
Page 1 
 

Mechanistic model of MAPK signaling reveals how 1 

allostery and rewiring contribute to drug resistance 2 

Fabian Fröhlich1,+, Luca Gerosa1,2+, Jeremy Muhlich1 and Peter K. Sorger1,* 3 

 4 

Affiliations: 5 

1 Laboratory of Systems Pharmacology, Department of Systems Biology, Harvard Medical School, 200 6 

Longwood Avenue, Boston, MA 02115, USA 7 

2 Present Address: Genentech, Inc., South San Francisco, CA 94080 8 

+ These authors contributed equally. 9 

* Corresponding author: 10 

psorger@hms.harvard.edu, WAB432, 200 Longwood Avenue, Boston MA 02115 11 

Running title: Model of drug resistance in melanoma12 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.17.480899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480899
http://creativecommons.org/licenses/by-nd/4.0/


Page 2 
 

ABSTRACT 13 

BRAFV600E is prototypical of oncogenic mutations that can be targeted therapeutically and treatment of 14 

BRAF-mutant melanomas with RAF and MEK inhibitors results in rapid tumor regression. However, 15 

drug-induced rewiring causes BRAFV600E melanoma cells to rapidly acquire a drug-adapted state. In 16 

patients this is thought to promote acquisition or selection for resistance mutations and disease recurrence.  17 

In this paper we use an energy-based implementation of ordinary differential equations in combination 18 

with proteomic, transcriptomic and imaging data from melanoma cells, to model the precise mechanisms 19 

responsible for adaptive rewiring. We demonstrate the presence of two parallel MAPK (RAF-MEK-ERK 20 

kinase) reaction channels in BRAFV600E melanoma cells that are differentially sensitive to RAF and MEK 21 

inhibitors. This arises from differences in protein oligomerization and allosteric regulation induced by 22 

oncogenic mutations and drug binding. As a result, the RAS-regulated MAPK channel can be active under 23 

conditions in which the BRAFV600E-driven channel is fully inhibited. Causal tracing demonstrates that this 24 

provides a sufficient quantitative explanation for initial and acquired responses to multiple different RAF 25 

and MEK inhibitors individually and in combination.  26 

 27 

Keywords: allosteric interactions, rewiring, kinetic modeling, drug resistance, MAPK pathway 28 

Highlights  29 

● A thermodynamic framework enables structure-based description of allosteric interactions in the 30 

EGFR and MAPK pathways 31 

● Causal decomposition of efficacy of targeted drugs elucidates rewiring of MAPK channels 32 

● Model-based extrapolation from type I½ RAF inhibitors to type II RAF inhibitors  33 

● A unified mechanistic explanation for adaptive and genetic resistance across BRAF-cancers 34 

  35 
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INTRODUCTION 36 

Eukaryotic signal transduction allows cells to regulate their growth, differentiation, and morphogenesis in 37 

response to external stimuli (Hunter, 2000; Ullrich & Schlessinger, 1990). In its reliance on receptor 38 

tyrosine kinase (RTK) autophosphorylation, assembly of signaling complexes on receptor tails, and 39 

activation of mitogen activated protein kinases (MAPKs; Box 1) signal transduction initiated by the 40 

binding of epidermal growth factor (EGF) to the EGF receptor (EGFR) is prototypical of growth-41 

promoting signal transduction systems. The MAPK cascade comprises the RAF, MEK and ERK kinases, 42 

which regulate downstream factors such as ELK, ETS1 and AP1 transcription factors, as well as changes 43 

in cell motility and morphology (Lavoie et al, 2020). EGFR signaling has also been studied extensively 44 

using dynamical systems analysis (Starbuck & Lauffenburger, 1992; Kholodenko et al, 1999; Resat et al, 45 

2003; Blinov et al, 2006; Chen et al, 2009; Gerosa et al, 2020) leading to better understanding of signal 46 

transduction in general as well as development of new modeling methods.  47 

Oncogenic mutations are common in signal transduction networks and the V600E mutation in BRAF is 48 

an exemplar of these (Sanchez-Vega et al, 2018). In melanoma (Davies et al, 2002), thyroid cancer 49 

(Kebebew et al, 2007), colorectal cancer (Clarke & Kopetz, 2015), and other tissues, BRAFV600E mutations 50 

cause constitutive activation of the MAPK pathway and oncogenic transformation. In cutaneous 51 

melanoma, inhibitors of the BRAF (BRAFi) and MEK (MEKi) kinases (e.g., vemurafenib and 52 

cobimetinib) are prototypical of highly effective targeted anti-cancer drugs (English & Cobb, 2002; 53 

Samatar & Poulikakos, 2014). A combination of BRAFi and MEKi is the current first-line treatment for 54 

metastatic melanoma (Sullivan & Flaherty, 2012) and frequently results in rapid tumor shrinkage. 55 

However, BRAFV600E tumors usually develop resistance to RAFi/MEKi therapy within months to years, 56 

reducing long-term survival. The frequent and rapid rise of drug resistance in melanoma and the innate 57 

refractoriness of other MAPK-driven cancers to existing drugs has spurred extensive work aimed at 58 

understanding resistance mechanisms. Blocking the emergence of drug-resistant states is widely thought 59 

to be the key to achieving better patient outcomes with RAFi/MEKi drugs and precision oncology in 60 

general. 61 

Resistance to MAPK inhibition occurs over a range of time scales. Adaptive resistance, which is reversible 62 

and does not involve acquisition or selection for mutations, can be observed within a few days of drug 63 

exposure (Fallahi-Sichani et al, 2017; Marin-Bejar et al, 2021; Oren et al, 2021). In cultured cells, adaptive 64 

resistance can last for months, giving rise to persister cells in which oncogenic BRAF signaling remains 65 

strongly inhibited but cells continue to grow, albeit more slowly than in the absence of drugs (Lito et al, 66 
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2012). In patients and in in cultured cells, acquisition of recurrent mutations, commonly in RTKs or 67 

components (or regulators) of the MAPK cascade, leads to reactivation of MAPK signaling and 68 

unrestrained cell growth (Shi et al, 2014; Long et al, 2014). The relationship between adaptive and 69 

acquired resistance is not fully understood and is an area of active investigation (Shaffer et al, 2017; Schuh 70 

et al, 2020). It is thought that DNA replication may be less faithful, or DNA damage responses less 71 

effective, in adapted than drug-naïve cells, leading to accumulation of resistance mutations (Russo et al, 72 

2019; Shaffer et al, 2017; Schuh et al, 2020).  73 

A paradox of the drug adapted state in BRAFV600E mutant melanoma is that MAPK activity is known to 74 

be essential for proliferation of this cell type and yet oncogenic BRAF signaling remains strongly 75 

inhibited. Analysis of cell-average MAPK levels led to the suggestion that partial MAPK rebound (to ~5% 76 

to 20% of the kinase activity in drug-naïve cells) is sufficient for cell survival and proliferation (Lito et 77 

al, 2012). However, more recent single-cell studies show that adapted cells experience sporadic MAPK 78 

pulses of ~90 min duration and that these pulses are sufficient for cyclin D transcription and passage of a 79 

subset of cells into S phase (Gerosa et al, 2020). Pulses appear to arise from growth factors that act in an 80 

autocrine/paracrine manner by binding to EGFR and other RTKs expressed on persister cells. This finding 81 

raises a further question: how precisely can oncogenic MAPK signaling be repressed while receptor-82 

mediated MAPK signaling remains active?  The accepted explanation is that the cell signaling has become 83 

“rewired” in adapted cells (Ding et al, 2018; Lee et al, 2012; Wei et al, 2020).  84 

In the absence of a new mutation, rewired networks are postulated to transmit or propagate oncogenic 85 

signals by different combinations or activity states of cell signaling proteins than drug-naïve networks.  In 86 

some cases, rewiring is thought to involve a switch from one mitogenic pathway to another, from MAPK 87 

to PI3K-AKT signaling for example, but in drug resistant melanoma, the same MAPK components appear 88 

to be essential in the original and rewired states. More generally, rewiring is one of several concepts in 89 

translational cancer biology that are intuitively plausible but have not yet been subjected to quantitative, 90 

mechanistic modeling and analysis.  91 

One way to gain deeper insight into rewiring at a mechanistic level is to perform the type of dynamical 92 

systems analysis that has previously proven effective in the study of RTK-MAPK signaling (Kholodenko 93 

et al, 1999; Rukhlenko et al, 2018; Kholodenko, 2015; Chen et al, 2009; Schöberl et al, 2009). This 94 

commonly involves constructing networks of ordinary differential equation (ODEs) to represent the 95 

precise temporal evolution of signal transduction networks under different conditions. ODEs are a 96 

principled way to represent cellular biochemistry in a continuum approximation and, with the addition of 97 
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“compartments”, can also model the assembly of multi-protein complexes and transport between cellular 98 

compartments (Aldridge et al, 2006). In the case of the A375 melanoma cells used in this study, 99 

quantitative proteomics shows that proteins in the MAPK pathway are present at 102 to 104 molecules per 100 

cell (Gerosa et al, 2020), so continuum mass-action models represent an appropriate approximation 101 

(conversely, intrinsic noise is expected to be low).  102 

Combinatorial complexity represents a substantial challenge to modeling even relatively restricted sets of 103 

signaling proteins. The presence of multiple reversible, post-translational modifications, protein-protein, 104 

and protein-small molecule interactions often makes the number of distinct biochemical species 10-1000 105 

fold greater than the number of gene products (Faeder et al, 2005) (Box 2). Rule-based modeling was 106 

developed specifically to address this challenge and uses abstract representations of binding patterns and 107 

reactions to describe combinatorically complex networks in a compact programmatic formalism. Rules 108 

automatically generate ODE networks describing diverse types of reactions and molecular assemblies 109 

(Faeder et al, 2005; Hlavacek et al, 2006; Lopez et al, 2013) for subsequent model calibration and 110 

exploration.  111 

An additional challenge in modeling MAPK signaling is that it involves allosteric regulation, in which the 112 

affinities of RAS, RAF and small molecules for each other are determined by protein conformation and 113 

oligomerization state. In conventional ODE modeling, a large number of parameters are necessary to 114 

describe the dependency of such affinities on states of assembly. However, protein-protein and protein-115 

small molecule binding and unbinding does not consume energy and thermodynamic formalisms that 116 

impose energy conservation provide powerful means to constrain the number of binding parameters to a 117 

minimal, principled set (Box 3)(Ollivier et al, 2010; Sekar et al, 2016).  The use of thermodynamics to 118 

derive kinetic rates was pioneered by Arrhenius (Arrhenius, 1889) and subsequently derived 119 

independently by Eyring, (Eyring, 1935), Evans and Polanyi (Evans & Polanyi, 1935), but it is only 120 

recently that practical approaches have emerged for using thermodynamic formalisms in reaction models 121 

(Gawthrop & Crampin, 2017; Honorato-Zimmer et al, 2015; Kholodenko, 2015; Klosin et al, 2020; 122 

Mason & Covert, 2018; Olivier et al, 2005; Rukhlenko et al, 2018; Gollub et al, 2021). Applications of 123 

these methods to signal transduction remain limited, in part because of the complexity of relevant models, 124 

but Kholodenko and colleagues have pioneered the application of thermodynamic balance to MAPK 125 

signaling (Rukhlenko et al, 2018). 126 

Model calibration and non-identifiability represents a final challenge in modeling networks of readily 127 

reversible reactions. Model calibration (estimating parameter values that minimize the deviation from 128 
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experimental data) is compute-intensive (Fröhlich et al, 2017) and even after calibration, parameters can 129 

assume wide ranges, a property known as non-identifiablity (Kreutz et al, 2012; Raue et al, 2011; Kreutz 130 

et al, 2012; Chis et al, 2011; Wieland et al, 2021). When models are combinatorically complex and non-131 

identifiable it can be difficult to quantify fluxes, explain how signaling state arise and trace how species 132 

of interest are created by upstream reactions and consumed downstream. This complicates the 133 

quantification of signal propagation through the reaction network, a prerequisite for the investigation of 134 

concepts of such as network rewiring. 135 

In this paper we described a second-generation MAPK Adaptive Resistance Model (MARM2.0) that 136 

seeks to explain the rewiring of EGFR/MAPK signaling occurring in drug adapted BRAFV600E melanoma 137 

cells. MARM2.0 builds on a large body of structural, biochemical and theoretical work on EFGR/MAPK 138 

signaling and feedback regulation (Haling et al, 2014; Hatzivassiliou et al, 2013; Lito et al, 2012, 2013; 139 

Poulikakos et al, 2010; Solit et al, 2006; Yao et al, 2015) and is constructed using rule-based modeling in 140 

PySB with thermodynamic balance. By developing a new approach to causal tracing, we show how 141 

rewiring alters the organization and amplification/attenuation characteristics of multiple reaction channels 142 

operating in parallel in the MAPK cascade. We find that, in addition to the well-known differential 143 

sensitivity of oncogenic RAF monomers and wild-type dimers to RAFi, there exists a similar, less 144 

characterized differential sensitivity of MEK to MEKi based on whether the signal arises from BRAFV600E 145 

or wild-type RAF.  Together with a time-scale separation between signal transduction and transcriptional 146 

feedback, this generates a drug adapted state in which BRAFV600E is inhibited but a MAPK cascade 147 

involving many of the same components can be activated by RTK ligands or mutation of proteins such as 148 

NRAS. 149 

RESULTS - TEXT BOXES 1 TO 3 150 

Box 1. The MAPK signaling pathway. 151 

The core of the MAPK pathway is a three-enzyme cascade comprising RAF-MEK-ERK kinases (HUGO: 152 

