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Abstract8

Behaviors emerge via a combination of experience and innate predis-9

positions. As the brain matures, it undergoes major changes in cellular,10

network and functional properties that can be due to sensory experience11

as well as developmental processes. In normal birdsong learning, neural12

sequences emerge to control song syllables learned from a tutor. Here, we13

disambiguate the role of experience and development in neural sequence14

formation by delaying exposure to a tutor. Using functional calcium imag-15

ing, we observe neural sequences in the absence of tutoring, demonstrating16

that experience is not necessary for the formation of sequences. However,17

after exposure to a tutor, pre-existing sequences can become tightly asso-18

ciated with new song syllables. Since we delayed tutoring, only half our19

birds learned new syllables following tutor exposure. The birds that failed20

to learn were the birds in which pre-tutoring neural sequences were most21

‘crystallized’, that is, already tightly associated with their (untutored)22

song.23

1 Introduction24

On the one hand, sensory experience is known to be essential for the normal25

development of brain circuits. On the other hand, genetically specified develop-26

mental processes are also essential – we learn too quickly and from too sparse27

data to rely on sensory experience alone [1]. Thus, it appears that the brain28

is able to use genetically specified predispositions to fill in gaps in its sensory29

experience. When typical sensory experience is absent or delayed, certain as-30

pects of brain development proceed anyway, while other aspects are delayed.31

This is true both in primary sensory systems [2, 3, 4, 5], and for more cognitive32

behaviors such as social interaction and language [6, 7, 8]. Brain circuits ac-33

quire structure and organization even in the absence of typical training inputs.34
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Here we examine this self-organized structure, and what happens when sensory35

experience is reintroduced, in the context of songbird vocal learning.36

Song learning is influenced by both auditory exposure to a particular tutor37

song, and by inherited preferences [9]. It is well known that songbirds, in the38

absence of exposure to a tutor bird, develop ‘isolate’ songs, with highly vari-39

able and atypical syllable rhythms [10, 11, 12]. However, when these ‘isolate’40

songs are used as tutor songs, after two generations birds sing normally again,41

suggesting that an ‘innate’ preference filters what aspects of a tutor song are42

actually imitated [12]. Song imitation requires remarkably little total exposure43

to a tutor song – approximately 75 seconds total on a single day is enough for a44

bird to remember a song, and subsequently practice and imitate it [13]. Zebra45

finches, like many songbird species, are able to imitate songs of birds from other46

species, but when given a choice they prefer zebra finch song [14]. Furthermore,47

inherited genetic predispositions have a strong effect on both the precise tempo48

at which a zebra finch sings its song [15], as well as the particular learning styles49

of individual birds [16]. Thus, within the songbird brain we expect to see an50

interplay between developmentally specified and learned structure.51

There are several possibilities for what happens in the brain during isolate52

song, and how it compares to typical (tutored) brain development. In typical53

birds, neurons in HVC are initially only weakly coupled to song, firing only54

at the onsets of syllables when birds are babbling subsong [17]. Then, as the55

song becomes more mature and repeatable, each HVC projection neuron fires at56

its own precise moment during the song, together forming a stable sequence of57

neural firing that tiles the song [17, 18, 19], in interplay with inhibitory neurons58

[20, 21]. This maturation process in HVC has been modeled as an initially ran-59

dom network of neurons that, with the right training inputs and plasticity rules,60

assembles into a chain of sequentially connected neurons [22, 23, 17] (Figure 1A).61

However, what happens in birds isolated from a tutor? Compared to typical62

adult zebra finch song, isolate song has a much less stable sequence of syllables63

and abnormally variable acoustic structure and timing [12]. In fact, aspects of64

isolate song resemble features of early babbling (subsong). Does HVC in isolate65

birds resemble that of subsong birds? Or does HVC mature to form sequences,66

even without experience of a tutor, and without the behavioral stereotypy seen67

in adult birds? We use functional calcium imaging in singing isolated birds to68

address these questions.69

By observing the neural activity in HVC of isolated birds, we found that the70

HVC network activity can mature into long repeatable sequences even without71

exposure to a tutor. However, there are some key differences between typical72

adult HVC sequences and those found in isolated birds, suggesting which fea-73

tures of HVC development rely on exposure to a tutor. Next, we observe HVC74

in isolated birds immediately before and after delayed exposure to a tutor. Birds75

isolated from a tutor are able to learn a song if exposed to a tutor before the76

end of a critical period, typically around age 65 days post hatch (dph), but are77

increasingly unable to learn at later ages [24, 25, 26]. Although only half of78

our late tutored birds successfully learned from the tutor, we observed an in-79

teresting correlation between HVC activity prior to tutoring and the degree to80
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which birds learned. Namely, birds with highly song-locked HVC activity prior81

