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Abstract

Microbial consortia are exciting platforms for the bioproduction of complex metabolic
products. However, the functional properties of microbial communities remain chal-
lenging to control, given the complex interactions between the co-cultured organisms.
Microbial communities are invariably heterogeneous, possessing different phenotypic
states compartmentalised in each microorganism. Furthermore, each strain can switch to
alternative phenotypic states exhibiting different metabolic and fitness potentials. These
transitions are related to the biological behaviour exhibited by cellular systems, leading to
phenotypic diversification and fitness evolution processes. In this work, Escherichia coli
and Saccharomyces cerevisiae were co-cultured with different feeding profiles designed
to generate transitory environmental conditions and metabolic shifts, leading to the
co-existence of the two microbial strains in continuous cultures. Intermittent feeding
profiles allowed to generate temporal niches, providing fitness advantages to each strain,
further ensuring co-culture stability. Single-strain cultures were used for inferring the
growth and metabolic parameters for each strain. These parameters were then used to
design a simplified cybernetic model for the co-culture, which simulated the consortium’s
performance under continuous and intermittent feeding profiles at various frequencies,
feed step times and dilution rates. Two discontinuous feeding profiles were selected
for co-culture experiments. Models and experiments pointed out that the intermittent
process conditions allowed to produce alternating periodic conditions promoting the
growth of E. coli and S. cerevisiae, enabling temporal niche fitness advantages for both
strains. E. coli response was found to be less prone to substrate co-utilisation due to
its greater catabolic repression features, while S. cerevisiae exhibited more flexibility
regarding simultaneous carbon source utilisation. Experiments pointed out that the
given intermittent feeding profiles could dynamically stabilise the co-existence of the
two strains during long-lasting continuous cultivations. Furthermore, these specific
frequencies and feeding profiles affected cellular interaction and community composition.
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Introduction 1

Microbial communities can be found in every habitat around all ecosystems, proving that 2

within multiple organism compositions, it may be possible to gain access to an almost 3

unlimited transformation capability [1]. Microbial consortia, either natural or synthetic, 4

have therefore been deemed as an exciting platform for bioproduction of new and ever 5

more metabolites [1–3]. To date, microbial communities have been successfully used for 6

many relevant industrial purposes, such as increasing crop productivity, bioremediation 7

of soils and water resources, and the manufacturing of food and pharmaceutical prod- 8

ucts [1,4]. Despite these achievements, the dynamic properties of cell population and 9

the functional properties of microbial communities remain challenging to control and 10

engineer, mainly because of the network of interactions between consortium organisms [1]. 11

Therefore, there has been an increased interest in studying strategies to control microbial 12

consortia efficiently. In this regard, engineered microbial communities are desirable 13

since, in theory, they would be capable of performing new transformation routes while 14

providing less interaction complexity compared to naturally occurring consortia. 15

16

Population stability is one of the essential parameters to control in synthetic com- 17

munities cultures. This control has been achieved with mitigated results, based on 18

strategies primarily relying on the limitation of extracellular factors (such as substrate) 19

and by genetic modifications. However, these strategies are built with limited knowledge 20

about population dynamics and usually lead to reduced fitness or productivity [1–3]. Up 21

to date, many different strategies have been studied to achieve the desired population 22

stability, such as the use of specific carbon sources for each member of the community, 23

the establishment of metabolic dependencies for growth of some strains, the insertion of 24

genetic circuits for Spatio-temporal control over different cell functions, predator-prey 25

systems or mutualism, and the compartmentalisation of metabolic tasks by biofilms or 26

specific cultivation devices, along with different substrate and activator feeding control 27

strategies [3, 5–9]. In this context, the development of mathematical and computational 28

frameworks capable of addressing the population dynamics of the co-cultured strains 29

with an approach towards systemic complexity is of great interest for bioprocess engi- 30

neering [8, 10]. 31

32

Several mathematical and computational frameworks have been presented, addressing 33

specific aspects linked with the complexity of the system, such as the multiplicity of 34

cellular states [11], the stochasticity of intracellular reactions [12], the information con- 35

servation and its transmission across the different metabolic and cellular layers [12, 13], 36

the cell size distributions and its impact on cell division rate [14]. The present work was 37

aimed to contribute to understanding the systemic structure of microbial communities 38

and their control. To this end, a modular computational framework incorporating 39

phenotypic cell switching related to metabolic profile changes was constructed. The 40

fitness advantage related to these phenotypic/metabolic switches will also be taken into 41

account using cybernetic variables [15]. This modular computational framework was 42

used to analyse the solution space for three different culture feed operation profiles 43

(batch, continuous, and intermittent) in E. coli and S. cerevisiae co-cultures as a case 44

study. The resulting responses in the solution space gave insight into plausible systemic 45

characteristics of the process, such as elasticity and stability towards the control of the 46

synthetic communities, providing helpful information for designing operational strategies 47

to ensure population stability. 48

49
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Materials and Methods 50

Mathematical and computational framework construction 51

A simplified cybernetic mathematical framework for a single strain comprising different
metabolite consumption and production states was constructed. Each single-strain cyber-
netic model was then used as a kernel section of a co-culture population computational
framework (Fig. 1, A). A Monod base model was used for the individual strain rate
equations. For this construction, let us first establish a common biochemical reaction for
any substrate S that can be consumed by the biomass X at a given metabolic state as:

X + Y s
x
S

µσ−−→ X + Y x
x
X + Y a

x
A+ ...+ Yn

x
N (1)

The latter biochemical reaction model allows to construct a stoichiometric vector ϕ for S
consumption such that the rate of change for any component in the media Mi (including
X and S,i = X,S,A, ..., N) can be defined by the product of the growth rate µσ and ϕ
vector as follows:

dM

dt
= ϕµσ =


Y σx

x

Y σs
x

Y σa
x

...
Y σn

x

µσ (2)

