Modulation of sleep by trafficking of lipids through the Drosophila blood brain barrier

Gregory Artiushin, Fu Li, Amita Sehgal*

Howard Hughes Medical Institute and Chronobiology and Sleep Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia

*Corresponding author

Abstract

Endocytosis through Drosophila glia is a significant determinant of sleep amount and occurs preferentially during sleep in glia of the blood brain barrier (BBB). To identify metabolites whose trafficking is mediated by sleep-dependent endocytosis, we conducted metabolomic analysis of flies that have increased sleep due to a block in glial endocytosis. We report that acylcarnitines, molecules that conjugate with long chain fatty acids to promote their transport, accumulate in heads of these animals. In parallel, to identify transporters and receptors whose loss contributes to the sleep phenotype caused by blocked endocytosis, we screened genes enriched in barrier glia for effects on sleep. We find that knockdown of lipid transporters *LRP1*&2 as well as carnitine transporters *ORCT1*&2 increases sleep. In support of the idea that the block in endocytosis affects trafficking through specific transporters, knockdown of LRP or *ORCT* transporters also increases acylcarnitines in heads. We propose that lipid species, such as acylcarnitines, are trafficked through the BBB via sleep-dependent endocytosis, and their accumulation in the brain increases the need for sleep.

Introduction

Although the regulation of sleep is normally studied on a behavioral and circuit level, there is increasing evidence for a role of basic cellular physiology. For instance, we found that disruption of endocytic and trafficking pathways in glia increases sleep in Drosophila (Artiushin, Zhang et al. 2018). Glia of the Drosophila blood/hemolymph brain barrier (BBB) emerged as a new cellular locus of sleep regulation in this study, such that genetically manipulating endocytosis in these cells alone was sufficient to increase sleep. As the increased sleep appeared to reflect higher sleep need, we asked if sleep is typically required for endocytosis through the BBB and found that this was indeed the case. However, the nature of the molecules trafficked through the BBB in a sleep-dependent manner was not known.

Barriers that separate the solutes of blood/hemolymph of the periphery from the interstitial fluid of the central nervous system display a rich profile of transporters, receptors, and trafficking proteins, which often reflect their unique functions. The *Drosophila* barrier glia populations share many conserved features with vertebrate barriers which employ endothelial and astrocytic populations (DeSalvo, Hindle et al. 2014, Weiler, Volkenhoff et al. 2017). For instance, both are capable of moving lipids and carbohydrates, ions, amino

acids and xenobiotics (Weiler, Volkenhoff et al. 2017). Furthermore, the fly barrier populations may serve specialized roles in metabolism, as not only the conduit of energy sources from the periphery, but also by containing the enzymatic machinery necessary for processing energy sources (Volkenhoff, Weiler et al. 2015), and secreting signals in reference to nutritional state (Chell and Brand 2010, Speder and Brand 2014).

Given that much of the traffic through the barrier involves energetic substrates, we conducted metabolomic profiling to identify candidate metabolites whose trafficking may be inhibited by an endocytosis block in glia. To complement this approach, we asked if specific glial proteins mediate this trafficking. As genetic manipulations to block endocytosis can directly impact endocytosis-dependent carrier traffic as well as indirectly affect levels of membrane-associated transporters/receptors by altered recycling, we performed a knockdown screen to broadly search for barrier genes involved in sleep regulation. We report here that specific lipid and carnitine transporters act in barrier glia to affect sleep, and that disrupting expression of these transporters or of endocytosis leads to an accumulation of acylcarnitines in the head.

Results

Expression of Shi in glia induces acylcarnitine accumulation in fly heads

Our previous work showed that expression of *shibire (shi*), a dominant negative dynamin that blocks endocytosis, in all or BBB glia increases sleep. To attain an unbiased, global assessment of metabolites that may be relevant to the increased sleep seen in *Repo>20xShi.ts1* flies (hereafter referred to as *Repo>Shi*¹), we conducted LC-MS analysis. Heads of male and female *Repo-Gal4 > Shi*¹ flies as well as Gal4 and UAS controls were collected on dry ice with sieves and immediately frozen at -80 °C. Each sample contained 200 fly heads (equal male and female), with a total of 5 samples per genetic condition.

As an initial analysis, raw signal was scaled per each metabolite in reference to other samples within the dataset, and comparisons were made between Repo>Shi flies and each control, as well as controls to each other by Welch's t-test (**Supplementary Table 1**).

Sub pathway	Biochemical name	Gal4 > UAS	Gal4 > UAS	UASCtrl
		Gal4Ctrl	UASCtrl	Gal4Ctrl
	acetylcarnitine (C2)	<mark>4.25</mark>	2.68	<mark>1.59</mark>
	myristoylcarnitine (C14)	28.81	26.39	1.09
	palmitoylcarnitine (C16)	4.52	1.74	<mark>2.60</mark>
	palmitoleoycarnitine (C16:1)	26.50	10.35	<mark>2.56</mark>
	stearoylcarnitine (C18)	1.43	1.06	1.34
	linoleoylcarnitine (C18:2)	6.77	3.14	<mark>2.15</mark>
Fatty Acid	oleoylcarnitine (C18:1)	4.00	1.92	2.08
Metabolism	arachidoylcarnitine (C20)	1.28	1.17	1.09
(Acylearniting)	behenoylcarnitine (C22)	1.31	1.09	1.20
(Acylcarinine)	eicosenoylcarnitine (C20:1)	2.28	1.24	1.84
	lignoceroylcarnitine (C24)	0.72	0.83	0.87
	margaroylcarnitine (C17)	4 .05	1.47	2.76
	nervonoylcarnitine (C24:1)	<mark>2.36</mark>	1.26	1.87
	cerotoylcartinine (C26)	0.85	0.97	0.87
	ximenoylcarnitine (C26:1)	0.75	0.88	0.85

Table 1. Fatty acid acylcarnitine accumulation in Repo>Shi¹ fly heads

All samples from *Repo-GAL4>UAS-Shi*¹, and both parental controls. Welch's t-test was performed on scaled signal for each metabolite, comparing the conditions shown. Green highlighting marks a significant difference ($p \le 0.05$) between the groups, where metabolite ratio is < 1.00, while light green is not significant, but close to the threshold ($0.05). Red highlighting marks a significant difference (<math>p \le 0.05$) between groups where metabolite ratio is ≥ 1.00 , and light red is not significant, but close to the threshold (0.05).

Metabolites of interest were those for which signal from the experimental samples was significantly different, in the same direction, when compared to both controls, while controls compared to each were not significant. Of secondary interest were metabolites where a difference was seen in controls, but was proportionally smaller than consistent differences of each control to the experimental samples.

In surveying this dataset, the outstanding functional category, which contained multiple metabolites whose signal was consistently different in experimental animals versus controls, were the acyl-carnitines (**Table 1**). Furthermore, the fold changes for given metabolites in this group, which consists of fatty acids conjugated to carnitine, were the highest overall. Carnitinylation occurs on fatty acids of various chain lengths, but only a subset of chain lengths in this dataset had sufficient signal, therefore we statistically compared *Repo>Shi¹* flies to both parental controls for metabolites that had signal in at least three of five biological replicates for each genotype. Expression of *Shi¹* in glia increased abundance in fly heads of the following acylcarnitine species: C2, C16, C16*1, C17, C18:1, C18:2* (**Figure 1A**). The only metabolite of

this group with less signal in experimental animals was the longer-chain, C24* (Figure 1B). Carnitine and

Figure 1: Acylcarnitine levels are increased in Repo>Shi¹ fly heads

(**A**) Short and medium chain length or (**B**) long chain length acylcarnitines from Repo-G4 >UAS-Shi¹ fly heads and parental controls. The raw signal from LC/MS is plotted, n=3 – 5 samples, of 200 fly heads each. One-way ANOVA,

with Holk-Sidak post-hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent standard error of the mean (SEM).

Identification of barrier glia genes that affect sleep

In addition to identifying metabolites that accumulate as a result of blocked glial endocytosis, we sought to identify glial molecules whose function might be impacted by the block in endocytosis and thereby contribute to the effect on sleep. As noted above, glia of the BBB are the most relevant glial subtype for sleep-dependent endocytosis. We identified genes enriched in barrier glia by referring to transcriptional profiling that compared expression in the two glial populations that comprise the Drosophila BBBsubperineurial and perineurial glia (SPG + PG)— to all neurons, and all glia (DeSalvo, Hindle et al. 2014). Preference was given to previously studied genes, particularly transporters, receptors and those involved in trafficking, although many genes among the top-50 highly expressed in the barrier glia populations were also tested for effects on sleep. Of the genes enriched in barrier glia, we focused on those that showed low variability in expression from sample to sample. UAS-RNAi constructs for candidate genes were expressed with Repo/RepoGS Gal4 drivers and sleep in these lines was compared with that in Gal4 and UAS alone controls. Knockdown of most genes did not produce a significant phenotype, but sleep was increased with knockdown of some transporter genes CG3036, CG6126, mnd, VMAT, CG6836, Rh50, CG4462 (Figure 2- figure supplement 1A), cytoskeleton/trafficking factors CG8036, Vha16, nuf, (Figure 2-figure supplement 1C) as well as *lsd-2*, acon and *MtnA* (Figure 2- figure supplement 1D). Meanwhile, knockdown of the transporter gene CG16700 (Supp Figure 2A), cytochrome P450 gene Cyp6a20 (Figure 2- figure supplement 1D) and trafficking factor Cln7 decreased total sleep (Figure 2- figure supplement 1C).

Since the candidate genes were selected based on enrichment within the barrier glia, we chose to examine and secondarily validate promising phenotypes through knockdown with more limited, barrier glia drivers. Thus, we screened a sub-set of the genes suggested by results of the pan-glial screen (**Figure 2-figure supplement 1**) with drivers that target PG or SPG glia. Knockdown of MtnA (105011 KK), CG6386 (108502 KK), CG4462 (105566 KK), or lsd-2 (102269 KK) did not significantly alter sleep when expressed in either of the barrier glial populations alone (data not shown). Reduction of *cyp6a20* in the PG population inconsistently reproduced the pan-glial sleep loss phenotype, so this was not pursued further (data not

shown). The *VMAT* gene produces two isoforms, one of which is thought to be specific to glia (Romero-Calderon, Uhlenbrock et al. 2008). Knockdown of *VMAT* (TRiP HMC02346) in the perineurial glia increased total sleep (**Figure 2A**), but in the subperineurial glia it had no effect (data not shown), which is consistent with protein expression, as the *VMAT-B* antibody specifically marks the perineurial glia (DeSalvo et al., 2014). Pan-glial knockdown of neuronal ceroid lipofuscinosis 7 (*Cln7*), which is expressed in the perineurial glia (Mohammed et al., 2017), decreased total sleep (**Figure 2C**). However, expression of *Cln7* RNAi in the PG increased total sleep time, with no significant change produced by expression in the SPG (**Figure 2B**, **C**).

Figure 2: Knockdown of specific barrier-enriched genes with barrier glial drivers

Total sleep in female flies with knockdown of (**A**) VMAT, UAS- HMC02346 driven by (PG) NP6293-Gal4. n=15-16 per genotype. (**B and C**) Cln7 (CG8896), UAS-109291 KK driven by (PG) NP6293-Gal4 or (SPG) moody-Gal4. n = 15-16 per genotype. One-way ANOVA, with Holk-Sidak post-hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent standard error of the mean (SEM).

Simultaneous knockdown of Lrp1 and Megalin in barrier glia increases sleep

Although the candidate screen identified barrier genes whose knockdown increases sleep, as does blocking endocytosis in barrier glia, these genes were not obviously linked to the metabolite profile seen with a block in glial endocytosis. The results of metabolomic screening showed changes in lipid, and particularly carnitine-lipid, trafficking. Therefore, we reassessed our screen candidates to consider transporters and receptors which may function in these pathways and could have been missed due to redundancy/lethality. *Lrp1* and *Megalin (Lrp2)* are two LDL receptor-related protein members involved in the transport of lipid carrier proteins at the fly barrier (Brankatschk, Dunst et al. 2014). Expression is likewise found in mammals at the endothelial barrier (Herz 2003).

Figure 3. Sleep time changes with knockdown of Lrp genes in all glia or barrier glia

Total sleep in female flies with knockdown of (**A**) *Lrp1* (8397 GD) and *Megalin* (105071 KK) RNAi driven by Repo-GAL4. n = 11-16 per genotype; (**B**) *Lrp1* (8397 GD) and *Megalin* (105071 KK) RNAi driven by 9-137-GAL4 (PG and SPG) with TubGal80^{ts} at the permissive temperature of 18 °C, n=30- 32 per genotype; (**C**) *Lrp1* (8397 GD) and *Megalin* (105071 KK) RNAi driven by 9-137-GAL4 (SPG and PG) with TubGal80^{ts} at the restrictive temperature of 31 °C, n=30-32 per genotype.; (**D**, **E**, **F**) *Lrp1* (8397 GD) and *Megalin* (105071 KK) RNAi expressed by: (D) NP6293- Gal4 (**PG**), n = 13-16 per genotype; (**E**) *moody*-GAL4 (SPG), n=16 per genotype; (**F**) Rab9-GAL4 (SPG), n=13-16 per genotype. One-way ANOVA, with Holk-Sidak post-hoc comparisons. *p < 0.05, **p < 0.01. Error bars represent standard error of the mean (SEM).