to tutoring typically failed to learn, while birds with less song-locked activity82

tended to learn. In the birds that did learn, we were able to track sequences83

throughout the course of learning. Pre-existing self-organized HVC sequences84

persisted throughout major changes to the song, forming a substrate for newly85

learned song elements. Together, these results point at how the brain may self-86

organize, and at the interplay between self-organized structure and the ability87

to incorporate new information from a tutor.88

2 Results89

2.1 Neural sequences are present in isolated birds, but90

atypical91

We first asked whether the songs of isolated birds involve the same neural path-92

ways and neuronal sequences responsible for generating typical song. We carried93

out functional calcium imaging of large populations of neurons in HVC of iso-94

lated birds at a range of ages. Sequences of neuronal activity in HVC have95

previously been analyzed by aligning neuronal activity to repeatable elements96

of the song [27], an approach with limited utility in isolated birds due to the high97

variability of their songs. Instead, we extract neural sequences directly from the98

calcium signals using an unsupervised algorithm [28] to find the sequences that99

best fit the neural data. This technique reveals the existence of significant se-100

quential activity in HVC of isolated birds (Figure 1B,C). It also reveals long101

continuous sequences in data acquired from typical adult HVC (Figure 1D) as102

expected from previous work [27, 19, 18].103

The sequences found in isolated birds are surprisingly typical in some re-104

spects, but atypical in others, especially in their correlation to vocal output. As105

in typical HVC sequences, neurons in isolated birds participate at characteristic106

moments during the sequence (Figure 1E), and many neurons participate in at107

least one sequence (Figure 1F). Neurons that participate in a sequence tend to108

fire at a majority of sequence occurrences (Figure 1G). Neural sequences are cor-109

related with precisely timed song features in isolated birds’ song (Figure 1H, I,110

song features calculated as in [29]). However, song locking in isolated birds was111

only on average 0.58 times as strong as in a typically tutored adult bird (Figure112

1J, see Methods). Finally, in isolated birds, on average only 61% of each song113

bout is represented by a detected HVC sequence, substantially less than the114

complete sequence coverage found in typically tutored birds [19, 18, 17] (Figure115

1K, see Methods). HVC activity in isolated birds exhibits additional qualitative116

differences from that in typically tutored birds. While HVC neurons generate117

only brief bursts of spikes in tutored birds, neurons in isolated birds sometimes118

generated extended periods of continuous activity, especially during long sylla-119

bles of variable duration (Figure 1L, 7/8 birds exhibited multiple instances of120

persistent activity, coordinated across at least 3 neurons, and lasting at least121

500ms). This contrasts with long syllables of typical adult song which are all122
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Figure 1: Sequences in isolated birds
(A) Diagram of HVC maturation. In typically tutored birds, HVC sequences appear to grow
and differentiate over time. (B) Example neural sequences recorded in a singing isolated bird
(older juvenile, 61 dph). Main panel (lower right), functional calcium imaging recordings
from 98 neurons for a duration of 6 s. Rows (neurons) sorted according to sequences (factors)
extracted by unsupervised algorithm seqNMF (see Methods). (Above) Song spectrogram (0-10
kHz). The four sequence factor exemplars and timecourses are shown to the left and above, in
corresponding colors. Duration of factor exemplars: 0.5 s. (C) Same as B, for another example
isolated bird (adult, 117 dph). (D) Same as in B, for a typically tutored bird (adult, 217
dph). (E) Time-lagged cross correlation between each neuron and each of the three extracted
factors recorded in a singing isolated bird (older juvenile, 68 dph). Only significant bins in
the cross correlation are shown (p < 0.05, Bonferroni corrected, compared to a circularly-
shifted control). (F, G, J, K) Sequence properties in isolated birds. For reference, median for
typically tutored bird in D shown in red. (F) Percent of neurons participating in at least one
extracted sequence. (G) Reliability of participating neurons across sequence renditions. (H)
Example song spectrograms (0.5 s) extracted at moments when neural sequences were detected
in an isolated bird (older juvenile, 64 dph) (I) Correlation of these sequences with eight song
features (top to bottom: amplitude, entropy, pitch goodness, aperiodicity, mean frequency,
pitch, frequency modulation, amplitude modulation). Factor duration 0.5 s, indicated by
colored bars above, triangle at center. (J) Strength of song locking (see Methods). (K)
Percent of the song covered by some sequence. (L) Example of sequence abnormalities in an
isolated bird (same as in E). Sequences of inconsistent length (8/8 isolated birds) and ensemble
persistent activity (7/8 isolated birds) are annotated in red.
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generated by extended sequences of brief bursts. In addition, HVC sequences123

in isolated birds exhibit variable durations, often truncating at different points124