With this in mind, the model can then be extended to a stoichiometric Matrix where
we can define each column as different ϕ for each known growth rate derived from the
consumption of different substrates, which in turn can be associated with a specific
metabolic state(e.g. the consumption of A, ..., N). This extension then contains the
known behavioural capabilities of the cell within the model Φ = [ϕs, ϕa, ..., ϕn], such
that:

dM

dt
= Φµ⃗ =


Y σx

x
Y αx

x
... Y νx

x

Y σs
x

Y αs
x

... Y νs
x

Y σa
x

Y αa
x

... Y νa
x

... ... ... ...
Y σn

x
Y αn

x
... Y νn

x



µσ
µα
...
µν

 (3)

Each ϕ vector also contains the information for its effect on all components in the system.
If a particular metabolite is not produced or consumed in a particular metabolic state,
then its yield (Y ) is set to 0. For our particular purpose, we will set that for a metabolic
state for single primary substrate (j...j + n) consumption, the growth rate µj....j+n is
given by a simplified Monod-type equation such as:

µj =
µmaxj Mj

Kj +Mj
X (4)

We can then rewrite Eq. 3 in a general form as follows:

dMi

dt
= Y σi

x

µmaxσ Mσ

Kσ +Mσ
X + Y αi

x

µmaxα Mα

Kα +Mα
X + ...+ Y νi

x

µmaxν Mν

Kν +Mν
X (5)

This general form can then be reduced for each metabolite as some yields are 0 for a
particular Substrate j. In this work, we used this equation as the base for the construction
of the mathematical model to describe the growth, consumption and production behaviour
of E.coli and S.cerevisiae strains. The conceptual model is presented in Fig. 4. In this
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figure, we can observe that the biomass X can interact by consuming and producing three
different external metabolites, Glucose (GLC, G), Acetate (ACE, A) and Ethanol (ETH,
E). These metabolites were chosen as they are the most relevant for the metabolism of
both strains when cultured in minimal media with GLC as the only carbon source. The
Φ matrix related equations constructed was then set to be the following:

dM

dt
= Φµ⃗ =


1 1 1 1

Y γog
x

Y γfg
x

0 0

0 Y γfa
x

Y αa
x

0

0 Y γfe
x

0 Y ϵe
x



µγo
µγf
µα
µϵ

 (6)

Where µγo µγf are the oxidative, and fermentative growth on glucose, respectively,
and µα and µϵ are the growth rates during acetate and ethanol consumption. In this
work, the growth rates were also set to be affected by a general metabolism inhibition
proportioned by the external accumulation of the substrates as follows:

µj =
µmaxj Mj

Kj +Mj
XH− (7)

where:

H− = Πni
1

1 + Mi

Ii

(8)

Finally with the addition of a first order death rate, the equations used in the present
work can be expressed as follows:

dG

dt
=

[
Y γog

x

umaxγo G

Kγo +G
+ Y γfg

x

umaxγf G

Kγf +G

]
XH− (9)

dA

dt
=

[
Y γfa

x

qγfmaxG

Kγf +G
+ Y αfa

x

qαmaxA

Kα +A

]
XH− (10)

dE

dt
=

[
Y γfe

x

qγfmaxG

Kγf +G
+ Y ϵfe

x

qϵmaxE

Kϵ + E

]
XH− (11)

dX

dt
=

[
qγomaxG

Kγo +G
+

qγfmaxG

Kγf +G
+

qαmaxA

Kα +A
+
qϵmaxE

Kϵ + E

]
XH− −KdX) (12)

Each Φ Matrix and Kinetic parameters pairs, approximated for each microorganism, 52

are understood in this work as its single-strain model. E.coli and S.cerevisiae models 53

were constructed in this work, approximated from their experimental behaviour in axenic 54

cultures. Their combination into a mixed matrix gives rise to a co-culture model (Fig. 55

1, A), with every strain having its own Φ sets at their rates r⃗i as the first order of 56

interaction between them. 57

Mathematical description for the Cybernetic framework 58

The cybernetic modelling approach was used to extend the characterisation of the
behaviour of the single cultures of S.cerevisiae and E. coli during the batch cultures and
continuous culturing processes as it can render the allocation of cell’s resources on several
metabolic options. The cybernetic variables represent the expression of the metabolic
machinery related to a particular substrate metabolism, a so-called “representative
enzyme”. This representative enzyme encompasses all the actual enzymes, co-factors,
and other resources necessary for the metabolic reactions regarding a particular substrate
consumption and fate [15]. The cybernetic approach has been previously used to
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address the diauxic behaviour in Kleibsiela oxytoca [16], and more recently to derive
full dynamic models into the metabolic fluxes across several microorganisms [17–19]
and even mammalian cells [17, 20]. A full description of the cybernetic approach can be
found in Ramkrishna et al. reports [15, 16, 18–20]. In this work, it was first assumed
that each phenotype could be simplified as the consumption of one or more substrates
(Ms) catalysed by a critical enzyme (Es) for the production of biomass X and other
products (Mp) [16]. Es represents the set of all enzymes governing the kinetics of this
specific phenotype. Es synthesis is induced by the presence of the specific substrate or
metabolite Ms. This simplified model can be written as:

X +Ms
Ψs−−→ (1 + Yx/s)X + Yp/sMp + ... (13)

X +Ms
Ms−−→ X ′ +Ψs (14)

Where X ′ represents the biomass excluding the critical enzyme Ψs. These two reactions 59

can be described by commonly used kinetic equations such as the Michaelis-Menten 60

model for enzymatic catalysis. In this work these kinetic equations are derived from the 61

previously shown mass balance model: 62

dms

dt
=
qsψsMsX

Ks +Ms
H− (15)

dψs
dt

= αcs +
αisMsX

K ′
s +Ms

H− − βsψs − µψs (16)

where αcs and α
i
s are the production rate constants for the enzyme for its constitutive 63

and inducible expression, respectively. While βs is the decay constant of the enzyme. 64