Knocking down *Lrp1* and *Megalin* (*Lrp2*) individually in the pan-glial screen did not significantly alter total sleep time (**Figure 2- figure supplement 1A**). However, both *Lrp1* and *Megalin* (Lrp2) as well as *Orct* and *Orct2* have been considered to be complementary (Eraly and Nigam 2002, Brankatschk, Dunst et al. 2014), therefore it is possible that inhibition of a single gene is insufficient to appreciably affect transport. Simultaneously knocking down *Lrp1* and *Megalin* in all glia with Repo-Gal4 driver increased total sleep time (**Figure 3A**). To target *Lrp1* and *Megalin* in barrier glia, and also to restrict the knockdown to the adult stage and thereby avoid developmental confounds, we used drivers specific to these glia and coupled them with the temperature-sensitive tubulin-Gal80 (tub-Gal80¹⁸) system that suppresses Gal4 expression at 18 degrees but allows it at 31 degrees. When both *Lrp* genes were knocked down with barrier glia drivers, a significant increase in total sleep was seen with the PG driver (NP6923), but not with either of the SPG drivers (Moody, Rab9) (**Figure 3B, C, D, E**). Knockdown of *Lrp1* and *Megalin* with the 9-137 driver, which expresses in both PG and SPG, also increased total sleep significantly (**Figure 3C and D**). Intriguingly, although the Repo driver did not yield a phenotype with *Lrp1* alone, each of two *Lrp1* RNAi constructs (GD 8397, GD 13913) expressed by the driver 9-137-Gal4 increased total sleep (**Figure 3- figure supplement 1**).

Knockdown of Orct and Orct2 in barrier glia increases sleep

The organic cation (*Orct*) transporters are multi-substrate transporters whose substrates include carnitine (Lahjouji, Mitchell et al. 2001), and perhaps also carnitylated molecules, based on *in vitro* evidence for *Orct2* (Kou, Yao et al. 2017). As with the double knock down of *Lrp1* and *Megalin*, knockdown of both *Orct* genes increased total sleep (**Figure 4A**). In fact, for the *Orct* genes, knockdown in either PG or SPG replicated the increased total sleep phenotype, although this was only true with one line for the SPG (**Figure 4B**). It

is worth noting that the phenotypes with the barrier drivers are considerably more moderate than with knockdown in all glia.

Figure 4. Sleep time changes with knockdown of Orct genes in all glia or barrier glia

RNAi constructs of *Orct1* and *Orct2* were expressed as follows: (**A**) *Orct* (6782 GD) and *Orct2* (106681 KK) driven by Repo-GAL4; (**B** and **C**) *Orct* (6782 GD) and *Orct2* (106681 KK) driven by (PG+SPG) 9-137-Gal4 at 18 °C(permissive), n=30- 32 per genotype or at 31°C(restrictive), n=30 - 32 per genotype; (**D-F**) *Orct* (6782 GD) and *Orct2* (106681 KK) driven by NP6293-GAL4, n = 13-16 per genotype or by (SPG) *moody*-GAL4, n=15-16 per genotype or by (SPG) Rab9-GAL4, n=15-16 per genotype. One-way ANOVA, with Holk-Sidak post-hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent standard error of the mean (SEM).

Knockdown of Lrp and Orct genes in glia leads to accumulation of acylcarnitines

Given that knockdown of the *Lrp* and *Orct* genes in glia parallels effects of *Shi* expression in terms of increasing total sleep, we asked if it had the same effect on metabolite accumulation in fly heads. Based

on the metabolomic results of *Repo>Shi¹*, we chose to specifically assay acylcarnitines through LC-MS analysis. Metabolomic profiling requires considerable tissue, as so, as in the case of the *Shi¹* experiment, we collected heads from flies in which either *Lrp1* and *Megalin* or *Orct 1* and *Orct2* were knocked down with *Repo*-Gal4.

Figure 5. Acylcarnitine levels are increased in Repo>Lrp1+ Mgl fly heads

Short and medium chain length acylcarnitines from Repo Gal4 >Lrp1+Mgl fly heads and parental controls. The raw signal from LC/MS is plotted, n=3 samples, of 300 fly heads each. Student's t-test with comparison. *p < 0.05, **p < 0.01. Error bars represent standard error of the mean (SEM).

Knockdown of *Lrp1* and *Megalin* in all glia increased abundance in fly heads of the following acylcarnitine species: C3, C4 butyryl, C4-OH isobutyryl, C4 isobutyryl, C16, C18, C20 (**Figure 5**). Longer-chain acylcarnitines, e.g. those over C22, were largely undetected in experimental samples. Knockdown of *Orct* and *Orct2* similarly enriched acylcarnitines in fly heads. In particular, acylcarnitine species C16, C16:1 and

C20 were increased significantly compared to their controls (**Figure 6**). Similar in the case of the *Lrp* samples, longer-chain acylcarnitines over 22 were not detected well.

Short and medium chain length acylcarnitines from *Repo-Gal4* >*Orct*+*Orct2* fly heads and parental controls. The raw signal from LC/MS is plotted, n=3 samples, of 300 fly heads each. Student's t-test with comparisons. *p < 0.05, **p < 0.01. Error bars represent standard error of the mean (SEM).

Discussion:

Our previous work suggested that endocytosis through the BBB is a function of sleep, but the nature of the molecules trafficked remained unknown. Using a dual-pronged approach of a targeted genetic screen and unbiased metabolomic analysis, we report here that the passage of lipids through the BBB is important for sleep. Blocking such transport increases sleep in conjunction with an accumulation of acylcarnitines.

Through a pan-glial RNAi knockdown screen of candidate genes expressed in the fly barrier, we identified molecules that affect daily sleep amount. In follow-up experiments, we targeted knockdown to each barrier layer separately, which is subject to the concern that behavioral phenotypes requiring simultaneous knockdown in both barrier populations would be missed. Nevertheless, we consider this scenario to be less probable, as permeability through the populations is quite different, with smaller solutes likely passing through the PG but not the tight barrier of the SPG, lipophilic solutes or xenobiotics potentially passing through each uninhibited, and larger solute requiring endocytic mechanisms that likely have to work in each population in tandem. Therefore, in most cases of knockdown, transport would either be inhibited by the one barrier population essential for it, or would be interrupted by either population. This was indeed the case for the lipid and carnitine transporters we focused on, where knockdown in a specific layer or either layer of the BBB was sufficient for a phenotype. While there was redundancy at the level of the transporters, the two barrier layers did not compensate for each other.

An additional consideration of preliminarily screening with pan-glial drivers is that if knockdown in multiple glial subtypes has opposing effects on sleep, we may have obscured a role for the barrier cells. Again, we attempted to minimize this risk by primarily selecting genes whose expression is both highly abundant and specifically enriched in the barrier populations, as opposed to the set of all glial cells in the transcriptome dataset (DeSalvo et al., 2014). The assumption is that multifold expression in the barrier populations is indicative of prevailing importance in these cells, although this is a caveat.

The vesicular monoamine transporter (VMAT) has previously been identified as a target of reserpine, which promotes sleep in the fly (Nall et al., 2014). VMAT mutants exhibit higher baseline sleep, and also lose less sleep than controls when subject to mechanical sleep deprivation. VMAT can traffic multiple monoamines such as dopamine, serotonin, histamine and octopamine, but no single neuronal population or neurotransmitter system was implicated as responsible for the VMAT sleep phenotype (Nall et al., 2014).

In flies, VMAT exists as two isoforms, VMAT-A, which is expressed in monoaminergic neurons, and VMAT-B, which appears to be specific to perineurial glia (DeSalvo et al., 2014), as it is also found in fenestrated glia in the visual system (Romero-Calderon, Uhlenbrock et al. 2008), which are a specialized form of perineurial glia (Kremer, Jung et al. 2017). It is unknown whether VMAT-B would functional similarly in glia as VMAT-A does in neurons. VMAT-B contains an additional cytoplasmic domain, which has been suggested to promote retention in the plasma membrane as opposed to trafficking to vesicles (Greer, Grygoruk et al. 2005). *VMAT* knockdown increased sleep, as did disrupting endocytic trafficking at the barrier (Artiushin, Zhang et al. 2018). Whole-brain levels of monoamines were not altered in flies that expressed *Shi*¹ in glia, nevertheless it is possible that this gross analysis would not be sensitive to local changes at the barrier. In the visual system glia, VMAT-B may be necessary for uptake of histamine (Romero-Calderon, Uhlenbrock et al. 2008). Interestingly, histamine is known to alter permeability of the blood-brain barrier in mammals (Lu, Diehl et al. 2010).

Cln7 is a major facilitator superfamily transporter implicated in neuronal ceroid lipofuscinoses, and hence considered to impact lysosomal/autophagal function (Siintola, Topcu et al. 2007). Neither the function, nor what this transporter traffics, are known, but it is thought to be vesicular as well, and is expressed in the perineurial glia in flies (Mohammed, O'Hare et al. 2017). Knockdown of *Cln7* in all glia affected sleep in the opposite direction from knockdown only in the PG. One potential explanation would be that *Cln7* acts on sleep in opposing ways in different glial populations, although protein expression data suggest that *Cln7* is quite limited in the brain, and it is not clear whether it is in other glial populations.

Our metabolomic data indicated that acylcarnitines are elevated in the heads of the long-sleeping Repo>Shi¹ flies. Acylcarnitines are transported to mitochondria for fatty acid oxidation, but are also secreted as they are found in plasma in mammals (Schooneman, Vaz et al. 2013). Given that circulating acylcarnitines can be taken up by cells, we investigated *Lrp1/Megalin* and *Orct/Orct2* as candidate transporters for this uptake. Lrp1 and Megalin are lipoprotein carrier receptors known to function in the fly barrier (Brankatschk, Dunst et al. 2014) and although knockdown of each one separately in all glia did not affect sleep, reducing expression of both in all glia or barrier glia increased sleep. Likewise, knockdown of *Orct* and *Orct2*, which are homologs of the human carnitine transporters (Eraly and Nigam 2002) and transport carnitine as well as acylcarnitines (Pochini, Oppedisano et al. 2004), increases sleep. LC-MS

analysis shows that knockdown of these transporters enriches acylcarnitines in fly heads just as blocking endocytosis does, supporting the idea that Lrp and Orct are among the proteins affected by the block in endocytosis. Exactly where the accumulation occurs is not known at this time, but we suggest that it is largely extracellular.

Acylcarnitine accumulation in flies with blocked glial endocytosis or lipid transport could occur as a consequence of the high sleep in these animals. We believe this is unlikely as an increase in acylcarnitines appears to generally occur under conditions of sleep deprivation i.e. conditions that would promote sleep. Thus, carnitine conjugation of long chain fatty acids was reported in cortical metabolites of sleep-deprived mice, while short and medium chain fatty acids were reduced (Hinard, Mikhail et al. 2012). Changes in acylcarnitines were also noted in the peripheral blood of sleep-deprived or sleep-restricted humans (Davies, Ang et al. 2014, Weljie, Meerlo et al. 2015) as well as over a day:night cycle (Dallman etal (Ang, Revell et al. 2012, Dallmann, Viola et al. 2012). We find too that a common feature of short-sleeping fly mutants, which are models for chronic sleep deprivation, is an increase in acylcarnitines are generally associated with sleepiness. While this does not necessarily mean that they promote sleep, we suggest that acylcarnitines are a key marker of sleep need across species, and could be exploited for this purpose.

Methods

Fly Stocks

The initial screen was performed with lab stock drivers: ;; Repo-GAL4/TM6c, Sb and UAS-*Dicer*; *Repo*GeneSwitch. SPG driver *Moody*-GAL4 and surface driver 9-137-Gal4 was shared by Roland Bainton, while PG driver NP6293-GAL4 was a gift of Marc Freeman. ;;UAS-20xShi.ts1 (referred to as UAS-20xShi¹) was shared by Gerald Rubin. *Rab9*-GAL4 (#51587) was acquired from Bloomington. RNAi lines were ordered from VDRC (KK and GD collection) and Bloomington (TRiP collection) stock centers, with the stock number provided in Figure 1 and supplement Figure 1. For control genotypes, GAL4 and UAS lines were crossed to iso31.

