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Abstract 
 
Nomograms are important clinical tools applied widely in both developing and aging 

populations. They are generally constructed as normative models identifying cases as 

outliers to a distribution of healthy controls. Currently used normative models do not 

account for genetic heterogeneity. Hippocampal Volume (HV) is a key endophenotype for 

many brain disorders. Here, we examine the impact of genetic adjustment on HV 

nomograms and the translational ability to detect dementia patients. 

 

Using imaging data from 35,686 healthy subjects aged 44 to 82 from the UK BioBank (UKBB), 

we built HV nomograms using gaussian process regression (GPR), extending the application 

age by 20 years, including dementia critical age ranges. Using HV Polygenic Scores (HV-PGS), 

we built genetically adjusted nomograms from participants stratified into the top and 

bottom 30% of HV-PGS. This shifted the nomograms in the expected directions by ~100 

mm3 (2.3% of the average HV), which equates to 3 years of normal aging. 

 

Clinical impact of genetically adjusted nomograms was investigated by comparing 818 

subjects from the AD neuroimaging (ADNI) database diagnosed as either cognitively normal 

(CN), having mild cognitive impairment (MCI) or Alzheimer’s disease patients (AD). While no 

significant change in the survival analysis was found for MCI-to-AD conversion, an average 

of 4% decrease was found in intra-diagnostic-group variance, highlighting the importance of 

genetic adjustment in untangling phenotypic heterogeneity.  
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Introduction 
 

 
Brain imaging genetics is a rapidly evolving area of neuroscience combining imaging, 

genetic, and clinical data to gain insight into normal and diseased brain morphology and 

function 1. Normative modelling is an emerging method in neuroscience, aiming to identify 

cases as outliers to a distribution of healthy controls and was shown to have potential to 

improve early diagnosis, progression models, and risk assessment2; 3; 4; 5. Unlike conventional 

case-control studies, normative models do not require cases and controls to be clustered 

separately. Nomograms are a common implementation of normative models and have been 

used as growth charts of brain volumes as functions of age in both developing and aging 

populations6; 7; 8. 

 
Normative modelling identifies cases by their deviation from normality, however, genetics 

shapes what is ‘normal’. Heritability studies have found that whole brain volume is 90% ±

4.8% heritable9, hippocampal volume is 75% ± 5%10; 11; 12, and other cortical brain areas 

between 34% and 80%13; 14. Genome-wide association studies (GWAS) have identified 

genome wide significant variants that explain 13% ± 1.5% of the variation in hippocampal 

volume (HV) 15, 34% ± 3% in total cortical surface area, and 26% ±2% in average cortical 

thickness16. The gap between estimates from GWAS hits and formal heritability estimates 

(termed the ‘missing heritability’)17 implies that less significant variants also have an 

influence and that it may be captured through polygenic scores (PGS)18; 19; 20. In this work we 

demonstrate the impact of accounting for polygenic effects in normative modelling of HV.  

 
Damage to the hippocampus (which is integral to memory processes21) has been associated 

with major depressive disorder22, schizophrenia23 , Epilepsy24, and Alzheimer’s disease 

(AD)25. AD is a global health burden: 7% percent of people over 60 are diagnosed with 

dementia26 of which AD accounts for 70%27. The pathophysiological processes underlying 

AD, namely amyloid and tau pathology accumulation, are thought to precede brain atrophy, 

which typically starts in the hippocampus and medial temporal lobe and then spreads 

throughout the neocortex27.  
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The normal variation of HV is of great clinical interest as the early and often prominent 

hippocampal atrophy seen in AD creates a need for early diagnosis and disease tracking. 

Many studies have examined HV across age28; 29, for example, a recent study by Nobis et. 

(2019)30 produced HV nomograms from UK Biobank (UKB) for use in clinical settings. It is 

important to note that some of variation in the normative models can be explained by the 

clear impact of genetics on HV15; 31. Thus far, the few attempts at including genetics in the 

construction of HV nomograms have focussed on disease related variants. For instance, two 

recent studies examined the impact of the AD-associated APOE gene32; 33, showing that 

APOE4/4 carriers had significantly lower HV trajectories. This effect is likely driven by AD-

related disease processes since APOE4/4 carriers have a 10-fold risk of developing AD34; 35. 

