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Abstract

Site heterogeneity of the amino acid substitution process accounts for the biochemical1

constraints on the range of admissible amino acids at specific sites. Phylogenetic models of2

protein sequence evolution that do not account for site heterogeneity are more prone to3

long-branch attraction artifacts.4

Profile mixture models are used to model site heterogeneity. Even though model,5

tree, and mixing parameters are statistically consistent, the performance of these models6

with short alignments is unclear. Here we explore the behavior of tree topology estimates7

and marginal cumulative distributions with short simulated alignments. We find that8

over-parameterization is not a problem for complex profile mixture models and that simple9

models behave poorly. Misspecification of the frequency distributions does not cause a10

problem if the estimated cumulative distribution function adequately approximates the11

true one. Also, we find that misspecification of the exchangeabilities can severely affect12

parameter estimation and that an increase in likelihood does not necessarily reflect better13

tree estimation. Although the inclusion of more taxa often helps, it can hurt estimation if14

the exchangeabilities are badly misspecified.15

Finally, we explore the effects of including an ‘F-class’ with the overall amino acid16
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frequencies of the dataset as an additional class in the profile mixture model. Surprisingly,17

the F-class does not seem to help parameter estimation significantly, and it can decrease18

the probability of correct tree estimation, depending on the scenario, despite the fact that19

it tends to improve likelihood scores. We also investigate this with several empirical data20

sets.21

Key words : Phylogenetics; Mixture model; Frequency profile mixtures; Long-branch22

attraction.23

24

Phylogenetic methods have been used to resolve many deep phylogenetic problems25

in the tree of life (Brown et al. (2013); Daubin (2002); Pisani et al. (2015); Raymann et al.26

(2015); Wickett et al. (2014)). To decrease estimate variability, these models require a27

large number of orthologous genes. The alignments of multiple genes (proteins) are either28

concatenated into a ‘supermatrix’ from which trees are estimated or individual29

gene/protein trees are first estimated and then combined using supertree or ‘species tree’30

methods. In either case, as more genes or proteins are considered, systematic biases can31

arise (Philippe et al. (2011)), underscoring the importance of adequately modeling the32

nucleotide or amino acid substitution process.33

The substitution process of amino acid sequences is usually modeled as a34

site-independent Markov process in a tree. The most common approach assumes constant35

stationary frequencies of the amino acids and a constant matrix of exchangeabilities36

throughout the tree. The amino acid frequencies are usually estimated from the observed37

frequencies in the entire alignment. The matrix of exchangeabilities is fixed a priori,38

chosen from a set of empirically defined matrices, see for example Jones et al. (1992); Le39

and Gascuel (2008a); Whelan and Goldman (2001). Also, it is customary to consider40

different rates across sites to accommodate faster or slower substitution processes at41

different sites (see for example Yang (1994)). These models with almost the same42
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substitution process at each site and where the only difference comes from distinct rates43

across sites, are known as site frequency homogeneous models. From now on, and as it is44

customary, we refer to these as site-homogeneous, although these are not strictly45

homogeneous since site-rates may differ per site.46

However, there are different ranges of amino acids admissible at sites in proteins47

because of functional or structural restrictions (Franzosa and Xia (2009); Goldstein (2008);48

Pál et al. (2006)). These ranges can vary widely, from a few or just one, to essentially all49

possible amino acids at a site (Halpern and Bruno (1998); Lartillot et al. (2007); Lartillot50

and Philippe (2004); Wang et al. (2008)). Consequently, site-homogeneous models, which51

overlook this across-site amino acid frequency heterogeneity, are less biologically plausible52

and are prone to long-branch attraction (LBA) artifacts (Feuda et al. (2017); Lartillot53

et al. (2007); Simion et al. (2017); Wang et al. (2008); Williams et al. (2013)). LBA is a54

pervasive systematic bias in tree estimation whereby distantly-related groups with long55

branches are artefactually grouped together (Felsenstein (1978); Philippe and Laurent56

(1998)). Partition (Lanfear et al. (2016); Pupko et al. (2002); Yang (1996)) and mixture57

models (Lartillot and Philippe (2004); Le and Gascuel (2008a); Schrempf et al. (2020); Le58

and Gascuel (2008b); Wang et al. (2008)) have been used to model heterogeneity of the59

amino acid substitution process across sites.60

The CAT model (Lartillot and Philippe (2004)), a popular Bayesian mixture model,61

was shown to be less prone to LBA artifacts and to fit data better than site-homogeneous62

models (Lartillot et al. (2007)). In this model, all frequency vectors are assumed to be63

independently and identically drawn from a Dirichlet process model which effectively64

allows non-parametric estimation of the mixing distribution. Unfortunately, in its current65

implementation (Lartillot et al. (2013)), convergence may not be achieved in practice for66

large data sets. In the maximum likelihood framework, models accounting for site67

heterogeneity include mixture of the substitution rate matrices predefined for sites coming68

from different secondary structural elements and surface accessibility classes (Goldman69
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et al. (1998); Le and Gascuel (2008a, 2010)), or for different site rates (Le et al. (2012)),70

and a mixture of amino acid site frequency profiles (Schrempf et al. (2020); Le and Gascuel71