Behavior

Flies were crossed and raised on standard food in bottles. Offspring were kept at 25 °C, in LD12:12 conditions until at least 6 days post-eclosion, before age-matched flies which were group housed in bottles were used in sleep assays. Mated females were loaded into glass locomotor tubes with 2% agar 5% sugar. Sleep was quantified by the Drosophila Activity Monitor (DAM) system, by the established minimum definition of 5 minutes of inactivity. Data was analyzed in PySolo (Gilestro et al., 2009).

Metabolomics

Entire flies were quickly frozen in Falcon tubes chilled on dry ice, and placed at -80°C. Each tube contained 50 flies. Heads were subsequently removed from the body by briefly vortexing the tube. Heads were then separated from the rest of the body by an array of copper sieves, whose housing was buried in dry ice to keep the preparation cool. For each sample, 200 fly heads, of equal parts from males and females, were collected in 1.5 mL tubes which were quickly refrozen. Samples were shipped on dry ice to Metabolon, Inc., where they were assessed by LC-MS (Evans...Milgram 2009). For metabolomic analysis of *Lrp* and *Orct* knockdown fly lines, each sample contained 300 fly heads, of equal parts from males and females. Samples were processed by LC-MS at the Penn Metabolomics Core.

Statistics:

For both behavioral and acylcarnitine metabolomics results, the experimental group was compared to two parental controls by One-Way ANOVA with Holm-Sidak post-hoc tests. For the initial comparisons of metabolomics data, Metabolon performed Welch's t-tests on scaled signal data for each metabolite,

between all conditions. Raw signal was scaled so that the median would be equal to 1, using all samples that had been concurrently run. Missing values were filled in with the lowest value of run samples for that metabolite. Additional details of statistics tests are listed in the figure legends.

Acknowledgement

We thank Dr. Chris Petucci and the Penn Metabolomics Core for providing measurements of acylcarnitines in fly heads.

Funding: The work was supported by HHMI and by R01DK120757

References

Ang, J. E., V. Revell, A. Mann, S. Mäntele, D. T. Otway, J. D. Johnston, A. E. Thumser, D. J. Skene and F. Raynaud (2012). "Identification of human plasma metabolites exhibiting time-of-day variation using an untargeted liquid chromatography-mass spectrometry metabolomic approach." <u>Chronobiology</u> international **29**(7): 868-881.

Artiushin, G., S. L. Zhang, H. Tricoire and A. Sehgal (2018). "Endocytosis at the Drosophila blood–brain barrier as a function for sleep." <u>eLife</u> **7**: e43326.

Bedont, J., A. Kolesnik, D. Malik, A. Weljie and A. Sehgal (2021). "Polyamine elevation and nitrogen stress are toxic hallmarks of chronic sleep loss in Drosophila melanogaster." <u>bioRxiv</u>: 2021.2010.2001.462746.

Brankatschk, M., S. Dunst, L. Nemetschke and S. Eaton (2014). "Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling." <u>Elife</u> **3**.

Cao, J., R. Albertson, B. Riggs, C. M. Field and W. Sullivan (2008). "Nuf, a Rab11 effector, maintains cytokinetic furrow integrity by promoting local actin polymerization." <u>J Cell Biol</u> **182**(2): 301-313. Chell, J. M. and A. H. Brand (2010). "Nutrition-responsive glia control exit of neural stem cells from quiescence." <u>Cell</u> **143**(7): 1161-1173.

Cheng, Z., M. Tsuda, Y. Kishita, Y. Sato and T. Aigaki (2013). "Impaired energy metabolism in a Drosophila model of mitochondrial aconitase deficiency." <u>Biochem Biophys Res Commun</u> **433**(1): 145-150. Dallmann, R., A. U. Viola, L. Tarokh, C. Cajochen and S. A. Brown (2012). "The human circadian metabolome." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **109**(7): 2625-2629.

Davies, S. K., J. E. Ang, V. L. Revell, B. Holmes, A. Mann, F. P. Robertson, N. Cui, B. Middleton, K. Ackermann, M. Kayser, A. E. Thumser, F. I. Raynaud and D. J. Skene (2014). "Effect of sleep deprivation on the human metabolome." <u>Proceedings of the National Academy of Sciences of the United States of America</u> **111**(29): 10761-10766.

DeSalvo, M. K., S. J. Hindle, Z. M. Rusan, S. Orng, M. Eddison, K. Halliwill and R. J. Bainton (2014). "The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes." <u>Frontiers in neuroscience</u> **8**: 346-346.

DeSalvo, M. K., S. J. Hindle, Z. M. Rusan, S. Orng, M. Eddison, K. Halliwill and R. J. Bainton (2014). "The Drosophila surface glia transcriptome: evolutionary conserved blood-brain barrier processes." <u>Frontiers in neuroscience</u> **8**.

Eraly, S. A. and S. K. Nigam (2002). "Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters." <u>Biochem Biophys Res Commun</u> **297**(5): 1159-1166.

Greer, C. L., A. Grygoruk, D. E. Patton, B. Ley, R. Romero-Calderon, H. Y. Chang, R. Houshyar, R. J. Bainton, A. Diantonio and D. E. Krantz (2005). "A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine." J Neurobiol **64**(3): 239-258.

Hediger, M. A., B. Clemencon, R. E. Burrier and E. A. Bruford (2013). "The ABCs of membrane transporters in health and disease (SLC series): introduction." <u>Mol Aspects Med</u> 34(2-3): 95-107.
Herz, J. (2003). "LRP: a bright beacon at the blood-brain barrier." <u>J Clin Invest</u> 112(10): 1483-1485.
Hinard, V., C. Mikhail, S. Pradervand, T. Curie, R. H. Houtkooper, J. Auwerx, P. Franken and M. Tafti (2012). "Key electrophysiological, molecular, and metabolic signatures of sleep and wakefulness revealed in primary cortical cultures." <u>J Neurosci</u> 32(36): 12506-12517.

Kou, L., Q. Yao, M. Sun, C. Wu, J. Wang, Q. Luo, G. Wang, Y. Du, Q. Fu, Z. He, V. Ganapathy and J. Sun (2017). "Cotransporting Ion is a Trigger for Cellular Endocytosis of Transporter-Targeting Nanoparticles: A Case Study of High-Efficiency SLC22A5 (OCTN2)-Mediated Carnitine-Conjugated Nanoparticles for Oral Delivery of Therapeutic Drugs." <u>Adv Healthc Mater</u> **6**(17).

Kremer, M. C., C. Jung, S. Batelli, G. M. Rubin and U. Gaul (2017). "The glia of the adult Drosophila nervous system." <u>Glia</u> **65**(4): 606-638.

Lahjouji, K., G. A. Mitchell and I. A. Qureshi (2001). "Carnitine transport by organic cation transporters and systemic carnitine deficiency." <u>Mol Genet Metab</u> **73**(4): 287-297.

Lu, C., S. A. Diehl, R. Noubade, J. Ledoux, M. T. Nelson, K. Spach, J. F. Zachary, E. P. Blankenhorn and C. Teuscher (2010). "Endothelial histamine H1 receptor signaling reduces blood-brain barrier permeability and susceptibility to autoimmune encephalomyelitis." <u>Proc Natl Acad Sci U S A</u> **107**(44): 18967-18972. Maniere, G., A. B. Ziegler, F. Geillon, D. E. Featherstone and Y. Grosjean (2016). "Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells." <u>Cell Rep</u> **17**(1): 137-148. Martin, J. F., E. Hersperger, A. Simcox and A. Shearn (2000). "minidiscs encodes a putative amino acid transporter subunit required non-autonomously for imaginal cell proliferation." <u>Mech Dev</u> **92**(2): 155-167.

Mohammed, A., M. B. O'Hare, A. Warley, G. Tear and R. I. Tuxworth (2017). "in vivo localization of the neuronal ceroid lipofuscinosis proteins, CLN3 and CLN7, at endogenous expression levels." <u>Neurobiol Dis</u> **103**: 123-132.

Pochini, L., F. Oppedisano and C. Indiveri (2004). "Reconstitution into liposomes and functional characterization of the carnitine transporter from renal cell plasma membrane." <u>Biochim Biophys Acta</u> **1661**(1): 78-86.

Romero-Calderon, R., G. Uhlenbrock, J. Borycz, A. F. Simon, A. Grygoruk, S. K. Yee, A. Shyer, L. C. Ackerson, N. T. Maidment, I. A. Meinertzhagen, B. T. Hovemann and D. E. Krantz (2008). "A glial variant of the vesicular monoamine transporter is required to store histamine in the Drosophila visual system." <u>PLoS Genet 4(11)</u>: e1000245.

Schooneman, M. G., F. M. Vaz, S. M. Houten and M. R. Soeters (2013). "Acylcarnitines: reflecting or inflicting insulin resistance?" <u>Diabetes</u> **62**(1): 1-8.

Siintola, E., M. Topcu, N. Aula, H. Lohi, B. A. Minassian, A. D. Paterson, X. Q. Liu, C. Wilson, U. Lahtinen, A. K. Anttonen and A. E. Lehesjoki (2007). "The novel neuronal ceroid lipofuscinosis gene MFSD8 encodes a putative lysosomal transporter." <u>Am J Hum Genet</u> **81**(1): 136-146.

Speder, P. and A. H. Brand (2014). "Gap junction proteins in the blood-brain barrier control nutrientdependent reactivation of Drosophila neural stem cells." <u>Dev Cell</u> **30**(3): 309-321.

Volkenhoff, A., A. Weiler, M. Letzel, M. Stehling, C. Klambt and S. Schirmeier (2015). "Glial Glycolysis Is Essential for Neuronal Survival in Drosophila." <u>Cell Metab</u> **22**(3): 437-447.

Weiler, A., A. Volkenhoff, H. Hertenstein and S. Schirmeier (2017). "Metabolite transport across the mammalian and insect brain diffusion barriers." <u>Neurobiol Dis</u> **107**: 15-31.

Weljie, A. M., P. Meerlo, N. Goel, A. Sengupta, M. S. Kayser, T. Abel, M. J. Birnbaum, D. F. Dinges and A. Sehgal (2015). "Oxalic acid and diacylglycerol 36:3 are cross-species markers of sleep debt." <u>Proc Natl Acad Sci U S A</u> **112**(8): 2569-2574.

Wu, Y., X. Zheng, M. Zhang, A. He, Z. Li and X. Zhan (2010). "Cloning and functional expression of Rh50-like glycoprotein, a putative ammonia channel, in Aedes albopictus mosquitoes." <u>J Insect Physiol</u> **56**(11): 1599-1610.