However, the genetic impact on variation in HV in healthy population remains 

underexamined in the context of nomograms. In this work, we close this gap. We built HV 

nomograms using a gaussian process regression (GPR) method (Figure 1A). We then 

computed a PGS of HV for subjects in our cohort and built genetically adjusted nomograms 

(Figure 1B). We found that our GPR nomograms provided an extended age range compared 

to previous methods, and that genetic adjustment did in fact shift the nomograms. 
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Materials and Methods 

Datasets 

Data from a total of 39,664 subjects (18,718 female) aged 44 to 82 were obtained from the 

UKB (application number 65299) with available genotyping and imaging data. Imaging and 

genetic protocols are described in Bycroft et al. (2018)36 and Miller et al. (2016) 37, 

respecively. Briefly, for this analysis we used hippocampal volumes (HV) estimated with 

FreeSurfer38 at the initial imaging visit  (field codes 26562/26593 for left/right HV). The 

dataset preparation followed the process described by Nobis et. (2019)30. To ensure 

nomograms represent the spectrum of healthy aging, subjects were excluded based on 

history of neurological or psychiatric disorders, head trauma, substance abuse, or 

cardiovascular disorders. Furthermore, to control for population level genetic 

heterogeneity, only subjects with ‘British’ ethnic backgrounds were considered (values of 

1001 in field code 21000). The dataset was then stratified by self-reported sex. HV outliers 

were excluded using mean absolute deviation (MAD) with a threshold of 5.0. Subjects’ 

intracranial volume (ICV) was derived by using the volumetric scaling from T1 head image to 

standard space (field code 25000). Finally, ICV and scan date were regressed out of the HVs.  

 

For an application dataset we used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database (adni.loni.usc.edu)39. The ADNI was launched in 2003 as a public-private 

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI 

has been to test whether serial magnetic resonance imaging (MRI), positron emission 

tomography (PET), other biological markers, and clinical and neuropsychological assessment 

can be combined to measure the progression of mild cognitive impairment (MCI) and early 

Alzheimer's disease (AD). A total of 1001 ADNI subjects (445 male) aged 55 to 95 were 

included in this analysis. Imaging and genetic protocols are described by Saykin et al. 

(2010)40 and by Jack et al. (2008)41, respectively. Briefly, we obtained HVs estimated with 

FreeSurfer (accessed through the ucsffsx51 table; column codes ‘ST88SV’ and ‘ST29SV’). 

Subjects were excluded based on HV quality scores (noted in columns ‘RHIPQC’, ‘LHIPQC’) 

and based on genetic ancestry (i.e., restricted to self-reported white non-Hispanic ancestry). 

As with UKB, estimated volumes were stratified by sex, and ICV and scan date were 

regressed out of HV estimates. Demographics were obtained from the ADNIMERGE table 

(date accessed: 19-06-2020). Furthermore, we used genome-wide genotyping data available 
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for subjects in ADNI, the data were pre-processed as previously described by Scelsi et. 

(2018)42. 

 

Sliding Window Approach 

As a baseline, we generated nomograms using the sliding window approach (SWA) 

described by Nobis et al. (2019)30. Briefly, we sorted samples by age, and formed 100 

quantile bins, each containing 10% percent of the samples. This means that neighbouring 

bins had a 90% overlap. For example, if we had 5,000 samples, each bin contained 500 

samples and consecutive bins were shifted by 50 samples. Thus, bin number four would 

start at index 151. Then, within each bin, the 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 

97.5% quantiles were calculated. The quantiles were then smoothed with a gaussian kernel 

of width 20.  