(2008b); Wang et al. (2008, 2014)). The latter, known as profile mixture models, have72

become widely used for analyses of deep phylogenetic problems.73

Frequency vectors and weights pre-estimated from data bases of alignments are74

frequently used to reduce the complexity and computational cost of estimation with profile75

mixture models (Schrempf et al. (2020); Le and Gascuel (2008b); Wang et al. (2008)). We76

refer to a set of frequency vectors with their corresponding weights as a mixing77

distribution, and we refer to the indices of the frequency vectors in the mixing distribution78

as the classes. Similar to the empirical estimates of rate matrices, such mixing distributions79

are estimated from large data sets such as those described in Dufayard et al. (2005)80

and Sander and Schneider (1994). The techniques used to obtain empirical estimates of81

these mixing distributions vary. For example, in Le and Gascuel (2008b) the authors82

introduced six mixing distributions having 10, 20, 30, 40, 50, and 60 classes that were83

estimated from large data sets by ML estimation. These are known as the C10-C60 (or84

generically CXX) mixing distributions. Schrempf and colleagues (Schrempf et al. (2020))85

used K-means and the CAT model to estimate empirical mixing distributions ranging from86

4, 8, 16, up to 4096 classes. These are known as the UDM mixing distributions.87

Profile mixture models are less susceptible to LBA than site-homogeneous models88

(Wang et al. (2008)). Also, as carefully described in the next section, these models have89

desirable properties when inferring parameters. For example, identifiability of the tree and90

mixing distribution is known to hold for a large subclass of models (Yourdkhani et al.91

(2021)). As a consequence, the tree and the mixing parameters are statistically consistent92

even with a large number of profiles. Informally speaking, this means that, if the model is93

correctly specified, one can effectively estimate the true parameters as the number of sites94

increases.95

Although the identifiability and consistency properties satisfied by profile mixture96
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models are desirable in any modeling context, there is no guarantee that such models will97

have good small sample properties. Nor it is known what problems may arise from model98

misspecification. Thus there is a need to explore the performance of profile mixture models99

through simulations of short alignments both with and without model misspecification.100

One of our main motivations is to determine whether the large numbers of parameters in101

profile mixtures create problems with small samples. Specifically, we want to determine if102

there is excessive variability in estimates from models with too many parameters relative103

to the sample size.104

By varying several parameters of empirically-derived profile mixture models, we105

simulated distinct alignments of lengths 300, 600, and 1000 (the approximate lengths of106

true alignments of single proteins). A detailed explanation of the different simulation107

model settings is provided below. We fit distinct mixing distributions and matrices of108

exchangeabilities to each simulation. We assessed model performance using four criteria109

described in detail in the Materials and Methods. Two of these criteria concern the tree110

topology MLE accuracy and variability. The other two are a measure for comparing the111

marginal cumulative distribution functions (CDFs) inherited from the observed and112

expected mixing distributions. These CDFs, properly described in the following section,113

are an alternative way to re-parameterize profile mixture models.114

All findings are presented later in detail, but the major highlights include the115

following:116

• When the exchangeabilities and frequency vectors are correctly specified, there is no117

evidence of model over-parameterization (over-fitting), even when there are many118

classes with zero weight estimates. This relates to a concern articulated in several119

studies (e.g. Anderson and Lindgren (2021); Li et al. (2021)) that fitted complex120

mixture models with classes estimated to have zero weights are over-parameterized121

and should be avoided in favor of simpler models. Also, the inclusion of more taxa122

improves tree estimation.123
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• When there is misspecification of the frequency classes, we observe that tree124

estimation is not necessarily acutely affected. If the set of frequency vectors is125

sufficiently rich, the estimated CDF closely approximates the CDF of the generating126

model, and when that occurs, the frequency of correct tree estimations is large.127

• Severe problems can arise from the misspecification of the exchangeabilities. We128

observe that this scenario can lead to a bias in the MLE mixture weights. This bias129

favors parameters that maximize the likelihood but decrease the similarity between130

observed and expected CDF. This produces a decline in tree estimation accuracy.131

Under these conditions, adding taxa does not necessarily improve tree estimation.132

We also explore the effects of the “F-class,” a class that is defined from the133

empirical frequencies of amino acids from the overall alignment, that is often included as134

an additional class in models to account for remaining sites in the data that are not well135

modeled by the fixed empirically-derived frequency vectors. However, we find that the136

F-class does not significantly improve tree estimation, and, in some cases, may compromise137

accuracy. This exploration is complemented by looking at empirical data. Our analyses138

suggest that while the F-class increases the likelihood significantly, it may lead to139

erroneous tree estimation.140

Materials and Methods141

Mixture models and over-parameterization with large samples142

In this section, we define and elaborate on some theoretical properties of profile143

mixture models. Re-parameterizing the mixing distributions as CDFs provides insight into144

why over-parameterization is less of a problem for profile mixture models than it might be145

for models without stringent parameter constraints. Also, we briefly discuss known146

identifiability results for such models.147

Roughly speaking, profile mixture models are mixtures of time-reversible models,148
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with a common exchangeability matrix R. The parameter space Θ of a profile mixture149

model with C classes is defined by:150

(i) A rooted metric tree T on N taxa.151

(ii) A symmetric 20× 20 matrix of non-negative exchangeabilities R.152

(iii) For c = 1, 2, ..., C, a frequency distribution vector πππc, and a weight wc, with wc > 0153

and
∑C

c=1wc = 1.154

(iv) A collection of K scalar rate parameters {rk}, with rk > 0, and rate weight dk, with155

dk > 0 and
∑K

k=1 dk = 1.156

The substitution process of a profile mixture model is as follows: for each site, a157

frequency vector πππc is sampled with probability wc; and a rate parameter rk is sampled158

with probability dk. Evolution of a sequence at a site is then according to a continuous159

Markov substitution process over tree T with exchangeabilities R, root distribution πππc, and160

rate rk. For a given site pattern xxxi, the likelihood function is determined by a weighted161

average of partial site likelihoods conditional on each site-profile class and site-rate class:162