ARAF/BRAF/RAF1, MAP2K1/MAP2K2, and MAPK1/MAPK3) that transduces signals from 153 

extracellular stimuli, most commonly growth factors and receptor tyrosine kinases (RTKs) (Lavoie et al, 154 

2020). Three-enzyme cascades involving closely related kinases also transmit signals from cytokines and 155 

their receptors. Driving oncogenic mutations are found in multiple components in or upstream of the 156 

MAPK pathway (Burotto et al, 2014), commonly KRAS (G12C/D/V, G13C/D), NRAS (Q61H/K)(Prior 157 

et al, 2012), BRAF (V600E/K) and less commonly MEK and ERK (Gao et al, 2018). BRAFV600E or 158 

closely related mutations (e.g., BRAFV600K) are found in ~50% of cutaneous melanomas and RAF/MEK 159 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.17.480899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480899
http://creativecommons.org/licenses/by-nd/4.0/


Page 7 
 

therapy is the first line treatment option for BRAF-mutant metastatic melanoma (Flaherty et al, 2012). 160 

BRAF mutations are also found in ~10% of colorectal cancers and several other tumor types (Davies et 161 

al, 2002), but RAF/MEK therapy is rarely effective in these settings. 162 

Binding of growth factors to RTKs induces their intracellular auto-phosphorylation, followed by 163 

association of SH2 and SH3-containing proteins with phosphorylated tyrosine residues on receptor tails. 164 

Subsequent signalosome assembly involves adaptor proteins such as GRB2, enzymes that modify second 165 

messengers such as PI3Ks, and guanine nucleotide exchange factors (GEFs) such as SOS1 (Lemmon & 166 

Schlessinger, 2010). GEFs convert one or more of the N, K, and H RAS GTPases (depending on cell type) 167 

into the active GTP-bound form, and GTP-bound RAS then activates the ARAF/BRAF/RAF1 kinases by 168 

recruiting them to the plasma membrane and inducing their dimerization. BRAF/RAF1 homo- and 169 

heterodimers are the primary mediators of MEK phosphorylation (ARAF has low kinase activity). 170 

Phosphorylated and active MEK then phosphorylates ERK on two proximate residues. Both 171 

phosphorylation steps are potentiated by the assembly of multi-protein complexes involving 14-3-3 and 172 

KSR scaffolding proteins (Lavoie & Therrien, 2015). Active ERK phosphorylates transcription factors, 173 

cytoskeletal proteins, and other kinases and is the proximate functional output of the MAPK cascade. 174 

Changes in the levels or activities of proteins such as DUSP4/6 phosphatases, which remove activating 175 

phosphorylation modifications, and SPRY2/4 proteins, which sequester GRB2, as well as inhibitory 176 

phosphorylation of EGFR, SOS1 and CRAF act as negative-feedback mechanisms and enforce 177 

homeostatic control over MAPK activity.  178 

 179 

Box 2. Drugs targeting MAPK kinases. 180 

Multiple small molecule inhibitors targeting individual MAPK kinases are FDA approved but 181 

combinations of RAF and MEK inhibitors are the most widely used clinically. A subtle relationship exists 182 

between the mechanism of action of these drugs, kinase conformation, and formation of mutli-protein 183 

complexes. In the absence of upstream stimuli, RAF kinases are present in cells as monomers but 184 

activation by RAS-GTP causes dimerization.  Some activating BRAF mutations (Yao et al, 2015) and 185 

splice variants (Poulikakos et al, 2011) also promote dimerization, but BRAFV600E/K kinases are 186 

constitutively activated without requiring dimerization. Whether RAF is present in monomer, heterodimer 187 

or homodimer forms profoundly influences the enzyme’s sensitivity to inhibition (Yao et al, 2015). The 188 

FDA approved RAF inhibitors vemurafenib, dabrafenib, and encorafenib are ATP-competitive type I½ 189 

kinase inhibitors (Roskoski, 2016) that preferentially bind to the alpha-C helix-out, DFG-in conformation 190 

assumed by BRAFV600E/K; this state differs from the alpha-C helix-in (and DFG-in) state found in activated 191 
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wild-type RAF (Karoulia et al, 2017). Whereas binding of type I½ BRAF inhibitors to BRAFV600E/K is 192 

inhibitory, binding to wild type RAF monomers promotes kinase dimerization and activation, leading to 193 

amplification of MAPK signaling, a phenomenon termed paradoxical activation (Hall-Jackson et al, 1999; 194 

Poulikakos et al, 2010; Hatzivassiliou et al, 2010). To prevent this, “paradox breaker” RAF inhibitors 195 

such as PLX8394 have been developed (Tutuka et al, 2017; Yao et al, 2019; Zhang et al, 2015). These 196 

are type I½ inhibitors that, by virtue of locking the R506 side-chain in the out conformation, do not 197 

promote dimerization (Karoulia et al, 2017).  Both regular and paradox breaker type I½ inhibitors have a 198 

lower affinity for the 2nd protomer in a RAF dimer, which typically assumes the inactive alpha-C helix-199 

in, DFG-out conformation. Thus, the structural differences between monomers and dimers (rather than 200 

differences in the ATP binding pocket) are the basis of the selectivity of clinically approved RAF 201 

inhibitors for cells transformed by BRAF mutant kinases. However, the inability of type I½ inhibitors to 202 

fully inhibit homo- and hetero-dimer RAF kinases is also a primary mechanism of drug resistance in 203 

cancers with sustained RAS-GTP signaling; one well established example is EGFR-driven signaling in 204 

BRAFV600E/K colorectal cancer. In contrast, so-called “panRAF” Type II inhibitors, such as the Phase 1 205 

compound LY3009120 (Peng et al, 2015) and preclinical compound AZ-628 (Noeparast et al, 2018), bind 206 

RAF in the alpha-C helix-in, DFG-out conformation and can, thus, bind both RAF protomers with similar 207 

potency. These inhibitors can achieve more complete MAPK suppression but appear to cause additional 208 

toxicity, presumably by interfering with MAPK activity in non-cancer cells. Multiple type II inhibitors 209 

are currently under clinical investigation for solid tumors (Yen et al, 2021), including melanoma, but, so 210 

far, none have been approved for use in humans. 211 

FDA approved MEK inhibitors such as cobimetinib, trametinib and binimetinib, are type III non-ATP 212 

competitive (allosteric) inhibitors that lock the MEK kinase in a catalytically inactive state, limit 213 

movement of the activation loop, and decrease phosphorylation by RAF (Wu & Park, 2015). These MEK 214 

inhibitors are more potent at preventing ERK activation by BRAFV600E/K than by RAF acting downstream 215 

of mutant RAS (Lito et al, 2014; Hatzivassiliou et al, 2013) or RTKs  (Gerosa et al, 2020). The reasons 216 

for this are not fully understood but are thought to include the lower affinity of MEK inhibitors for 217 

phosphorylated as compared to unphosphorylated MEK and differences in RAF-MEK binding 218 

(Hatzivassiliou et al, 2013; Pino et al, 2021). 219 

  220 
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 Box 3. Thermodynamic description of conformational states in rule-based modelling. 221 

Changes in protein assembly and conformation, often mediated by post-translational modification, are the 222 

structural basis for much of signal transduction.  For example, generating the active conformation of 223 

CRAF requires both N-terminal phosphorylation and association with a second RAF family member to 224 

stabilize the active state. Because formation of protein-protein interactions does not consume energy, a 225 

strict relationship exists between conformation and binding affinity (Tsai & Nussinov, 2014): when 226 

binding increases the stability of a specific conformational state, that state will also have higher binding 227 

affinity for its interacting partner. Since this relationship is transitive, binding affinities can be coupled 228 

through conformational states, giving rise to long-range, higher-order dependencies in oligomeric 229 

complexes. Such higher-order dependencies can create ultrasensitive responses, which are often involved 230 

in cell fate decisions or homeostasis.  231 

A conformational state is defined by a specific local minimum in the Gibbs free energy landscape. The 232 

relative stability of a conformational state 𝑆 can be expressed as free energy difference 𝛥𝐺$  with respect 233 

to a reference state 𝑆%. Stabilizing or destabilizing conformational states is equivalent to changes in this 234 

free energy difference (i.e., 𝛥𝛥𝐺$). Similarly, binding reactions can be characterized by the difference 235 

𝛥𝐺' between the Gibbs free energies of binding educts and binding products, which is proportional to the 236 

logarithm of their dissociation constant 𝐾: 𝛥𝐺' = −𝑅𝑇𝑙𝑜𝑔(𝐾), where R is the gas constant and T is the 237 

temperature. Energy conservation guarantees that a ligand (L)-induced changes to the free energy of a 238 

conformational state 𝑆 (𝛥𝛥𝐺$) is equal to the difference 𝛥𝛥𝐺' in the affinity of L for 𝑆 as compared to 𝑆%. 239 

This equilibrium description can be extended to dynamic behavior by means of the Arrhenius Equation 240 

(Arrhenius, 1889), which defines reaction propensities according to the free energy of the transition state 241 

(Sekar et al, 2016). Such an energy-based formulation enforces Wegscheider-Lewis cycle conditions 242 

on kinetic parameters (Wegscheider, 1911), ensuring detailed balance for equilibrium states, but also 243 

constraining dynamics of non-equilibrium processes. By ensuring energy conservation, the effective 244 

number of parameters needed to describe multimeric oligomerization processes is reduced 245 

(Kholodenko, 2015) and powerful constraints are placed on the structures of models describing species 246 

that adopt multiple conformational states. 247 

Energy conservation provides a natural framework for the specification of structure-based kinetic models 248 

that include allosteric interactions (Rukhlenko et al, 2018) and has been incorporated into a rule-based 249 

modeling form as energy-BioNetGen (eBNG)(Sekar et al, 2016). In eBNG, allosteric interactions are 250 

encoded using energy patterns that permit specification of 𝛥𝛥𝐺'. For example, a kinetic model for the 251 
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binding of RAF inhibitors (RAFi in text, I in figure) to RAF kinases (RAF in text, R in figure) (Figure 252 

Box 1A) can be constructed using one rule for RAF dimerization (turquoise) and another for drug binding 253 

to RAF (black), which generates 12 reversible reactions (Figure Box 1B). Allostery for drug binding to 254 

the 1st or 2nd protomer of a RAF dimer is imposed using the thermodynamic factors f (orange) and g 255 

(purple), which change 𝛥𝛥𝐺' via two energy patterns. The contribution of these thermodynamic factors 256 

to kinetic rates is exemplified by the relationship between Gibbs free energies and rate constants for RAF 257 

dimerization that are RAFi-dependent (Figure Box 1C; no RAFi, black; one RAFi, orange; two RAFi 258 

purple). The parameter ϕ, controls whether 𝛥𝛥𝐺' influences educt states (ϕ = 0) or product states (ϕ = 1, 259 

depicted in C) or a mixture (0< ϕ <1). Using PySB, all 12 reactions depicted in Figure Box 1B can be 260 

specified using two rules and four energy-patterns (Figure Box 1D). Thus, PySB code automatically 261 

generates symbolic reaction rates that parameterize the reaction network according to allosteric effects 262 

whose magnitudes are set by the thermodynamic factors f and g (Figure Box 1E). In this way, models of 263 

complex drug-protein interactions, such as resistance mediated by formation of RAF dimers, can be easily 264 

parameterized in terms of the baseline equilibrium constant for RAF dimerization (KRR). We illustrated 265 

this by simulations with f=0.001 and g=1000 (Figure Box 1F) which represent a type I½ RAF inhibitor 266 

that avidly binds the 1st RAF protomer but has a 106-fold lower affinity for the 2nd protomer in a RAF 267 

dimer. 268 

MAIN RESULTS  269 

A Structure-Based Model of EGFR and ERK Signaling 270 

The MAPK signaling cascade (Box 1) and its immediate regulators constitute no more than two dozen 271 

unique gene products, but the binding of these proteins to each other gives rise to a remarkably large 272 

number of molecular species, many of which have distinct activities. Moreover, the complexity of the 273 

MAPK cascade increases substantially when we consider states that are bound and unbound to drugs. For 274 

example, BRAF/CRAF can exist in monomeric, homo- and heterodimeric forms, with either one or two 275 

subunits bound to RAFi, each with or without RAS-GTP bound as an activator.  Drug binding occurs 276 

preferentially to some BRAF oligomers and not others (Box 2), and can strongly influence association 277 

with upstream and downstream factors. To recapitulate the responses of cells to RAFi in a mechanistic 278 

computational model, it is necessary for the allosteric interactions that control association of RAS, RAF 279 

and RAFi to be described in detail (Rukhlenko et al, 2018). 280 

To accomplish this, we generated a compartmentalized ODE model of MAPK signaling (the MAPK 281 

Adaptive Resistance Model MARM2.0) that extends a related model (MARM1.0) used in an experimental 282 
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study we recently published (Gerosa et al, 2020) that uses modeling as an explanatory tool but does not 283 

involve any model analysis. Such analysis is the focus of the current paper and its updated model. 284 

MARM2.0 was calibrated using data described in Gerosa et al. with the addition of drug-response data 285 

that is unique to the current study. Moreover, both MARM1.0 and MARM2.0 build on an earlier model 286 

of RAF-RAFi interaction developed by Kholodenko (Kholodenko, 2015), but with the inclusion of more 287 

proteins and complexes. Model expansion was greatly facilitated by the use of rule-based BNG models in 288 

the domain-specific Python language PySB (Blinov et al, 2004; Lopez et al, 2013).  More specifically, 289 