(Figure 1L, 8/8 birds), producing syllables of highly variable duration. Such125

truncations in the middle of a syllable sequence are very unusual in typically126

tutored birds [30]. These atypical modes of HVC activity suggest several possi-127

ble mechanisms to understand characteristic features of isolate song, abnormally128

long syllables and those of variable duration [12]. For example, syllables in iso-129

lated birds may exhibit variable duration when their underlying HVC sequences130

are truncated at different points.131

We wondered if the existence of sequences in HVC of socially isolated birds132

occurs only after the closure of the critical period (i.e. a product of an already133

atypical isolate song) or whether they develop at an even earlier age when birds134

have not yet heard a tutor song, but can still be tutored. We recorded in 5135

birds at ages 57-64 dph, prior to tutor exposure, and found strong evidence for136

HVC sequences (Figure S1A). There was not a significant correlation between137

the age of the bird and any sequence features we measured (Figure S1B-F,138

linear regression model, significance threshold p < 0.5, comparing to a constant139

model). The correlations were not significant both when we restricted to birds140

within the traditional critical period (<65 dph), and when we included data141

from three older isolated birds (68-117 dph). Thus, the large (several fold) bird-142

to-bird variability in sequence properties (Figure S1B-F) is not explained by143

age, and likely due to inter-individual variability in developmental timecourses.144

2.2 Prior to tutoring, birds that will learn exhibit HVC145

sequences that are relatively immature and decoupled146

from vocal output147

Next, we asked whether properties of the HVC sequences relate to the ability148

of birds to learn a new song from a tutor. Many of our young isolated birds149

were eventually tutored at an age around the critical period and we found that150

half of them learned elements of their tutor song, while the others developed151

fully isolate song. We classified birds as learners if their song had an Imitation152

Score metric [31] greater than 0.5. The songs of non-learners remained highly153

variable and isolate-like even after tutoring (Figure 3A). In contrast, learner154

birds developed a new syllable within a day or two after tutoring, and ultimately155

sang typical adult song, consisting of stereotyped motifs (Figure 3B).156

An analysis of HVC activity revealed that sequences prior to tutoring were157

systematically less mature/‘crystallized’ in birds that learned than in birds that158

failed to learn. Learner birds had fewer sequences than non-learners (Figure159

2C, average 2 sequences in learners, 3.25 sequences in non-learners, p = 0.029,160

Wilcoxon rank sum test). Sequences in learner birds were more weakly corre-161

lated to song features (Figure 2D, average 0.20 s learner, 0.55 s non-learner, p162

= 0.0034, Wilcoxon rank sum test). Sequences in learners had lower autocorre-163

lation, a measure of how repeatably/rhythmically they are produced [17], than164

non-learners (Figure 2E, average 0.125 s learner, 0.244 s non-learner, p = 0.018,165

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.18.480996doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.480996
http://creativecommons.org/licenses/by/4.0/


Figure 2: Relation between HVC sequence maturity and subsequent song learn-
ing
(A) Example spectrograms for two non-learner birds, prior to tutoring and several weeks
later (at least 77dph). (B) Example spectrograms for two learners, prior to tutoring, shortly
after tutoring, and several weeks later. Red dots mark the new syllable. Red bars mark
stereotyped motif. (C-E) Three measures of HVC sequence maturity for learners (pink) and
non-learners (gray). Error bars denote standard deviation (* : p<0.05, ** : p<0.01). (c)
Number of sequences in HVC. (D) Fraction of neurons that participate in a sequence. (E)
Autocorrelation of sequence factor timecourses. (F) Age of first tutoring for learners and
non-learners. (G-H) Example pre-tutoring data from two birds that were brothers. (G) A
non-learner, first tutored at 61 dph. (H) A learner, first tutored at 64 dph.
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Wilcoxon rank sum test). Three additional measures of sequence maturity, all166

related to intrinsic sequence properties were calculated. While non-learners also167

trended higher in these measures, the differences were not significant (Wilcoxon168

rank sum tests, Neural participation: average 45% learner, 70% non-learner,169

p = 0.2; Reliability: average 69% learner, 74% non-learner, p = 1; Coverage:170

average 51% learner, 71% non-learner, p = 0.34).171

The age of tutoring was not significantly correlated with whether the bird172

was a learner or non-learner (Figure 3F, average 60.5 dph learner, 78.75 dph173

non-learner, p = 0.11, Wilcoxon rank sum test). For example, one of the younger174

birds in our dataset (61 dph) was a non-learner, and had particularly clear HVC175

sequences before tutoring (Figure 3G). This bird’s brother, tutored 3 days later,176

was a learner, and had sequences that appear far less mature (Figure 3H). To-177

gether, these results suggest that the presence, at the time of tutoring, of robust178