L(θ|xxxi) =
C∑
c=1

wc

K∑
k=1

dkP (xxxi|T,R,πππc, rk),

where θ = (T,R, {πππc}, {wc}, {rk}, {dk}) ∈ Θ.163

For a model with fixed frequency variables, a natural way of parameterizing the164

mixture model is in terms of its weights, wc, c = 1, . . . , C. This leads to models of differing165

dimensions C that, as mentioned before, can get very large, raising concerns about166

over-parameterization.167

An alternative way of parameterizing the mixture is in terms of its cumulative168

distribution function (CDF):169

G(πππ) = P (ΠΠΠ 6 πππ),

where ΠΠΠ represents the random frequency vector for a site. This allows one to express170

mixing distributions with differing components (C = 20 say or C = 60) as being in the171
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same parameter space. However, now the frequency mixture parameter space, which is a172

space of distribution functions, is infinite-dimensional, and would appear an extreme case173

of over-parameterization.174

Surprisingly, even for this infinite dimensional space of distribution functions,175

estimation of both the mixing distribution and structural parameters like the tree is176

frequently still consistent as was shown by Kiefer and Wolfowitz (1956) for a wide class of177

models under mild regularity conditions. Most of these conditions are expected to hold for178

the models considered here. A more detailed explanation of how the results in Kiefer and179

Wolfowitz (1956) apply to our context is given in the Appendix.180

The implication of Kiefer and Wolfowitz (1956) is that class frequency mixture181

models are not overparameterized, at least with large samples. The reason for this is that182

the space of all distribution functions as a space of functions is relatively “small” in the183

mathematical sense of being a compact space (a closed and bounded space in our setting).184

An alternative way of seeing why this is the case is to note that the wc are restricted to be185

non-negative and sum to one. By contrast in cases of true over-parameterization,186

parameters are unrestricted (for example, a regression model where there are more187

predictors than observations).188

Another surprising result of estimation within the mixing distribution setting is189

that even if parameter estimation is unrestricted and any mixing distribution is allowed,190

the maximum likelihood estimator will be a finite mixing distribution: i.e. it will be191

describable in terms of a fixed set of weights w1, . . . , wC for some C. This is an implication192

of the results of Lindsay (1983) as detailed in the Appendix.193

Adding to this, in Yourdkhani et al. (2021) identifiability results are reported for a194

large family of profile mixture models. These authors showed generic identifiability of the195

tree and mixing parameters for models with C ·K < 72, where C is the number of classes196

and K the number of rates, trees with more than 8 taxa, and where no parameters in Θ197

are assumed to be fixed. As discussed in the Appendix, these results also apply to some of198
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the models with fixed frequency vectors considered here. We conjecture that, generically,199

identifiability of the tree topology can be achieved for models with fixed frequency vectors200

with C classes, K rates and m taxa, for some C ·K > 72, and all m > 8. This will be201

explored in future work.202

Simulation setting203

In this section, we describe all the different parameters used to simulate alignments204

under profile mixture models. These are presented below in the following order: (1) the205

trees; (2) mixing distributions; (3) exchangeability matrices; (4) sequence lengths; and (5)206

rate parameters.207

By choosing different combinations of parameters, we simulated a total of 108208

scenarios. For each scenario, 100 simulations were performed using Alisim (Ly-Trong et al.209

(2021)). We now proceed to describe all the choices of parameters.210

Trees Nine different trees are considered for these simulations. All trees have the211

‘structure’ of tree T shown in Figure 1. The features that vary per tree are the length of a212

single edge l, where l ∈ {0.005, 0.02, 0.05} and the number of taxa at each polytomy m,213

where m ∈ {1, 2, 3}. We denote each of the trees by T6m(l).214

The structure of T is chosen since it is often a tree susceptible to LBA artifacts. For215

fixed l and changing m, the simulations are, in effect, all from the same tree but with216

differing levels of taxonomic sampling from the 6 clades. By increasing the number of taxa,217

we obtain more information on the frequency vectors. By decreasing the edge length l, we218

make the tree more susceptible to LBA artifacts whereby the f-clade (i.e. clade including219

taxa f1, f2, ..., fm) and the e-clade (i.e. clade with taxa e1, e2, ..., em) group together to the220

exclusion of the other clades.221

Mixing distributions For each tree, we simulated data using ten different mixing222

distributions. One of these is the model C60 as defined in Le and Gascuel (2008b), which223
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Fig. 1. The main structure of the tree where all the simulations were conducted. Only the edge lengths l and the
number of taxa at each polytomy m are variable. This tree has 6m taxa

has 60 classes. Another seven are built on the frequency vectors of C60. Specifically, for224

i ∈ {10, 15, 20, 30, 40, 50, 60}, we defined the mixing distribution C60[i] by choosing i225

frequency vectors from C60 at random and assigning them non-zero weights sampled from226

a Dirichlet distribution with concentration parameters ααα = 111. We denote by C60 the set of227

mixing distributions C60[i], for all i, including C60. The two remaining mixing228

distributions used to simulate data are known as UDM-0256, and UDM-4096 (Schrempf229

et al. (2020)), that have 256 and 4096 classes respectively. Specifically, we used the230

non-transformed mixing distributions denoted as UDM-0256-None and UDM-4096-None in231

Schrempf et al. (2020).232

In reality, every site in a protein has a unique physicochemical environment that233

would likely be better fit by a site-specific frequency vector. Therefore profile mixture234

models with fixed frequencies try to approximate commonly occurring patterns amongst235

sites represented by site classes. By simulating under C60, the most complex of the CXX236

mixing distributions, and the complex UDM mixing distributions, we try to emulate real237

data. The C60[i] distributions reflect the scenario wherein, for a small sample, not all238
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relevant frequency vectors are represented, nor are distributed as in C60. We note that the239