MARM1.0 & 2.0 extend the RAF-MEK-ERK model of Kholodenko with the addition of upstream 290 

activation and multiple feedback mechanisms relevant to acquired resistance to RAF inhibitors (Lito et 291 

al, 2012) and a more detailed description of MAPK enzymes (Figure 1A). Compared to MARM1.0, 292 

MARM2.0 is compartmentalized (compartments: extracellular space, plasma membrane, cytoplasm and 293 

endosomal membrane), it adds EGFR-CBL interaction and endosomal recycling, and includes mRNA 294 

species in the description of transcriptional feedback control. In total, MARM2.0 involves 17 distinct 295 

molecular species: eleven proteins, three mRNA species and three small molecule inhibitor classes. 296 

Proteins include EGFR, BRAF, CRAF, MEK and ERK, the dual specificity phosphatase DUSP, guanine 297 

nucleotide exchange factor SOS1, GTPase RAS, E3 ubiquitin ligase CBL, adaptor protein GRB2, and 298 

RTK negative regulator SPRY (ellipses in Figure 1A).  RAFi, panRAFi and MEKi, (depicted as colored 299 

circles and rounded boxes in Figure 1A) are optionally present and values for kinetic and energetic 300 

parameters can be set so that the inhibitors can correspond to any of ten different small molecules that are 301 

used as human therapeutics or pre-clinical tools. These comprise the RAFi compounds vemurafenib, 302 

dabrafenib, PLX8394, the panRAFi compounds LY3009120 and AZ628, and MEKi compounds 303 

cobimetinib, trametinib, selumetinib, binimetinib and PD0325901. 304 

To maintain model tractability we lumped together paralogs, combined phosphorylation sites having 305 

similar functions, and simplified other aspects of EFGR regulation, which exhibits particularly high 306 

combinatorial complexity (Blinov et al, 2006).  MARM2.0 nonetheless has over 15,000 biochemical 307 

reactions, illustrating how transient binding among a few kinases, their regulators, and inhibitory drugs 308 

generates an elaborate biochemical network. With respect to paralogs, we made the following 309 

assumptions: “RAS” stands in for KRAS, NRAS, and HRAS, “MEK” for MAP2K1 and MAP2K2, “ERK” 310 

for MAPK1 and MAPK3, “DUSP” for DUSP4 and DUSP6, and “SPRY” for SPRY2 and SPRY4 (lumping 311 

of paralogs is depicted in Figure 1A by thick outlines). This is equivalent to assuming that all paralogs 312 

have the same kinetic rate constants. In some cases, paralogs are known to be very similar (e.g., MAPK1, 313 

MAPK3) but in other cases they are functionally distinct (e.g, KRAS, NRAS and HRAS). The three RAS 314 
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paralogs are expressed at similar levels in A375 and we did not distinguish among them because we do 315 

not yet have relevant training data. However, MARM could easily be modified for future studies that focus 316 

on differences between RAS species. We did not lump BRAF and CRAF into a single RAF species due 317 

to the unique role that BRAFV600E plays as an oncogene; ARAF was omitted due to its low kinase activity. 318 

We also lumped together multi-site phosphorylation of EGFR (on Y1068, Y1086, Y1173, etc.), MEK 319 

(MAP2K1: S218, S222; MAP2K: S222, S226) and ERK (MAPK1: T185, Y187; MAPK3: T202, Y204) 320 

as single post translational modifications for each protein. The underlying phosphorylation reactions were 321 

implemented as two-step reactions comprising substrate binding and phosphorylation steps. Finally, 322 

mRNA species were included for DUSP, EGFR and SPRY to model transcriptional feedback with distinct, 323 

lumped translation rates for each species (depicted by dark green arrows in Figure 1A). This made it 324 

possible to calibrate models on time-course and dose-response transcriptomic data. 325 

To model RTK-induced MAPK activation we focused on EGFR autophosphorylation at Y1068, Y1086 326 

and Y1173, which creates GRB2 binding sites (Batzer et al, 1994) as well as EGFR ubiquitination by 327 

CBL (Alwan et al, 2003) and subsequent endocytosis and recycling. EGFR endocytosis and recycling 328 

rates were dependent on EGFR levels, as previously described (Starbuck & Lauffenburger, 1992; Resat 329 

et al, 2003). The “addition” of EGF to MARM2.0 promotes EGFR dimerization and trans-330 

phosphorylation, recruitment of GRB2:SOS1 complexes to phospho-tyrosine residues on receptor tails 331 

and consequent GTP loading and activation of RAS. Receptors are then subjected to endocytosis leading 332 

to either their degradation or recycling. GTP-loaded RAS (RAS-GTP) promotes RAF dimerization and 333 

initiates the RAF-MEK-ERK (MAPK) cascade (Box 2). When BRAFV600E is present, it constitutively 334 

phosphorylates MEK in the absence of upstream signals. Phosphorylated MEK (pMEK) phosphorylates 335 

ERK (pERK), which indirectly upregulates expression of proteins that act as negative regulators of RTK 336 

signal transduction (these intermediate steps are represented as lumped reactions). Multiple negative 337 

regulatory mechanisms are known and we modelled four of them. Three involved transcriptionally-338 

mediated changes in protein abundance for (i) EGFR itself, (ii) DUSP, which antagonize ERK signaling 339 

by dephosphorylating the T and Y residues in the T-Y-X motif in the ERK activation loop (Saha et al, 340 

2012; Corbalan-Garcia et al, 1996) and (iii) SPRY, which has multiple biochemical activities, among 341 

which we modeled sequestration and inactivation of GRB2 (Lao et al, 2006, 2). We also modeled the 342 

phosphorylation-dependent inhibition of SOS1 binding to GRB2 and acquisition of a 14-3-3 docking site, 343 

which sequesters the protein in an inactive conformation (Corbalan-Garcia et al, 1996; Kamioka et al, 344 

2010).  SOS1 is phosphorylated on S1134 and S1161 sites by RSK, which is transcriptionally and post-345 
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translationally activated by ERK, but we represented this with a single pERK dependent phosphorylation 346 

reaction.  347 

MARM 2.0 includes 66 rules and 85 free parameters (kinetic rates, energies, scaling factors, etc.; total 348 

109 free parameters when instantiating MARM2.0 for all of the 10 small molecules). Six rules described 349 

transcript turnover, 7 protein turnover, 22 phosphorylation, 25 binding and 3 sets of 2 rules each described 350 

GTP/GDP exchange, ubiquitination, and translocation between cellular compartments (Figure 1C). For 351 

example, the binding rule “Rule('BRAF_and_uMEK_bind_and_dissociate', BRAF(mek=None) + 352 

MEK(phospho='u', raf=None) | BRAF(mek=1) % MEK(phospho='u', raf=1), …)” describes binding of 353 

BRAF to unphosphorylated MEK (uMEK), a prerequisite for MEK phosphorylation. Binding requires 354 

MEK to be unphosphorylated (phospho='u'), but does not specify any dependence on RAS, BRAF, CRAF 355 

or RAFi. Implementation of PySB rules generated >2,200 molecular species and >30,000 biochemical 356 

reactions with most proteins participating in >1000 species, a reflection of the combinatorial complexity 357 

described above. Binding rules accounted for >85% of all reactions in the model (25,922 of 30,384 358 

reactions total) and > 75% (19/25) of these binding rules were formulated as “energetic rules” with binding 359 

affinities expressed in terms of normalized Gibbs free energy differences (ΔG; Box 3). Binding and 360 

unbinding rates were then computed according to the Arrhenius law. To facilitate programmatic model 361 

formulation within an energetic framework, we implemented support for the eBNG framework (Hogg, 362 

2013; Harris et al, 2016) in PySB. This enabled specification of allosteric interactions using differences 363 

in free energy differences (ΔΔG, Box3), which is a principled way of establishing context dependent 364 

binding and unbinding rates (with the balance encoded by the parameter ϕ).  365 

ODE Description of ERK Pulsing Enabled Use of Population Average and Perturbational 366 

Experiments to Describe the Behavior of Single Cells 367 

Imaging studies have established that the A375 BRAFV600E melanoma cell line used in this study enters a 368 

seemingly steady-state drug-adapted condition within 24 hours of exposure to RAFi and/or MEKi (Gerosa 369 

et al, 2020). Data were therefore collected at this time point or subsequently, and model simulations 370 

included a pre-equilibration step.  Once adapted to RAFi, BRAFV600E melanoma cells experience transient 371 

pulses of ERK activity at irregular intervals, consistent with a stochastic regulatory mechanism (Gerosa 372 

et al, 2020). In principle, BNG/PySB models can be instantiated as stochastic, agent-based systems to 373 

represent such stochastic fluctuations (Sneddon et al, 2011). However, the reactions in MARM2.0 involve 374 

sufficiently abundant proteins (~102 to 106 copies per cell) that intrinsic stochasticity is not expected to 375 

arise spontaneously. Thus, the irregular pulsing by drug adapted A375 cells appears to originate not in the 376 
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noise of intracellular reactions, but instead in the spatially restricted release of growth factors acting in an 377 

autocrine and paracrine manner (Gerosa et al, 2020). In the absence of better understanding of these 378 

extracellular processes, they are difficult to represent computationally.  Moreover, calibration of stochastic 379 

models is substantially more difficult than for deterministic models (Fröhlich et al, 2016). 380 

Fortunately, experiments showed that addition of any of several different exogenous growth factors to 381 

RAFi- or MEKi-adapted cells generates synchronous ERK pulses having the same dynamics and drug 382 

sensitivities as asynchronous pulses arising spontaneously (Gerosa et al, 2020). Because single cells are 383 

much more similar to each other during ligand-induced than spontaneous pulsing, induced pulses are more 384 

amenable to characterization using standard transcriptional profiling and protein mass spectrometry 385 

methods. A further advantage is that synchronous pulses can be modeled at the population level by an 386 

ODE-model that is a reasonable simulacrum of single cell biology. In the current work, we used data from 387 

pulses generated by growth factors to provide insight into spontaneous pulses; as a consequence, we 388 

focused only on mechanisms downstream of receptor activation. Future work will be required to 389 

understand the origins and spatial distributions of ligands in the micro-environment of drug adapted cells 390 

undergoing asynchronous and spontaneous pulsing. 391 

To further constrain MARM2.0, we used targeted proteomics with calibration peptides to measure the 392 

absolute abundances of all 11 protein species and two phospho-proteins; data were collected at five 393 

vemurafenib concentrations yielding 55 data points for model calibration. In addition, we extracted 394 

relative abundances for 3 mRNA species from genome-wide transcript profiling performed at 8 395 

vemurafenib concentrations and 7 timepoints following EGF stimulation (yielding 45 calibration data 396 

points). Immunofluorescence imaging of pERK and pMEK provided the greatest amount of data (847 data 397 

points) and involved 234 different experimental conditions each involving a different concentration of one 398 

or more of the following perturbations: EGF, RAFi, panRAFi or MEKi. Imaging data had single cell 399 

resolution but population averages were used for model calibration, since we aimed to model the behavior 400 

of an average single cell. Training data was complimented with 2,209 immunofluorescence data points in 401 

1,647 conditions for model validation, which are described in greater detail below. 402 

Rule-Based Modeling enables Efficient Calibration through Multi-Model Optimization 403 

To calibrate MARM2.0 on experimental data, we used gradient-based numerical optimization, which 404 

performs well for large models (Villaverde et al, 2019). Optimization is nonetheless challenging for a 405 

model with as many reactions as MARM2.0: weighted least squares minimization of an objective function 406 

required simulation for each of the 234 training conditions for every evaluation of the objective function, 407 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.17.480899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480899
http://creativecommons.org/licenses/by-nd/4.0/


Page 15 
 

and this took minutes to perform. Optimization required hundreds of evaluations of the objective function 408 

and its derivatives, resulting in calibration runtimes on the order of weeks to months even on a cluster 409 

computer.  However, we found that, by exploiting patterns in the perturbational data it was possible to 410 

substantially reduce the number of species in a condition-specific manner, accelerating calibration 411 

(Fröhlich et al, 2019; Städter et al, 2021). In our calibration dataset, 122 conditions involved one 412 

perturbation (RAFi, panRAFi or MEKi individually), 111 conditions involved two perturbations (RAFi 413 

or MEKi followed by addition of EGF) and only one involved no perturbation, (Figure 1D, top). In the 414 

absence of a perturbing agent, all model species involving that agent (e.g., RAF bound to RAFi, Figure 415 

1B) as well as a subset of downstream species (e.g., pEGFR activated by EGF) have zero concentrations 416 

and need not be modelled. To automatically generate, compile and track sub-models omitting zero 417 

concentration species for a diverse range of perturbations, we created routines that exploited the 418 

programmatic features of PySB (Lopez et al, 2013) and BNGL network generation (Blinov et al, 2004) 419 

(see MultiModelFitting in Material and Methods). This yielded models having an average of 1.5 times 420 

fewer parameters than MARM2.0 itself (55-83 parameters compared to 85) (Figure 1D, middle) and up 421 

to 45-fold fewer species (50-1253 species compared to 2284) (Figure 1D, bottom). Multi-model objective 422 

calibration was performed using pyPESTO (a python reimplementation of the Parameter EStimation 423 

Toolbox; (Stapor et al, 2018)) allowing consistent generation of a full model based on calibration of sub-424 

models; this is an exact approach that does not reduce the accuracy of the objective function or gradient 425 

evaluation. Overall, we found that using PySB to match model structure to data structure reduced median 426 

gradient evaluation time ~3-fold (from 5h to 1.60h on a single compute core; Figure 1F), which for 427 