song-locked sequences, may inhibit learning. In other words, learning may be179

better supported by more immature sequences that are more independent from180

vocal output.181

2.3 Tracking HVC sequences across rapidly learned song182

changes183

In late-tutored birds that learned, the speed with which new syllables appeared184

was striking. These birds developed a new syllable within a day or two after185

tutoring (Figure 2A, B), as has been previously described [32, 33, 34]. These186

new syllables appeared to emerge de-novo, not by syllable differentiation as is187

common in tutored birds.188

We wondered if these birds, which learned a new syllable rapidly after tu-189

toring, formed a de-novo HVC sequence for this new syllable, or perhaps used190

a pre-existing sequence. We were able to track neurons in our calcium imaging191

data throughout the course of tutoring (Figure 3A, see Methods, Gu et al., in192

preparation), enabling us to see what happens to neural activity during rapid193

changes in the song. We first extracted neural sequences associated with new194

post-tutoring syllables, then followed these neurons back in time to find that the195

sequence existed even prior to tutoring (Figure 3B,C, see Methods). However,196

the sequence prior to tutoring was surprisingly ‘latent’. That is, the sequence197

was relatively uncoupled to vocal output, without a strong correlation to song198

syllables. Combining data from the four birds that learned a new syllable rapidly199

after tutoring, neural sequences extracted two days after tutoring appeared to200

become more song locked after tutoring (Figure 3D, p=0.0048, Wilcoxon rank201

sum test).202

Next, we aimed to control for the possibility that the appearance of se-203

quences becoming progressively more locked to vocal output after tutoring was204

due to the fact that sequences were extracted from neural data recorded after205

tutoring. We directly extracted HVC sequences from exclusively pre-tutoring206

neuronal data and tracked them forward in time until a new syllable appeared.207

Sequences that were initially relatively ‘latent’ persisted, becoming progressively208

more correlated with vocal output, ultimately tightly locked to a new syllable209
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Figure 3: Tracking HVC sequences as isolated birds rapidly learn a new syllable
(A) Neurons detected before (left) and after (right) tutoring shown in grayscale (CNMF E
algorithm). Colored contours indicate locations of neurons tracked across five days, from
blue to red (B) Sequence in HVC, tracked before and after first tutor exposure (see Methods),
through the development of a new syllable. Sequence extracted from data two days after tutor-
ing, and neurons sorted according to participation in this sequence. (Top) On each recording
day, cross correlation of neurons with the sequence that becomes associated with the new
syllable. Significant bins are shown in black, non-significant bins in gray (p=0.05, Bonferroni
corrected, compared to circularly-shifted control) (Middle) On each recording day, example
spectrograms at times when the sequence occurs on each day (Bottom) On each recording
day, cross-correlation of sequence with acoustic features (amplitude, entropy, pitch goodness,
aperiodicity, mean frequency, pitch, frequency modulation, and amplitude modulation) (C)
Same as B for a different example bird. (D) Correlation with song amplitude before (pink)
and after (gray) tutoring for all sequences in learner birds extracted data when a new syllable
had been learned. (E) Similar to B and C, for a different example bird. Here sequences are
extracted from pre-tutoring data, then tracked forward in time. (F) Song locking (maximum
cross-correlation with song amplitude) before and after tutoring for the pre-tutoring sequences
that had weaker song locking. (G) Song locking before and after tutoring for the pre-tutoring
sequences that started off with stronger song locking.
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(Figure 3E). Each of the ‘learner’ birds appeared to have two HVC sequences210

present prior to tutoring. Of these sequences, the ones that started off less211

correlated with song amplitude exhibited a significant increase in correlation212

with song amplitude after tutoring (Figure 3F, p=.045, Wilcoxon rank sum213

test). The sequences that started off more correlated with song amplitude did214

not significantly change their correlation with song amplitude (Figure 3G, p=1,215

Wilcoxon rank sum test). Together, these results are consistent with the view216

that the emergence of new syllables after tutoring may co-opt existing HVC217

sequences, including relatively ‘latent’ sequences.218

3 Discussion219

We set out to determine whether the formation of sequences in HVC depends220

on prior exposure to a tutor song. By observing the neural activity in HVC of221

isolated birds, we found that HVC network activity can form long repeatable222

sequences even in birds that had no prior exposure to vocal tutoring. Sequences223

in isolate HVC exhibit some properties of typical HVC, with many neurons reli-224

ably participating in sequences, and sequences being correlated to vocal output.225

However, sequences in isolated birds were less reliable and less tightly corre-226

lated with vocal output than has been described in typical birds, and exhibited227

abnormal truncations and persistent activity.228

We had previously hypothesized that the experience of hearing a tutor may229

seed the formation of HVC sequences of the appropriate number and durations230

[35], but our new data reveal that HVC sequences exist even prior to tutoring.231