UDM mixing distributions include additional components that are not in the CXX240

distributions but because the data-sets used to estimate both CXX and UDM mixing241

distributions overlap, so some similarities in their frequency profiles are expected.242

Exchangeability Matrices, Sequence Lengths, and Site Rate Variation For all243

combinations of mixing distributions and trees, we simulated data using the244

exchangeability matrix from the LG model (Le and Gascuel (2008a)); we refer to this as245

the LG matrix. We also used a “POISSON” exchangeability matrix, a matrix with equal246

exchangeabilities, but only for simulations involving the two UDM mixing distributions.247

For all combinations of mixing distributions, trees, and matrices, we used sequence248

lengths of 300, 600, and 1000 amino acids. In practice, alignments of length 300 are more249

typical for single protein data sets. The other choices of sequence lengths are meant to250

capture the effects in tree estimation with increasing sequence length.251

Lastly, for all simulations we used four rate parameters coming from a discrete-Γ(4)252

distribution (Yang (1994)) with α = 0.5.253

Fitted models and Precision of parameter estimation254

In this section, we describe how different choices of fixed frequency vectors and255

exchangeabilities were fitted to the simulations. We also introduce four criteria used to256

evaluate model fitness.257

When fitting a model to data, estimated parameters were obtained by maximum258

likelihood. IQ-tree2 (Minh et al. (2020)) was used to get the maximum log-likelihoods and259

the estimators (MLEs) for all simulations. The parameters that were optimized by260

IQ-tree2 are the tree topology, edge lengths, and weights of the frequency vectors. All261

other parameters including the frequency vectors, the matrix of exchangeabilities, and the262

rate parameters, were supplied as fixed values to IQ-tree2.263
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The LG matrix was the only matrix used to simulate data under the mixing264

distributions in C60. To these simulations, we fit the LG matrix, the F-class, and various265

frequency vectors. Specifically, the frequency vectors fitted included C60, C40, C30, C20,266

defined in Le and Gascuel (2008b), LG (Le and Gascuel (2008a)), LG4X (Le et al. (2012)),267

CK36 as defined below, as well as the frequency vectors in C60 used to simulate the data.268

In these analyses, we explored mainly two things: (1) Possible model over-parameterization269

from fitting more general models to short alignments; and (2) misspecification of the270

frequency vectors by using models that have different frequency vectors than those of the271

generating model.272

The frequency vectors CK36 were obtained from the cluster centers derived from a273

k-means algorithm (Hartigan and Wong (1979)) on all the classes of C20, C30, C40, and274

C60 with k = 36 (the choice of k was determined by the elbow method (Thorndike275

(1953))).276

For data generated under the UDM mixing distributions, we fitted the277

exchangeability matrices POISSON and LG, with and without the F-class, and frequency278

vectors of C60, C40, C30, C20, CK36, LG4X. We also fitted the POISSON model for data279

generated under POISSON exchangeabilities and the LG model for data generated under280

LG exchangeabilities. In these analyses we primarily explored the effect of: (1)281

Misspecification of the frequency vectors; (2) misspecification of the matrix of282

exchangeabilities; and (3) use of the F-class in estimation. Recall that only the mixing283

weights, the tree topology, and edge-lengths are optimized, everything else is fixed before284

the maximization of the likelihood.285

To simplify the presentation of results, we only considered a subspace of tree space.286

In preliminary results, we computed the likelihoods of all 105 6-taxon unrooted topologies287

for data generated under T6(0.005). We noted that there were two tiers in terms of288

log-likelihood values; these occurred regardless of the generating and fitted models. One289

tier consists of the log-likelihoods of the 35 topologies shown in Table S1 in the290
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Supplementary Material, and the other consists of the remaining 70 trees. The first tier291

showed significantly larger log-likelihood values, see Figure S1 in the Supplementary292

Material. The 35 topologies in the first tier are all the topologies displaying the embedded293

quartet tree AB|CD. This shows, as expected, there are no problems with estimating the294

relationships amongst the taxa in this quartet. The main difficulty was instead determining295

the correct placement of the long branches because of the LBA-related artifacts.296

Therefore, for simplicity, in all cases we restrict the tree space considered to just297

these 35 tree topologies by substituting X ∈ {A,B,C,D,E, F} by the adequate m-taxon298

polytomy. We also consider in this tree space the ‘star tree’ topology obtained from T in299

Figure 1 by setting l = 0.300

We now proceed to introduce the criteria used to compare the overall model301

performance.302

Mean Integrated Squared Error and Maximal Difference As mentioned earlier,303

profile mixture models can be parameterized as CDFs. Therefore, a reasonable way to304

measure the precision of parameter estimation is comparing how closely the observed CDF305

resembles the true one. Unfortunately, assessing the precision of parameter estimate via306

the expected and observed CDFs is burdensome due to the complexity of the307

20-dimensional space in which they reside. Here we use marginal CDFs instead to assess308

the precision of parameter estimation.309

To compare marginal CDFs we used two measures. The first one is the Mean

Integrated Squared error (MISE) (Scott (1992)), also known as L2 risk function, which is

defined as follows

MISE =
1

20

20∑
i=0

∫ 1

0

(Gi(x)− Ĝi(x))2dx,

where Gi is the true marginal CDF corresponding to amino acid i, and Ĝi(x) is the310

marginal CDF obtained from the estimated mixing distribution. Here all the integrals were311

computed using the function integrate from the R package pracma with default settings.312
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The second measure consists in the maximum difference (MD) between estimated

marginal CDFs and the true ones. This is borrowed from the Kolmogorov–Smirnov test

(Massey (1951)), and it is defined as follows:

MD =
1

20

20∑
i=0

max
x∈[0,1]