MARM2.0 extrapolated to a reduction of ~2 weeks in wall-time and ~38 years in CPU time (using 103 428 

cores with 5 days wall-time). Since multiple rounds of model refinement and calibration were necessary 429 

over the course of the current work, a three-fold improvement in calibration time had a major impact. We 430 

expect that multi-model objective calibration will be broadly useful with other models involving 431 

perturbational datasets. 432 

Following calibration, MARM2.0 quantitatively captured the effects of RAFi and MEKi treatment on 433 

baseline pERK levels in the drug adapted state and during transient EGF stimulation. Relatively few 434 

parameters converged on unique values (Figure S1) due to the known non-identifiability of biochemical 435 

models having explicit forward and back reactions, (Gutenkunst et al, 2007) as well as incomplete 436 

convergence of the optimizer due to limitations in the computational budget. We therefore used parameter 437 

sets from the 5% of optimization runs having the lowest value of the objective function (50 parameter 438 

sets) to generate a set of dynamical trajectories that estimated the impact of parametric uncertainty on 439 
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simulations. For the great majority of data points (87.4%) we found that 80% of simulated trajectories fell 440 

within experimental error bounds (Figure 2, S2), demonstrating good agreement between the calibrated 441 

model with experimental data. This does not constitute a rigorous quantification of parameter uncertainty 442 

(Fröhlich et al, 2014), but does account for correlation in parameter values (Eydgahi et al, 2013) and was 443 

the only practically applicable approach given the number of parameters and species in MARM2.0.   444 

Causal Decomposition untangles Intertwined BRAFV600E and RAS Driven Signaling 445 

When cells were adapted to RAFi (vemurafenib unless otherwise noted) for 24 hours, steady-state pERK 446 

levels decreased with drug concentrations.  In striking contrast, the amplitude of pERK pulses generated 447 

by adding exogenous EGF increased with RAFi concentration (Figure 2A left). Thus, EGF (and other 448 

growth factors applied in a similar manner) induced pERK in proportion to the degree of BRAFV600E 449 

inhibition.  When MEKi (cobimetinib unless otherwise noted) was used over a dose range, a biphasic 450 

response was observed: below ~0.1 µM MEKi EGF-induced pERK levels increased with MEKi 451 

concentration but above ~0.1 µM MEKi they fell (Figure 2A right). In all cases, the effects of EGF were 452 

transient and pERK levels returned to their drug-adapted baseline levels within one to two hours. The 453 

calibrated MARM2.0 model recapitulated all of these phenomena and we therefore sought a molecular 454 

explanation using model analysis.  455 

Experimentally determined pMEK and pERK levels measure the sum of active MAPK kinases generated 456 

by oncogenic and chronically active BRAFV600E and by transiently active EGFR (Figure 2B). To 457 

decompose these two sources of MAPK activity, we modeled a “RAS reaction channel,” which 458 

encompasses all reactions initiated by (RAS-GTP)2-RAF2 oligomers, and a “BRAFV600E reaction channel” 459 

encompassing all MAPK reactions downstream of the BRAF oncogene. In agent-based modeling, it is 460 

straightforward to keep track of the different origins of a single molecular species and thereby generate 461 

causal traces or “stories” (Boutillier et al, 2018). To adapt this approach to an ODE model, we used an in 462 

silico labeling strategy that involved adding a virtual “tag” to pMEK (Figure 2C, Methods Section Causal 463 

Signal Decomposition) at the time of its generation by (RAS-GTP)2-RAF2 (orange, top left panel) or 464 

BRAFV600E (blue, bottom left panel).  The tag was copied from pMEK to pERK upon ERK activation 465 

(blue/orange, top right panel) and removed during dephosphorylation (blue/orange, bottom right panel).  466 

Implementing this approach required modification of only of a few PySB rules (Figure 2D) and did not 467 

change model dynamics.  468 

For causal decomposition of MARM2.0 under a range of conditions, computational labeling of both 469 

pMEK and pERK was necessary, since the two active forms do not have the same proportionality (degree 470 
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of amplification) in the two reaction channels: in the BRAFV600E channel, the MEK phosphorylation rate 471 

is lower when MEKi is bound to uMEK, generating a lower ratio of pMEK-MEKi to apo-pMEK than in 472 

the RAS channel, in which the MEK phosphorylation rate is independent of MEKi binding. The origins 473 

of this phenomenon are described in greater detail below.  Since MEKi inhibits the catalytic activity of 474 

pMEK, amplification from pMEK to pERK is lower in the BRAFV600E than the RAS channel. 475 

The value of causal decomposition was illustrated when we investigated the observed increase in pERK 476 

levels in the BRAFV600E channel following EGF addition (blue, Figure 2E). This was unexpected, since, 477 

in MARM2.0, EGF only activates the RAS channel. We surmised that activation of the BRAFV600E channel 478 

might arise from retroactivity (Del Vecchio et al, 2008), in which downstream reactions affect upstream 479 

or parallel reactions by imposing a load on them, most commonly by competing for a limited pool of a 480 

regulators (Sauro, 2008). Using a counterfactual model, we confirmed that retroactivity in the BRAFV600E 481 

channel arose from sequestration of DUSP proteins by pERK in the RAS channel (Figure S2E). Thus, 482 

activation of the RAS channel can activate the BRAFV600E channel by reducing the rate of DUSP-483 

dependent pERK dephosphorylation. A second example of causal decomposition involved experimental 484 

data showing that pMEK levels remain roughly constant over a 105-fold range of RAFi concentrations (as 485 

monitored at the 5-minute peak of an EGF-induced pulse, Figure 2F left). Causal decomposition showed 486 

that this unexpected behavior arose from a steady reduction in the activity of the BRAFV600E channel (blue) 487 

with increasing RAFi and a simultaneous and offsetting increase in signaling in the RAS channel (orange). 488 

This was true of all 3 RAFi and 5 MEKi tested (Figure S3) and represents a classic case of pathway 489 

rewiring that is obscured at the level of total MAPK activity.  490 

Slow Transcriptional Feedbacks Imprint Drug-Adapted State and Unravel Cyclic Causal 491 

Dependencies 492 

Experimental data (Gerosa et al, 2020; Lito et al, 2012; Pratilas et al, 2009) and model trajectories show 493 

that DUSP (blue), SPRY (orange), and EGFR (green) proteins (dark colors) and mRNA (light colors) 494 

levels are substantially lower in cells adapted to RAFi for 24 hours as compared to drug-naïve cells 495 

(Figure 3A left, S2B,F). This is consistent with the known role of MAPK activity in promoting the 496 

expression of negative (feedback) regulators.  However, it raises the question: why is pERK only 497 

transiently activated by EGF in drug-adapted cells if feedback is suppressed?  When we simulated the 498 

induction of ERK pulses by exogenous EGF in drug adapted cells, we observed modest increases in EGFR, 499 

DUSP and SPRY mRNA levels (Figure 3A right), consistent with respective experimental training data 500 

(Figure S2F). However, at the protein level DUSP and SPRY remained almost constant and EGFR 501 
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decreased. We surmised that this reflected the operation of transcriptional feedback on a longer time-scale 502 

(>2 h) than a typical EGF-mediated pulse (30-90 min). Model analysis showed that changes in EGFR 503 

protein levels were a consequence of receptor endocytosis, and degradation. Thus, EGFR trafficking and 504 

not negative feedback controls the duration of a pERK pulse in drug adapted cells, consistent with existing 505 

models of EGFR (Starbuck & Lauffenburger, 1992; Dessauges et al, 2021) and other transmembrane 506 

receptors (Becker et al, 2010).  However, on the longer time-scale of drug adaptation, transcriptional 507 

feedback is the primary determinant of pERK levels. Similar separations in time-scale have been 508 

previously observed in other aspects of EGFR and MAPK signaling. For example, individual kinase 509 

phosho-states turn over on time scale of seconds but measurable changes in MAPK activity are a least 510 

hundred-fold slower, requiring minutes to hours (Kholodenko et al, 1999; Reddy et al, 2016; Kleiman et 511 

al, 2011). Thus, slow population average responses mask underlying biochemical reactions happening on 512 

much faster timescales.  513 

The presence of feedback loops in a network usually generates cycles in the causal diagram (Mooij et al, 514 

2013) (Figure 3B left), complicating model analysis (Pearl & Dechter, 2013; Spirtes, 2013). In the case 515 

of MARM2.0, a cycle involving positive regulation of feedback regulators by MAPK activities means, 516 

for example, that pERK activity could ultimately control DUSP levels or DUSP levels could control pERK 517 

activity. However, time-scale separation makes it possible to generate an acyclic causal diagram for 518 

MARM2.0 (Hyttinen et al, 2012) (Figure 3B right), in which the effects of RAFi and MEKi on pERK are 519 

split into the rapid and immediate effects of drug on kinase activity (direct drug action, purple shading) 520 

and a slower process involving changes in the levels of feedback proteins (drug adaption, brown shading). 521 

Prior to EGF stimulation, when only the BRAFV600E channel is active (Figure 2B left), MEKi and/or RAFi 522 

levels control pERK levels in drug-adapted cells (drug adapted pERK; gray in Figure 3B), which in turn 523 

determine DUSP and SPRY concentration and, thus, the strength of negative feedback on pERK in the 524 

RAS channel (transient pERK, turquoise in Figure 3B). The indeterminacy between drug adapted pERK 525 

and DUSP levels remains (illustrated by a bidirectional edge in the graph), but this does not affect the 526 

determinacy between drug-adapted DUSP and transient pERK levels. Thus, time scale separation during 527 

drug adaption makes it possible to control the MAPK module in two distinct ways depending on the 528 

activating signal.   529 

MAPK Signaling is rewired by Drug Adaptation and Direct Inhibition 530 

The ratio of input to output signals in a network (the gain) is a fundamental property of a signal 531 

transduction system that can be used quantify rewiring. Gain often varies along a series of reactions in a 532 
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single channel – for example the number molecules of pERK generated per molecule of RAS-GTP as 533 

compared to EGF ligand. Gain could in principle be quantified by sensitivity (Goldbeter & Koshland, 534 

1981), but as a mathematical concept, sensitivity is defined at steady-state, whereas signaling in the RAS 535 

channel is transient. Sensitivity could also be computed pointwise at every time point (Chen et al, 2009), 536 

but this would not account for the fact that input and output signals for any specific step in a network often 537 

have different timescales. For example, modeling revealed conditions in which an input signal (e.g., 538 

pEGFR levels) had started to fall following EGF stimulation, while a downstream event (e.g., formation 539 

of active RAS-GTP) was still increasing. We therefore defined the gain of a reaction channel as the ratio 540 

of L¥ or L1 norms (with respect to a logarithmic timescale) between input and output signals in 541 

corresponding model trajectories (see Methods; Signaling Gain). The L1 norm quantifies the area under 542 

the curve of the signal whereas the L¥ norm quantifies the height of the peak of the signal. Both represent 543 

scalar, time-independent quantities. For simplicity, we normalized gain to equal 1 in the absence of 544 

inhibition. 545 

Gain for each of the two MAPK reaction channels can be investigated graphically using a formalism in 546 

which each node represents a “signal” that is defined as the sum of active model species, and edges 547 

represent signaling steps that are defined as the action of one or more PySB reaction rules. Gain was 548 

computed along each edge of the graph by computing the ratio of norms of input and output nodes. The 549 

graph in Figure 4A has been arranged so that each signaling step (edge) is affected by as few drug actions 550 

as possible – ideally only one - allowing changes in gain to be attributed to direct drug action (purple) or 551 

drug adaptation (brown). The graph contains three steps for the RAS channel (orange; steps R1-R3) and 552 

two steps for the BRAFV600E channel (blue; steps B2-B3) with the channels “aligned” at the third step 553 

(pMEK phosphorylation of ERK; Figure 4A). We then used the calibrated model to compute time-554 

resolved signals for all nodes at multiple drug concentrations (Figure 4B) and determined the gain (Figure 555 

4C). To visually summarize the inhibitor and concentration-dependent states of the graph, we generated 556 

separate representations for RAFi (Figure 4D) and MEKi (Figure 4E), with signal activity indicated as 557 

node opacity and gain as edge opacity. 558 

We found that drug adaptation to RAFi and MEKi had a similar impact on the first step (R1) of both 559 

reaction channels (Figure 4C, top panels). At low to medium drug concentrations (RAFi: ~10-4 to10-2 µM, 560 

MEKi ~10-5 to 10-3µM), the gain from pEGFR to RAS-GTP was close to zero representing complete 561 

inhibition of EGF-mediated signaling by the combined actions of feedback regulators such as DUSP and 562 

SPRY. At medium to high drug concentrations (RAFi: ~10-2 to 10-1µM, MEKi: ~10-3 to  563 
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10-0µM) a reduction in the levels of feedback regulators led to a relief of feedback and an increase in gain. 564 

At the second step, for medium to high RAFi and MEKi concentrations, we found that B2 had gain close 565 

to zero, but R2 gain was larger than one (Figure 4C, middle panels), indicating channel-specific effects 566 

for both drugs. For RAFi, we attributed this channel specificity to difference in the affinity of the RAFi 567 

for monomeric RAF in the BRAFV600E channel and dimeric RAF in the RAS channel (orange vs. blue 568 

colored nodes). The difference in affinity is determined by the thermodynamic parameter ∆∆𝐺234 (Box 569 

