencing technology and machine learning algorithms, we implemented AGEAS
with modular design. In the data preprocessing part, the meta-GRN reconstruction section can be replaced with other methods
to further increase fidelity of regulatory relationships or integrating more information, such as cis-regulatory elements (CREs)
accessibility, which can be obtained from Assay for Transposase-Accessible Chromatin Sequencing (ATAC-seq) data. Moreover,
CRE accessibility information combining with motif enrichment analysis is proved capable of identifying potential regulatory
pathways to replace ChIP-seq based dataset utilized in the current study.5 Refining meta-GRN reconstruction method in
consideration of having input data from simultaneous scRNA-seq and single cell ATAC-seq (scATAC-seq), such as SHARE-seq
published in late 2020,63 can potentially further improve applicability of AGEAS; however, accessibility of corresponding
datasets will be essential for performance assessment and method development. Similarly, initial set of classification models is
also subject to change in response to future computational studies.

Also, it is important to note that AGEAS can be applied with GEMs normalized with different methods on user’s choice, as
well as derived from other sequencing technologies, such as bulk RNA-seq or spatial sequencing in revealing tissue differences.
Replacing transcriptiomic data with proteomic data may also be achievable in the analysis of protein interaction networks.
However, larger scale of applicability tests are necessary.

Due to the stochastic nature of AGEAS, extraction results of AGEAS are not expected to stay identical for repeated
applications even with exactly the same inputs. The main reason underlying the inconsistency is how AGEAS attempts to
obtain top performing models for later prediction interpretations. Repeated random subsets of psGRNs used in model training
and selection are expected to vary for each application, hence results in different performances of classification models and
ranking results. As a result, the importance scores of GRPs might differ and slightly affect top TFs extracted later.

Two possible workarounds of the inconsistent issue would be: (i) manually set random seed for every process influencing
subset selection. (ii) set multiple extractor unit and combine extraction results. In the present study, we found that n = 4 units
yield relatively stable results, but this value could vary based on application scenario.
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Sample Class Accession number
GSE103221
MEF GSM3629847
ESC GSM3629848

GSE137720
CCl4 a6w hsc GSM4085625
CCl4 a6w pf GSM4085627

GSE185275
glial/neuronal co-culture GSM5609927
purified DANs GSM5609930

GSE156482
p7 CM GSM4732221
p28 CM GSM4732225

Table (4)
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Figure (1) The overall workflow of AGEAS: (1) Reconstruct meta-level GRN (meta-GRN) with expression data of all
samples. (2) Build pseudo-samples with sliding window algorithm and reconstruct GRNs with GRPs identified in meta-GRN
accordingly. (3) Select best performing classifiers in predicting class labels of pseudo-sample GRNs (psGRNs). (4) Interpret
how top models make classifications and gradually exclude GRPs with low weights or outlier-level high weights. (5)
Repeatedly train classifiers with different set of psGRNs as training data to extract GRPs frequently ranked as top important
features for decision. (6) Reconstruct GRNs with extracted GRPs and GRPs excluded as significant outliers.
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Figure (2) Workflow to reconstruct meta-GRN and psGRNs. (1) Filter genes from GEMs with log2FC filter(optional),
MWW filter, and σ filter. (2) Find candidate GRP gene pairs from either interaction database or predictions made by
GRNBoost210-like algorithm. (3) Filter candidate GRP gene pairs with PCC filter and reconstruct meta-GRN with validated
GRPs. (4) Generate pseudo-samples with SWA. (5) Utilize GRPs in meta-GRN as generic guidance to form candidate GRPs
for pseudo-samples. (6) Filter every candidate GRP for all pseudo-samples with PCC filter and reconstruct psGRNs with
validated GRPs.

Figure (3) 1D-CNN with 2 convolution layer set.

13/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 14, 2022. ; https://doi.org/10.1101/2022.02.17.480852doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480852
http://creativecommons.org/licenses/by-nc-nd/4.0/


(a) (b)

(c) (d)

Figure (4) Top 15 TFs ranked by regulatory degrees in all GRPs extracted by AGEAS. (a) Mouse embryonic fibroblast vs.
Embryonic stem cell (b) Purified dopaminergic neuron vs. Radial glial/neuronal co-culture (c) 7 days postnatal cardiomyocyte
vs. 28 days postnatal cardiomyocyte (d) Hepatic stellate cell vs. Portal fibroblast (both after 6 weeks of CCl4 administration)
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