Thus, there must be a way for sequences to form without the prior storage of a232

tutor memory. In models of Hebbian learning in HVC, sequences can form in233

networks driven by random inputs rather than patterned inputs [22]. However,234

in this case the distribution of sequence durations no longer matches syllable235

durations found in typical adult birds, but is instead more consistent with the236

highly variable and atypically long syllables that occur in birds that have never237

heard a tutor (isolate song) [12, 10]. Thus our findings may be consistent with238

the view that sequences can emerge in isolate birds by a combination of simple239

Hebbian learning mechanisms together with spontaneous activity either within240

HVC or driven by the inputs to HVC.241

Our discovery of latent sequences suggests a separation between neural pro-242

cesses for building a stable representation of states within a task (i.e., sequential243

moments in time), and neural processes for associating an action with each state.244

Thus, sequences may gradually emerge in the maturing HVC network via sim-245

ple Hebbian processes [23, 22, 17], but may remain relatively decoupled from246

downstream motor neurons until a memory of the tutor song is learned and247

reinforcement learning processes begin.248

From a computational perspective, what do latent sequences tell us about249

how the brain learns? By latent sequences, we mean sequences that are initially250

only weakly correlated with vocal output, but are subsequently used to produce251

learned song changes. In reinforcement learning models of song learning, HVC252
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sequences remain relatively stable even as the song changes [36, 37, 38, 39],253

consistent with our observation of stable sequences. This is in contrast with254

other models of song learning, like the ‘inverse model’ [40, 41, 42]. In the255

inverse model, each motor neuron produces the same vocal output at different256

times during vocal learning; song changes are caused by pre-motor neurons (e.g.257

HVC) being activated in a different order. In contrast, we observed relatively258

stable sequences throughout learned song changes. Our results are consistent259

with data from primary motor cortex of macaques operating a brain-computer260

interface—a fixed repertoire of activity patterns are associated with different261

movements after learning [43]. Our results are also consistent with the idea262

that the brain may use pre-existing sequential patterns to rapidly learn from263

new experience, for example the existence of sequences in the hippocampus prior264

to exposure to new environments [44, 45, 46, 47, 48].265

If the brain is able to build on latent structure to learn from sparse data, es-266

sentially implementing inductive bias, we might expect different forms of latent267

structure for different tasks. Zebra finches are known to develop typical songs,268

including typical syllable durations, after being tutored by atypical isolate songs,269

relying on species-specific ‘priors’ to achieve species-typical syllable durations.270

The latent sequences we observed tended to last on the order of a hundred mil-271

liseconds—the same as the duration of typical zebra finch syllables. Might other272

species that sing faster songs (e.g. grasshopper sparrow) or slower songs (e.g.273

white-throated sparrow) exhibit latent sequences of shorter or longer durations?274

One might imagine that the speed of latent sequences could be genetically spec-275

ified by expression levels of ion channels with different time constants within276

HVC. Alternatively, the duration of latent sequences could be specified by the277

amount of time it takes for HVC to get feedback from respiratory and/or audi-278

tory centers, which may also have their own intrinsic rhythmicity [49, 50, 51].279

Each of these possible sources of latent HVC structure could be tested in further280

experiments. By whatever mechanism latent sequences arise, they appear to be281

capable of supporting song learning, at least in the case of delayed tutoring.282

More generally, the ability of brains to generate complex learned behavior may283

depend on the intrinsic developmental formation of appropriate latent dynamics284

in motor and sensory circuits.285

4 Materials and Methods286

4.1 Table of key resources for imaging HVC sequences287

Key resources, and references for how to access them, are listed in Table 1.288

4.2 Animal care and use289

For this study, Imaging data was collected in 9 male zebra finches (Taeniopygia290

guttata) from the MIT zebra finch breeding facility (Cambridge, MA). Animal291

care and experiments were carried out in accordance with NIH guidelines, and292
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Table 1: Links to key resources used for measuring HVC sequences during rapid
learning

Software/algorithm Source Link to code

seqNMF [28] https://github.com/FeeLab/seqNMF

CNMF E (cell extraction) [52] https://github.com/zhoupc/CNMF E

STAT (tracking neurons across days) Gu et al., in preparation will post preprint and submit