{|Gi(x)− Ĝi(x)|},

where Gi and Ĝi(x) are as defined for the MISE. Here the maximum of the absolute313

difference is computed using the function optimize from the R package stats with default314

settings.315

For a given choice of parameters, we report the mean MISE and MD for all 100316

simulations. Note that in both cases, as these measures approach to zero, the observed317

CDF approaches the true CDF. While these two measures cannot be used in practice since318

the true CDF is then unknown, in this case and as detailed in the Results section, these319

measures help us assess model over-parameterization among other things.320

In order to assess the precision of parameter estimation in a more standard way, we321

also looked at two more criteria based on the tree topology estimate.322

Overall Accuracy and Proportional Mode The following criteria, overall accuracy323

denoted OA, is a standard way to evaluate the precision of parameter estimation. Given a324

set of simulations, OA is defined as the proportion of these where the true tree topology325

was the one maximizing the likelihood.326

The next criterion, the proportion of settings where the true tree was the mode of327

the distribution of estimated trees, denoted PM, evaluates the precision of parameter328

estimation in a manner that can indicate whether there are biases in estimation. PM329

consists of the proportion of settings where the true topology was chosen the most. Given330

several sets of simulations, PM is the proportion of these sets where the true tree topology331

was the MLE more often than any other topology. For a given method, the tree estimated332

most frequently is the mode of the distribution of estimated trees. So alternatively, PM is333

the frequency with which the true tree is the mode of the distribution of estimated trees.334
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To account for some sampling variability in PM, in each scenario we tested if the335

proportion of times the true topology was chosen was significantly higher than the336

runner-up topology using a binomial test. PM is obtained from dividing the number of337

scenarios where the true topology is significantly more likely than the runner-up (rejecting338

the null hypothesis H0 : p = 0.5) by the total number of scenarios.339

Note that OA and PM may not necessarily be strongly correlated. Suppose, for340

instance, that for a given model there is a bias in estimation towards certain trees under341

certain settings. That could result in a large OA because of the large frequency of342

estimations of the true tree in settings where the model is biased towards it. But if the343

true tree is not always favored, the true tree would not be most frequently estimated,344

leading to a small PM. On the other hand, one could have really low OA but no other tree345

is chosen more times, leading to a high PM. Ideally, one would like to see both high OA346

and PM, which would indicate that the true tree is being chosen the most and with little347

variability across scenarios.348

Results349

We present the results according to the set of mixing distributions we used to350

simulate the data. We start with C60, then UDM, followed by the empirical data-sets. For351

the remainder of the text and for simplicity, we denote by C60L the model C60 as defined352

in Le and Gascuel (2008b) including both frequency classes and optimal weights from that353

study. Then, when we discuss fitting one of the CXX models we are referring strictly to354

fitting just its frequency classes.355

Simulated Data Under C60 Mixing Distributions356

Table 1 displays the mean MISE for data generated under 72 different simulation357

conditions total; i.e. under eight mixing distributions in C60 and nine trees. The eight358

mixing distributions included C60L and C60[i] for i in {10, 15, 20, 30, 40, 50, 60}. We see in359
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PF+F C60+F C40+F CK36+F C30+F C20+F
300 0.00037 0.00042 0.00154 0.00118 0.00199 0.00333
600 0.00020 0.00023 0.00137 0.00102 0.00179 0.00309
1000 0.00013 0.00015 0.00129 0.00095 0.00170 0.00299

Table 1. The mean MISE for data generated under distributions in C60. For each of the 72 scenarios (9 trees and 8
models) per sequence length, we compute the mean MISE for the 100 simulations. Then we take the mean of all
these values, which are the entries in this table. Label PF+F represents the overall performance in MISE when
fitting the generating classes per scenario with the F-class.

this table, as expected, that estimating models that included only the frequency classes360

used to generate the data plus an F-class, denoted here as perfect fit (PF)+F, are those361

with the lowest MISE. The second lowest value is achieved by C60+F model, followed by362

CK36+F, C40+F, C30+F, and C20+F, respectively. In this case, we note that the MISE363

of PF+F and C60+F are really close. This behavior is similar for the MD criterion, as seen364

in Table S2 in the Supplementary Material. These observations suggest that even though365

C60+F fits 61 classes to the data, it still has a much better fit than the CXX+F models366

with fewer classes even though, for many of the simulation settings, there were many fewer367

classes present. This demonstrates that over-parameterization is not a problem for368

complex, correctly specified models, even for models having several classes with zero369

weights. Table S3 in the Supplementary Material shows the mean normalized MISE for the370

same data as in Table 1, where MISE for any given scenario was re-scaled to give a sum of371

1 over all fitted models.372

This shows that the mean MISE values in Table 1 adequately consolidate all373

scenarios and no biases between classes are introduced by a scenario with considerably374

larger MISE values.375

Figure 2 shows the plots of average OA (A) and PM (B) over all data generated376

under mixing distributions in C60. Each dot in OA represents the proportion of times the377

tree was correctly inferred over 2400 simulations (3 values of l and 8 sets of classes in C60,378

with 100 repetitions each), and PM is a proportion over 24 distinct scenarios. For379

alignments of length 300, fitting C60+F, C40+F, C30+F, C20+F, or CK36+F, produces,380
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on average, no significant difference in OA. However, C60+F and CK36+F have better PM381

values. On the other hand, models LG+F and LG4X+F perform poorly as reflected by382

both OA and PM.383

For longer alignments, C20+F has a significantly lower OA than C60+F, C40+F,384

C30+F, and CK36+F. This shows how as sample size increases, more complex models that385

approximate the true CDF better have superior performance. In this case, fitting C60+F386

and CK36+F still yields the best PM values. Overall these results reinforce the inference387

that over-parameterization of C60+F does not cause problems and misspecification of the388

frequency vectors (e.g. for CK36+F) does not compromise tree estimation if the estimated389