 

Gaussian Process Regression  

Our proposed approach uses GPR to build nomograms. Briefly, a GP is a probability 

distribution over possible functions that fit a set of points43; 44. In our application it is a 

distribution of possible ‘HV trajectories across age’. We used the R library laGP 45 to train 

GPR models. We applied the commonly used squared exponential covariance kernel 

function: 

𝐾(𝑥1, 𝑥2) =  𝜎2𝑒
−

(𝑥1−𝑥2)2

2𝐿2 , 

where 𝑥1 and 𝑥2 are any two age values from the training set. The kernel function is 

parameterized by a vertical scale (𝜎) and a length scale (𝐿), which, following initialization, 

are fitted using maximum likelihood estimation. The vertical scale is initialized to the mean 

HV of all samples, and the length scale is initialized to mean age difference between all 

samples. We trained models of left, right, and mean HV for each sex. Thanks to their 

probabilistic formulation, GP models naturally provide a standard deviation from which 

quantiles can be easily computed. After training, we generated models for ages 45 to 82 by 

increments of 0.25 years, and quantile curves at 2.5%, 5%, 10%, 25%, 50%, 75%, 90%, 95%, 

and 97.5%. 
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Polygenic Score for Hippocampal Volume 

A polygenic score (PGS) is a sum of the impact of a selection of genetic variants on a trait, 

weighted by the allele count. That is: 

𝑃𝐺𝑆 = ∑ 𝐸𝑆𝑖 ∗ 𝐶𝑖

∀ 𝑖 ∈ 𝑆𝑁𝑃𝑠

, 

where (𝐸𝑆𝑖) is the effect size (e.g., beta or log(odds) ratio from GWAS summary statistics), 

and (𝐶𝑖) is the allele count of SNP 𝑖 in the subject (either 0,1 or 2). Thus, computing PGSs 

requires SNP-level genetic data. Using a previously reported GWAS of mean bilateral HV 

using 26,814 (European) subjects from the ENIGMA study15, we built a PGS for HV with 

PRSice v246. For both UKB and ADNI, we filter for minor allele frequency of 0.05, genotype 

missingness of 0.1, and clumping at 250kb; after which we were left with 70,251 potential 

SNPS to include for UKB and 114,812 for ADNI. The most widely applied strategy for SNP 

selection is 𝑝-value thresholding. We generated PGSs at 14 𝑝-value thresholds (1E-8, 1E-7, 

1E-6, 1E-5, 1E-4, 1E-3, 0.01, 0.05, 0.1, 0.2, 0.4, 0.5, 0.75, 1). These thresholds produced a 

range of polygenic scores comprising as little as 6 SNPs (p-value cut-off at 1E-8) to all 

available SNPs (p-value cut-off at 1.0). Model fit is then checked by regressing HV against 

these PGS’s while accounting for age, age2, sex, ICV, and ten genetic principal components.  

 

Genetically Adjusted Nomograms 

Given the high heritability of HV we investigated whether nomograms can be genetically 

adjusted. Specifically, we used the top and bottom 30% PGS scoring samples (at 𝑝-value < 

0.75 threshold) separately to build genetically adjusted nomograms. Thus, PGS provided us 

with a way to place new samples in their ‘appropriate’ nomogram. For instance, within the 

ADNI dataset we generated PGS scores and separated the top and bottom 50% (i.e., high, 

and low expected HV, respectively) to test against genetically adjusted UKB nomograms. To 

assess the specificity of the HV-based PGS, we performed this genetic adjustment using 

PGSs of ICV and AD based on previously reported GWASs47; 48.  

 

Longitudinal Analysis 

As nomograms are often used to track progression, we examined the impact of the 

genetically adjusted nomograms on prospective longitudinal data. To this end, we analysed 

patients from the ADNI cohort that were initially diagnosed as MCI and either converted to 
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AD (progressor) or remained MCI (stable) within five years of follow-up. We tested whether 

the PGS-adjusted nomograms improved the separation between stable and progressor 

patients using Cox proportional hazards models while accounting for sex and age.  