Chronux (spectrogram computation) [53] http://chronux.org/

SAP (Sound Analysis Pro) [29] http://soundanalysispro.com/

SI (Song Imitation) [31] https://doi.org/10.1371/journal.pone.0096484

MATLAB MathWorks www.mathworks.com

Dataset Source Link to data

HVC, rapid learning This paper will post

Other Source Link

Zebra finches (Taeniopygia guttata) MIT animal facility

AAV9.CAG.GCaMP6f.WPRE.SV40 [54] https://pennvectorcore.med.upenn.edu

Miniature microscope Inscopix nVista https://www.inscopix.com/nvista

reviewed and approved by the Massachusetts Institute of Technology Committee293

on Animal Care.294

In order to control exposure to a tutor song, 8 birds were foster-raised by295

female birds, which do not sing, starting on or before post-hatch day 15 (15296

dph). Starting between 40 dph and 50 dph, these birds were housed singly in297

custom-made sound isolation chambers. An additional bird was tutored by his298

father, as is typical. After a couple of days of acclimation to the lab environ-299

ment, birds were anesthetized with isoflurane, and were given a surgery to inject300

virus to express the functional indicator GCaMP6f and implant a GRIN (gra-301

dient index) lens (see below). Analgesic (Buprinex) was administered 30 min302

prior to the surgery, and for 3 days postoperatively. After at least a week for303

virus expression, an Inscopix miniscope baseplate was attached to the existing304

implant. Birds were acclimated to the miniscope for several days. Once birds305

started singing with the miniscope, functional calcium signals were recorded for306

several days. To avoid photobleaching, short files (approximately 10 seconds)307

were obtained, typically fewer than 50 files per day. Once some pre-tutoring308

singing data had been obtained, birds were tutored briefly (5-10 song bouts309

from a tutor bird) each day.310

4.3 Expression of functional calcium indicator GCaMP6f311

The calcium indicator GCaMP6f was expressed in HVC by intercranial injection312

of the viral vector AAV9.CAG.GCaMP6f.WPRE.SV40 [54] into HVC. In the313

same surgery, a cranial window was made using a relay GRIN (gradient index)314

lens (1mm diamenter, 4mm length, Inscopix) implanted on the surface of the315

brain, after the dura was removed. After at least one week, in order to allow316

for sufficient viral expression, recordings were made using the Inscopix nVista317

miniature fluorescent microscope.318
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4.4 Extraction of neuronal activity and background sub-319

traction using CNMF E320

Neuronal activity traces were extracted from raw fluorescence movies using a321

constrained non-negative matrix factorization algorithm, CNMF E, that is spe-322

cialized for microendoscope data by including a local background model to re-323

move activity from out-of-focus cells [52]. Custom software (Shijie Gu, Emily324

Mackevicius, Pengcheng Zhou) was used extend the CNMF E algorithm to com-325

bine batches of short files (BatchVer) and track individual neurons over the326

course of multiple days (STAT, Gu, et. al., in preparation, see below).327

4.5 Unsupervised discovery of neural sequences using seqNMF328

We addressed the challenge of needing to detect neural sequences in HVC with-329

out relying on aligning neural activity to the song by developing an unsupervised330

algorithm, seqNMF [28]. This was necessary because juvenile songs are highly331

variable and difficult to parse into repeatable syllables, and because we wanted332

to allow for the possibility that HVC activity might be more stereotyped than333

the song. Briefly, seqNMF factorizes data into exemplar sequence factors (W’s).334

Each sequence factor has a corresponding timecourse (H). Convolving each ex-335

emplar with its respective timecourse produces an approximate reconstruction336

of the original data (X̃ = W ~H). SeqNMF returns a factorization that min-337

imizes reconstruction error, subject to a penalty term that encourages simpler338

factorizations.339

4.6 Preprocessing calcium traces prior to running seqNMF340

We performed several preprocessing steps before applying seqNMF to functional341

calcium traces extracted by CNMF E. First, we estimated burst times from the342

raw traces by deconvolving the traces using an AR-2 process. The deconvolution343

parameters (time constants and noise floor) were estimated for each neuron using344

the CNMF E code package [52]. Some neurons exhibited larger peaks than345

others, likely due to different expression levels of the calcium indicator. Since346

seqNMF would prioritize the neurons with the most power, we renormalized347

by dividing the signal from each neuron by the sum of the maximum value of348

that row and the 95th percentile of the signal across all neurons. In this way,349

neurons with larger peaks were given some priority, but not much more than350

that of neurons with weaker signals.351

4.7 Estimating the number of significant sequences in each352

dataset353

The number of sequences present in real neuronal datasets can be slightly am-354

biguous, so we used several methods to arrive at and validate an estimate for355

the number of significant neural sequences present in each dataset. It is impor-356

tant to note that, since our datasets are short, there may be additional neural357
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sequences in HVC that do not appear, or do not achieve significance, in our358

datasets. In order to cross-validate sequences on held-out data, we split each359

dataset into a training set (75%) and a test set (25%). Sequences were detected360

in the training set, and significance was measured in the test set by assessing361

how much the overlap of the sequences with the test data compared to null362

(time-shifted) sequences. In order to choose a value for the seqNMF parame-363

ter λ that balances reconstruction cost with correlation (redundancy) cost, we364

swept λ with K = 10 and L = 0.5 seconds to find λ0, the cross-over point that365

balances these cost terms (Figure S2A). Based on analysis on simulated data366

[28], where values of λ at or slightly above λ0 yielded the correct number of367

sequences, we looked at the distribution of significant sequences at λ = λ0 and368