Sub Pathway	Biochemical Name	Platform	Comp ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	<u>Gal4>UAS</u> UAS Ctrl	<u>UAS Ctrl</u> GAL4 Ctrl
	glycine	LC/MS pos early	58	<u>C00037</u>	HMDB00123	750	0.73	0.90	0.81
	N-acetylglycine	LC/MS polar	27710		HMDB00532	10972	0.77	0.96	0.80
	sarcosine	LC/MS pos early	1516	<u>C00213</u>	HMDB00271	1088	0.36	1.12	0.33
	betaine	LC/MS pos early	3141	<u>C00719</u>	HMDB00043	247	0.56	0.56	1.01
Charing Caring and Transmiss Matcheling	serine	LC/MS pos early	1648	<u>C00065</u>	HMDB00187	5951	1.09	1.01	1.08
Glycine, Serine and Threonine Metabolism	N-acetylserine	LC/MS pos early	37076		HMDB02931	65249	0.87	1.02	0.85
	2-methylserine	LC/MS pos early	53229	<u>C02115</u>		94309	0.75	0.50	1.49
	threonine	LC/MS pos early	1284	<u>C00188</u>	HMDB00167	6288	0.72	0.94	0.77
	N-acetylthreonine	LC/MS polar	33939			152204	0.56	0.90	0.63
	homoserine	LC/MS pos early	18351	<u>C00263</u>	HMDB00719	12647	1.27	0.79	1.61
	alanine	LC/MS pos early	1126	<u>C00041</u>	HMDB00161	5950	0.98	0.96	1.03
	N-acetylalanine	LC/MS polar	1585	<u>C02847</u>	HMDB00766	88064	0.73	0.89	0.82
Alexing and Assessments Methods aligned	N-methylalanine	LC/MS pos early	37069	<u>C02721</u>	HMDB01906	5288725	0.59	0.63	0.93
Alanine and Aspartate Metabolism	N-acetylaspartate (NAA)	LC/MS polar	22185	<u>C01042</u>	HMDB00812	65065	1.46	1.12	1.30
	asparagine	LC/MS pos early	512	C00152	HMDB00168	6267	1.11	0.81	1.37
	N-acetylasparagine	LC/MS pos early	33942		HMDB06028	99715	0.81	0.89	0.91
	glutamate	LC/MS pos early	57	<u>C00025</u>	HMDB00148	611	1.41	1.06	1.33
	glutamine	LC/MS pos early	53	<u>C00064</u>	HMDB00641	5961	1.32	0.87	1.51
	alpha-ketoglutaramate*	LC/MS polar	62101				1.84	0.96	1.92
	N-acetylglutamate	LC/MS polar	15720	<u>C00624</u>	HMDB01138	70914	1.27	0.61	2.08
	N-acetylglutamine	LC/MS pos early	33943	C02716	HMDB06029	182230	0.68	0.92	0.74
Glutamate Metabolism	glutamate, gamma-methyl ester	LC/MS pos early	33487		HMDB61715	68662	0.80	0.86	0.93
	pyroglutamine*	LC/MS pos early	46225			134508	0.34	0.95	0.36
	gamma-aminobutyrate (GABA)	LC/MS pos early	1416	<u>C00334</u>	HMDB00112	119	1.14	1.03	1.11
	carboxyethyl-GABA	LC/MS pos early	40007		HMDB02201	2572	0.76	1.15	0.66
	N-methyl-GABA	LC/MS pos early	39577	<u>C15987</u>		70703	0.82	0.64	1.29
	propionylglutamine	LC/MS pos early	54909				0.65	1.05	0.62
	histidine	LC/MS neg	59	<u>C00135</u>	HMDB00177	6274	0.84	0.81	1.04
	1-methylhistidine	LC/MS pos early	30460	<u>C01152</u>	HMDB00001	92105	1.11	0.73	1.51
	3-methylhistidine	LC/MS pos early	15677	<u>C01152</u>	HMDB00479	64969	1.91	0.26	7.23
	N-acetylhistidine	LC/MS pos early	33946	<u>C02997</u>	HMDB32055	75619	0.82	0.81	1.00
Histidine Metabolism	imidazole propionate	LC/MS pos early	40730		HMDB02271	70630	0.46	0.77	0.60
	imidazole lactate	LC/MS pos early	15716	<u>C05568</u>	HMDB02320	440129	0.57	0.75	0.75
	histamine	LC/MS pos early	1574	C00388	HMDB00870	774	1.05	0.93	1.13
	4-imidazoleacetate	LC/MS pos early	32349	C02835	HMDB02024	96215	0.86	0.92	0.94
	N-acetylhistamine	LC/MS pos early	48679	<u>C05135</u>	HMDB13253	69602	1.92	1.64	1.17
	lysine	LC/MS pos early	1301	<u>C00047</u>	HMDB00182	5962	1.31	1.10	1.19
	N6,N6,N6-trimethyllysine	LC/MS pos early	1498	<u>C03793</u>	HMDB01325	440120	0.96	1.96	0.49
Lucian Matakalian	5-(galactosylhydroxy)-L-lysine	LC/MS pos early	43582				1.05	0.88	1.19
Lysine ivietabolism	saccharopine	LC/MS polar	1495	<u>C00449</u>	HMDB00279	160556	1.53	1.37	1.11
	pipecolate	LC/MS pos early	1444	<u>C00408</u>	HMDB00070	849	0.74	1.22	0.61
	N-trimethyl 5-aminovalerate	LC/MS pos early	57687				3.87	1.87	2.07

Sub Pathway	Biochemical Name	Platform	Com p ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	<u>Gal4>UAS</u> UAS Ctrl	<u>UAS Ctrl</u> GAL4 Ctrl
Phonylalaning Matabolism	phenylalanine	LC/MS pos early	64	<u>C00079</u>	HMDB00159	6140	0.81	0.90	0.90
	N-acetylphenylalanine	LC/MS neg	33950	<u>C03519</u>	HMDB00512	74839	0.58	1.37	0.42
	tyrosine	LC/MS pos early	1299	<u>C00082</u>	HMDB00158	6057	2.61	1.29	2.03
Tyrosine Metabolism	dihydoxyphenylalanine (L-DOPA)	LC/MS pos early	1576	<u>C00355</u>	HMDB00181	6047	1.41	1.04	1.36
	N-formylphenylalanine	LC/MS neg	48433			759256	1.50	1.31	1.15
	tryptophan	LC/MS pos early	54	<u>C00078</u>	HMDB00929	6305	1.17	1.02	1.15
	kynurenine	LC/MS pos early	15140	<u>C00328</u>	HMDB00684	161166	2.29	1.44	1.59
Tryptophan Metabolism	kynurenate	LC/MS neg	1417	<u>C01717</u>	HMDB00715	3845	3.21	2.14	1.50
	3-hydroxykynurenine	LC/MS pos early	22110	<u>C02794</u>	HMDB00732	89	4.59	1.17	3.94
	xanthurenate	LC/MS neg	15679	<u>C02470</u>	HMDB00881	5699	2.05	1.07	1.91
	N-acetylserotonin	LC/MS neg	1500	<u>C00978</u>	HMDB01238	903	0.81	0.99	0.82
	leucine	LC/MS pos early	60			5246661	0.64	0.95	0.68
	N-acetylleucine	LC/MS neg	1587	<u>C02710</u>	HMDB11756	70912	0.61	1.14	0.53
	4-methyl-2-oxopentanoate	LC/MS neg	22116	<u>C00233</u>	HMDB00695	70	0.61	1.17	0.52
	beta-hydroxyisovalerate	LC/MS polar	12129		HMDB00754	69362	0.81	1.05	0.78
	isoleucine	LC/MS pos early	1125	<u>C00407</u>	HMDB00172	6306	0.71	0.94	0.76
Leucine, Isoleucine and Valine Metabolism	3-methyl-2-oxovalerate	LC/MS neg	15676	<u>C00671</u>	HMDB03736	47	0.75	1.16	0.65
	alpha-hydroxyisovalerate	LC/MS polar	46537		HMDB00407	99823	0.81	0.96	0.84
	ethylmalonate	LC/MS polar	15765		HMDB00622	11756	0.81	0.83	0.98
	methylsuccinate	LC/MS polar	15745		HMDB01844	10349	0.96	0.82	1.18
	valine	LC/MS neg	1649	<u>C00183</u>	HMDB00883	6287	0.62	0.87	0.72
	3-methyl-2-oxobutyrate	LC/MS polar	44526	<u>C00141</u>	HMDB00019	49	0.88	1.28	0.68
	3-hydroxyisobutyrate	LC/MS polar	1549	<u>C06001</u>	HMDB00336	87	0.72	1.09	0.66
	methionine	LC/MS pos early	1302	<u>C00073</u>	HMDB00696	6137	0.75	1.08	0.70
	N-acetylmethionine	LC/MS neg	1589	<u>C02712</u>	HMDB11745	448580	0.54	0.96	0.57
	N-formylmethionine	LC/MS neg	2829	<u>C03145</u>	HMDB01015	439750	0.76	1.53	0.50
	methionine sulfoxide	LC/MS pos early	18374	<u>C02989</u>	HMDB02005	158980	0.57	0.75	0.77
	N-acetylmethionine sulfoxide	LC/MS pos early	45428			193368	0.60	0.90	0.67
	S-adenosylhomocysteine (SAH)	LC/MS neg	42382	<u>C00021</u>	HMDB00939	439155	1.14	1.22	0.93
	cystathionine	LC/MS pos early	15705	<u>C02291</u>	HMDB00099	439258	0.97	1.14	0.85
Methionine, Cysteine, SAM and Taurine Metabolism	cysteine	LC/MS pos early	1868	<u>C00097</u>	HMDB00574	5862	0.49	0.73	0.67
	N-acetylcysteine	LC/MS pos early	1586	<u>C06809</u>	HMDB01890	12035	0.87	0.89	0.97
	S-methylcysteine sulfoxide	LC/MS pos early	43378		HMDB29432	82142	1.12	0.71	1.58
	cystine	LC/MS neg	56	<u>C00491</u>	HMDB00192	67678	0.63	0.64	1.00
	lanthionine	LC/MS pos early	42002			98504	0.75	1.48	0.50
	cysteine sulfinic acid	LC/MS pos early	37443	<u>C00606</u>	HMDB00996	109	1.84	0.87	2.12
	taurine	LC/MS neg	2125	<u>C00245</u>	HMDB00251	1123	0.96	0.88	1.09
	N-acetyltaurine	LC/MS neg	48187			159864	1.02	0.85	1.20
	cyano-alanine	LC/MS polar	35660	<u>C02512</u>		13538	1.00	0.77	1.31
	arginine	LC/MS pos early	1638	<u>C00062</u>	HMDB00517	232	0.99	0.96	1.03
	argininosuccinate	LC/MS pos early	15497	<u>C03406</u>	HMDB00052	828	1.11	1.23	0.90
	ornithine	LC/MS pos early	1493	<u>C00077</u>	HMDB03374	6262	1.38	1.38	1.00
	2-oxoarginine*	LC/MS pos early	55072	<u>C03771</u>	HMDB04225	558	0.73	1.00	0.74
	citruline	LC/MS pos early	2132	<u>C00327</u>	HMDB00904	9750	0.73	0.97	0.75
Urea cycle; Arginine and Proline Metabolism	proline	LC/MS pos early	1898	<u>C00148</u>	HMDB00162	145742	1.31	1.02	1.28
	dimethylarginine (SDMA + ADMA)	LC/MS pos early	36808	<u>C03626</u>	HMDB01539	123831	1.38	1.09	1.27
	N-acetylarginine	LC/MS pos early	33953	<u>C02562</u>	HMDB04620	67427	1.72	1.72	1.00
	N-delta-acetylornithine	LC/MS pos early	43249			9920500	1.35	1.09	1.24
	N-alpha-acetylornithine	LC/MS pos early	32984	<u>C00437</u>	HMDB03357	439232	1.54	1.48	1.04
	trans-4-hydroxyproline	LC/MS pos early	32306	<u>C01157</u>	HMDB00725	5810	0.77	0.62	1.23
	argininate*	LC/MS pos early	57461		HMDB03148	160437	0.75	1.15	0.65