3), which encodes the ratio of drug affinities for the first and second protomers of a RAF dimer; for 570 

vemurafenib this difference was estimated to be ~2.5 x 103-fold (median of values from best 5% of fits). 571 

Thus, even at 10µM, the highest vemurafenib concentration tested, and a value well above the clinically 572 

useful range, ~25% of RAF dimers had one protomer not bound to drug (Figure 4F, left), a configuration 573 

that is active as a kinase (Karoulia et al, 2017). The estimated lower bound for ∆∆𝐺234 corresponding to 574 

~60 fold decrease in affinity is consistent with a previously reported values of 30-100 fold lower IC50 for 575 

a BRAFV600E relative to wild-type, as estimated from cell-based experiments with a splicing-variant that 576 

forms BRAFV600E-BRAFV600E  dimers (Karoulia et al, 2016). Moreover, estimated ranges for ∆∆𝐺234 were 577 

similar for the four other type I½ RAFi drugs we tested (Figure S1, S4). For MEKi, we attributed the 578 

channel specific potency in the second step to a decrease in MEK phosphorylation rate by BRAFV600E for 579 

BRAF-uMEK-MEKi complexes as compared to BRAF-uMEK complexes; modeling suggested a ~ 6.5 x 580 

103-fold reduction in rate of reduction as compared to apo MEK with cobimetinib as the MEKi. Estimated 581 

values were similar (>800 fold) for trametinib and PD0325901, but substantially lower (<200 fold) for 582 

binimetinib and selumetinib, consistent with previously reported differences in the activity of these drugs 583 

(Pino et al, 2021). In all cases, the combination of lower RAFi affinity or lower MEKi-depdendent 584 

phosphorylations rate resulted in incomplete inhibition of pMEK in the RAS channel (Figure S3).  585 

For the third step, we found that gain from pMEK to pERK (B3 and R3) increased at medium to high 586 

concentrations of RAFi (Figure 4C, bottom left panel), due to a reduction in DUSP expression levels. In 587 

contrast, MEKi did not have any effect on gain at medium concentrations (~10-3 to 10-2µM, (Figure 4C, 588 

bottom right panel).  This was unexpected, since the analysis described above shows that DUSP levels are 589 

controlled by drug-adapted pERK levels, which are inhibited at medium concentrations of MEKi and 590 

RAFi (blue, middle panels, Figure 4C). However, B3/R3 are the only steps in which the model 591 

implements two distinct effects for each drug: increases in ERK activity as a result of drug adaptation, 592 

i.e., DUSP downregulation, (brown, Figure 4A) and reductions in ERK activity via direct drug action by 593 

MEKi on MEK (purple, Figure 4A). Modeling suggested that direct drug action and adaptation balanced 594 

each other at intermediate MEKi concentrations and direct inhibition became dominant only at high 595 
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concentrations. The differential potency of MEKi for BRAFV600E (B3, blue) compared to the RAS 596 

channels (R3, orange) could also be due to a difference in affinity of MEKi for pMEK as compared to 597 

uMEK (see Section on Causal Decomposition) (Hatzivassiliou et al, 2013), which was encoded in the 598 

thermodynamic parameter ∆∆𝐺5 (Figure 4F).  For cobimetinib, the inferred ∆∆𝐺5 values corresponded 599 

to a ~3.5-fold decrease in affinity, but for the four other MEKi tested this difference was >10-fold (Figure 600 

S4). Since the shift in MEKi potency for pERK activated by EGFR as compared to BRAFV600E activated 601 

pERK was ~100 fold (Figure 2A, S2C), we concluded that it likely arises from a combination of channel 602 

specific efficacy in the second step and balancing of direct drug action and drug adaptation in the third 603 

step. In this form of the model, the decreased affinity of MEKi for pMEK played only a minor role in 604 

channel specificity. 605 

One interesting aspect of gain in MAPK signaling is that it varied independent of total activity of the 606 

signaling cascade or the flux of MAPK kinases and phosphatases (Figure 4D,E). For example, at high 607 

concentrations of RAFi, step B3 had high gain (due to low DUSP activity) but the channel was functionally 608 

inactive (due to RAFi-BRAFV600E binding). The interesting feature of this arrangement is that the anti-609 

proliferative effects of RAFi are highly sensitive to anything able to activate MEK directly, such as a 610 

mutation in the kinase. Consistent with this, activating mutations such as MEK1C121S are observed to give 611 

rise to acquired drug resistance in patients (Wagle et al, 2011). High gain but low activity in the RAS 612 

channel is directly analogous, and potentiates both ligand-mediated RTK activation and RAS mutation 613 

(e.g., NRASQ61K discussed below). More generally, it is possible that identifying signaling steps with low 614 

activity but high gain may help to pinpoint mechanisms of potential acquired drug resistance. 615 

Pulsatile Signaling Induces Apparent Drug Interactions 616 

MEK and RAF inhibitors are normally used in combination. To study drug interaction and also test the 617 

predictive power of MARM2.0 in conditions distinct from those used for model training, we simulated 618 

the effects of RAFi plus MEKi combinations on pERK levels with a model trained on single-drug 619 

responses alone (the model training described above). Drug dose-response relationships were then 620 

visualized as surface plots (Figure 5A) and isobolograms (Figure 5B). In the absence of exogenous 621 

growth factors (Figure 5A(i)), we predicted a monotonic decrease in pERK levels with increasing doses 622 

of both drugs (left panels) and experimental data were in agreement (right panels). In BRAFi- adapted and 623 

EGF stimulated cells, we predicted a more complex landscape (Figure 5A(ii)), in which pERK was 624 

relatively drug resistant along a L-shaped region (red dashed outline) at intermediate MEKi and high RAFi 625 

concentrations with a gradual decrease at high MEKi concentrations. Using isobolograms, we observed 626 
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disconnected level sets (bottom, Figure 5B), recapitulating the non-monotonic response to MEKi in 627 

Figure 2A, in which pERK levels first rose and then fell with increasing drug concentration.  Experimental 628 

data (right panel, Figure 5A(ii)) was qualitatively similar to predictions (left panel) and differences were 629 

primarily in the magnitude of pERK, not the shape of the response surface (bottom, Figure 5B). 630 

Disconnected isobolograms (bottom, Figure 5B) are noteworthy, because measures of drug interactions 631 

such as Loewe additivity (Loewe, 1928) or the Chou-Talalay combination index (Chou et al, 1993) require 632 

a one-to-one mapping between dose and response (a bijective curve) and cannot be applied in this context. 633 

However, comparing pERK levels to null models for Bliss independence (Bliss, 1939) (Bliss, Figure 5C) 634 

and highest single agent (Lehár et al, 2007) (HSA, Figure 5D) revealed negligible drug interaction (white) 635 

in the absence of EGF (top panels) in simulation (left) and experimental data (right). Under conditions of 636 

EGF stimulation (bottom panels), we observed substantial discordance between the magnitude and sign 637 

of drug interaction as scored by Bliss criteria (Figure 5C) and HSA (Figure 5D). Thus, existing 638 

definitions of drug synergy and antagonism do not adequately describe the complex dose-response 639 

landscapes we observed. 640 

When we decomposed dose-response surfaces for EGF-stimulated conditions (left, Figure 5E) into 641 

BRAFV600E (middle) and RAS channels (right). we observed little RAFi and MEKi interaction in the 642 

BRAFV600E channel (left, Figure 5F) and either a small level of synergy (blue) or strong antagonism (red) 643 

in the RAS channel depending on drug concentration (right). When we then computed gain in the RAS 644 

channel for R1, R2 and R3 (Figure 4A) at different drug concentrations, we observed low gain for R1 at 645 

RAFi and MEKi concentrations below 10 and 1 nM respectively (first panel, Figure 5G), high gain for 646 

R2 at all concentrations (second panel) and low gain for R3 at MEKi at >1µM (third panel). When the 647 

gain for steps R1-R3 was computed as pointwise multiplication of the three surfaces, the L-shaped region 648 

of drug resistant pERK (fourth panel) was regenerated (Figure 5A(ii)). Thus, the overall drug response 649 

landscape can be explained by the superposition of adaptive drug response on R1 (brown), and direct drug 650 

effects on R3 (purple). 651 

Sustained Signaling does not Induce Drug Interaction 652 

To study the effects of RAFi and MEKi on signaling in the RAS channel under conditions of sustained 653 

rather than transient EGFR activation, we over-expressed EGFR using CRISPRa (Gerosa et al, 2020), 654 

yielding two cell lines with 4-fold (light blue) and 9-fold (turquoise, referred to as A375 CRISPRa-EGFR 655 

below) increases in expression levels (Figure 6A). It has previously been shown that, when EGFR is 656 

overexpressed to this degree, mechanisms of receptor endocytosis and degradation are saturated and 657 
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EGFR becomes chronically rather than transiently active in the presence of ligand (Lund et al, 1990; 658 

Wiley, 1988; Kiyatkin et al, 2020). Consistent with this, we found that upon ligand addition, pERK levels 659 

in RAFi-adapted CRISPRa-EGFR cells rose rapidly to a peak at ~30 min and then fell slightly to level at 660 

roughly ~75% of their levels in the absence of RAFi exposure; pERK remained at this level for at least 661 

24h in both experiments and simulations. Under these conditions, RAFi had substantially lower efficacy 662 

(ECmax; Figure 6B) and MEKi had lower potency (EC50; Figure 6C) than in cells not stimulated with 663 

EGF. Channel decomposition (Figure 6B right panels) revealed an increase in pMEK and pERK levels 664 

in the RAS channel (orange) and also in the BRAF channel (blue), which we ascribed to retroactivity 665 

(Figure S6C) and low DUSP levels (Figure 6A, bottom, dark blue). Analysis of pERK phase space with 666 

DUSP and SPRY mRNA levels and SPRY protein levels showed similar distributions at 8h post EGF-667 

stimulation in drug-adapted CRISPRa-EGFR cells and pre EGF-stimulation in drug-adapted EGFRwt 668 

cells, suggesting a steady state had been reached at 8h post EGF-stimulation (Figure S6D). In contrast, 669 

DUSP protein levels at 8h post EGF-stimulation remained up to 3-fold below the levels observed at the 670 

same pERK levels pre EGF-stimulation, suggesting steady-state had not yet been reached, which is 671 

consistent with long DUSP protein half-life times observed in Western blot experiments (Lito et al, 2012). 672 

Thus, the relative resistance of EGFR amplified cells to RAFi and MEKi appears to result from sustained 673 

activation of the RAS channel and slow DUSP protein turnover. 674 

When we predicted the pERK dose-response surface for combined RAFi and MEKi treatment of 675 

CRISPRa-EGFR cells (8h after stimulation with EGF) using single drug training data (Figure 6D left), 676 

we observed incomplete pERK inhibition at high RAFi and medium MEKi concentrations. The resulting 677 

isobolograms had a convex shape (Figure 6E) with minimal drug interaction by Bliss (Figure 6F) or HSA 678 

criteria (Figure 6G). This differs from what was observed with pulsatile RTK activation (Figure 5C, D 679 

bottom panels) and suggests that drug interactions in the case of pulsatile signaling were only possible 680 

due to time scale separation between drug adaption and direct drug action. 681 

Structure-Based Model Formulation Enables Generalization Across Inhibitor Classes  682 

In MARM2.0, the thermodynamic parameter ∆∆𝐺234 describes changes in the stability of (RAFi-RAF)2 683 

complexes; these have been studied in detail via crystallographic structures (Rukhlenko et al, 2018). 684 

Negative ∆∆𝐺234 values manifest themselves as a loss of drug affinity by the second protomer in a RAF 685 

dimer. It is well-established that this leads to lower RAFi efficacy in the RAS channel as compared to the 686 

BRAFV600E channel (Figure 4C,F). However, due to energy conservation (Box 3), ∆∆𝐺234<0 also results 687 

in a higher dissociation rate of RAF2  complexes at high RAFi concentrations (Figure S5). Thus, 688 
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thermodynamically formulated models can describe the phenotypic response to inhibitors based on their   689 

allosteric properties.  690 

In contrast to type I½  RAF inhibitors, type II inhibitors (also called panRAFi; Box 2) such as LY3009120 691 

and AZ-628 (Henry et al, 2015; Noeparast et al, 2018) inhibit both monomeric RAF in the BRAFV600E 692 

and dimeric RAF in the RAS channel with similar affinity. Crystallographic data suggest that this arises 693 

because panRAF inhibitors do not destabilize (RAFi-RAF)2 complexes, i.e., they do not induce allosteric 694 

changes. To determine whether MARM2.0 correctly predicts the response to type II inhibitors based on 695 

the loss of allostery, we calibrated MARM2.0 using data from A375 CRISPRa-EGFR cells that were 696 

treated with LY3009120 (Figure 7A) or AZ-628 for 24h (Figure S6A), but not stimulated with EGF 697 

(Figure S2C). This allowed estimation of drug affinity for monomeric RAF (∆𝐺); ∆∆𝐺234 was fixed to 0 698 

to reflect loss of allostery. We then generated predictions for pMEK (top) and pERK (bottom) levels 8 699 

hours after EGF stimulation (red) in cells adapted to LY3009120 (Figure 7A left panels) or AZ-628 700 

(Figure S7). Predictions matched experimental data under the same conditions and causal decomposition 701 

confirmed that RAF was strongly inhibited in the RAS channel (right panels). We also observed good 702 

agreement between model predictions and experimental data for LY3009120 in combination with 703 

cobimetenib in EGF-stimulated, drug-adapted cells (Figure 7B). Analysis of drug interactions using HSA 704 

and Bliss criteria (Figure 7C) revealed a similar level of additivity (but little or no synergy) in model 705 

predictions and experimental data (note that the isoboles are curved not due to synergy but our use of 706 

logarithmic concentration axes). These data show that MARM2.0 can correctly predict the properties of 707 

different RAF inhibitors based on differences in their allosteric properties alone. 708 