 

  

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480931doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480931


Results 

In the UKB sample 453 subjects were excluded for various conditions, 3497  

for genetic ancestry, and 28 subjects were outliers: leaving a total of 35,686 subjects. In the 

ADNI application dataset, 26 subjects were excluded for genetic ancestry, and 314 based on 

HV quality scores: leaving 818 subjects. 

 
SWA vs GPR for nomogram estimation 

Nomograms generated using the SWA and GPR method displayed similar trends (Figure 2). 

However, GPR nomograms spanned the entire training dataset age range (45-82 years) 

compared to the SWA (52-72 years). This extension allowed 86% of samples from the ADNI 

to be evaluated versus 56% in the SWA Nomograms (Figure 2). Furthermore, our GPR 

nomograms confirmed previously reported trends: Overall, the average 50th percentile in 

male nomograms (4162 ±  222) was higher than the female nomograms (3883 ±  170), 

and within each sex, right HV was larger than left HV (Figure 2). We also observed that along 

the 50th percentile, male HV declined faster (−20.3 mm3/year) than female HV 

(−14.6 mm3/year). Additionally, in GPR nomograms, HV peaks in women at age 53.5 years 

with a less pronounced peak in males at 50 years (Figure 2). Training the GRP model with 

16,000 samples took ~1 hour on a consumer grade machine (2.3 GHz 8-Core Intel Core i9).  

 

Polygenic Score for Hippocampal Volume 

The calculated PGS, based on an earlier GWAS for average bilateral hippocampal volume15, 

as expected, showed a strong correlation with HV in the UKB data. Overall, the PGSs showed 

a significant positive correlation with HV across all 𝑝-value thresholds and training sample 

subsets (𝑝<2.7E-24; Table 1). PGSs explained more variance in males versus females. 

Furthermore, PGS scores did not show detectable differences in left versus right HV; and 

explained the most variance in mean bilateral HV (Table 1, Supplementary Table 1). In all 

tested settings, the distribution of PGS scores explained variance (R2) across 𝑝-value was 

bimodal: with one peak at the 1E-7 threshold (capturing few but very significant SNPs), a 

higher peak at the 0.75 threshold (capturing many SNPs with mostly small effect sizes), and 

a trough between them at the 0.01 threshold (Figure 3). For the ADNI dataset, this 

distribution was not bimodal but increased with the threshold. When investigating mean HV 

across percentile of PGS at the 0.75 threshold (highest R2), the top and bottom 20% of 
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scores accounted for 41% of the variance in HV (Figure 3); with similar values observed 

across thresholds in both datasets (Supplementary Figures S1, S2). 

 
Genetics stratified Nomograms 

We will focus on the 𝑝-value threshold of 0.75 as it achieved best or close to-best 

performance overall (Supplementary Table S1). Genetics had a clear effect on the 

nomograms: the high-PGS nomograms were shifted upwards while the low-PGS nomograms 

were shifted downwards (Figure 4), both by around 1.2% of the average HV (50 mm3). Thus, 

the difference between high and low PGS nomograms was ~2.3% of the average HV (100 

mm3). The HV peak previously observed at 50 years in males was less pronounced in the 

high-PGS nomogram and more so in the low-PGS nomogram (Figure 4, Supplementary 

Figure S3). Adjusting nomograms using ICV and AD PGSs, instead of HV PGS, did not result in 

nomograms that were meaningfully different from the non-adjusted nomograms 

(Supplementary Figure S4). 

 

External Evaluation on ADNI data 

In the ADNI dataset we investigated whether the shift in genetically adjusted nomograms 

could be leveraged for improved diagnosis. Using the non-adjusted nomogram, cognitively 

normal (CN) participants (𝑛 = 225) had a mean bilateral HV percentile of 41% (±30%), Mild 

Cognitive Impairment (MCI) participants (𝑛 = 391) had 25% (±29%), and Alzheimer’s Disease 

(AD) participants (𝑛 = 121) had 4% (±10%). Visual inspection revealed that while CN 

participants were spread across the quantiles, AD participants lay mostly below the 2.5% 

quantile, and MCI participants spanned the range of both CN and AD participants (Figure 4). 