CDF adequately approximates the true CDF.390

One concern is that C60+F could be fitting better on average because it closely391

resembles two of the mixing distributions – C60L and C60[60] – used in the foregoing392

simulations. However, C60+F also behaves well for data generated with fewer classes.393

Table S4 in the Supplementary Material shows the OA for data generated under C60[i],394

with i ∈ 10, 30, 60, T6(0.005), and different sequence lengths. This table shows that there is395

little evidence of over-fitting when the estimating model has many more classes than the396

generating model. This is also reflected in the MISE scores when considering different397

generating classes (Supplementary Material Table S5).398

Figure 2 also shows that increasing numbers of taxa improves tree estimation.399

When the number of taxa increases, MISE and MD scores decrease/improve (Table 2) and400

this behavior is consistent across models. As expected, we also observe that tree estimation401

accuracy also improves as sequence length increases. Analogously, MISE and MD scores402

decrease as sequence length increases (Table 2).403

Simulated Data Under UDM Mixing Distributions404

Table 3 displays the mean MISE values over data generated under UDM-0256 with405

POISSON exchangeabilities. The MISE values are considered separately when fitting CXX406
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Fig. 2. (A) the plot of the OA values for various models fitting data generated under mixing distributions in C60
fitted to all frequency vectors. Label PF denotes the frequency vectors used to generate the data. The x-axis
represents the number of taxa on the tree. The plot is divided by sequence lengths of 300, 600, and 1000. The lower
bound of the 95% confidence interval (CI) of the model with the highest OA is depicted with a solid line whose
color is in agreement with such model. Depicted with a dashed gray line is the higher bound of the CI of classes in
C20 in the cases where such model was significantly worse than the best model. (B) A similar plot to that on top
but for PM. For this case, no confidence interval can be computed.
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Taxa
6
12
24

MISE
300 600 1000

0.00040 0.00020 0.00012
0.00031 0.00016 0.00008
0.00024 0.00013 0.00007

MD
300 600 1000

0.178 0.136 0.111
0.155 0.117 0.085
0.127 0.097 0.071

Table 2. The MISE and MD for fitted C60+F to data generated under T6m(0.02) and C60[15] for all m. One can
see a decrease in MISE and MD by either increasing the number of taxa, or the sequence length.

LG matrix POISSON matrix
300 600 1000 300 600 1000

C60+F 0.00724 0.00783 0.00822 0.00083 0.00064 0.00055
C40+F 0.00767 0.00822 0.00861 0.00091 0.00071 0.00062
CK36+F 0.00807 0.00856 0.00890 0.00089 0.00071 0.00063
C30+F 0.00852 0.00901 0.00931 0.00096 0.00076 0.00068
C20+F 0.00919 0.00964 0.00990 0.00111 0.00092 0.00085
C60 0.00357 0.00378 0.00388 0.00080 0.00062 0.00054
C40 0.00333 0.00337 0.00343 0.00087 0.00069 0.00061
CK36 0.00435 0.00448 0.00457 0.00086 0.00069 0.00062
C30 0.00422 0.00438 0.00444 0.00090 0.00073 0.00065
C20 0.00398 0.00399 0.00405 0.00103 0.00088 0.00082

Table 3. The mean MISE for data generated under UDM-0256 and POISSON exchangeabilities. For each of the 9
scenarios (9 trees) per sequence length, we compute the mean MISE for the 100 simulations. This is done
separately when fitting the LG and POISSON matrices.

models and CK36 (with and without the F-class) to the POISSON and LG matrices. In407

the former case, there is misspecification just of the classes whereas, for the latter, both408

the classes and exchangeabilities are misspecified.409

When fitting the LG matrix, i.e where there is misspecification of the410

exchangeabilities, we see a significant difference in model fit between models including the411

F-class and omitting it. The MISE scores are elevated for models including the F-class412

relative to those without and this effect is independent of the sequence length (Table 3).413

We believe this is not directly an artifact of the F-class per se, as it is discussed below.414

When fitting the correctly specified POISSON matrix, for any given sequence415

length and set of fitted frequency vectors, the mean MISE is comparable whether the416

F-class is included or omitted. In most cases, we see a slightly better MISE when excluding417

the F-class although the difference is minuscule and most likely not significant. We note418
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that the classes in C60 have the best MISE scores across all sequence lengths, but many of419

the other CXX models also performed well; C20 yielded the poorest scores overall. In this420

same table, we also see how MISE decreased as sequence length increased when there is no421

misspecification but this trend did not necessarily hold when there was. We believe this422

comes from the fact that as more data becomes available, more classes can be423

misestimated introducing more error.424

Figures 3 and 4 show the plots of average OA (A) and PM (B) for data generated425

under UDM distributions and POISSON exchangeabilities. The former figure shows data426

fitted using models with POISSON exchangeabilities, and the latter, LG exchangeabilities.427

In these plots, each dot in the OA plot represents the proportion of times the tree was428

correctly inferred over 600 simulations (3 values of l, 2 sets of UDM classes, and 100429

repetitions), and for PM the proportion over 6 distinct scenarios.430

Figure 3 shows the case when there was misspecification of classes only. Recall that431

the mixing distributions in UDM have 256 and 4096 frequency vectors, thus there is432

significant misspecification when fitting CXX and the CK36 models. Nevertheless, we saw433

that in all cases, fitting with any of the CXX mixtures led to reasonable performance. The434

OA estimates were even close to the case of no misspecification of the frequency classes in435