Successes and Limitations in Extending MARM2.0 to Other Resistance Mechanisms 709 

NRASQ61K is a frequently observed resistance mutations found in melanoma patients treated with 710 

RAF/MEK therapy (Long et al, 2014; Shi et al, 2014). We modelled NRASQ61K as RTK-independent 711 

activation of the RAS channel  (Burd et al, 2014), with baseline pERK levels inferred from drug-naïve 712 

NRASQ61K BRAFV600E double mutant melanoma cells (Figure 8A). Under these conditions, simulations 713 

recapitulated higher baseline pERK and predicted 7-fold lower efficacy for RAFi (NRASQ61K, turquoise; 714 

left panels) and 4-fold lower potency for MEKi (Figure 8B right panels) as compared to NRAS wildtype 715 

cells (NRASwt, purple). These predictions were confirmed in A375 cells engineered to conditionally 716 

express NRASQ61K (Yao et al, 2015), but the observed loss of MEKi potency was even greater than 717 

modeling predicted (30-fold). Causal decomposition of (modelled) pERK activity in the presence of drug 718 

combinations (varying MEKi plus 1µM RAF; Figure 8C) showed that 1µM RAFi was sufficient to 719 
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completely block activity in the BRAFV600E channel (blue) without affecting the RAS channel (Figure 8B 720 

and 8C). This made it possible to study NRASQ61K signaling without interference from the BRAFV600E 721 

oncogene.  722 

Based on this insight we devised a triple combination experiment to study drug interactions between 723 

panRAFi and MEKi in the RAS channel alone (Figure 8D, top left panel). A375- BRAFV600E NRASQ61K 724 

cells were grown in the presence of 1µM vemurafenib plus different concentrations of LY3009120 and 725 

cobimetinib for 24h and pERK levels then determined (top right panel). In contrast to the analogous 726 

experiment without 1µM vemurafenib (Figure 7C), we observed pronounced synergy (blue) at low to 727 

medium concentrations of both inhibitors (~1-100nM) by Bliss (bottom left panel) and HSA criteria 728 

(bottom right panel). Similar synergy has previously been observed in KRAS-driven cell lines of diverse 729 

origins (Yen et al, 2018). However, we found that the effects of combining three drugs in double mutant 730 

cells A375 cells were not accurately captured by MARM2.0 (Figure S7). We hypothesized that drug 731 

synergy is likely to arise due to a combined allosteric effect of both drugs on RAS-RAF-MEK complexes, 732 

as similar interactions have been described for combined treatment of MEKi and APS-2-79, a type II 733 

inhibitor of the KSR scaffolding protein (Box 2) (Dhawan et al, 2016). MARM2.0 does not include such 734 

allosteric effects and was not trained on combination data that would be necessary to infer the strength of 735 

the combined effect a posteriori. This limitation of MARM2.0 can be rectified in future studies, but serves 736 

to reveal how the subtleties of drug interactions can be relatively difficult to discern when multiple parallel 737 

reaction channels are active. 738 

Model for Melanoma Cell Line Generalizes to Colorectal Cell Line 739 

BRAFV600E mutations are found in a variety of cancers other than melanoma, notably colorectal cancers. 740 

To investigate whether MARM2.0 could predict the responses of BRAFV600E colorectal cancers to RAFi, 741 

we collected data from HT29 cells, which carry a BRAFV600E mutation and have high EGFR expression 742 

(similar to A375 EGFR-CRISPRa cells). We anticipated that BRAFV600E channel would be a primary 743 

driver of pERK levels in the absence of EGF (Figure 9A) and the RAS channel in the presence of EGF 744 

(Figure 9B). To instantiate MARM2.0 for HT29 cells, we rescaled baseline protein and mRNA expression 745 

levels according to relative abundances in proteomic and transcriptomic data from the Cancer Cell Line 746 

Encyclopedia (Barretina et al, 2012; Nusinow et al, 2020). We simulated pERK drug response for RAFi 747 

plus MEKi combinations for HT29 cells (bottom) and compared to simulations for A375 CRISPRa-EGFR 748 

(top) and Dox inducible NRASQ61K A375 cells (middle). In all three cell lines, model predictions (left) 749 

demonstrated pERK inhibition in high-dose combinations, a result confirmed by experimental data (right; 750 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.17.480899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480899
http://creativecommons.org/licenses/by-nd/4.0/


Page 26 
 

Figure 9C). Under conditions of EGF-stimulation, simulations and data revealed drug-resistant ERK 751 

activation (Figure 9D) and an ~10-fold rightward shift in RAFi and MEKi dose-response curves (red 752 

arrows). Causal decomposition (Figure 9E) confirmed that these changes in drug potency are a 753 

consequence of profound differences between the BRAFV600E (left) and RAS (right) reaction channels. 754 

The remarkably good agreement between MARM2.0 predictions and data in three different settings in 755 

which RAFi resistance is observed (EGF treatment in BRAFV600E melanoma and colorectal cancer and 756 

NRASQ61K expression in BRAFV600E melanoma) suggests that the model correctly unifies the key features 757 

of allosteric regulation of oncogenic MAPK signaling. 758 

DISCUSSION 759 

In this manuscript we describe a quantitative framework for analyzing “pathway rewiring” with specific 760 

reference to rewiring involved in adaptive resistance to MEK and RAF inhibitors in BRAFV600E 761 

melanoma. We described new analytical methods and a mass-action kinetic model (MARM2.0) that 762 

substantially extends previous models of MAPK signaling by using an energy-based formalism to 763 

efficiently represent allosteric regulation of MAPK kinases and the complexes they form with each other 764 

and with small molecule drugs. Among other analysis, we used MARM2.0 to predict and understand 765 

resistance in the context of an NRAS mutation that is frequently observed in melanoma patients who 766 

acquire resistance to MEK and RAF inhibitors and BRAFV600E colorectal cancer cells that are intrinsically 767 

resistant to RAFi.  768 

The MAPK cascade, and RTKs acting upstream of it, are among the signal transduction systems most 769 

intensively studied using systems of ODEs and dynamical systems analysis. Adaptive drug resistance in 770 

BRAFV600E melanoma therefore represent an excellent setting in which to advance the state of the art in 771 

mechanistic modeling of intracellular networks. Moreover, whether adaptive or acquired, resistance to 772 

MEK and RAF inhibitors is directly relevant to patient outcomes: many individuals with BRAFV600E 773 

melanoma experience rapid and live-saving remission with relatively little adverse effect. However, the 774 

frequent and rapid emergence of drug resistance (often within a year of the start of treatment) dramatically 775 

reduces survival. Preventing the acquisition of drug resistance is widely seen as the key to achieving more 776 

durable responses to MEK-RAF inhibitors and targeted anti-cancer drugs in general.  777 

MARM2.0 fits well to over 900 data points in over 200 experimental conditions, requiring only eleven 778 

proteins, three mRNA species and three small molecule drugs. However, capturing the known activities, 779 

interactions, and structural features of these relatively few molecules involved a network of over 30,000 780 

distinct biochemical reactions. MARM2.0 accurately predicted the responses of cells to ten different 781 
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investigational and approved small-molecule kinase inhibitors in over 1600 experimental conditions, 782 

including drug combinations outside of the training dataset. While resistance in many of these conditions 783 

has been attributed to specific mechanisms (Haling et al, 2014; Hatzivassiliou et al, 2010; Lito et al, 2012, 784 

2014; Poulikakos et al, 2010; Solit et al, 2006; Yao et al, 2015), we distilled decades of structural, 785 

biochemical and cell biological work into a single model that provides a self-consistent, unifying picture 786 

of RAFi and MEKi resistance in BRAF mutant cancers. The model also correctly captures detailed 787 

biochemical properties of MAPK inhibitors without having been explicitly trained on the respective 788 

biochemistry: one example is the profound inhibition of EGF activated pERK signaling by type II RAF 789 

inhibitors. These features of our model increase confidence that it is a useful and realtively faithful 790 

representation of the essential features of intracellular biochemistry. However, some subtleties of MAPK 791 

regulation are missing from the model, including the kinase-kinase interactions mediated by KSR 792 

scaffolding proteins. The relevance of scaffolding becomes evident in BRAFV600E NRASQ61K cells 793 

exposed to multiple kinase inhibitors.  It will be straightforward to add to these features to the model as 794 

additional training data becomes available.  795 

In the treatment of melanoma, RAF and MEK inhibitors are used in combination, which is consistent with 796 

the more general use of drug combinations to improve reduce resistance to targeted therapy (Lehár et al, 797 

2009). Simulation represents an effective way to investigate mechanisms of drug interaction (Fröhlich et 798 

al, 2018; Yuan et al, 2020) and it has been postulated, on theoretical grounds, that inhibition of enzymes 799 

acting sequentially in a pathway is a means to achieve synergistic drug interaction (Yin et al, 2014; 800 

Fitzgerald et al, 2006). However, both data and modeling show that the activities of RAF and MEK 801 

inhibitors in BRAFV600E cells are additive over the great majority of the dose-response landscape. In those 802 

rare conditions in which drug synergy or antagonism is observed, analysis suggests that transcriptional 803 

feedback and allosteric interaction – rather than the presence of a serial network motif per se – is 804 

responsible for drug interaction.   805 

MARM2.0 demonstrates how adaptive drug resistance in BRAFV600E melanoma cells arises from the co-806 

existence in cells of two functionally distinct MAPK reaction channels. Signaling in one channel is 807 

initiated by the constitutive activity of oncogenic BRAFV600E and signaling in the other by RAS, which is 808 

in turn activated by RTKs. While it is conceptually convenient to depict the BRAFV600E and RAS channels 809 

as two different “pathways” (something we do for convenience in Figure 4) the actual mechanisms in 810 

cells involve shared molecular components: the two reaction channels comprise transient oligomers that 811 

involve similar, if not identical, proteins whose dynamic assembly and disassembly allows component 812 

exchange. Depending on conditions, one or the other reaction channels can be dominant in regulating 813 
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ERK, but the two channels can also operate concurrently, masking each other’s activity. For example, in 814 

EGF-treated cells, pMEK levels remain roughly constant over a 105-fold range of RAFi because signaling 815 

transitions from the BRAFV600E to the RAS channel. The BRAFV600E and RAS channels also influence 816 

each other directly, via retroactivity, and indirectly via control over the synthesis of feedback regulators. 817 

An additional feature of these reactions is that they operate on multiple time scales; in the case of the RAS 818 

channel this includes: (i) a time scale of seconds to minutes involving post-translational modifications and 819 

the direct action of inhibitory drugs (ii) a time scale of tens of minutes involving receptor internalization, 820 

degradation and recycling and (iii) a time scale of hours involving changes in the levels of negative 821 

feedback regulators such as DUSPS and SPRY. Time-scale separation between signal propagation and 822 

transcriptional rewiring is necessary for pulsatile signaling to escape from negative feedback and 823 

homeostatic control. 824 

Methodological innovation in the current paper focuses on combining rule-based modeling based on PySB 825 

and BNG with thermodynamic formalisms that exploit the fact that protein-protein and protein-small 826 

molecule binding and unbinding events do not consume energy. This builds on the work of Kholodenko 827 

on energy-balanced ODE models (Kholodenko, 2015) while creating a general-purpose framework for 828 

programmatically generating model families that make model calibration more efficient. Submodels were 829 

generated in PySB to optimally exploit the perturbational structure of the training data (the inclusion or 830 

not of drugs and growth factors in each experiment) and combined this with multi-model parameter 831 

estimation in the pyPESTO toolbox to substantially accelerate model training, an important consideration 832 

with large ODE models and complex training data. Furthermore, PySB/BNG enabled us to implement a 833 

labelling scheme for causal network decomposition that traces how species such as activated ERK (e.g. 834 

pERK) are generated by converging upstream reaction channels. Analogous generation and analysis of 835 

causal traces (“stories”) has been described in agent-based modeling (Boutillier et al, 2018) and their 836 

adaptation to the MARM2.0 ODE model was essential for formalizing the concept of network rewiring. 837 

These and other methods are generally applicable to other models in PySB (Lopez et al, 2013) although, 838 

in its current implementation, labeling is only designed to trace a sequence of activating events.  839 

Using energies (ΔG and ΔΔG values), rather than kinetic rates, to describe molecular interactions is a 840 

more natural and extendable framework for parameterizing biochemical models. Energies can be 841 

estimated from structural studies, from mass-spectrometry measurements (Mason & Covert, 2018; de 842 

Souza & Picotti, 2020), and increasingly from folding and docking algorithms that combine biophysical 843 

understanding of protein structure with deep learning (AlQuraishi & Sorger, 2021; Jumper et al, 2021).  844 

Approximate energy values can also mitigate the parametric uncertainty that is a pervasive to dynamical 845 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.17.480899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480899
http://creativecommons.org/licenses/by-nd/4.0/


Page 29 
 

models: We anticipate that use of measured or estimated energy values will, in the future, make it possible 846 

to place fairly tight priors on parameter values during model calibration, generating more predictive and 847 

more interpretable models. Moreover, the use of energy methods promises to bridge the gap between fine-848 

grained atomistic and structural data on single proteins and protein complexes and the more coarse-grained 849 

description of biomolecular interactions that are used for dynamical modelling of cellular networks. We 850 

anticipate that this will facilitate the multi-scale analysis of allosteric interactions in the assembly of multi-851 

protein(-drug) complexes, and the identification of non-obvious emergent properties. 852 