λ = 2λ0 (Figure S2B), and chose as our estimate a number between the peaks of369

these two distributions. We validated these estimates in two ways. First, we ran370

seqNMF with K equal to this estimate and λ = 0, and confirmed that the result-371

ing sequences tended to be significant on held-out data. Next, we ran seqNMF372

on the entire dataset at this K from 25 different random initial conditions, and373

confirmed that the sequences were consistent across the different runs (Figure374

S2C). Consistency measures the extent to which there is a one-to-one mapping375

between the factors of two different factorizations [28]. When this analysis was376

run at a K higher than the estimated K, results tended to be less consistent377

(Figure S2D).378

4.8 Selecting a consistent factorization379

For each dataset, we selected the most consistent factorization on which to380

perform all further analysis. Once we had selected an appropriate number of381

sequences for each dataset, using the analyses described above, we ran seqNMF382

25 times at this value of K from different random initial conditions, and picked383

the factorization that was most consistent with the other factorizations (Figure384

S2D). Factorizations at K chosen by the above methods tended to be more385

consistent than factorizations at higher K (Figure S2D).386

4.9 Significance testing for cross-correlation analyses387

Several of our results involve analyzing the temporal relationship between differ-388

ent timecourses (factors and neurons; factors and song acoustic features; factor389

autocorrelations). These analyses involve testing the significance of the cross-390

correlation between two timeseries, compared to null cross-correlation values391

that could occur if the signals were circularly shifted relative to each other by392

a random large timelag. Before measuring cross-correlations, we centered each393

signal to have zero mean. If we are assessing the cross-correlation at lags in the394

range from -L to L, we want to compare values measured here to null values395

measured at random lags longer than L. We compute the cross-correlation at396

each lag ` in the range −T < ` < T , where T is the length of the timeseries,397

by circularly shifting one of the timeseries by ` and computing the dot prod-398

uct with the other timeseries. We then use the cross-correlations at null lags399
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(−(T − L) < ` < −L or L < ` < (T − L)) to determine a Bonferroni-corrected400

significance threshold. The threshold is the 100 × (1 − p/Num)th percentile of401

the absolute value of these null cross-correlations, where Num is the number402

of comparisons (2L times the number of tests being run), and p is the p-value.403

Significance is achieved for lags at which the measured cross-correlation exceeds404

this value.405

4.10 Assessing song locking, the cross-correlation between406

each factor and acoustic song features407

Several of our results involve quantifying the temporal relationship between408

sequence timecourses (H’s) and the song. To do this, we measured the cross-409

correlation of sequences with song acoustics using 8 acoustic features common410

in the songbird literature [29]: amplitude, entropy, pitch goodness, aperiodicity,411

mean frequency, pitch, frequency modulation, and amplitude modulation. Each412

of these acoustic features is measured from the song at 1ms resolution using413

standard software (Sound Analysis Pro, http://soundanalysispro.com/, [29]).414

The seqNMF H’s are upsampled to this resolution, then cross-correlation be-415

tween each H and each song feature is assessed using the above procedure, with416

L = 1 second, p = 0.05, and Bonferroni correction (2000 timebins) x (8 features)417

x (K sequences). The overall measure of song locking is computed by integrat-418

ing the number of seconds that a given sequence has significant correlation with419

each of the song features.420

4.11 Assessing which neurons participate in each sequence421

Several of our results involve assessing which neurons participate in each se-422

quence. In order to do this, we measure whether there is a significant cross-423

correlation between each neuron and each factor (with L=0.5 seconds, p = 0.05,424

and Bonferroni correction (30 timebins) x (N neurons) x (K sequences)). Note425

that, since seqNMF is run on the neural data, it is guaranteed that some neurons426

will be correlated with the factors —the primary aim of this test is to assess427

which neurons are in which sequences.428

4.12 Tracking HVC projection neurons over the course of429

major song changes430

A core motivation for using calcium imaging methods instead of other methods431

was the possibility to track HVC projection neurons over the course of major432

song changes. HVC projection neurons are particularly difficult to record with433

electrophysiological methods—current methods are unable to record an HVC434

projection neuron for more than a few hours, and tend to record one, or at most435

three, projection neurons at a time [55, 17]. Previous studies of song-locked HVC436

activity throughout the learning process could only track changes in the neural437

population that occurred at a timescale slower than a week, because population438

statistics had to be compiled from single-neuron recordings [17]. This technique439
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misses rapid changes that can happen within a day [32], and is unable to assess440

the stability of HVC sequences.441

Stability of HVC sequences over time can be assessed using calcium imag-442

ing, though some challenges remain due to the potential for errors in tracking443

neurons across days. Single-photon calcium imaging methods have been used444

to address the stability of HVC sequences in adult birds with stable songs, ob-445

serving stable song-locked activity in slightly more than half of HVC projection446

neurons, and unstable song-locked activity in slightly less than half of HVC pro-447

jection neurons [56]. This measure is likely an underestimate of the stability of448