These parameters have been previously approximated for various microorganisms and 65

cell lines including E.coli and S.cerevisiae [15,16]. ψs is the specific concentration of the 66

enzyme Ψs such that ψsX is the total concentration of this enzyme. αcs + αis gives the 67

maximum synthesis rate for this enzyme. The cybernetic approach solves the difficulty of 68

calculating ψi by assuming that the maximum quantity of enzyme defines the maximum 69

rate. Therefore: 70

qmaxs = qsψ
max
s (17)

ψmaxs =
αcs + αis
umax + βs

(18)

the enzyme concentration value can be substituted by a relative enzyme value respective 71

to the maximum enzyme concentration as: 72

qgψg = qmaxg

[
ψg
ψmaxg

]
(19)

Finally, the cybernetic modelling introduces the regulation of the inhibition/activation 73

of enzyme expression and repression/induction of enzyme activity by the introduction of 74

the variables υ and ν which regulate enzyme synthesis
dψg

dt and activity
dmg

dt along with 75

the model. 76

dΨg
dt

= υg
dψg
dt

(0 < υg < 1 ;
e∑
j=g

υj = 1) (20)

dMg

dt
= νg

dmg

dt
(0 ≤ νg ≤ 1) (21)
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The cybernetic variables υ and ν are calculated by matching law equations constructed 77

for specific metabolic objectives. In the case of this work, the growth rate was selected 78

as the metabolic objective, which in turn represents a fitness index. Cybernetic variables 79

can then be understood as the comparison between the fitness advantage return for each 80

reaction driven by each Ψι...ω and this can be used to regulate its participation in the 81

cellular metabolism at any time. The equations used for these cybernetic variables are 82

the following: 83

υι =
µι∑ω
j=ι µj

(22)

νι =
µι

max(µι...ω)
(23)

where µg represents the growth rate supported by each reaction driven by each Ψι...ω in 84

this case by the consumption of glucose Ψg, acetate Ψa and ethanol Ψe. In this way, 85

a dynamic distribution of its participation can be calculated to describe the metabolic 86

and physiological behavior Φ given a metabolic reaction network [15, 16, 18, 21]. The 87

approach allows to approximate the current phenotype by describing the metabolite 88

content (Mι...ω), enzymatic content (Ψι...ω) and its functional relationship given by the 89

regulation (υι...ω and νι...ω). 90

Φ ⊃ {Ψ υν−→M} (24)

In this work, the cybernetic model was implemented in Matlab, and the models were 91

fitted to experimental data evaluated with the Willmot index (WLM) [22–24]. 92

Simulation design and toolbox 93

Co-culture models were then used to generate simulations for the population behaviour 94

in continuous and discontinuous cultures. Three different parameters were taken into 95

account, Dilution rate (D), frequency of pulsing (w), and pulse-step percentage (s). For 96

continuous processes, the pulsing was performed on the concentration of the primary 97

substrate, in this case, GLC, whereas for intermittent processes, pulses were applied to 98

the dilution rate. The intermittent feeding regimes in this research were determined 99

by a classical square wave function where the step-time determines the symmetry of 100

the pulse. The latter means that the parameter s with a value of 50 pulses half the 101

time between the start of the new cycle, while a value of 100 produces a continuous 102

culture with no changes in the up (pulsed) operation state, and a 0 valued s produces a 103

continuous culture with no changes in the down (non-pulsed) operation state. Simulations 104

were performed in a constructed framework that allows the numeric integration of 105

the previously described Monod-type models with the environmental (fermentation) 106

conditions. The codes were constructed in MATLAB as the Monod-type Co-culture 107

Kinetic Simulation (MONCKS) toolbox. The example code is available at https: 108

//gitlab.uliege.be/mipi/modelingframeworks/moncks, and a simplified simulation 109

workflow can be viewed in Fig. 1 B. 110

Strains and medium composition 111

Strains used in this study are E.coli K-12 W3110 and S. cerevisiae CEN-PK 117D, 112

which grow on minimal media. The strains were maintained at -80 °C in working vials 113

(2 mL) in LB with 30% glycerol (w/v). Precultures and cultures were performed on 114

synthetic media according to Verduyn et al. [25], but with modified phosphate buffer 115
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Fig 1. A) Simplified representation for the construction of the model for co-culture
experiments. Each monoculture model is taken as a compartment on a virtual cell
with separated metabolic objectives for cybernetic variable calculations. GLC in light
blue, ACE in yellow, ETH in purple.S.cerevisiae and E.coli biomass are shown in red
and in dark blue respectively. B)Simplified algorithm steps diagram used in
MONCKS framework used for simulating the co-culture experiments

proportions of potassium dihydrogen phosphate (6.309 g/L) and potassium hydrogen 116

phosphate (9.34 g/L) at pH 6.8 and supplemented with variable glucose concentrations 117

(Sigma-Aldrich, US). Biomass conversions from Biomass (g/L) to OD600 and number of 118

cells were performed with data obtained form literature [26–28]. 119

Culture procedures 120

A micro-reactor experimental setup was used to derive µ, q, Ks, and cell size distri- 121

bution. A BioLector/RoboLector (M2PLabs, Germany) device was used to perform 122

parallel fermentations in a 6x8 plate, in which wells would be stopped and sampled 123

at different times. Every eight wells were set to be a single parallel fermentation and 124

sequentially sampled every 3 hours until 24 hours. This work performed initial parameter 125

characterisation experiments with 20 g/L and 1.25 g/L initial glucose concentration at 126

pH 6.8. The initial biomass concentration was set to be approximately 0.1 OD. Time 127