  853 

MATERIAL AND METHODS 854 

All code that was used to calibrate the model, make predictions and generate figures is available at 855 
https://github.com/labsyspharm/marm2-supplement 856 

Cell lines and tissue culture 857 

The following cell lines were used in this study with their source indicated in parenthesis: A375 (ATCC), 858 

A375 with CRISPRa EGFR overexpression (constructed from ATCC stock as reported in (Gerosa et al, 859 

2020)), HT29 (Merrimack Pharmaceuticals) and A375 with doxycycline-inducible NRASQ61K (Yao et al, 860 

2015) (provided by Neal Rosen’s lab at Memorial Sloan Kettering Cancer Center). A375 cells were grown 861 

in Dulbecco’s modified eagle medium with 4.5 g/l D-glucose, 4 mM L-glutamine, and 1 mM sodium 862 

pyruvate (DMEM) (Corning), supplemented with 5% FBS. HT29 cells were grown in RPMI media with 863 

L-glutamine supplemented with 10% FBS (50 mL). All media were supplemented with 1% penicillin and 864 

streptomycin. Cells were tested for mycoplasma contamination using the MycoAlert mycoplasma 865 

detection kit (Lonza). 866 

Drugs and growth factors 867 

The following chemicals from MedChem Express were dissolved in dimethyl sulfoxide (DMSO) at 10 868 

mM: vemurafenib, LY3009120, AZ-628, cobimetinib. EGF ligand was obtained from Peprotech (cat# 869 

100-15) and prepared in media supplemented with 0.1% bovine serum albumin. 870 

Experimental design for combined genetic, ligand and drug perturbations 871 

A375 cells with CRISPRa EGFR overexpression and HT29 cells were treated with the indicated drugs for 872 

24 hrs before being stimulated with EGF or mock-media for 8 hours. A375 cells with doxycycline-873 

inducible NRASQ61K were treated with doxycycline (10 µM) or mock-media for 24 hours before being 874 

treated with the indicated drugs for 24 hours.  875 
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Immunofluorescence staining, quantitation, and analysis for cell cultures 876 

The following primary and conjugated antibodies with specified vendor, animal sources and catalogue 877 

numbers were used in immunofluorescence analysis of cells and tissues at the specified dilution ratios: p-878 

ERKT202/Y204 rabbit mAb (Cell Signaling Technology, clone D13.14.4E, Cat# 4370), 1:800; p-879 

MEKS217/221 rabbit mAb (Cell Signaling Technology, Cat# 9121) 1:200, ANTI-FLAG® mouse mAb 880 

(Sigma Aldrich, Cat# F1804), 1:1000. Immunofluorescence assays for cultured cells were performed 881 

using cells seeded in either 96-well plates (Corning Cat#3603) or 384-well plates (CellCarrier 882 

Cat#6007558) for 24 hr and then treated with compounds or ligands either using a Hewlett-Packard D300 883 

Digital Dispenser or by manual dispensing. 884 

Cells were fixed in 4% PFA for 30 min at room temperature (RT) and washed with PBS with 0.1% Tween-885 

20 (Sigma) (PBS-T), permeabilized in methanol for 10 min at RT, rewashed with PBS-T, and blocked in 886 

Odyssey blocking buffer (OBB LI-COR Cat. No. 927401) for 1 hr at RT. Cells were incubated overnight 887 

at 4 °C with primary antibodies in OBB. Cells were then stained with rabbit and/or with mouse secondary 888 

antibodies from Molecular Probes (Invitrogen) labeled with Alexa Fluor 647 (Cat# A31573) or Alexa 889 

Fluor 488 (Cat# A21202) both at 1:2000 dilution. Cells were washed with PBS-T and then PBS and were 890 

next incubated in 250 ng/mL Hoechst 33342 and 1:2000 HCS CellMask™ Blue Stain solution (Thermo 891 

Scientific) for 20 min. Cells were washed twice with PBS and imaged with a 10× objective using a 892 

PerkinElmer Operetta High Content Imaging System. 9-11 sites were imaged in each well for 96-well 893 

plates and 4-6 sites for 384-well plates.  894 

Image segmentation, analysis, and signal intensity quantitation were performed using the Columbus 895 

software (PerkinElmer). Cytosol and nuclear areas were identified by using two different thresholds on 896 

the CellMask™ Blue Stain (low intensity) and Hoechst channels (~100-fold more intense) were used to 897 

define cytosolic and nuclear cell masks, respectively. Cells were identified and enumerated according to 898 

successful nuclear segmentation. Unless otherwise specified, immunofluorescence quantifications are 899 

average signals of the cytosolic area. In the case of the doxycycline-inducible NRASQ61K A375 cells, low 900 

FLAG intensity was used to remove from analysis cells not expressing FLAG-tagged NRASQ61K: in 901 

conditions with doxycycline addition FLAG intensity distributions were markedly bimodal with less than 902 

40% of cells being FLAG negative. Population averages were obtained by averaging values from single-903 

cell segmentation using custom MATLAB 2017a code.  904 
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MultiModel Fitting 905 

To the best of our knowledge, all state-of-the-art toolboxes only allow for fitting of individual models. To 906 

allow for simultaneous training of multiple models, we implemented the AggregatedObjective class in 907 

pyPESTO (https://github.com/ICB-DCM/pyPESTO), which implements the mapping between global 908 

optimization variables as well as respective gradients and local model parameter values and gradients. 909 

To generate the individual model variants, we implemented the function 910 

MARM.model.get_model_instance, which uses PySB to programmatically remove subsets of initial values 911 

of EGF, RAFi and MEKi species. For network generation we use BNG to construct differential equations 912 

only for species with non-zero concentrations. To further reduce computational burden we implemented 913 

the function MARM.model.cleanup_unused, which programmatically inspects the generated model and 914 

removes unused rules, expressions, parameters and energy patterns. 915 

Model Calibration 916 

Model optimization was performed using pyPESTO 0.2.10 (https://doi.org/10.5281/zenodo.5827905) 917 

with fides (Fröhlich & Sorger) version 0.7.5 (https://doi.org/10.5281/zenodo.6038127) as optimizer and 918 

AMICI (Fröhlich et al, 2021) version 0.11.25 (https://doi.org/10.5281/zenodo.6025361) as simulation 919 

engine. 103 optimization runs were performed using randomly sampled initial parameter values. Parameter 920 

boundaries that were used for initial value sampling and as constraints for optimization are provided in 921 

the function MARM.estimation.get_problem in the supplementary material. Initial parameter values where 922 

objective function values could not be evaluated were resampled until evaluation was possible. 923 

Optimization convergence settings were 10-12 as step-size tolerance and 10-4 as absolute gradient 924 

tolerance. Objective function gradients were computed using forward sensitivity analysis. Integration was 925 

limited to 106 steps and integration tolerances were set to 10-11 (absolute) and 10-9 (relative). Steady-state 926 

tolerances were set to 10-9 (absolute) and 10-7 (relative). 927 

Causal Signal Decomposition 928 

To track the causal origin of MEK and ERK phosphorylation, we introduced the concept of reaction 929 

channels, which combines ideas from causal pathway analysis (Babur et al, 2018) and causal lineage 930 

tracing (Boutillier et al, 2018): Causal pathway analysis explains the response to a perturbation by 931 

identifying a sequence of regulatory mechanisms consistent with experimental data. This is equivalent to 932 

finding a path in the causal analysis graph, constructed from the knowledge graph, that connects the 933 

perturbation with the experimentally observed quantity (Babur et al, 2018; Sharp et al, 2019). For rule-934 
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based models, the causal analysis graph is equivalent to the influence map. Agent based simulations of 935 

rules-based models can be represented as random walks on the influence map (Cristescu et al, 2019). 936 

Accordingly, causal relationships can be extracted by analyzing the traces of individual agents on the 937 

knowledge graph (Boutillier et al, 2018). As ODE representations of rule-based models describe the 938 

average of a population of agents, individual traces are not available and cannot be used to extract causal 939 

properties.  940 

To assign phosphorylated MEK and ERK to the BRAFV600E and RAS channels, we added a ‘channel’ site 941 

to MEK and ERK molecules, which acts as a tag to track the source of phosphorylation. Upon 942 

phosphorylation of MEK, this channel site is set according to the source of phosphorylation ‘phys’ for 943 

phosphorylation by RAS bound RAF dimers and ‘onco’ for phosphorylation by mutated BRAF. The rule-944 

based model formulation ensures that the channel information is propagated on all subsequent modeling 945 

steps. For the phosphorylation of ERK, we implement two separate rule variants that set the channel site 946 

according to the value channel of the phosphorylating MEK molecule. For both pMEK and pERK, the 947 

label is set to ‘NA’ during both dephosphorylation and initialization.  948 

Signaling Gain 949 

In systems biology, strength of signal transmission is typically quantified as response coefficient or 950 

logarithmic gain 951 

𝑅 =
𝛥𝑇
𝑇
𝛥𝑆
𝑆
	 952 

between an input S and an output T at steady-state. However, this definition is not applicable for transient, 953 

temporally resolved signals as the response coefficient does not account for the time dimension. As there 954 

typically are delays in signal transduction, a pointwise evaluation at individual timepoints does not yield 955 

meaningful results. 956 

In signal processing, the gain of linear time invariant systems can be computed as norm of the transfer 957 

function G 958 

‖𝐺‖ = ‖
𝐿{𝑇(𝑡)}
𝐿{𝑆(𝑡)} ‖ 959 

which permits the computation of a gain even for time-resolved inputs 𝑆(𝑠) and outputs 𝑇(𝑡). However, 960 

for nonlinear systems, such as the model we developed, a transfer function generally does not exist. 961 
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However, we here extend the idea of using functionals such as the Laplace function to map time-resolved 962 

input and outputs to scalar values which can then be used to compute the gain. Specifically, we propose 963 

the supremum norm 964 

‖𝑆‖= = 𝑆(𝑡)	 965 

as well as an L1 norm with exponential time transformation 966 

‖𝑆‖> = ? 𝑆(𝑒A)
BCD	AE	

BCD	AF	
𝑑𝑡 967 

The supremum norm effectively computes the gain evaluated at the peak of the signal, while the L1 norm 968 

computes the gain between the area under the curve, where the exponential time transformation aims to 969 

avoid problems when signals live on multiple timescales. 970 

The natural scale of gains is the ratio of molecules or concentrations. However, pronounced parameter 971 

variability in the estimates for scaling factors, suggested that absolute molecular concentrations were not 972 

subject to large uncertainties, which would propagate to these norm estimates. Accordingly, we 973 

normalized all gains such that baseline signal transmission had a gain of 1. 974 

To numerically compute supremum and L1 norm, we used 50 log-uniformly spaced time points between 975 

10-4 and 101 h. The integral was approximated using the sklearn.auc function, which uses the trapezoidal 976 

rule.  977 

Despite substantial variability in parameter estimates (Figure S1), we found that the variability in 978 

qualitative dependence of gain on RAFi and MEKi concentrations is low. We observed the highest 979 

variability in the gain from RAS-GTP to physiological pMEK. This is not surprising, as there is no 980 

experimental data on RAS-GTP levels. However, the variability appears to primarily affect the absolute 981 

levels of signaling gain and less the shape of the dose response curve. Overall, this indicates that our 982 

conclusions were not subject to parameter non-identifiability. Moreover, we found that the signaling gain 983 

analysis is consistent across different RAFis and MEKis for L1 and L¥ norms (Figure S4), further 984 

corroborating the validity of the approach. 985 

Predictions for NRAS mutant cell lines 986 

In lack of quantitative measurements of mutant NRAS protein abundances in cell lines with acquired or 987 

mutated NRAS, we inferred respective levels from baseline data. In the model, the NRAS mutation was 988 

implemented through a constitutive GTP loading reaction that activates RAF independent of upstream 989 

receptor activity. Only the rate of this reaction was estimated when retraining on baseline data from 990 
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respective cell-lines, while all other parameters were kept fixed. For the cell line with acquired NRAS 991 

mutation, pERK scaling and offset parameters were simultaneously re-estimated from baseline and naive 992 

cell data due to account for difference in data normalization. 993 

Computation of EC50 and ECmax values 994 

EC50 and ECmax were computed by fitting a three-parameter hill function 995 

𝐸𝐶43J −
𝐸𝐶43J − 𝐸𝐶4KL

1 + 𝐸𝐶O%𝑥
− 𝑦(𝑥) 996 

to either experimental data or model simulations, where x are drug concentrations and y are pMEK or 997 

pERK levels. 𝐸𝐶43J (search interval [0, 2.5], initial 0.5) and 𝐸𝐶4KL (search interval [0,1.5], initial 998 

min	(max(𝑦(𝑥43J), 0) , 2.5) were estimated on a linear scale while 𝐸𝐶O% (search interval [𝑥43J,	𝑥4KL], 999 

initial 𝑥4\23KJ) was estimated on a logarithmic scale. scipy.optimize.least_squares was used for curve 1000 

fitting. 1001 
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 1347 

Figure Box1: Thermodynamic Model of RAF-RAFi interactions. (A) Protein structures of monomeric 1348 
and dimeric BRAFV600E protomers bound to vemurafenib (B) Binding diagram for RAF and RAFi 1349 
molecules. Formulas next to reaction arrows indicate the dissociation constants of the respective reactions. 1350 
Arrow color indicates type of reaction (black: RAF dimerization, turquoise: RAFi binding). Dashed line 1351 
color indicates the thermodynamic parameters that modulate the respective reactions (orange: f, purple: 1352 
g). (C) Illustration of relationship between Gibbs free energies and kinetic rates for RAF dimerization. 1353 
Modulation of kinetic rates through a context specific energy patterns that depends on the number of 1354 
bound RAFi molecules is indicated in orange (one RAFi bound, parameter f) and purple (two RAFi bound, 1355 
parameter g). Energies are normalized by the factor 1/RT, where R is Gas constant and T is the 1356 
temperature. The diagram shows the specific situation of 𝜙 = 1 where only reaction product stability is 1357 
modulated. (D) PySB code to define the rules and energy-patterns that describe the diagram in B. (E) 1358 
Table of context dependent forward and reverse reaction rates. k is the binding rate, kr is the unbinding 1359 
rate, with corresponding pysb rule indicated as subscript. (F) Model simulations for different values of 1360 
KRR with f=0.001 and g=1000 1361 
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 1362 