Bisecting the samples by PGS showed that high PGS CN samples had averaged percentiles of 

48% (±31%) and low PGS averaged 33% (±30%). When comparing the same samples against 

the PGS adjusted nomograms instead, high PGS CN samples averaged 45% (±31%) and low 

PGS averaged 36% (±31%). Thus, reducing the gap between high and low PGS CN 

participants by 6% (from 15% to 9%). Similar analysis showed a reduction in the gap 

between the high and low PGS MCI participants by 5%, and 1% for AD participants. The 

above effects persisted across most strata (i.e., sex and hemisphere) (Supplementary Table 

2). 
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Longitudinal Evaluation 

We also investigated whether genetically adjusted nomograms provided additional accuracy 

in distinguishing stable (𝑛 = 299) from progressing MCI subjects (𝑛 = 83). With the non-

adjusted nomogram, progressing MCI participants had a mean HV percentile of 11% and 

stable participants had 29% (Supplementary Figure S5). Using the genetically adjusted 

nomograms, they had 10% and 28%, respectively. Cox proportional hazards models of 

percentiles obtained using both nomograms revealed little difference between the two in 

terms of clinical conversion: both models resulted in a hazard ratio of 0.97 for percentile in 

nomogram (beta of -0.03 at 𝑝-value < 4e-06); confirming that participants within lower HV 

percentiles where more likely to convert earlier.  
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Discussion 
 
We hypothesized that inclusion of genetic information associated with regional brain 

volume may substantially affect normative models. Indeed, the PGS for HV was significantly 

positively correlated with estimated HV from MRI; translating into a shift of around 100 

mm3 in nomograms based on PGS stratification (high vs low PGS). Importantly, this 

magnitude corresponds to ~3 years’ worth of HV loss during normal aging. While previous 

studies have examined the impact of disease associated variants, such as APOE status, on 

HV32; 33 our study relied on genetic variants influencing HV in healthy subjects. This is an 

important difference: the APOE genotype is associated with present or future AD status 

rather than having a direct influence on HV in healthy populations. Indeed, GWAS studies of 

the hippocampus that exclude dementia patients find little influence of AD associated 

SNPs15. By design, nomograms are intended to model healthy progression and to simplify 

spotting disease related outliers. Therefore, accounting for the genetics of overall HV 

(rather than APOE) should enable earlier detection of AD-related HV decline in older APOE-

e4 carriers. Consequently, stratifying by APOE-e4 status when creating HV nomograms 

charts the different HV trajectories among APOE genotypes, however, at the same time 

masks the pathological decline and thus does not increase the sensitivity to HV decline.  

 

Subjects with extreme PGS scores account for significant amounts of the variance as 

indicated by the S-shape in the quantile plots (e.g., Figure 3). This has been observed in 

other PGS-trait combinations19; 20; 49. Furthermore, we noted a bimodal distribution of R2 

values across PGS thresholds. This reflects two types of genetic effects: the first is that few 

SNPs account for a substantial portion of the total variance in HV because of their high 

effect size (oligogenic effect) and the second is the combined effect of all common genetic 

variants on HV (polygenic effect). This type of effect has been reported in other studies of 

dementia50.  

 
In addition to demonstrating the clear effect of genetics on normative models, we have 

shown GPR to be effective for estimating nomograms. Using a model-based method allows 

us to generate accurate nomograms across the entire age range of the dataset. In fact, our 

GPR model can even be accurately extended beyond those limits (Supplementary Figure S6). 

In comparison, the SWA nomograms age range is reduced by 20 years compared to the 
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range of the training because of the required smoothing. Thus, compared to the SWA, we 

extended the age range forwards by 10 years, bringing it out to 82 years old, which is 

relevant for AD where most patients display symptoms at around age 65-7527; 51. We found 

that building nomograms is data efficient: with the SWA, using around 17% (3000 samples) 

of training samples generated nomograms that were on average only 0.4% of average HV 

(19 mm3) different to those generated by the full training set. GPR nomograms, achieved 

the same level of accuracy with only 5% (900 samples) of the dataset. 