Sub Pathway	Biochemical Name	Platform	Comp ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	<u>Gal4>UAS</u> UAS Ctrl	<u>UAS Ctrl</u> GAL4 Ctrl
	putrescine	LC/MS pos early	1408	<u>C00134</u>	HMDB01414	1045	5.09	0.83	6.14
	N-acetyl-isoputreanine*	LC/MS pos early	62309				1.00	1.00	1.00
Polyamine Metabolism	spermidine	LC/MS pos early	485	<u>C00315</u>	HMDB01257	1102	1.23	0.99	1.25
	5-methylthioadenosine (MTA)	LC/MS pos early	1419	<u>C00170</u>	HMDB01173	439176	1.48	1.17	1.26
	4-acetamidobutanoate	LC/MS pos early	1558	002946	HMDB03681	18189	0.89	0.86	1.03
Guanidino and Acetamido Metabolism	4-guanidinobutanoate	LC/MS pos early	15681	C01035	HMDB03464	500	1.00	1.14	0.87
	glutathione, reduced (GSH)	LC/MS pos early	2127	C00051	HMDB00125	124886	4.09	0.83	4.94
	cysteine-glutathione disulfide	LC/MS pos early	35159		HMDB00656	4247235	1.72	0.82	2.10
Glutathione Metabolism	cysteinylglycine	LC/MS pos early	35637	<u>C01419</u>	HMDB00078	439498	0.36	0.49	0.73
	cysteinylglycine disulfide*	LC/MS pos early	62103		HMDB00709		1.89	0.88	2.15
	5-oxoproline	LC/MS neg	1494	<u>C01879</u>	HMDB00267	7405	0.64	0.79	0.80
	gamma-glutamylalanine	LC/MS pos early	37063		HMDB29142	440103	0.88	0.91	0.97
	gamma-glutamylcysteine	LC/MS pos early	1778	<u>C00669</u>	HMDB01049	842	0.25	0.58	0.43
	gamma-glutamylglutamate	LC/MS pos early	36738	<u>C05282</u>	HMDB11737	92865	0.90	0.83	1.08
	gamma-glutamylglutamine	LC/MS pos early	2730	<u>C05283</u>	HMDB11738	150914	1.66	1.13	1.47
	gamma-glutamylglycine	LC/MS pos early	33949		HMDB11667	165527	0.37	0.63	0.59
Gamma-glutamyl Amino Acid	gamma-glutamylhistidine	LC/MS pos early	18245			7017195	0.55	0.75	0.73
		LC/MS neg	34457		HMDB11170	14253342	0.40	1.01	0.39
	gamma-glutamylieucine	LC/MS neg	18369		HMDB11171	151023	0.45	0.87	0.52
	gamma-glutamyi-alpha-iysine	LC/MS pos early	55015			05254	1.29	1.32	0.98
	gamma-glutamythreenine	LC/MS pos early	33364		HMDB29155	76078708	0.43	0.94	0.51
	gamma-glutamykaline	LC/MS pos early	43829		HMDB11172	7015683	0.48	0.34	0.69
	alanylalanine	LC/MS pos early	15129		HMDB28680	5484352	1 13	0.91	1.24
	alanylolutamate	LC/MS pos early	37064			656476	0.84	0.84	1.00
	alanylproline	LC/MS pos early	37083		HMDB28695	418040	0.83	1.21	0.69
	alanylthreonine	LC/MS pos early	37085		HMDB28697	426318	1.05	0.98	1.06
	alpha-glutamylalanine	LC/MS pos early	41369		HMDB03764	100098	0.90	0.93	0.97
	alpha-glutamylglutamate	LC/MS pos early	22166	<u>C01425</u>	HMDB28818	439500	0.87	1.07	0.81
	asparaginylalanine	LC/MS pos early	54731		HMDB28724		1.12	0.98	1.14
	glutaminylglutamate	LC/MS pos early	43025				0.71	0.94	0.76
	serylthreonine	LC/MS pos early	54732		HMDB29049		0.69	0.92	0.74
	glycylglycine	LC/MS pos early	21029	<u>C02037</u>	HMDB11733	11163	0.86	1.05	0.82
	glycylisoleucine	LC/MS pos early	36659		HMDB28844	88079	1.04	0.88	1.18
	glycylleucine	LC/MS pos early	34398	<u>C02155</u>	HMDB00759	92843	0.89	0.83	1.07
	glycylphenylalanine	LC/MS neg	33954		HMDB28848	92953	1.24	1.19	1.04
	giycyiproline	LC/MS pos early	22171		HMDB00721	3013625	0.69	0.75	0.92
	giycyivaine	LC/MS pos early	18357			5246000	1.72	0.83	1.73
	isoleucylalutamate	LC/MS pos early	40040		1100020300	3240003	0.96	1.23	0.79
	isoleucylalutamine	LC/MS pos early	40019			7020102	1.60	1.05	1.52
	isoleucylglycine	LC/MS neg	40008		HMDB28907	342532	1.15	1.09	1.05
	isoleucylthreonine	LC/MS pos early	42968		HMDB28917	16122515	1.46	0.95	1.53
	leucylalanine	LC/MS pos early	40010		HMDB28922	259321	4.22	1.01	4.19
Dipeptide	leucylglycine	LC/MS pos early	40045		HMDB28929	79070	1.67	0.96	1.73
	leucylleucine	LC/MS pos early	36756	C11332	HMDB28933	76807	5.53	0.92	6.02
	leucylproline	LC/MS pos early	35663		HMDB11175	80817	0.52	0.94	0.56
	leucylthreonine	LC/MS pos early	42969		HMDB28939	10353878	2.16	0.91	2.37
	phenylalanylglutamate	LC/MS neg	41432			4422358	0.87	0.91	0.96
	prolylalanine	LC/MS pos early	40705		HMDB29010	418041	0.87	0.96	0.90
	prolylglutamine	LC/MS pos early	40659				1.11	0.92	1.21
	prolylglycine	LC/MS pos early	40703		HMDB11178	6426709	0.86	1.01	0.85
	prolylleucine	LC/MS pos early	31914			3527720	0.94	0.92	1.03
	proyiproline	LC/MS pos early	40/31		HIVIDB11180	11622593	0.71	0.89	0.80
	prolyteneonine	LC/MS pos early	44551			152307	0.74	0.81	0.67
	servlalanine	LC/MS pos early	42049		HMDR20032	17958834	1.07	0.85	1.03
	servlleucine	LC/MS pos early	40066		HMDB29043	7015695	1.15	1.11	1.04
	serylproline	LC/MS pos early	42055		HMDB29047	4369021	1.04	0.90	1.16
	serylserine	LC/MS pos early	42053			138784	0.94	0.83	1.13
	serylvaline	LC/MS pos early	42058		HMDB29052	7020159	1.45	0.95	1.54
	valylaspartate	LC/MS pos early	40650	1	HMDB29123	9964657	0.91	0.92	0.99
	valylglycine	LC/MS neg	40475		HMDB29127	136487	1.07	1.01	1.06
	valylproline	LC/MS pos early	40485		HMDB29135	5003412	0.70	0.95	0.74
	isoleucylleucine/leucylisoleucine	LC/MS pos early	52322				2.09	0.79	2.65
	alpha-glutamylproline*	LC/MS pos early	57731				1.00	1.00	1.00
Modified Peptides	pyroglutamylleucine*	LC/MS neg	62096				0.94	1.26	0.75

Sub Pathway	Biochemical Name	Platform	Comp ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	<u>Gal4>UAS</u> UAS Ctrl	UAS Ctrl GAL4 Ctrl
	glucose	LC/MS polar	48152	<u>C00031</u>	HMDB00122	79025	1.03	1.01	1.01
	fructose 1,6-diphosphate/glucose 1,6-diphosphate/m	LC/MS neg	46896	<u>C00354</u>			1.62	0.84	1.93
	dihydroxyacetone phosphate (DHAP)	LC/MS neg	15522	<u>C00111</u>	HMDB01473	668	1.48	1.68	0.88
Glycolysis Glyconeogenesis and Byruyate Metaboli	3-phosphoglycerate	LC/MS neg	1414	<u>C00597</u>	HMDB00807	724	0.86	0.81	1.06
Giycolysis, Gluconeogenesis, and Fyruvale Metaboli	phosphoenolpyruvate (PEP)	LC/MS neg	597	<u>C00074</u>	HMDB00263	1005	0.77	0.73	1.06
	pyruvate	LC/MS polar	48990	<u>C00022</u>	HMDB00243	1060	1.01	0.86	1.17
	lactate	LC/MS polar	527	<u>C00186</u>	HMDB00190	612	0.63	0.85	0.74
	glycerate	LC/MS polar	1572	<u>C00258</u>	HMDB00139	752	1.04	1.12	0.93
Pentose Phosphate Pathway	6-phosphogluconate	LC/MS neg	15442	<u>C00345</u>	HMDB01316	91493	0.60	0.71	0.86
renose mosphale rainway	sedoheptulose-7-phosphate	LC/MS neg	35649	<u>C05382</u>	HMDB01068	616	0.87	0.77	1.13
	ribose	LC/MS polar	1471	<u>C00121</u>	HMDB00283	5779	0.94	1.01	0.94
	ribitol	LC/MS polar	15772	<u>C00474</u>	HMDB00508	6912	0.01	0.87	0.02
	ribonate	LC/MS polar	27731	<u>C01685</u>	HMDB00867	5460677	0.78	0.91	0.86
Pantosa Matabalism	arabitol/xylitol	LC/MS polar	48885	<u>C01904</u>		6912	1.10	0.96	1.15
rentose metabolism	ribulose/xylulose	LC/MS polar	54671			5289590	0.74	0.94	0.79
	arabonate/xylonate	LC/MS polar	48255				0.93	0.93	1.00
	sedoheptulose	LC/MS polar	53237		HMDB03219	5459879	0.84	0.75	1.13
	ribulonate/xylulonate*	LC/MS polar	61858				1.01	1.00	1.01
	maltotetraose	LC/MS polar	15910	<u>C02052</u>	HMDB01296	446495	0.68	0.74	0.91
Chrongen Metabolism	maltotriose	LC/MS polar	44688	<u>C01835</u>	HMDB01262	439586	1.04	0.83	1.25
Giycogen Metabolism	maltose	LC/MS polar	15586	<u>C00208</u>	HMDB00163	10991489	1.26	0.90	1.40
	isomaltose	LC/MS polar	39777	<u>C00252</u>	HMDB02923	439193	1.02	1.13	0.91
	fructose	LC/MS polar	48195	<u>C00095</u>	HMDB00660	5984	0.85	0.90	0.94
	mannitol/sorbitol	LC/MS polar	46142	<u>C00794</u>	HMDB00247	5780	0.66	0.93	0.71
Fructose, Mannose and Galactose Metabolism	mannose	LC/MS polar	48153	<u>C00159</u>	HMDB00169	18950	0.71	0.62	1.15
	galactitol (dulcitol)	LC/MS polar	1117	<u>C01697</u>	HMDB00107	11850	0.81	0.64	1.27
	galactonate	LC/MS polar	27719	<u>C00880</u>	HMDB00565	128869	0.66	0.64	1.03
Nucleotide Sugar	UDP-N-acetylglucosamine/galactosamine	LC/MS neg	46148				0.81	0.81	1.00
	glucuronate	LC/MS polar	15443	<u>C00191</u>	HMDB00127	444791	0.75	0.95	0.79
	N-acetylglucosamine 6-phosphate	LC/MS polar	15107	<u>C00357</u>	HMDB02817	439219	2.39	0.90	2.67
Aminosugar Metabolism	N-acetylglucosaminylasparagine	LC/MS pos early	48149	<u>C04540</u>	HMDB00489	123826	1.26	0.93	1.36
	erythronate*	LC/MS polar	42420		HMDB00613	2781043	0.90	0.98	0.91
	N-acetylglucosamine/N-acetylgalactosamine	LC/MS pos early	46539		HMDB00215	24139	0.87	0.93	0.94
Advanced Glycation End-product	N6-carboxymethyllysine	LC/MS pos early	36713			123800	1.06	0.97	1.09
	citrate	LC/MS neg	1564	<u>C00158</u>	HMDB00094	311	0.85	1.18	0.72
	aconitate [cis or trans]	LC/MS neg	46173				0.95	0.92	1.03
	isocitric lactone	LC/MS polar	54724			98259	1.59	1.85	0.86
	alpha-ketoglutarate	LC/MS polar	528	<u>C00026</u>	HMDB00208	51	1.35	1.07	1.26
	succinate	LC/MS polar	1437	<u>C00042</u>	HMDB00254	1110	1.24	0.87	1.41
TCA Cycle	fumarate	LC/MS polar	1643	<u>C00122</u>	HMDB00134	444972	0.71	1.04	0.69
	malate	LC/MS neg	1303	<u>C00149</u>	HMDB00156	525	0.76	0.97	0.78
	itaconate	LC/MS polar	18373	<u>C00490</u>	HMDB02092	811	0.92	0.59	1.58
	tricarballylate	LC/MS polar	15729	<u>C19806</u>	HMDB31193	14925	0.90	0.92	0.98
	2-methylcitrate	LC/MS neg	37483	<u>C02225</u>	HMDB00379	439681	1.09	1.03	1.06
	mesaconate (methylfumarate)	LC/MS polar	18493	<u>C01732</u>	HMDB00749	638129	0.91	0.62	1.46
Oxidative Phosphorylation	acetylphosphate	LC/MS polar	15488	<u>C00227</u>	HMDB01494	186	1.13	0.71	1.60
ondative i noophoryidilori	phosphate	LC/MS pos early	42109	<u>C00009</u>	HMDB01429	1061	1.00	0.99	1.01