Figure 1: Thermodynamic model of EGFR and ERK signaling. (A) Schematic overview of processes 1363 
described in the model. (B) Summary of model species and oligomerization in the model. Coloring of tiles 1364 
indicates percentage with respect to total of monomer species (per row). Columns for the drug and growth 1365 
factor perturbations RAFi, panRAFi, MEKi and EGF are highlighted according to the respective color in 1366 
A. (C) Statistics of model rules, reactions and parameters. Catalysis includes (de-) phosphorylation, GTP-1367 
exchange and (de-)ubiquitination. Other parameters include initial conditions and scaling factors and 1368 
background intensities. (D) Number of experiments and sizes of respectively resized models according to 1369 
the multi-model optimization scheme. A plus on the bottom indicates that the respective perturbation was 1370 
applied in the corresponding experiment, color as in A/B.  (E) Comparison of gradient computation time 1371 
for the full-model and multi-model optimization approach. 1372 
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 1374 

Figure 2: Causal Decomposition of RAS and BRAFV600E Channels. (A) Time course of pre- and post-1375 
stimulation pERK levels. Model simulations are shown as solid lines, experimental data as vertical point-1376 
ranges. Colors indicate different concentrations of vemurafenib (RAFi) and cobimetinib (MEKi). Shading 1377 
shows 80% percentiles over parameter sets. (B) Toggling of modes activation for pMEK via BRAFV600E 1378 
(blue) and EGF (orange) during the two phases of pulsatile reactivation shown in A: drug adaptation (left) 1379 
and transient stimulation (right) (C) Schematic for tracing of causal history using synthetic sites. (D) Rules 1380 
affected by causal decomposition (E, F) Comparison of experimental data and decomposed model 1381 
simulations at 5 minutes after EGF stimulation. Data is shown as point-ranges. Median (over parameter 1382 
sets) simulations are shown as stacked areas with color indicating reaction channel (blue: BRAFV600E, 1383 
orange: RAS). Shading indicates 80% percentiles over parameter sets. 1384 
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 1386 

Figure 3: Transcriptional feedbacks imprint a sparse drug-adapted state. (A) Time Courses of pre- 1387 
(left) and post-stimulation (right) protein (dark colors) and mRNA (light colors) expression levels of genes 1388 
that are subject to transcriptional control by pERK. (B) Schematic of the structural causal model for the 1389 
effect of RAFi and MEKi on pERK under homeostatic (left) and non-homeostatic (right) conditions.  1390 
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 1391 

Figure 4: Quantification of signal transduction in RAS and BRAFV600E channels. (A) Simplified 1392 
model network depicting intertwined RAS and BRAFV600E channels and feedbacks. (B) Decomposition 1393 
of RAS and BRAFV600E signals at the different nodes of the simplified network from A for different 1394 
concentrations of vemurafenib. Color indicates vemurafenib concentration. Simulations were performed 1395 
for a representative parameter value. (C) Quantification of signal transmissions in terms of signaling gain 1396 
along the edges of the simplified network in A for different concentrations of vemurafenib (left) and 1397 
cobimetinib (right). Color indicates the reaction channel. Shading indicates 20%, 40% 60% and 80% 1398 
percentiles over parameter sets. (D, E) Visualization of pathway rewiring as a result of drug adaptation. 1399 
Opacity of nodes indicates median normalized signaling activity (shown in B). Opacity of arrows indicates 1400 
median normalized signaling gain (shown in C) where 100% corresponds to a signaling gain of 2. (F) 1401 
Quantification of efficacy of drug inhibition. For RAF dimers, each protomer is counted individually. 1402 
Shading indicates 20%, 40% 60% and 80% percentiles over parameter sets. 1403 
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 1405 

Figure 5: Prediction and analysis of drug combinations. (A) Experimental data and model simulations 1406 
for ERK combination response without EGF stimulation (top) and 5 min after EGF stimulation (bottom). 1407 
Training data has lower opacity and purple outline. Test data has a grey, dashed outline. (B) Isobolograms 1408 
of smoothed dose response surfaces from A. Concentrations and color scheme are the same as in A (C, 1409 
D) Analysis of drug synergy according to excess over Bliss and highest single agent (HSA). 1410 
Concentrations are the same as in A. (E) Decomposition of pERK model simulations at 5 min after EGF 1411 
stimulation (left) in BRAFV600E (middle) and RAS (right) channels. Color and concentrations are the same 1412 
as in A. (F) Drug interaction analysis for decomposed channels. Color is and concentrations are the same 1413 
as in A. (G) Quantification of signaling gain in the physiological signaling challenge. Pointwise 1414 
multiplication is indicated by x. Reaction steps (Figure 4A) are indicated on top. Purple and brown outlines 1415 
indicate molecular mechanisms responsible for lower gain. Concentrations are the same as in A. 1416 
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 1418 

Figure 6: Prediction of resistance from EGFR upregulation. (A) Prediction of time course data for 1419 
three different clones (two overexpression, one knockdown). Solid line show medians. Shading indicates 1420 
variability across 80% of parameter sets. Top plot shows pERK response. Bottom plot shows mRNA (light 1421 
colors) and protein (dark color) expression level changes. (B, C) Prediction of dose response data with 1422 
and without EGF at 8 hours after stimulation in response to vemurafenib (B), cobimetinib (C). Left panels 1423 
show EGF stimulated (red) and unstimulated (black) conditions. Right panels show decomposed model 1424 
simulations for EGF stimulated conditions. Data is shown as point-ranges. Median (over parameter sets) 1425 
simulations are shown as stacked areas. Shading indicates 80% percentiles over parameter sets. 1426 
Simulations for EGF unstimulated conditions are shown as white dashed line. (D) Experimental data and 1427 
model simulations for pERK combination response at 8h after EGF stimulation. Training data has lower 1428 
opacity and purple outline. Test data has a grey, dashed outline. (E) Isobolograms of smoothed dose 1429 
response surfaces from A. (F, G) Analysis of drug synergy according to excess over Bliss (F) and HSA 1430 
(G). 1431 
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 1433 

Figure 7: Prediction of response to panRAF inhibitor LY3009120. (A) Comparison of pMEK (top) 1434 
and pERK (bottom) dose response predictions and experimental validation for A375 EGFR-CRISPRa 1435 
with (red) and without (black) 8h of EGF stimulation. Solid lines and stacked areas show median (over 1436 
parameter sets) simulations. Shading indicates 80% percentiles over parameter sets. Data is shown as 1437 
point-ranges. (B) Drug combination response for A375 EGFR-CRISPRa 8h after EGF stimulation. (C) 1438 
Analysis of drug synergy according to excess over Bliss (left) and HSA (right). 1439 

  1440 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.17.480899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480899
http://creativecommons.org/licenses/by-nd/4.0/


Page 50 
 

 1441 

Figure 8: Prediction of response with NRASQ61K mutations. (A) Sketch of simplified model topology 1442 
induced by NRASQ61K mutation. (B, C) Comparison of pMEK (top) and pERK (bottom) dose response 1443 
predictions and experimental validation for A375 cells with inducible NRASQ61K mutation (induced: 1444 
turquoise, uninduced: purple). Solid lines and stacked areas show median (over parameter sets) 1445 
simulations. Shading indicates 80% percentiles over parameter sets. Data is shown as point-ranges. 1446 
Vertical lines indicate EC50 values, Horizontal lines indicate ECmax values (data: dashed, model: solid). 1447 
(D) Combination dose with 24h Dox stimulation to the triple combination of 1 µM RAFi (vemurafenib) 1448 
plus varying doses of panRAFi (LY3009120) and MEKi (cobimetinib). Drug interaction analysis via Bliss 1449 
(bottom left) and HSA (bottom right).  1450 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.17.480899doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480899
http://creativecommons.org/licenses/by-nd/4.0/


Page 51 
 

 1451 

Figure 9: A unified model of drug resistance in BRAF-mutant cancers. pERK Drug combination 1452 
response for (i) A375 melanoma cell line EGFR-CRISPRa amplified cell line with (right) or without (left) 1453 
8h of EGF stimulation (first row), (ii) A375 melanoma NRASQ61K Dox-inducible cell line with (right) or 1454 
without (left) 24h Dox stimulation (second row) and (iii) HT29 colorectal cell line with (right) or without 1455 
(left) 8h EGF stimulation (third row).   1456 
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Figure S1: Variability in parameter estimates. (A) Boxplot of parameter estimates for best 50 parameter 1458 
sets. Optimization boundary is indicated as dashed lines. Type of parameters are indicated by suffix: _kD 1459 
(binding affinity), _offset (background intensity), _kcatr (normalized kcat), _deltaG (thermodynamic 1460 
parameter), kdeg (degradation rate), kbase (baseline phosphorylation rate), kM (pERK concentration at 1461 
which 50% activation is achieved), scale (observable scaling), _0 (expression level), _eq (baseline 1462 
expression level), _kf (binding rate), _kcat (catalytic rate), _gexpslope (RNA synthesis scaling factor). 1463 
(B) Correlation plots of parameter estimates. Only statistically significant (p>0.05) correlations are shown. 1464 
Coloring shows positive/negative correlation.  1465 
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Figure S2: Overview calibrated model simulation and experimental data. Data is shown as point-1467 
ranges. Median (over parameter sets) simulations are shown as thick lines. Shading indicates 80% 1468 
percentiles over parameter sets. (A) Phospoproteomic training data (RAFi dose response) (B) Proteomic 1469 
training data (RAFi dose response). (C) Additional immunofluorescence data (time resolved RAFi and 1470 
MEKi dose-response) (D) Pretreatment data (timecourse). Pretreatment time indicates the time between 1471 
drug treatment (1µM vemurafenib) and EGF addition (100ng/ml). (E) Causal decomposition of pERK 1472 
timecourse (1µM vemurafenib) for a modified model in which DUSP can simultaneously bind pERK in 1473 
the RAS and BRAFV600E channel, preventing retroactivity between channels through DUSP sequestration. 1474 
(F) Transcriptomic training data (RAFi dose response and timecourse)  1475 
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 1476 

Figure S3: Causal Decomposition of RAS and BRAFV600E channels (extended). Comparison of 1477 
experimental data and decomposed model simulations at 5 minutes after EGF stimulation for 5 different 1478 
MEK inhibitors and 3 different RAF inhibitors. Data is shown as point-ranges. Median (over parameter 1479 
sets) simulations are shown as stacked areas with color corresponding to channels (blue: BRAFV600E, 1480 
orange: RAS). Shading indicates 80% percentiles over parameter sets.  1481 
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 1482 

Figure S4: Quantification of signal transduction in RAS and BRAFV600E channels (extended). 1483 
Quantification of signal transmissions in terms of signaling gain (L1 and L∞) along the edges of the 1484 
simplified network in Figure 4A for different concentrations of 5 different RAF inhibitors and 5 different 1485 
MEK inhibitors. Color indicates the reaction channel (blue: BRAFV600E, orange: RAS). Shading indicates 1486 
20, 40, 60 and 80% percentiles over parameter sets.  1487 
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 1488 

Figure S5: Simulated Assembly RAF-RAFi complexes in response to vemurafenib. Each color 1489 
corresponds to a different complex. Complex assembly was quantified for RAFi-adapted cells at 5 minutes 1490 
for dafter EGF stimulation. Shading indicates 20, 40, 60 and 80% percentiles over parameter sets.  1491 
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 1492 

 1493 

Figure S6: Additional training data for EGFR upregulation and Causal Decomposition (A) Model 1494 
simulations and experimental data for EGF stimulated and unstimulated conditions. Data is shown as 1495 
point-ranges. Median (over parameter sets) simulations are shown as thick lines. Shading indicates 80% 1496 
percentiles over parameter sets. (B, C) Comparison of experimental data and decomposed model 1497 
simulations at 5 minutes after EGF stimulation. Data is shown as point-ranges. Median (over parameter 1498 
sets) simulations are shown as stacked areas with color corresponding to channels (blue: BRAFV600E, 1499 
orange: RAS). Shading indicates 80% percentiles over parameter sets. C shows causal decomposition of 1500 
EGF stimulated pMEK and pERK dose response for a modified model in which DUSP can simultaneously 1501 
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bind pERK in the RAS and BRAFV600E channel, preventing retroactivity between channels through DUSP 1502 
sequestration. Unstimulated baseline indicated by white dashed lines.  1503 
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 1505 

Figure S5: Predicted dose response for combinations of LY3009120 and cobimetinib at 1uM 1506 
vemurafenib. Simulations were performed for BRAFV600E NRASQ61K double mutant cells that were 1507 
adapted to all three drugs. 1508 
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