 

Using PGS improves the normative modelling in an independent dataset. In ADNI genetic 

adjustment reduced the percentile gap between similarly diagnosed subjects with 

genetically predicted high and low HV. The impact of the PGS adjusted model on CN 

samples was greater than on MCI or AD samples. Genetic adjustment centred the CN 

samples closer to the 50th percentile. As the effect of building separate nomograms was to 

mitigate the impact of genetic variability on HV it was not surprising that this effect did not 

carry over to MCI and AD subjects, likely because the pathological effect of AD on HV (~804 

mm3 or 6.4% volume loss) far exceeds the shift in nomograms achieved with genetic 

adjustment (~100 mm3 or 0.8% of mean HV). Other studies have found that annual HV loss 

in CN subjects was between 0.38% and 1.73%7; 52; 53; 54; 55. Using the nomograms from our 

work, genetic adjustment corresponds to ~3 years of normal aging. However, despite this 

sizable effect, genetically adjusted nomograms did not provide additional insight into 

distinguishing MCI subjects that remained stable or converted to AD. Nonetheless, the 

added precision may prove more useful in early detection of deviation among CN subjects, 

for instance in detecting subtle hippocampal volume loss in individuals with presymptomatic 

neurodegeneration. 

 

While this study has shown the significant impact of PGSs on HV nomograms, we have 

identified areas for improvement. The PGS scores used in this study were based on a GWAS 

of average bilateral HV in both male and female participants. Previous studies have shown a 

significant difference between these groups30, and nomograms estimated for these separate 

groups are distinct28; 56; 57 (Figure 2). Therefore, using separate GWASs for each of these 

strata would potentially give the PGS more accuracy. A second limitation of this study is the 

reliability of HV estimates. There is a significant difference between manual and automated 
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segmentation of the hippocampus28; 56; 57; more so than other brain regions58; 59, and 

Freesurfer is known to consistently overestimate HV60. Therefore, other brain regions with 

higher heritability like the cerebellum or whole brain volume14 may show more sensitivity 

on nomograms. Lastly, a recent study of PGS uncertainty revealed large variance in PGS 

estimates61, which may undermine PGS based stratification; hence a more sophisticated 

method of building PGS or stratification may improve results further.  

 

In conclusion, our study demonstrated that PGS for HV was significantly positively 

correlated with HV, translating into a shift in the nomograms corresponding to ~3 years’ 

worth of normal aging HV loss. We have additionally shown that this effect can be observed 

in an independent dataset. And while more work in this direction is needed, successful 

integration of polygenic effects on multiple brain regions may help improve measures of the 

brain age gap62, and therefore improve sensitivity to detect early disease processes. 

 
 

Code Availability 

The scripts and code used in this study have been made publicly available and can be found 

at: https://github.com/Mo-Janahi/NOMOGRAMS 
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Figures and Tables 
 
 

 

Figure 1: Study Overview. (A) Using 35,686 subjects from the UK BioBank, we generate 
nomograms using two methods: a previously reported Sliding Window Method (SWM), and 
Gaussian Process Regression (GPR). We find that GPR is more data efficient than the SWM 
and can extend the nomogram into dementia critical age ranges. (B) Using a previously 
reported genome wide association study, we generate polygenic scores (PGS) for the 
subjects in our UK BioBank table. We then stratify the table by PGS score and generate 
nomograms for the top and bottom 30% of samples separately. We find the genetic 
adjustment differentiates the nomograms by an average of 100 mm3, which is equivalent to 
about 3 years of normal aging. 
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Figure 2: Comparing Nomogram Generation Methods. Nomograms produced using the 
sliding window approach (SWA) (red lines) and gaussian process regression (GPR) method 
(grey lines) show similar trends. both left hemisphere nomograms (A, C) are lower than their 
right counterparts (B, D). Male nomograms are higher than female nomograms (A vs C) and 
(B vs D). Female HV shows a peak at 53.5 years of age, while male HV shows a less 
prominent peak at 50 years of age. SWA and GPR show good agreement, while GPR enables 
a 10-year nomogram extension in either direction. The benefits of this extension can be 
seen with scatter plots of the ADNI dataset overlayed (E, F). The extended age range of the 
GPR nomograms (45-82 years) enables the evaluation of an additional 43% of male data (E) 
and 34% of female data (F) (turquoise circles).  
 