Sub Pathway	Biochemical Name	Platform	Comp ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	<u>Gal4>UAS</u> UAS Ctrl	<u>UAS Ctrl</u> GAL4 Ctrl
Fatty Acid Synthesis	malonate	LC/MS polar	15872	<u>C00383</u>	HMDB00691	867	0.85	0.86	1.00
	caprate (10:0)	LC/MS neg	1642	<u>C01571</u>	HMDB00511	2969	1.45	1.04	1.40
Medium Chain Fatty Acid	laurate (12:0)	LC/MS neg	1645	<u>C02679</u>	HMDB00638	3893	0.79	1.08	0.73
	5-dodecenoate (12:1n7)	LC/MS neg	33968		HMDB00529	5312378	1.17	1.14	1.03
	myristate (14:0)	LC/MS neg	1365	<u>C06424</u>	HMDB00806	11005	1.18	1.04	1.14
	myristoleate (14:1n5)	LC/MS neg	32418	<u>C08322</u>	HMDB02000	5281119	0.99	1.38	0.72
	pentadecanoate (15:0)	LC/MS neg	1361	<u>C16537</u>	HMDB00826	13849	1.40	0.98	1.43
	palmitate (16:0)	LC/MS neg	1336	<u>C00249</u>	HMDB00220	985	1.21	0.99	1.22
	palmitoleate (16:1n7)	LC/MS neg	33447	<u>C08362</u>	HMDB03229	445638	1.19	1.01	1.18
	margarate (17:0)	LC/MS neg	1121		HMDB02259	10465	1.41	0.91	1.55
Long Chain Fatty Acid	10-heptadecenoate (17:1n7)	LC/MS neg	33971		HMDB60038	5312435	1.54	0.89	1.72
	stearate (18:0)	LC/MS neg	1358	<u>C01530</u>	HMDB00827	5281	1.10	0.95	1.16
	oleate/vaccenate (18:1)	LC/MS neg	52285	010505		10501	1.16	1.04	1.11
	nonadecanoate (19:0)	LC/MS neg	1356	<u>C16535</u>	HMDB00772	12591	1.25	1.08	1.16
	10-honadecenoate (19:1n9)	LC/MS neg	33972	000405	HMDB13622	5312513	1.16	0.72	1.62
	arachidate (20:0)	LC/MS neg	1118	010520	HMDB02212	10467	1.34	0.92	1.45
	elcosendate (20:1)	LC/MS neg	33587	0000040	HIVIDB02231	5282768	1.55	1.16	1.33
	erucate (22:119)	LC/WS neg	1002	008316	HIVIDBU2068	5261110	1.16	0.82	1.41
	nexadecatrienoate (16:3n3)	LC/MS neg	22060	C16200		5312428	0.88	0.96	0.91
	steardonate (18:413)	LC/MS neg	33969	<u>C16300</u>	HIVIDB06347	3312008	0.89	0.66	0.86
	lineleste (18:2n6)	LC/MS neg	10407	C01505	HMDB00673	5280450	1.25	0.96	1.14
Polyunsaturated Fatty Acid (n3 and n6)	linelenate (10.210)	LC/MS neg	34035	006426	HMDR03073	5280034	1.10	0.97	1.14
	dihomo-linolenate (20:3n3 or n6)	LC/MS neg	35718	003242	HMDB02925	5280581	0.80	0.87	0.92
	arachidonate (20:4n6)	LC/MS neg	1110	C00219	HMDB01043	444899	1.30	1 19	1 10
	dihomo-linoleate (20:2n6)	LC/MS neg	17805	C16525	HMDB05060	6439848	1.60	1.13	0.86
	13-methylmyristate (i15:0)	LC/MS neg	38293	010020	1111200000	151014	1.20	0.86	1.40
Fatty Acid Branched	15-methylnalmitate (i17:0)	L C/MS neg	38768			17903417	1.18	0.77	1.10
r duy riold, Branonioù	17-methylstearate (i19:0)	LC/MS neg	38296		HMDB37397	3083779	1.27	0.80	1.59
	olutarate (C5-DC)	LC/MS polar	396	C00489	HMDB00661	743	0.90	1.00	0.90
	2-hvdroxvglutarate	LC/MS pos early	37253	C02630	HMDB00606	43	1.10	1.04	1.06
	adipate (C6-DC)	LC/MS polar	21134	C06104	HMDB00448	196	0.90	1.38	0.65
	suberate (C8-DC)	LC/MS polar	15730	C08278	HMDB00893	10457	1.46	1.51	0.97
	azelate (C9-DC)	LC/MS neg	18362	C08261	HMDB00784	2266	2.01	2.14	0.94
Fatty Acid, Dicarboxylate	sebacate (C10-DC)	LC/MS polar	32398	C08277	HMDB00792	5192	0.72	0.94	0.76
	dodecanedioate (C12-DC)	LC/MS neg	32388	<u>C02678</u>	HMDB00623	12736	0.59	0.94	0.62
	tetradecanedioate (C14-DC)	LC/MS neg	35669		HMDB00872	13185	0.92	1.04	0.89
	hexadecanedioate (C16-DC)	LC/MS neg	35678	C19615	HMDB00672	10459	1.30	1.18	1.10
	hexadecenedioate (C16:1-DC)*	LC/MS neg	61862				1.09	1.32	0.82
	octadecadienedioate (C18:2-DC)*	LC/MS neg	61860				1.00	1.00	1.00
Fatte Anid Amina	2-aminooctanoate	LC/MS pos late	43343		HMDB00991	69522	2.29	0.97	2.36
Fatty Acid, Amino	N-acetyl-2-aminooctanoate*	LC/MS neg	62059		HMDB59745	95555	1.15	0.90	1.28
	propionylglycine	LC/MS polar	31932		HMDB00783	98681	0.65	1.12	0.58
Fatty Acid Metabolism (also BCAA Metabolism)	methylmalonate (MMA)	LC/MS polar	1496	<u>C02170</u>	HMDB00202	487	0.70	0.96	0.73
Fatty Acid Metabolism(Acyl Glycine)	hexanoylglycine	LC/MS neg	35436		HMDB00701	99463	1.19	1.10	1.08
	acetylcarnitine (C2)	LC/MS pos early	32198	<u>C02571</u>	HMDB00201	1	4.25	2.68	1.59
	myristoylcarnitine (C14)	LC/MS pos late	33952		HMDB05066	6426854	28.81	26.39	1.09
	palmitoylcarnitine (C16)	LC/MS pos late	44681	<u>C02990</u>	HMDB00222	461	4.52	1.74	2.60
	palmitoleoylcarnitine (C16:1)*	LC/MS pos late	53223			71464547	26.50	10.35	2.56
	stearoylcarnitine (C18)	LC/MS pos late	34409		HMDB00848	6426855	1.43	1.06	1.34
	linoleoylcarnitine (C18:2)*	LC/MS pos late	46223		HMDB06469	6450015	6.77	3.14	2.15
	oleoylcarnitine (C18:1)	LC/MS pos late	35160		HMDB05065	6441392	4.00	1.92	2.08
Fatty Acid Metabolism(Acyl Carnitine)	arachidoylcarnitine (C20)*	LC/MS pos late	57513		HMDB06460		1.28	1.17	1.09
	behenoylcarnitine (C22)*	LC/MS pos late	57514				1.31	1.09	1.20
	eicosenoylcarnitine (C20:1)*	LC/MS pos late	57519				2.28	1.24	1.84
	lignoceroylcarnitine (C24)*	LC/MS pos late	57515				0.72	0.83	0.87
	margaroylcarnitine (C17)*	LC/MS pos late	57512		HMDB06210		4.05	1.47	2.76
	nervonoylcarnitine (C24:1)*	LC/MS pos late	57531				2.36	1.26	1.87
	cerotoylcarnitine (C26)*	LC/MS pos late	57516		HMDB06347		0.85	0.97	0.87
	ximenoylcarnitine (C26:1)*	LC/MS pos late	57517				0.75	0.88	0.85
Carnitine Metabolism	deoxycarnitine	LC/MS pos early	36747	<u>C01181</u>	HMDB01161	134	1.77	1.17	1.52
	carnitine	LC/MS pos early	15500	C00318	HMDB00062	10917	1.62	1.01	1.59

Sub Pathway	Biochemical Name	Platform	Comp ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	<u>Gal4>UAS</u> UAS Ctrl	<u>UAS Ctrl</u> GAL4 Ctrl
	3-hydroxypropanoate	LC/MS polar	1556	<u>C01013</u>	HMDB00700	68152	0.96	1.20	0.80
	3-hydroxydecanoate	LC/MS neg	22053		HMDB02203	26612	0.90	0.71	1.25
	3-hydroxysebacate	LC/MS polar	31943		HMDB00350	3017884	0.62	0.57	1.09
Fatty Acid, Monohydroxy	3-hydroxylaurate	LC/MS neg	32457		HMDB00387	94216	1.07	1.30	0.82
	3-hydroxymyristate	LC/MS neg	21158			16064	1.63	1.02	1.59
	3-hydroxyoleate*	LC/MS neg	61843				1.51	0.88	1.72
	13-HODE + 9-HODE	LC/MS neg	37752			43013	1.19	1.05	1.13
Fatty Acid Dibydroxy	12,13-DiHOME	LC/MS neg	38395	<u>C14829</u>	HMDB04705	10236635	0.63	0.99	0.63
ratty Acid, Dirlydroxy	9,10-DiHOME	LC/MS neg	38399	C14828	HMDB04704	9966640	0.83	1.37	0.61
	N-myristoyltaurine*	LC/MS neg	61825			3810823	1.24	0.63	1.97
Endocannahinoid	N-oleoyltaurine	LC/MS neg	39732			6437033	1.16	0.81	1.42
	N-palmitoleoyltaurine*	LC/MS neg	61824				0.97	0.82	1.18
	linoleoyl ethanolamide	LC/MS neg	52608		HMDB12252	5283446	1.02	0.73	1.40
Inositol Metabolism	myo-inositol	LC/MS polar	1124	<u>C00137</u>	HMDB00211	892	1.03	0.94	1.10
	choline	LC/MS pos early	15506	<u>C00114</u>	HMDB00097	305	1.01	1.04	0.97
	choline phosphate	LC/MS pos early	34396	<u>C00588</u>	HMDB01565	1014	1.08	1.14	0.95
	cytidine 5'-diphosphocholine	LC/MS pos early	34418	<u>C00307</u>	HMDB01413	13804	1.13	0.92	1.23
	glycerophosphorylcholine (GPC)	LC/MS pos early	15990	<u>C00670</u>	HMDB00086	71920	0.97	0.99	0.97
Phospholipid Metabolism	phosphoethanolamine	LC/MS pos early	1600	<u>C00346</u>	HMDB00224	1015	0.93	1.05	0.88
	cytidine-5'-diphosphoethanolamine	LC/MS polar	34410	<u>C00570</u>	HMDB01564	123727	0.97	0.85	1.14
	glycerophosphoethanolamine	LC/MS polar	37455	<u>C01233</u>	HMDB00114	123874	0.89	0.97	0.91
	glycerophosphoserine*	LC/MS pos early	57404			3081457	1.33	1.48	0.90
	glycerophosphoinositol*	LC/MS pos early	52307			167572	1.23	1.31	0.93
	1-myristoyl-2-palmitoyl-GPC (14:0/16:0)	LC/MS pos late	19258		HMDB07869	129657	0.79	0.92	0.87
	1,2-dipalmitoyl-GPC (16:0/16:0)	LC/MS pos late	19130		HMDB00564	452110	0.71	0.90	0.79
	1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1)*	LC/MS pos late	52470		HMDB07969		1.04	0.92	1.12
	1-palmitoyl-2-stearoyl-GPC (16:0/18:0)	LC/MS pos late	52616		HMDB07970		0.71	0.92	0.77
	1-palmitoyl-2-oleoyl-GPC (16:0/18:1)	LC/MS pos late	52461		HMDB07972	6436017	0.95	0.97	0.98
	1,2-dipalmitoleoyl-GPC (16:1/16:1)*	LC/MS pos late	52472				0.95	0.83	1.15
Phosphatidylcholine (PC)	1-palmitoleoyl-2-linolenoyl-GPC (16:1/18:3)*	LC/MS pos late	53180		HMDB08008		0.92	1.03	0.90
	1,2-distearoyI-GPC (18:0/18:0)	LC/MS pos late	19132		HMDB08036	94190	0.72	0.93	0.78
	1-stearoyl-2-oleoyl-GPC (18:0/18:1)	LC/MS pos late	52438		HMDB08038		0.85	1.01	0.84
	1-oleoyl-2-linoleoyl-GPC (18:1/18:2)*	LC/MS pos late	52453				0.90	0.88	1.02
	1,2-dilinoleoyl-GPC (18:2/18:2)	LC/MS pos late	52603		HMDB08138	5288075	0.78	0.81	0.97
	1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)*	LC/MS pos late	53176		HMDB08141		0.79	0.88	0.90
	1,2-dilinolenoyl-GPC (18:3/18:3)*	LC/MS pos late	53179		HMDB08206		0.77	0.89	0.87
	1,2-dipalmitoyl-GPE (16:0/16:0)*	LC/MS pos late	57341		HMDB08923	445468	0.84	0.97	0.87
	1-palmitoyl-2-stearoyl-GPE (16:0/18:0)*	LC/MS pos late	57388		HMDB08925	5326793	0.64	0.78	0.82
	1-palmitoyl-2-oleoyl-GPE (16:0/18:1)	LC/MS pos late	19263		HMDB05320	5283496	0.96	0.94	1.02
Phosphatidylethanolamine (PE)	1,2-dipalmitoleoyl-GPE (16:1/16:1)*	LC/MS pos late	52688		HMDB05342	9546809	0.84	0.86	0.98
	1-stearoyl-2-oleoyl-GPE (18:0/18:1)	LC/MS pos late	42448		HMDB08993		0.96	1.03	0.93
	1-oleoyl-2-linoleoyl-GPE (18:1/18:2)*	LC/MS pos late	52687		HMDB05349	9546753	0.93	0.91	1.03
	1,2-dilinoleoyl-GPE (18:2/18:2)*	LC/MS pos late	53174		HMDB09093	9546812	0.85	0.85	0.99
Phosphatidylserine (PS)	1,2-dioleoyl-GPS (18:1/18:1)	LC/MS pos late	19191			6438639	1.29	0.95	1.35
Phosphatidylalycerol (PG)	1-palmitoyl-2-palmitoleoyl-GPG (16:0/16:1)*	LC/MS pos late	53213				1.32	0.78	1.68
	1-palmitoyl-2-oleoyl-GPG (16:0/18:1)	LC/MS pos late	52448			5283509	0.91	0.81	1.11
	1,2-dipalmitoleoyl-GPI (16:1/16:1)*	LC/MS pos late	52721				1.06	0.90	1.18
Phosphatidylinositol (PI)	1-palmitoyl-2-oleoyl-GPI (16:0/18:1)*	LC/MS polar	52669		HMDB09783		0.91	0.77	1.18
	1-oleoyl-2-linoleoyl-GPI (18:1/18:2)*	LC/MS polar	52451		HMDB09838		0.89	0.90	0.99