0 h measurements were obtained by mixing outside wells the same amount of media 128

and preculture and immediately processing it as a sample. The shaking frequency was 129

set to 1000. Samples were separated into two vials, one was used for flow cytometry 130

analysis, and the other was immediately filtered and prepared for glucose and organic 131

acid measurement by HPLC. 132

133

The Co-culture experiments were performed with separated precultures grown for 134

each strain and mixed at inoculation time. Population ratio of 1:1 (S.cerevisiae:E.coli 135

in g/L units) was used as the initial condition. Co-cultures in different fermentation 136

regimes were done on lab-scale stirred bioreactors (Biostat B-Twin, Sartorius). The 137
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processes were performed at a 1 L working volume with a 1 L volume of headspace. The 138

cultures were started for every experiment with a batch phase in modified Verduyn media, 139

temperature maintained at 37◦C, pH at 6.8, stirring rate of 1000 rpm, and aeration 140

rate of 1 VVM. Upon 10 hours of cultivation, the feed was started. Three different feed 141

regimes were used in continuous culture, at 0.1 h-1 dilution rate, one continuous and two 142

intermittent operations with different combinations of frequency and time step derived 143

from the simulations. 144

Analytical sampling processing 145

Samples taken from were processed for glucose and organic acid measurement by HPLC 146

with an Aminex HPX-87H column(Bio-Rad, Hercules CA, USA) at 45 ◦C, and 5 mM 147

sulfuric acid as mobile phase. An Agilent 1200 Series HPLC system was used with 148

a refraction index detector at 50 ◦C (Agilent, Santa Clara CA, USA). Values below 149

quantification limit were taken as zero for model fitting purposes. Cytometry data was 150

obtained with an Accuri C6 flow cytometer (BD Accuri, San Jose CA, USA) [29]. The 151

sample was first tested on the C6 FC to measure the events/L and prepared by dilution 152

until a concentration below 1000. Diluted samples are then fed into the C6 FC for 153

analysis at an average flow rate of 14 µl/min with a threshold FSC-H set at 40000. The 154

analysis ended after collecting at least 40,000 events or 70 µL of a sample. 155

Results and Discussion 156

Cybernetic model reveal differences in metabolic profile when 157

microbial strains are growing alone 158

The individual characterisation of the strains was performed on minimal media, biomass, 159

GLC, ACE, and ETH being followed through the process (Fig. 2). It can be observed 160

that S.cerevisiae exhibits a slightly higher yield on these cultivation conditions than 161

E.coli. The apparent yield computed from the approximation of maximum produced 162

biomass and total GLC exhaustion for S.cerevisiae is 0.30 ± 0.04, whereas E.coli has a 163

0.23 ± 0.07. The observed global yield increase in S.cerevisiae may be the consequence 164

of a more balanced glucose consumption metabolism at smaller concentrations and con- 165

sumption rates [30]. We can observe a two-step growth curve in S.cerevisiae which may 166

be related to its general preference for respiro-fermentative metabolism when growing at 167

near maximum growth rates or under oxygen-limited conditions [31]. 168

169

The global metabolic profiles obtained with the E.coli and S.cerevisiae models follow 170

reasonably the experimental trends. E.coli presents sequential GLC and ACE utilization 171

while S.cerevisiae ETH and ACE are co-utilised. The latter leads to longer second 172

growth phase than the observed for E.coli. Even if E.coli can produce ETH through 173

an alcohol dehydrogenase, the strict aerobic conditions used in this work limit its pro- 174

duction [32]. Therefore, three different metabolic states were considered, two for GLC 175

consumption, one for ACE consumption, and one extra for S.cerevisiae comprising ETH 176

consumption. GLC consumption states were divided into fermentative/unbalanced and 177

oxidative/balanced GLC consumptions. In general, S.cerevisiae had higher yields and 178

smaller saturation constants while E.coli had higher growth and consumption rates 179

(Table 1). The approximated parameters suggest that E.coli would outgrow S.cerevisiae 180

in almost every condition. However, S.cerevisiae could benefit from a more heterogeneous 181

metabolism during substrate limitation or transitory metabolite shifts. 182

183

February 18, 2022 8/23

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.18.480836doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.480836
http://creativecommons.org/licenses/by-nd/4.0/


Fig 2. E.coli, S.cerevisiae biomass growth and metabolite profiles on microplate
bioreactors at different starting glucose concentrations ([GLC]i). Dark-blue to
ligh-blue E.coli in 20 to 1.25 g/L of initial GLC, dark-red to light-red S. cerevisiae in
20 to 1.25 g/L of initial GLC

Metabolic heterogeneity is relevant for promoting the interactions needed for establish- 184

ing microbial communities [33,34]. Thattai and van Oudenaarden [11] established that 185

cell-to-cell differences in gene expression and protein translation (enzymes concentration 186

and activity) could split the population into two or more groups, each one presenting 187

different phenotypic behaviour. Autocatalytic loops can further increase the existence of 188

multistability in cell regulatory networks [11,12]. The multiplicity of steady states in 189

continuous cultures produces cells with different metabolic states [35]. Finally, cells can 190
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Table 1. Biomass maximum growth rates, saturation constants,maximum
substrate consumption rates and biomass/substrate yields obtained from
modeling approximation to monoculture fermentations.