Figure 2.436

In this case, there seems to be no significant difference in OA between fitting the437

F-class or discarding it. However, fitting without the F-class yielded, in some cases, better438

PM values. Similar to the C60 case, fitting with LG4X and POISSON with no site-profile439

mixture model also behaved both very poorly. In this case, we also see how the increase of440

taxa monotonically improved tree estimation. The exception was for sequence lengths of441

600 and 1000 when increasing taxa from 12 to 24. We consider these to reflect a tie in442

performance accounting for variability due to the finite number of simulations. Similar443

conclusions can be drawn for the case where the only difference was that the data was444

generated and fitted using the LG matrix instead of POISSON (Supplementary Material445
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Figure S2).446

When there is misspecification of both classes and exchangeabilities as shown in447

Figure 4, we observe that for all cases, except one, OA was equal or significantly worse448

compared to Figure 3 and Figure S2 in the Supplementary material. We believe this is449

similar to the behavior shown in Table 3 described above. Furthermore, in some cases, an450

increase in numbers of taxa led to a decrease in OA (see Figure 4, 1000 sites).451

The most striking, and perhaps surprising, feature in Figure 4 is that fitting with452

the F-class often led to a substantial drop in OA compared to when it is omitted. To453

investigate this further, we explored the impact of the F-class on the likelihood scores and454

mixing weights of the fitted models when exchangeabilities were misspecified (LG) versus455

correctly specified (POISSON). These analyses were based on 27000 observations (9 trees,456

3 sequence lengths, 2 UDM distributions, 5 fitted models, 100 simulations) and the results457

are shown in Figure 5. When there is misspecification of the exchangeabilities, the F-class458

frequently improves the likelihood values substantially, whereas when the exchangeabilities459

are correctly specified, only modest increases in likelihood are seen (see Figure 5 (A)). The460

frequently large increases in likelihood values with the F-class in the case of the LG461

exchangeabilities is surprising because, as indicated in Figure 4 and Table 3, better OA462

estimates and lower MISE scores are obtained in this case when there is no F-class.463

Since models without the F-class are special cases of the comparable models that464

include F-classes, we should always expect an increase in likelihood when fitting the latter465

models. When there is no misspecification of the frequency classes, a crude approximation466

is that the null distribution has a mean of 5 and a standard deviation of 5.48 (from a467

mixture of a degenerate uniform[0] and a χ2 with 20 degrees of freedom, see Self and Liang468

(1987)). When there is no misspecification, simulations have a mean of 3.8 and a standard469

deviation of 3.4, smaller than the natural increase in likelihood, alluded to above, that are470

expected with increases in the number of parameters estimated. By contrast, with model471

misspecification, the mean and standard deviation are 34.9 and 19.7, respectively. Thus472
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when there is no misspecification of the exchangeabilities, differences in log-likelihood are473

pretty small and would be judged small relative to crude chi-square approximations. By474

contrast, with misspecification, such differences are very large compared to expectations475

based on the number of parameters estimated.476

We also investigated the impact of misspecification of exchangeabilities on the477

estimated weight of the F-class (Figure 5B). Figure 5 (B) contains two overlapping plots.478

When exchangeabilities are correctly specified, the F-class weights tend to be relatively479

small (e.g. mean weight of non-misspecified = 0.11), whereas when they are misspecified480

the weight distribution shifts dramatically to adopt larger values, often exceeding 0.5 (e.g.481

mean weight of misspecified = 0.62). Clearly, the weights of the F-class are far from zero in482

the latter case. We explore this bias further below in relation to the uniformity of483

frequencies at sites as measured by Shannon entropy.484

The Shannon entropy, as defined in our context

H(πππ) = −
20∑
j=1

πj ln(πj),

is a common measure of the degree of uniformity of the amino acid frequencies at sites. We485

note that when there is misspecification of the exchangeabilities, there is a bias towards486

frequency classes with high entropy. In more than 80% of the 27000 data sets where we487

fitted a model with the F-class, this was the class with the highest entropy. When the488

F-class had the highest entropy, it was assigned, on average, more than half the total489

weight (average weight = 0.59). Moreover, when fitting without the F-class, we noted that,490

in general, the class with the highest entropy is assigned a really large weight. For491

example, for all 5400 simulations (9 trees, 3 sequence lengths, 2 UDM distributions, and492

100 repetitions per condition) when fitting the classes in either C20, C30, CK36, or C60,493

the class with the highest entropy had the largest weight, and on average, that weight was494

4.71 times more than the weight assigned to that class when there is no misspecification.495

When fitting the classes in C40, the class with the second-highest entropy is the one with496

the largest weight, and it was also, on average, 3.99 times more than its weight when there497

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481053doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481053


ARE PROFILE MIXTURE MODELS OVER-PARAMETERIZED? 23

is no misspecification. Therefore we observe that this bias may not directly related to498

entropy but may instead be some other factor that is correlated with entropy.499

We also explored the effects of misspecification of the exchangeabilities for data500

generated using the LG matrix but fitted the POISSON matrix. In this case, the tree501

estimation accuracy is also affected (for eg, OA values are in the range of 0.64 to 0.75 for502

sequence length of 1000 when it is correctly specified vs. a range of 0.60 to 0.71 when503

misspecified). Figure S3 in the Supplementary Material shows the average OA (A) and PM504

(B) for this case. In contrast to the reverse misspecification scenario (e.g. Figure 4), the505