Sub Pathway	Biochemical Name	Platform	Comp ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	<u>Gal4>UAS</u> UAS Ctrl	<u>UAS Ctrl</u> GAL4 Ctrl
	1-linolenoyl-GPG (18:3)*	LC/MS neg	62368				1.17	0.98	1.20
	1-palmitoyl-GPC (16:0)	LC/MS pos late	33955		HMDB10382	86554	0.79	0.98	0.81
	2-palmitoyl-GPC (16:0)*	LC/MS pos late	35253		HMDB61702	15061532	0.98	0.92	1.07
	1-palmitoleoyl-GPC (16:1)*	LC/MS pos late	33230		HMDB10383	24779461	1.06	1.07	0.99
	2-palmitoleoyl-GPC (16:1)*	LC/MS pos late	35819		HMDB10383		1.14	0.99	1.15
	1-stearoyl-GPC (18:0)	LC/MS pos late	33961		HMDB10384	497299	0.75	1.01	0.75
	1-oleoyl-GPC (18:1)	LC/MS pos late	48258		HMDB02815	16081932	1.06	1.07	0.99
	1-linoleoyl-GPC (18:2)	LC/MS neg	34419	<u>C04100</u>	HMDB10386	11988421	1.15	0.95	1.20
	1-linolenoyl-GPC (18:3)*	LC/MS pos late	45951		HMDB10388		0.74	0.98	0.75
	1-palmitoyl-GPE (16:0)	LC/MS pos late	35631		HMDB11503	9547069	0.85	0.93	0.92
	1-stearoyl-GPE (18:0)	LC/MS pos late	42398		HMDB11130	9547068	0.76	0.91	0.84
	2-stearoyl-GPE (18:0)*	LC/MS neg	41220		HMDB11129		0.90	1.05	0.86
Lysophospholipid	1-oleoyl-GPE (18:1)	LC/MS pos late	35628		HMDB11506	9547071	0.98	0.94	1.04
	1-linoleoyl-GPE (18:2)*	LC/MS pos late	36600		HMDB11507	52925130	0.95	1.00	0.95
	1-palmitoyI-GPS (16:0)*	LC/MS neg	46130			9547100	1.57	1.17	1.35
	1-stearoyI-GPS (18:0)*	LC/MS neg	45966			9547101	1.23	0.87	1.42
	1-oleoyi-GPS (18:1)	LC/MS neg	19260		HMDB61694	9547099	1.49	1.00	1.49
		LC/MS neg	43676			2200270	1.11	0.81	1.38
	1-paimitoyi-GPG (16:0)	LC/MS neg	45970			3300276	1.03	0.77	1.34
	1-stearoy-GPG (18:0)	LC/MS neg	34437				0.96	0.93	1.03
	1-lineleov/-GPG (18:2)*	LC/MS neg	43900				1.27	0.01	1.09
	1-palmitov/-GPI (16:0)	LC/MS nog	35305		HMDR61605		1.11	0.95	1.22
	1-stearoyl-GPI (18:0)	LC/MS neg	19324		HMDB61696		0.83	0.66	1.17
	1-oleov/-GPI (18:1)*	LC/MS neg	36602		1102201030		1.65	1.12	1.20
	1-linglegyl-GPI (18:2)*	LC/MS neg	36594				1.00	0.99	1.40
Glycolipid Metabolism	1.2-dilinoleoyl-galactosylglycerol (18:2/18:2)*	LC/MS pos late	54899			6535011	1.05	0.90	1.16
	1-(1-envl-palmitovl)-2-oleovl-GPE (P-16:0/18:1)*	LC/MS pos late	52477		HMDB11342	0000011	1.23	1.06	1.15
Plasmalogen	1-(1-envl-stearovl)-2-oleovl-GPE (P-18:0/18:1)	LC/MS pos late	52614		HMDB11375		0.94	0.86	1.09
	1-(1-envl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2)*	LC/MS pos late	52748		HMDB11376		0.75	1.02	0.74
Lysoplasmalogen	1-(1-envl-stearovl)-GPE (P-18:0)*	LC/MS pos late	39271				0.67	1.01	0.67
	glycerol	LC/MS neg	15122	C00116	HMDB00131	753	1.19	1.09	1.09
Glycerolipid Metabolism	glycerol 3-phosphate	LC/MS polar	43847	C00093	HMDB00126	754	1.09	1.15	0.95
	glycerophosphoglycerol	LC/MS polar	48857	C03274		439964	1.02	1.26	0.81
	1-myristoylglycerol (14:0)	LC/MS neg	35625	C01885	HMDB11561	79050	1.26	0.76	1.65
	1-palmitoylglycerol (16:0)	LC/MS neg	21127		HMDB31074	14900	1.04	0.93	1.12
	1-palmitoleoylglycerol (16:1)*	LC/MS neg	52431		HMDB11565		2.31	1.29	1.79
	1-oleoylglycerol (18:1)	LC/MS neg	21184		HMDB11567	5283468	1.85	1.31	1.41
	1-linoleoylglycerol (18:2)	LC/MS neg	27447			5283469	1.95	1.40	1.40
Monoacyigiycerol	2-myristoylglycerol (14:0)	LC/MS neg	34383		HMDB11530	137938	1.06	0.75	1.41
	2-palmitoylglycerol (16:0)	LC/MS neg	33419		HMDB11533	123409	1.49	1.09	1.37
	2-palmitoleoylglycerol (16:1)*	LC/MS neg	52432		HMDB11565		2.25	1.15	1.96
	2-oleoylglycerol (18:1)	LC/MS neg	21232		HMDB11537	5319879	1.66	0.87	1.90
	2-linoleoylglycerol (18:2)	LC/MS neg	32506		HMDB11538	5365676	1.61	1.64	0.98
	diacylglycerol (12:0/18:1, 14:0/16:1, 16:0/14:1) [2]*	LC/MS pos late	55001				1.23	1.19	1.03
	diacylglycerol (14:0/18:1, 16:0/16:1) [2]*	LC/MS pos late	54954				1.39	1.07	1.30
	diacylglycerol (16:1/18:2 [2], 16:0/18:3 [1])*	LC/MS pos late	54966				1.18	1.10	1.07
	palmitoyl-oleoyl-glycerol (16:0/18:1) [2]*	LC/MS pos late	54942	C13861	HMDB07102		1.45	0.93	1.56
	palmitoyl-linoleoyl-glycerol (16:0/18:2) [2]*	LC/MS pos late	52634		HMDB07103		1.55	0.93	1.67
Diacylglycerol	palmitoleoyl-oleoyl-glycerol (16:1/18:1) [2]*	LC/MS pos late	52631				1.12	1.07	1.04
	palmitoleoyl-linoleoyl-glycerol (16:1/18:2) [1]*	LC/MS pos late	54967		HMDB07132		1.22	1.13	1.08
	oleoyl-oleoyl-glycerol (18:1/18:1) [2]*	LC/MS pos late	54946		HMDB07218		1.08	1.04	1.03
	oleoyl-linoleoyl-glycerol (18:1/18:2) [2]	LC/MS pos late	46799		HMDB07219		1.00	1.17	0.86
	oleoyl-linolenoyl-glycerol (18:1/18:3) [2]*	LC/MS pos late	54970		HMDB07220		0.93	1.81	0.51
	linoleoyl-linolenoyl-glycerol (18:2/18:3) [2]*	LC/MS pos late	54964		HMDB07250		0.70	1.22	0.57

Sub Pathway	Biochemical Name	Platform	Comp ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	<u>Gal4>UAS</u> UAS Ctrl	<u>UAS Ctrl</u> GAL4 Ctrl
	sphinganine	LC/MS pos late	17769	<u>C00836</u>	HMDB00269	3126	0.55	1.00	0.55
Sphingolipid Synthesis	tetradecasphinganine (d14:0)*	LC/MS pos late	57543				1.15	1.08	1.07
	hexadecasphinganine (d16:0)*	LC/MS pos late	57544	<u>C13915</u>		656816	1.21	1.04	1.16
Dibydrocoramides	N-arachidoyl-tetradecanoylsphinganine (d14:0/20:0)	LC/MS pos late	57499				0.89	1.07	0.84
Diriyuroceranides	N-behenoyl-tetradecanoylsphinganine (d14:0/22:0)*	LC/MS pos late	57501				0.81	0.94	0.86
	N-stearoyl-tetradecanoylsphingosine (d14:1/18:0)*	LC/MS pos late	57500				1.02	1.09	0.94
Ceramides	N-arachidoyl-tetradecanoylsphingosine (d14:1/20:0)	LC/MS pos late	57505				0.95	1.17	0.81
	N-behenoyl-tetradecanoylsphingosine (d14:1/22:0)*	LC/MS pos late	57494				0.94	0.97	0.97
	glycosyl-N-arachidoyl-tetradecanoylsphingosine (d1-	LC/MS pos late	57496				1.33	1.04	1.28
Hexosylceramides (HCER)	glycosyl-N-behenoyl-tetradecasphingosine (d14:1/22	LC/MS pos late	57849				2.56	0.90	2.84
	glycosyl ceramide (d14:1/24:0, d16:1/22:0)*	LC/MS pos late	57495				5.01	0.70	7.14
Lactosylceramides (LCER)	lactosyl-N-arachidoyl-tetradecanoylsphingosine (d14	LC/MS pos late	57498				1.44	1.44	1.00
Cabin pagainan	tetradecanoylsphingosine (d14:1)*	LC/MS pos late	57493				1.15	0.98	1.17
Springosines	hexadecasphingosine (d16:1)*	LC/MS pos late	57428				1.04	1.03	1.01
Marialana da Madala Jiana	3-hydroxy-3-methylglutarate	LC/MS polar	531	<u>C03761</u>	HMDB00355	1662	1.07	1.08	1.00
Nevalonate Metabolism	mevalonate	LC/MS polar	39583	<u>C02104</u>	HMDB00227	439230	0.89	1.91	0.46
	beta-sitosterol	LC/MS pos late	27414	<u>C01753</u>	HMDB00852	222284	1.08	1.14	0.94
Sterol	campesterol	LC/MS pos late	33997	<u>C01789</u>	HMDB02869	173183	1.00	1.19	0.84
	ergosterol	LC/MS pos late	27553	<u>C01694</u>	HMDB00878	444679	0.93	0.99	0.94
	inosine 5'-monophosphate (IMP)	LC/MS pos early	2133	<u>C00130</u>	HMDB00175	8582	1.19	0.70	1.70
	inosine	LC/MS neg	1123	<u>C00294</u>	HMDB00195	6021	0.95	1.02	0.93
	hypoxanthine	LC/MS polar	3127	<u>C00262</u>	HMDB00157	790	0.54	1.17	0.46
	xanthine	LC/MS polar	3147	<u>C00385</u>	HMDB00292	1188	0.98	1.55	0.63
	xanthosine 5'-monophosphate (xmp)	LC/MS neg	12024	<u>C00655</u>	HMDB01554	73323	0.75	1.00	0.75
Purine Metabolism, (Hypo)Xanthine/Inosine containin	anthosine	LC/MS neg	15136	<u>C01762</u>	HMDB00299	64959	1.69	2.14	0.79
	N1-methylinosine	LC/MS pos early	48351		HMDB02721	65095	2.71	1.36	2.00
	2'-deoxyinosine	LC/MS neg	15076	<u>C05512</u>	HMDB00071	65058	2.82	2.51	1.12
	urate	LC/MS neg	1604	<u>C00366</u>	HMDB00289	1175	0.73	0.98	0.74
	uric acid ribonucleoside*	LC/MS neg	62102			164933	1.08	1.56	0.70
	allantoin	LC/MS polar	1107	<u>C02350</u>	HMDB00462	204	2.88	0.93	3.09
	adenosine 5'-diphosphate (ADP)	LC/MS neg	3108	<u>C00008</u>	HMDB01341	6022	1.08	0.56	1.93
	adenosine 5'-monophosphate (AMP)	LC/MS pos early	32342	<u>C00020</u>	HMDB00045	6083	1.13	0.65	1.74
	adenosine 3'-monophosphate (3'-AMP)	LC/MS neg	35142	<u>C01367</u>	HMDB03540	41211	0.76	0.75	1.00
	adenosine-2',3'-cyclic monophosphate	LC/MS neg	37467	<u>C02353</u>	HMDB11616	2024	1.01	0.87	1.17
Purine Metabolism, Adenine containing	adenosine	LC/MS pos early	555	<u>C00212</u>	HMDB00050	60961	1.00	0.98	1.02
	adenine	LC/MS pos early	554	<u>C00147</u>	HMDB00034	190	0.59	0.85	0.70
	1-methyladenine	LC/MS pos early	1527	<u>C02216</u>	HMDB11599	78821	0.46	1.11	0.41
	N1-methyladenosine	LC/MS pos early	15650	<u>C02494</u>	HMDB03331	27476	0.87	1.03	0.85
	N6-succinyladenosine	LC/MS pos early	48130		HMDB00912	165243	0.96	0.72	1.32
	guanosine 5'- diphosphate (GDP)	LC/MS neg	2848	<u>C00035</u>	HMDB01201	8977	0.80	0.69	1.16
	guanosine 5'- monophosphate (5'-GMP)	LC/MS neg	2849	<u>C00144</u>	HMDB01397	6804	0.98	0.75	1.31
	guanosine-2',3'-cyclic monophosphate	LC/MS neg	37139	<u>C06194</u>	HMDB11629	92823	1.01	0.75	1.35
	guanosine	LC/MS neg	1573	<u>C00387</u>	HMDB00133	6802	1.26	1.18	1.07
	guanine	LC/MS pos early	32352	<u>C00242</u>	HMDB00132	764	1.05	0.99	1.06
Purine Metabolism, Guanine containing	7-methylguanine	LC/MS pos early	35114	<u>C02242</u>	HMDB00897	11361	0.99	1.20	0.82
	2'-O-methylguanosine	LC/MS neg	36811	<u>C04545</u>			1.53	1.18	1.30
	7-methylguanosine	LC/MS pos early	31580	<u>C20674</u>			1.15	0.91	1.26
	N2,N2-dimethylguanosine	LC/MS neg	35137		HMDB04824	92919	1.86	1.11	1.68
	2'-deoxyguanosine	LC/MS neg	1411	<u>C00330</u>	HMDB00085	187790	1.36	1.22	1.12