HVC activity, since noise in tracking cell locations across days could lead to per-449

ceived instability. Thus, HVC sequences appear relatively stable in birds with450

stable song, but what about birds whose songs are changing? The potential for451

errors in tracking neurons across days was one factor in our decision to record452

in birds undergoing very rapid learning. It was necessary for us to expand upon453

previous methods for tracking neurons recorded by calcium imaging over time454

[57], likely due to the relatively short individual file sizes in our dataset from455

singing juvenile birds (we recorded many short files each day, when the birds456

happened to sing, instead of longer continuous files).457

We tracked the activity of populations of HVC neurons over multiple days458

using Spatial Tracking Across Time (STAT, Gu et al., in preparation). This459

method builds off of previous methods [57], where individual cell pairs’ shape460

spatial correlation and distance are used to determine the correspondences be-461

tween cells extracted from different sessions. STAT also considers local neigh-462

borhood motion consistency in computing the optimal tracking of cells across463

sessions, and requires less manual supervision. The local motion consistency is464

optimized using the Hungarian Method, a combinatorial optimization algorithm465

that solves assignment problems in polynomial time. Cells that have no good466

match are excluded, as are cells with abnormal coefficient of variations. Finally,467

the results of the matching algorithm are checked manually.468

4.13 Tracking sequences extracted on one subset of a dataset469

to another subset of the dataset470

In order to track a sequence, W, extracted in one subset of a dataset (X1,471

for example before tutoring) to another subset of the dataset (X2, for example472

after tutoring), we first mean-subtract W and X2 along the time dimension,473

then estimate H̃2 = W>~X2. In order to assess whether a neuron significantly474

participates in W in dataset X2, we bootstrap using control datasets Xshuff
2 , in475

which data from each neuron is circularly shifted in time by a different random476

amount. We then ask whether the neuron participates more strongly in the477

real dataset compared to participation calculated on control datasets (p=0.05478

significance threshold, Bonferroni corrected for the number of neurons and the479

number of time-lags). Specifically, we compare W̃2 = X2H̃
>
2 to W̃shuff

2 =480

Xshuff
2 H̃shuff>

2 .481
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5 Assessing sequence coverage of song bouts482

Sequence coverage quantifies the observation that sequences in isolated birds ap-483

pear to pop on and off at somewhat arbitrary moments in bouts, leaving some484

sections of some bouts with no clear sequences present. First, the moments when485

each sequence occurs is estimated by computing when H̃ = W> ~X is larger486

than expected by chance (Bonferroni-corrected 95% percentile of H̃shuff =487

W> ~ Xshuff ). Next, the sequence is convolved with the corresponding W.488

Finally, the total number of seconds when some sequences was present is di-489

vided by the total number of seconds in the bout, and multiplied by 100, to get490

the percent of the bout covered by some sequence. Note that sequence cover-491

age is distinct from previously described measures of burst coverage within a492

repeatable adult song motif [18].493
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Supplementary figures678

Figure S1: HVC sequences exist even in young isolated birds
(A) Example HVC sequences recorded in a young isolated bird (59 dph) (B-F) Sequence
properties as a function of age in 7 juvenile isolated birds (5 birds recorded prior to the
closing of the traditional critical period (<65 dph), and 2 older juvenile birds (65 dph - 90
dph)). Line denotes least squares fit, gray area 95% confidence interval. (B) Number of
HVC sequences extracted. (C) Percent of neurons participating in at least one sequence. (D)
Reliability of neural participation across sequence renditions. (E) Song locking. (F) Percent
of the song covered by at least one sequence.
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Figure S2: Supplementary Figure 1. Estimating the number of significant se-
quences in each dataset
(A) Reconstruction cost (red) and correlation cost (blue) as a function of λ (with K=10, L=0.5
seconds) for 8 datasets (pre-tutoring data from 8 different birds). The crossover point, λ0, is
stated and marked by a dashed line. (B) Histogram of the number of significant sequences at
λ0 and 2λ0 for these datasets. (C) For the chosen K, and λ = 0, consistency across 25 runs
of seqNMF from different random initializations. Factorizations are sorted from most to least
consistent. (D) Consistency matrix for 25 runs at K above the estimated K.
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