Substrate umax Ks qsmax Yx/s
E.coli S.cer E.coli S.cer E.coli S.cer E.coli S.cer

GLC(ferm) 0.354 0.275 0.131 0.074 -1.796 -1.313 0.197 0.209
ACE 0.077 0.017 0.111 0.007 -0.611 -0.055 0.127 0.300
ETH – 0.104 – 0.049 – -0.331 – 0.315
GLC(Ox) 0.240 0.241 0.999 1.459 -1.722 -3.320 0.139 0.073

switch between the different states, and the rates of these transitions are functions of the 191

environmental conditions [29, 36, 37]. Therefore it becomes possible to vary the distribu- 192

tion of cells between various states as a function of the environment and time [11,34]. 193

Furthermore, while co-cultured, interactions between inter and intra-specific metabolic 194

states may change the microorganism interactions and its population equilibrium and 195

stability. 196

197

Models address this distribution of metabolic states with the use of cybernetic vari- 198

ables. In Fig. 3, the behaviour of the relative enzyme concentration for each metabolic 199

state (substrate consumption and conversion) can be visualised. The relative enzyme 200

values for the fermentative/unbalanced growth on GLC for E.coli start at their maximum 201

value, and as long as the concentration remains non-limiting (<1.5 g/L). Balanced growth 202

vector has almost no participation derived from its relative enzyme and effective growth 203

rate values (Fig. 3). After this GLC exhaustion threshold, the relative enzyme for ACE 204

consumption increases and peaks (0.4 arbitrary units) at ≈ 17 hours. However, even in 205

this relative enzyme concentration has peaked, the contribution of ACE derived growth 206

rate is low compared to GLC consumption. These observations and parameter values 207

suggest co-utilisation in the present conditions cannot be expected. 208

209

S.cerevisiae metabolism starts similarly with high glucose consumption values, but 210

the participation of the oxidative/balance growth, has higher growth participation 211

values (≈0.025-0.16) and increases as GLC initial concentration increases. Moreover, 212

S.cerevisiae presents a weaker catabolite repression compared to E.coli. From the culture 213

beginning, increases in the ETH catabolism are observed even before GLC exhaustion. 214

Conversely to E.coli, the combination of growth rates and saturation constants provides 215

softer catabolic repression allowing the temporary co-utilisation of multiple substrates. 216

The relative enzyme profiles of S.cerevisiae show faster accumulation/decay dynamics, 217

suggesting higher flexibility for the temporal allocation of metabolic resources. This 218

characteristic indicates that S.cerevisiae could more easily present mixed metabolism 219

in low concentrated mixed substrates, while E.coli would probably strongly commit to 220

the fastest growing substrate. As can be observed, the information obtained by the 221

cybernetic variables allows for the segregation of growth and fitness across different 222

metabolic states, such as the consumption of different substrates [16]. 223

224

Fitness disparity between metabolic phenotypes leads to popula- 225

tion imbalances during continuous cultures. 226

The single strain models suggested significantly different resource allocation for each 227

strain, given the relative enzyme production and degradation, especially when approach- 228

ing substrate limitation conditions. The found differences derive from fitness differences 229
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Fig 3. A and B Growth, rate contributions by each metabolic state for E.coli and
S.cerevisiae, respectively. C and D, behaviour of the cybernetic variable of relative
enzyme concentration for textitE.coli and S.cerevisiae, respectively. Metabolic states
are color coded as follows: GLC fermentative/unbalanced consumption in light blue,
ACE consumption in yellow, ETH consumption in purple and GLC
oxidative/balanced consumption in green.

and their capability to switch between the diverse metabolic states. Balancing fitness 230

across this metabolic heterogeneity is one of the main factors contributing to the mi- 231

croorganism population state and stability limits on a community system [10]. 232

233

In Fig. 4 the behavior of continuous co-cultures of the E.coli and S.cerevisiae strains 234

with 0.1 h−1 as the Dilution feed with a 30 g/L GLC Verduyn fresh media can be ob- 235

served. Inhibition values between the strains were added to account for possible negative 236

social interactions. However, similarly to the individual models, the inhibition values 237

contributions on consumption and growth remained negligible compared to the changes 238

in growth given by other parameters. Fig. 4 A presents the relative abundance of E.coli 239
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and S.cerevisiae, in comparison with the approximation of the biomass fraction obtained 240

by FC (sum of the areas of the events corresponding to each strain). In this Fig., it can be 241

observed a rapid decay of the population of S.cerevisiae during the initial sections of the 242

culture when a GLC is at full availability. The consumption and growth rates dominate 243

the population change during this first culture section. Given the disparity between the 244

co-cultured strains, E.coli dominates the competition and the culture. However, after 245

GLC enters limitation concentrations S.cerevisiae proportion increases during an ≈ 10 246

hours, which is probably given by the consumption of initially the accumulated ETH, 247

ACE and other internal carbon storage systems. After this time, its population starts to 248

be slowly diminished in the system, having less than 3% of relative abundance by hour 80. 249

250

Population stability is vital for the efficient use of these communities in an industrial 251

framework [33, 38, 39]. However, this is challenging to achieve when the phenotypical 252

fitness differences between strains are significant, specifically in growth rate, substrate 253

consumption rates, and substrate affinity /citeJawed2019. Furthermore, in a continuous 254

feed operated reactor, which is stationary equilibrium driven, a narrow space for growth 255

rate solutions is achieved, committing the system (community) to select only the best 256

fitness solutions (highest growth individuals). Consequently, when co-culturing two 257

strains with vastly different growth rates on single substrate addition in a continuous 258

reactor, the slowest growing population (commonly the slowest for substrate intake) is 259

washed out from the reactor chamber before arriving at a stationary state. 260

261

Fig. 4 B presents the metabolite concentrations during the fermentation simulation 262

and its comparison to experimental data obtained in triplicate with their respective 263

standard deviations. Fig. 4 B the experimentally observed optical density measurement 264