 
 
 
 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.17.480931doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.17.480931


 
 

Figure 3: Summary of PGS models. Polygenic Risk Score in models of mean HV across both 
sexes. (a) R2 of linear models across increasing p-value thresholds. All models are of mean 
HV and account for age, sex, and top 10 genetic principal components. Largest peak is at 
0.75 threshold. (b) distribution of mean HV across percentiles of PGS score. Excluding the 
top and bottom 20% of percentiles reduces the variance by 49% (darker grey areas). Fitting 
a cubic polynomial to the means produces the grey line.  
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Figure 4: Genetically Adjusted Nomograms. Results of genetic adjustment in bilateral male 
hippocampal volume (HV). (A, D) Nomograms of bilateral hippocampal volume (HV) 
generated from all male UKB samples overlayed with male ADNI samples. CN samples (red 
squares) centre around the 50th percentile, AD samples (turquoise triangles) lie mostly 
below the 2.5th percentile, and MCI samples (grey circles) span both regions. (B, E) 
Nomograms generated using only high PGS samples (top 30%) was shifted upward (red 
lines) compared to the original (black lines) by an average of 50 mm3 (1.2% of mean HV). 
Plotting the high PGS ADNI samples (top 50%) slightly improves intra-group variance. (C, F) 
similar results are seen in low PGS samples. Note, the black lines in panels (B, C) are the 
same as the nomogram in panel (A) and similarly the red lines in panel (B, C) are same as the 
nomogram in panels (E, F).   
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Table 1: Association between Polygenic Scores (PGS) and Hippocampal Volume (HV). 
Linear models were built for HV (left; right; bilateral) using PGS across cohorts (male; 
female; both) at three representative 𝑝-value thresholds (1E-7; 0.01; 1). 𝑝-values of the 
slope were significant across all categories, with the lowest being associated with the 
threshold value of 1 in all but a single case (both/right). Variance explained (R2) increased 
from left to right to bilateral volumes and increased from female to male to both.  
 

Gender 
PGS 

threshold 
LEFT RIGHT BILATERAL 

Slope  
(x10-2) 𝑝-value R2 

Slope 
(x10-2) 𝑝-value R2 

Slope 
(x10-2) 𝑝-value R2 

FEMALE 

1E-7 10 1.8E-46 13% 9.4 2.4E-45 14% 11 1.4E-51 15% 

0.01 8.2 2.7E-26 13% 7.6 1.0E-27 13% 8.7 3.2E-30 14% 

1 11 9.4E-54 13% 9.62 1.5E-48 14% 11 1.6E-57 15% 

MALE 

1E-7  8.2 1.4E-35 18% 7.5 2.6E-35 18% 9.2 4.1E-40 20% 

0.01 7.8 3.8E-29 18% 6.8 3.8E-27 18% 8.6 7.8E-32 20% 

1 9.4 3.2E-48 18% 8.0 4.7E-43 18% 10 9.1E-52 20% 

BOTH 

1E-7 8.4 8.1E-90 25% 7.9 6.4E-93 26% 9.3 3.1E-103 28% 

0.01 7.4 9.3E-54 24% 6.7 3.3E-53 26% 8 2.3E-60 28% 

1 9.6 2.1E-99 25% 8.3 1.8E-89 26% 10 7.5E-107 28% 

 
Slope = beta coefficient for PGS in the linear mode; 𝑝-value for the slope; R2 = variance 
explained by the linear model  
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