Sub Pathway	Biochemical Name	Platform	Comp ID	KEGG	HMDB	PubChem	<u>Gal4>UAS</u> GAL4 Ctrl	Gal4>UAS UAS Ctrl	<u>UAS Ctrl</u> GAL4 Ctrl
Burinidina Matabalism Oratata containing	dihydroorotate	LC/MS polar	601	<u>C00337</u>	HMDB03349	648	4.52	0.68	6.61
	orotate	LC/MS polar	1505	<u>C00295</u>	HMDB00226	967	1.34	0.92	1.45
	uridine-2',3'-cyclic monophosphate	LC/MS neg	37137	<u>C02355</u>	HMDB11640	439715	0.78	0.79	0.98
	uridine	LC/MS neg	606	<u>C00299</u>	HMDB00296	6029	1.50	1.53	0.98
	uracil	LC/MS polar	605	<u>C00106</u>	HMDB00300	1174	0.90	0.91	1.00
Pyrimidine Metabolism, Uracil containing	pseudouridine	LC/MS neg	33442	<u>C02067</u>	HMDB00767	15047	1.49	1.74	0.85
	2'-O-methyluridine	LC/MS neg	57655	0000.40		102212	1.69	2.76	0.61
		LC/MS pos early	3155	<u>C02642</u>	HMDB00026	111	1.00	1.29	0.77
	N costul hoto alerina	LC/MS pos early	27422	C01072	HWDB00036	239	1.21	1.00	0.00
	outiding 5'-monophosphote (5'-CMP)		2272	C00055		6131	1.07	1.20	1.55
	cytidine 2' or 3'-monophosphate (2' or 3'-CMP)	LC/MS pos early	61705	<u></u>	110000000	0131	0.96	0.93	1.03
	cytidine 2'.3'-cyclic monophosphate	LC/MS neg	37465	C02354	HMDB11691	417654	0.76	0.82	0.92
	cytidine	LC/MS neg	514	C00475	HMDB00089	6175	1.82	1.47	1.24
Pyrimidine Metabolism, Cytidine containing	cvtosine	LC/MS pos early	573	C00380	HMDB00630	597	1.05	1.39	0.76
	3-methylcytidine	LC/MS pos early	35132			159649	1.28	1.21	1.06
	5-methylcytidine	LC/MS pos early	22119		HMDB00982	92918	2.98	1.09	2.72
	2'-O-methylcytidine	LC/MS pos early	57554			150971	2.78	1.94	1.43
Pyrimidine Metabolism, Thymine containing	3-aminoisobutyrate	LC/MS pos early	1566	C05145	HMDB03911	64956	0.56	0.96	0.59
Purine and Pyrimidine Metabolism	methylphosphate	LC/MS pos early	37070		HMDB61711	13130	1.17	0.94	1.24
Dinucleotide	(3'-5')-adenylyluridine	LC/MS neg	52740			112074	1.00	1.00	1.00
	nicotinate	LC/MS pos early	1504	C00253	HMDB01488	938	0.93	1.21	0.77
	nicotinamide ribonucleotide (NMN)	LC/MS pos early	22152	<u>C00455</u>	HMDB00229	14180	1.11	1.05	1.06
NE_stingto and NE_sting stide Netherland	nicotinamide riboside	LC/MS pos early	33013	C03150	HMDB00855	439924	1.37	2.01	0.68
Nicotinate and Nicotinamide Metabolism	nicotinamide adenine dinucleotide (NAD+)	LC/MS pos early	5278	<u>C00003</u>	HMDB00902	5893	0.90	0.76	1.19
	nicotinate adenine dinucleotide (NAAD+)	LC/MS neg	15725			25246170	0.88	0.75	1.18
	trigonelline (N'-methylnicotinate)	LC/MS pos early	32401	<u>C01004</u>	HMDB00875	5570	1.11	0.90	1.23
Riboflavia Matabaliam	riboflavin (Vitamin B2)	LC/MS pos early	1827	<u>C00255</u>	HMDB00244	493570	2.72	0.71	3.84
Ribonavin Wetabolisti	flavin adenine dinucleotide (FAD)	LC/MS neg	2134	<u>C00016</u>	HMDB01248	643975	0.73	0.74	0.99
Pantothenate and CoA Matabolism	pantothenate	LC/MS neg	1508	<u>C00864</u>	HMDB00210	6613	0.75	0.91	0.82
	pantetheine	LC/MS pos early	57555	<u>C00831</u>		439322	0.52	0.75	0.70
	ascorbate (Vitamin C)	LC/MS pos early	32354	<u>C00072</u>	HMDB00044		1.63	1.24	1.31
Ascorbate and Aldarate Metabolism	dehydroascorbate	LC/MS polar	1659	<u>C05422</u>	HMDB01264	835	0.58	0.70	0.82
	threonate	LC/MS polar	27738	<u>C01620</u>	HMDB00943	151152	0.97	1.11	0.87
	gulonate*	LC/MS polar	46957	<u>C00257</u>	HMDB03290	9794176	0.75	1.01	0.74
Tocopherol Metabolism	alpha-tocopherol	LC/MS pos late	1561	<u>C02477</u>	HMDB01893	14985	1.09	1.23	0.89
	gamma-tocopherol/beta-tocopherol	LC/MS pos late	52473				1.58	1.51	1.04
Biotin Metabolism	biotin	LC/MS pos early	568	<u>C00120</u>	HMDB00030	171548	1.31	1.20	1.09
Tetrahydrobiopterin Metabolism	biopterin	LC/MS neg	12358	<u>C06313</u>	HMDB00468	445040	0.67	0.85	0.79
	dihydrobiopterin	LC/MS pos early	35129	<u>C00268</u>	HMDB00038	1879	0.52	0.78	0.66
	Isoxanthopterin	LC/MS pos early	27732	<u>C03975</u>	HMDB00704	10729	0.82	0.76	1.09
Pterin Metabolism	pterin	LC/MS neg	43023	000715	HMDB00802	73000	1.23	1.12	1.09
	seplapterin	LC/MS pos early	48139	000835	HMDB00238	65253	0.54	0.83	0.65
Llesse stabile and Deservise Metabolices		LC/IVIS polar	54728	000400		6397	0.88	0.70	1.20
Henoglobin and Forphynin Metabolism	thiamin (V/itamin R1)	LC/MS pos early	53/1	C00430	HMDB00235	1120	0.61	0.56	1.09
Thiamine Metabolism		LC/MS pos early	15798	C01081	HMDB02666	3382778	0.92	0.50	1.09
	carotene diol (1)	LC/MS pos late	57635	001001	110000000	0002110	0.88	1 10	0.80
Vitamin A Metabolism	carotene diol (2)	LC/MS pos late	57636				0.78	1.10	0.62
	carotene diol (3)	LC/MS pos late	57637				0.52	1.09	0.48
	pyridoxal	LC/MS pos early	1651	C00250	HMDB01545	1050	1.10	0.94	1.16
Vitamin B6 Metabolism	pyridoxate	LC/MS neg	31555	C00847	HMDB00017	6723	1.48	0.96	1.55
	4-hvdroxyhippurate	LC/MS neg	35527		HMDB13678	151012	0.34	1.36	0.25
Benzoate Metabolism	4-hydroxybenzoate	LC/MS neg	21133	C00156	HMDB00500	135	0.69	1.06	0.65
	2,3-dihydroxyisovalerate	LC/MS polar	38276	C04039	HMDB12141	677	0.39	1.13	0.35
	2-isopropylmalate	LC/MS polar	15667	C02504	HMDB00402	77	0.87	0.84	1.04
	gluconate	LC/MS polar	587	<u>C00257</u>	HMDB00625	10690	0.88	0.87	1.01
	ergothioneine	LC/MS pos early	37459	<u>C05570</u>	HMDB03045	3032311	1.10	1.17	0.94
	erythritol	LC/MS polar	20699	C00503	HMDB02994	222285	0.76	1.03	0.74
Food Component/Plant	kojibiose	LC/MS polar	21040	<u>C19632</u>	HMDB11742	164939	1.20	1.14	1.06
	panose	LC/MS polar	37284	<u>C00713</u>	HMDB11729	5288421	1.23	0.87	1.42
	quinate	LC/MS polar	18335	<u>C00296</u>	HMDB03072	6508	0.80	1.03	0.78
	stachydrine	LC/MS pos early	34384	<u>C10172</u>	HMDB04827	115244	0.52	0.55	0.95
	methyl glucopyranoside (alpha + beta)	LC/MS pos early	46144	1			1.10	0.98	1.13
	2-keto-3-deoxy-gluconate	LC/MS polar	48141	<u>C00204</u>	HMDB01353	161227	0.68	0.43	1.58
Drug - Topical Agents	salicylate	LC/MS polar	1515	<u>C00805</u>	HMDB01895	338	0.59	0.67	0.88
Chamical	succinimide	LC/MS polar	41888	<u>C07273</u>		11439	1.26	1.11	1.14
	thioproline	LC/MS pos early	53231			93176	0.77	1.00	0.77

Table S1: Metabolomics of Repo>20x Shibire fly heads

All measured metabolites and their respective categories are listed for samples from Repo-GAL4>UAS-20xShibire, and both parental

controls. Welch's t-test was performed on scaled signal for each metabolite, comparing each condition. Green highlighting marks a

significant difference ($p \le 0.05$) between the groups, where metabolite ratio is < 1.00, while light green is not significant, but close to the threshold ($0.05). Red highlighting marks a significant difference (<math>p \le 0.05$) between groups where metabolite ratio is ≥ 1.00 , and light red is not significant, but close to the threshold (0.05).

Figure 2 supplement 1: Pan-glial RNAi knockdown screen of candidate genes enriched in the barrier glia

Total sleep in female flies with RNAi knockdown of listed genes (KK and GD are VDRC collections, TRiP lines are from Bloomington Stock Center) (**A**)Transporters, (**B**) Receptors/Signaling pathway factors, (**C**) Cytoskeleton/Trafficking factors and (**D**) other genes by either Repo-Gal4 (labeled R) or UAS-Dicer; RepoGeneSwitch on RU+ food (labeled RGS). n = 9 - 16 flies per genotype, median = 16. One-way ANOVA, with Holk-Sidak post-hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent standard error of the mean (SEM). Significance values only marked for genes in which experimental flies were different from both parental controls. Certain experiments were performed simultaneously and therefore share a Gal4 control, re-plotted per each gene.

Figure 3 supplement 1. Sleep time changes with knockdown of Lrp genes in surface glia

Total sleep in female flies with knockdown of (A) Lrp1 (8397 GD) (B)Lrp1(109605 KK) (C) Lrp1 (13913 KK) (D) Lrp1 (3710 GD) (E) Megalin (105387 KK) (F) Megalin (105071 KK) driven by (PG+SPG) driver 9-137-GAL4, n = 40-48 per genotype at 18 °C(permissive) and at 31 °C (restrictive). One-way ANOVA, with Holk-Sidak post-hoc comparisons. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars represent standard error of the mean (SEM).