(OD600) and the simulated total biomass on the green, with the individual microorganism 265

biomass expected optical density. In continuous culture, substrate limiting conditions 266

are expected. In Fig. 4 B, it is observed that after four retention times (or 40 hours), 267

only marginal concentrations of GLC, ACE and ETH can be observed with values 268

near the quantification limit. In these conditions, the E.coli, commitment to the GLC 269

and its higher consumption and growth rates outcompete S.cerevisiae which would be 270

consuming GLC but possibly also scavenging for other metabolic substrate traces in 271

media, reducing its fitness in comparison to the former microorganism. Therefore, the 272

washout of S.cerevisiae is due to the imbalanced differential fitness between the strains 273

for sole GLC consumption. This imbalance could be solved by adding to the feed a 274

substrate that S.cerevisiae prefers and E.coli is incapable of using or consumes with less 275

efficiency, such as ETH, balancing the fitness and allowing a higher proportion of the 276

former during the cultivation [?]. However, this is often more expensive or industrially 277

unfeasible given the necessity of modifying the inlet influx and adding more unitary pro- 278

cesses upstream. An alternative that can be devised to overcome this fitness imbalance 279

is to counter it by allowing the system to temporarily enter concentration states into 280

which S.cerevisiae would have better fitness balance towards E.coli by fluctuating the 281

concentration profile of GLC in the bioreactor via either intermittent feeding. These 282

fluctuating substrate conditions could then be tuned to the co-culture system and their 283

microorganism transition metabolism characteristics to render different temporal fitness 284

balances, impacting the microorganism population balance during the fermentation. 285

286
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Fig 4. Continuous co-culture simulations (dashed lines) and experiments (continuous
lines or discrete points). A) Mass fraction for the two strains. Experimental data have
been extracted from on-line flow cytometry S.cerevisiae in red and E.coli in dark blue.
B) Metabolite profiles during the continuous cultivation. Metabolites in g/L, biomass
in OD600. Total apparent biomass OD600 in green.

Fluctuating environmental conditions can introduce alternating 287

fitness advantage windows between the co-cultured microorgan- 288

isms. 289

The co-culture model was subjected to fermentation simulations where different feed 290

profiles were set as input (Fig. 5). The intermittent feeding profiles would produce 291

different temporal substrates availabilities, which would produce shifts in the metabolic 292

states of the different microorganisms. The rate of switching between these conditions 293

and metabolic states would allow for temporal windows of favourable fitness advantage, 294

allowing the system to enter dynamic population stability (Fig. 5). 295

296

The simulation results can be observed in Fig. 6 A, where each graph has the relative 297

abundance of both microorganisms across time. It can be observed that as the dilution 298

February 18, 2022 13/23

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 19, 2022. ; https://doi.org/10.1101/2022.02.18.480836doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.480836
http://creativecommons.org/licenses/by-nd/4.0/


Fig 5. Simplified representation for the simulations design for various intermittent
feeding profiles. The feeding profiles are considered as the system input and can be
represented by square waves with dilution rate as the dependable variable. The
simulated system comprises the co-culture of the two microbial strains and the
environmental conditions i.e., the different metabolites and substrates concentrations .
Model outputs are the instantaneous metabolite concentrations, observed growths and
biomass fraction profiles. Stars mark the desired windows of preferential fitness for
each strain. S.cerevisiae in red and E.coli in dark blue.

rate increases, the fractional allocation of E.coli increases more rapidly. For dilutions 299

above 0.1, several feed profiles exist that produce total S.cerevisiae washout. At dilutions 300

closer to 0.3, this washout occurs in time frames below 48 h. In all dilution rates, the 301

simulation couple around a value of 0.6 for E.coli and 0.4 for S.cerevisiae corresponds to 302

sets comprising of no-feed operation. A gap between the latter and other feed simulations 303

can be observed maximised at At the highest dilution rate tested (0.3 h−1). This gap 304

reduces as the dilution rate decreases, probably due to a reduced growth ratio imbalance 305

between strains. 306

Interestingly, in dilution rates of 0.1 and 0.025, relative abundance profiles of some 307

feed simulations cross these no-feed simulation lines, meaning that some feeding profiles 308

could, if allowed to continue unchanged, derive in a S.cerevisiae extensive colonisation 309

of the bioreactor, reversing the population balance upon long-term cultivation. The 310

co-culture relative abundance between microorganisms seems to have a broad sensibility 311

to intermittent feeding profiles. The latter suggests that the temporal displacement of 312

metabolite concentrations could give rise to different fitness balances for the metabolic 313

consumption options in the different strains. The impact of environmental fluctuations 314

on the stability of microbial communities has been previously investigated and is known 315

to affect community composition and functionality [8, 40–42]. The search for stability 316

conditions is a hot topic in the field of systems and synthetic ecology [43,44]. 317

318

In Fig. 6 B, the calculated instantaneous growth rate under a 0.1 h−1 dilution 319

rate for all the metabolic states are presented for some intermittent feed profiles. One 320

relevant observation is that during intermittence, faster growth rates for S.cerevisiae in 321

comparison to E.coli can be observed. These temporary fitness advantages become more 322
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Fig 6. A)Fraction for each microorganism found for the semi-continuous
fermentation simulations at different pulsating profiles. E.coli (red) and S.cerevisiae
(blue). B) Accumulated instantaneous growth rate profiles for each strain for some
simulations at different frequencies (w) and step-times(s). In this figure, growth
supported from the different metabolic states are color coded as follows: GLC
fermentative/unbalanced consumption in light blue, ACE consumption in yellow,
ETH consumption in purple and GLC oxidative/balanced consumption in green.

common and pronounced as the frequency Increases and the step time reduces. The 323

latter can be achieved because, in higher frequencies, more GLC would be input to the 324

system allowing for more ETH production, while the lower step times mean that there is 325

more time for S.cerevisiae to outgrow E.coli relying on the produced ACE. In Fig. 6 B, it 326

can be observed that a separation between growth rate contribution is found between the 327

fermentative/imbalance GLC catabolic consumption and the ACE-dependent growth for 328

E.coli. Conversely, the distribution of metabolic options for S.cerevisiae at any dilution 329

rate and conditions seems to result in GLC and ETH co-utilisation. Therefore, E.coli has 330

a better overall fitness in constant limiting GLC conditions (Fig. 6 B), while S.cerevisiae 331

can subsist in changing substrate environments where adaptation of the substrate uptake 332

is needed. Furthermore, in the intermittent conditions (Fig. 6, B), the model predicts 333

higher growth rates for S.cerevisiae when GLC is not available in the system due to 334

better alternative carbon source utilisation (ETH). Therefore, S.cerevisiae can have 335

a smaller mean fitness imbalance towards E.coli given by the ETH re-consumption 336

metabolism in defined intermittent feeds. 337

338

The fact that cell populations can respond better to some stimulation frequencies has 339

been previously explained from the perspective of natural frequencies of gene circuits [45], 340

information transmission [46] or from the perspective of phenotypic switching and fitness 341

advantage [10,11]. The latter raises the possibility of exerting control into the population 342

composition by adjusting the feed input, which will adjust the transitions between the 343

metabolic possibilities available in each strain. 344

345
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Intermittent feeding regimes can enhance population balance and 346

stability during continuous co-culture fermentations. 347

In order to challenge the above-mentioned hypothesis, two different feeding profiles were 348

used for intermittent continuous co-culture experiments, the first at a lower frequency of 349

0.14h−1 and a faster one with a frequency of 0.33h−1 with steps percentages of 28.6% and 350

33.3%, respectively. This combination of flux parameters results in square waves with 7 351

and 3 hours periods and “on” times of 2 and 1 hours, respectively. In Fig. ?? A, the 352

flow cytometry plots for the times 10, 48, and 80 h can be found for one replicate of the 353

continuous and the hi-freq and low-freq intermittent co-culture experiments. Conversely 354

to the continuous operation, the observed density for S.cerevisae in both intermittent 355

feed experiments seems to increase through the fermentation with an apparent net 356

gain at 80h. Interestingly, the E.coli cluster centroid remains within the same range of 357

Front Scattering Area (FSC-A) values for all experiments. This stability suggests that 358

the events’ mean size (cells) is maintained. However, it is also observed that a tail of 359

increasing FSC-A values events is enriched for the intermittent experiments, being more 360

represented on the low-frequency experiments. The latter could suggest that the times 361

under GLC limitation/exhaustion could signal some E.coli cells into high stress/lower 362

division rate phenotypic states. Conversely, for S.cerevisiae, the population presents a 363

broader range of sizes across the FSC-A channel initially, decreasing in size and disper- 364

sion across time, concentrating the population on lower values. The smaller cell sizes 365

suggest cells spend less time in the G1 phase in agreement to consuming a slower growth 366

metabolite (ETH) [47,48]. The smaller size could reduce the apparent dilution rate of 367

enzymes and regulatory signals, while higher division times could introduce metabolic 368

heterogeneity [48]. The models presented in this work are unsegregated. However, 369

simulations showed higher relative enzyme concentrations and a more heterogeneous 370

distribution of the metabolic states in the mentioned conditions. These characteristics 371

could then help S.cerevisiae to have better fitness across changing environments. 372

373

Fig. 7 B shows that the intermittent feeding profiles generate an oscillating pattern 374

on the relative abundance profiles of the co-cultured microorganisms. The frequency of 375

the population oscillations agrees with the feeding increments, and the amplitude of these 376

oscillations seems to be in inverse relationship with the frequency. A more considerable 377

dispersion for the hi-freq experiment after 30 hours (on the first oscillations after initial 378

GLC exhaustion) is observed. However, this dispersion reduces as the fermenter is 379

operated in this frequency regime achieving similar values to the other two experiment 380

regimes at 80 h. At this time frame, an increase in the population fraction of S.cerevisiae 381

can be observed for both intermittent experiments (Fig. 7). The mean fractional value 382

after 40-h for S.cerevisiae fraction has values of ≈ 7.14%, 15.59%, and 18.35% for the con- 383

tinuous, low-freq and hi-freq experiments, respectively. These mean values represent an 384

increase for the S.cerevisiae the relative abundance of 2.18 and 2.57 times. Interestingly, 385

the OD600 values across time and its behaviour profiles are relatively similar for the 386

three experimental feeding profiles, achieving between 12 and 14 OD from 30 hours to 387

end of fermentation (S1 File). The latter suggests that the observed changes in relative 388

abundance do not derive from biomass loss but on differential substrate utilisation and 389

fate. It is essential to note that the model presents a significantly smaller oscillation 390

amplitude on the fraction of population than what is observed, causing the predicted 391

value to stay near the maximal fractions observed experimentally but farther to the mean 392

observed values (S1 File). This difference suggests that the cells in the co-culture are even 393

more responsive than expected by the model. The latter is probably because the model 394

is an initial prediction of the behaviour of the co-culture by coupling the macroscopic 395

behaviour of the microorganisms measured and characterised in axenic cultures, without 396

introducing at first changes due to microbial social interactions such as commensalism, 397
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Fig 7. A) FL1-A vs FSC-A FC plots for the semi-continuous fermentations at
different pulsating profiles at times 10 (feed start time), 48 and 80 hours. The E.coli
centroid is in blue, the S.cerevisiae centroid in red, and with marked gate with
percentage of S.cerevisiae B) E.coli (blue) and S.cerevisiae (red) fractional events/µL
vs. time calculations obtained from the online FC data for all feeding profiles.

predatory behaviour, or symbiosis, among others, that could significantly impact strain 398

population sensibility and stability on the system. Nevertheless, the model seems to help 399

find general trends for the competition of the different microorganisms during different 400

intermittent feeding profiles with different dynamics for substrate availability. Probably 401

the most interesting point is the systemic property of the system to enter a state of dy- 402

namic stability, in which both strains achieve quasi-stable proportions and concentrations. 403

404

In Fig. 8 A and C, the FSC-A distribution of FC events across the sampling time at 405

80h for the continuous and Hi frequency experiments are presented. It can be observed 406

that we can find a randomised sampling between both strains in both cases for the entire 407

measurement time. Moreover, the partition between both clustered systems seems to 408

allow small error in segregating events into the two microorganisms categories. The size 409

and apparition of events of different sizes on the sample time are homogeneous. Data 410

suggest that there is not only an enrichment from the intermittent experiment for the 411

S.cerevisiae strain, but also a reduction into the apparent size of the events, as a far less 412

dispersed and lower upper limit on FSC-A can be found for this experimental condition. 413

The sample micrographies comparison for the continuous and intermittent experiments 414

can be found in Fig. 8 B and D, respectively. On the micrography, it can be observed 415

that S.cerevisiae cells are surrounded by attached E.coli, conversely, for the intermittent 416

experiment, this effect is not observed, and almost all observed cells were single cells 417

with no aggregation. Therefore the cells and the Continuous culture would seem more 418

prominent than sole S.cerevisiae cells and would have a wider size distribution given 419

the degree of aggregation, while on intermittent experiments, the absence of this effect 420

would compress the size distribution into a relatively smaller mean size. It is relevant 421
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Fig 8. A) and B) Continuous cultivation FSC-A vs event measured fraction plot and
micrography samples, respectively, at time 80 h. E.coli (blue) and S.cerevisiae (red).
C) and D) Hi-frequency pulsed profile cultivation FSC-A vs SSC-A FC plot and
micrography samples, respectively, at time 80 h. On all micrographies, example
marked cells have been magnified.

to notice that the intermittent feeding profiles exert more than metabolic changes into 422

the individual cells but also seem to change the microorganism’s morphology and social 423

behaviour, probably impacting co-culture dynamics, and strain fixation to a great ex- 424

tent [34]. The latter, in turn, could impact their fitness and survival in a fermentation 425

process by coupling or decoupling specific metabolic profiles and functions and some 426

microbial behaviour profiles and their interactions. 427

428

Conclusion 429

In this work, we have addressed the possibility of modifying population stability during 430

continuous and semi-continuous co-cultures of yeast and bacteria. We utilised, for this 431

reason, a microorganism pair that, in normal conditions, is expected to have its slowest- 432

growing or less-fit species washed out during the operation of a continuous reactor with 433

a single carbon source. As presented and discussed in previous sections, we characterised 434

the phenotypic state and metabolic outputs from each particular microorganism in axenic 435

cultures with GLC as the sole carbon source with the aid of a cybernetic modelling ap- 436

proach. Models agreed with known metabolic characteristics of the strains and helped to 437

infer other cellular systemic characteristics such as metabolism regulation and elasticity. 438

The E.coli strain presented a highly dominant GLC metabolism which exerted severe 439

constraints on the allocation of cellular resources to other metabolic possibilities, which 440

highly neglected substrate co-utilisation and hinted to more significant times of pheno- 441

typic transitions after GLC exhaustion. Conversely, S.cerevisiae presented less marked 442

constraints into the allocation of resources to alternative substrates consumption, allow- 443

ing higher concentrations of the relative enzymes needed for each substrate catabolism, 444

resulting in a mixed metabolism phenotype and hinting at a more elastic metabolism 445

towards changing environments. The latter two observations derived the hypothesis that 446

intermittent changes in substrate availability could, in specific frequencies, reduce initial 447
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fitness and growth rate imbalance between the strains. Therefore, we proposed that 448

given these temporal fitness balance changes, dynamic feeding profiles could control 449

population composition, stabilising the unfavored population across fermentation time. 450

With this objective, we constructed a co-culture model based on a virtual strain that 451

contained the metabolic functions of both strains and with compartmentalised biomasses 452

and growth metabolic objectives. The information of the single models, along with a 453

parameter value refinement given by continuous reactor co-culture data, allowed us to 454

profile the potential behaviour of the strains and some of the characteristics of their 455

metabolic interaction. The construction of this virtual co-culture cell model was then 456

used to perform several simulations designed to address the potential population be- 457

haviour during various intermittent feeding profiles that brought to light the possibility 458

of increasing the S.cerevisiae population and stability during specific feeding frequencies, 459

continuous step times, and dilution rates. We, therefore, used two different intermittent 460

feeding profiles to be tested experimentally in 1L bioreactors. This resulted in oscillating 461

biomass relative abundance profiles with increased mean proportions to 2.18 and 2.57 462

times their original values for S.cerevisiae. 463

464

The oscillations in the relative abundance were found to be achieved without sig- 465

nificant changes in total biomass concentration. It was suggested that they arise from 466

a differential substrate utilisation and temporal changes on the strain fitness balance, 467

which signify that S.cerevisiae can temporarily grow faster than E.coli, allowing its 468

stabilisation in the co-culture. Furthermore, we found that the intermittent profiles not 469

only have impacts on the substrate utilisation and fate profiles but also on microorganism 470

social behaviour and interaction as we found that E.coli is surrounding S.cerevisiae cells 471

in fully continuous cultures. By contrast, they do not significantly form cell clusters 472

during intermittent cultures. Given the additional changes observed in intermittent 473

conditions, model simulations tended to overestimate the final mean concentrations of 474

the latter mentioned strain. This is due to its simplified profile, accounting only for the 475

extracellular metabolite interactions and competitions; however, it was enough to render 476

the general trends on the metabolic behaviour towards the fitness and stabilisation 477

increases of S.cerevisiae. It is relevant to state that the model can be extended within the 478

same framework to address more complex metabolite functions, internal fluxes, specific 479

inhibitions, and interactions using the same cybernetic modelling approach. Therefore, 480

the presented framework could be extended and refined with further experimental data 481

that account for different characteristics of specific microbial interactions. The model 482

presented represents the first step in constructing a modular framework and virtual 483

co-culture strains database to understand and control microorganism populations during 484

continuous bioprocesses. 485

Supporting information 486

S1 File. Simulation Supporting information. File containing Willmott index 487

values for the simulation comparison to data, response surfaces for Dilution rate, frequency 488

and step feed time simulation solution space, Behavior curves for relative enzyme variable 489

for all simulations, and experimental data and model simulations for the high and low 490

frequency intermittent feeding regimes. 491
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