F-class does not seem to hinder tree estimation. Figure S4 in the Supplementary Material,506

the analog of Figure 5, shows how, in this case, the weight of the F-class is close to zero,507

and therefore there is no likelihood difference with or without it. Furthermore, we did not508

find this phenomenon to be as strongly correlated to the Shannon entropy, as in the509

previous case. Although we found a shift in the correlation of entropy and class weight for510

all models. The average correlation between entropy and class weight for C60, C40, C30,511

and CK36 is 0.21 when there is no misspecification and -0.56 when there is. For C20 the512

shift is in a different direction, i.e the correlation between entropy and class weight is -0.12513

when there is no misspecification and 0.11 when there is. Nonetheless, for this model and514

when there is misspecification, the class with the highest entropy is the one with the515

second lowest weight (average weight = 0.008). This same class has the highest weight516

when there is no misspecification (average weight = 0.142). This also suggests that entropy517

is somehow related to or affected by, model misspecification.518

Finally, we note that it is formally possible that the generally good performance of519

CXX models in the foregoing analyses could be related to a tendency of these models to520

prefer topologies where long branches are apart (i.e. they could have a long-branch521

repulsion (LBR) bias). To test this, we simulated from a topology with long branches522

together, obtained from the tree in Figure 1 after swapping the clade composed of taxa523

c1, ..., cm, d1, ..., dm together with the edge leading to it and the clade composed of taxa524
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Fig. 3. (A) The plot of the OA values per model of the data generated under the UDM distributions and POISSON
exchangeabilities. Different classes are fitted but in all cases, we fit POISSON exchangeabilities. The x-axis
represents the number of taxa on the tree. The plot is divided by the sequence length. The lower bound for the 95%
confidence interval (CI) of the model with the highest OA is depicted with an arrow whose color represents such
model. An arrow pointing to the left represents CXX+F, an arrow pointing to the right represents CXX without F.
(B) A similar plot to that on top but for PM. For this case, no confidence interval can be computed.
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Fig. 4. (A) The plot of the OA values per model of data generated under the UDM distributions and POISSON
exchangeabilities. Different classes are fitted but in all cases, we fit LG exchangeabilities. The x-axis represents the
number of taxa on the tree. The plot is divided by the sequence length. The lower bound for the 95% confidence
interval of the best model per scenario is depicted with a gray line. (B) A similar plot to that on top but for PM.
For this case, no confidence interval can be computed.
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Fig. 5. (A) Histograms showing the difference between likelihoods values of models fitted with and without the
F-class. No misspecification of the exchangeabilities is depicted in blue and in gray when there is. (B) Histograms
showing the inferred F-class weight when there is no misspecification of the exchangeabilities (blue) and when there
is (gray). The histograms consist of data generated under all trees, number of taxa, both UDM mixing
distributions, and POISSON exchangeabilities. Misspecification of exchangeabilities refers to fitting using LG
matrix instead of the POISSON matrix.

e1, ..., em together with the edge leading to it. Consequently, the long branches group525

together to the exclusion of short branches. Figure S5 in the Supplementary Material, gives526

the results for the 12 taxon case for this simulating scenario. On average, the estimates in527

OA and PM for the CXX models agree with those found when exploring LBA. We note528

that models with fewer classes tend to have better performance in these cases, suggesting529

these show a slight LBR bias. In contrast, the LG and LG4X models are strongly affected530

by LBR; i.e., they have notably poor performance under the LBA conditions and531

extremely good performance under the LBR conditions. A bias towards either the LBR or532

LBA topologies is not desirable in general. In this sense the CXX models, especially533

C30-C60, show little bias and are clearly better choices under these simulation conditions.534

Real Data535

To investigate the impact of mixture model choice on real data, we also analyzed536

three empirical data sets. These data sets are concatenated supermatrices:537

I) a 133-protein dataset (24,291 sites × 40 taxa) assembled to assess the phylogenetic538
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position of the microsporidia in the tree of eukaryotes (Brinkmann et al. (2005)). The539

microsporidia are specifically related to Fungi but are sometimes recovered as540

branching outside of all eukaryotes because of an LBA artefact in which they are541

attracted to the outgroup archaeal sequences. We consider two trees: the correct tree542

recovered with the LG+C20+F+G model (TC20
I ) (Susko et al. (2018)) and the LBA543

tree recovered with the LG+F+G model (TLG
I )544

II) a dataset of 146 proteins (35,371 sites × 37 taxa) assembled to assess the545

phylogenetic position of the nematodes in the animal tree of life (Lartillot et al.546

(2007)). In this case the two competing topologies are the correct topology (recovered547

with LG+C20+F+G: TC20
II ) where nematodes branch as sister to arthropods (i.e. the548

Ecdysozoa group) versus the artefactual topology recovered with LG+F+G (TLG
II ).549

III) a dataset of 146 proteins (35,371 sites × 32 taxa) assembled to assess the550

phylogenetic position of the platyhelminths in the animal tree of life (Lartillot et al.551

(2007)). The correct position of platyhelminths within the Protostomia is reflected in552

the tree recovered by CAT+GTR (TCAT
III ) instead of the artefactual Coelomata553

topology (TLG
III ) recovered by LG+F+G and many mixture models (see Lartillot et al.554

(2007), Susko et al. (2018) and Wang et al. (2017))555

For each of these trees, we computed the log-likelihoods when fitting classes in C20,556

C40, and C60, with and without the F-class, and with both LG and POISSON matrices.557

These likelihoods are shown in Table 4. In all cases, fitting with the LG matrix produces558

higher likelihood values.559

For data set I, we observe that the correct tree is obtained with the largest560

log-likelihood differences over the incorrect tree when C60 and C20 are fit with LG561

exchangeabilities. For this data set the F-class only sometimes negatively affects562

topological estimation, but never improves it. For data set II, POISSON exchangeabilities563

strongly favor the correct topology over the incorrect one relative to LG. Here the F-class564

makes little difference but again never increases support for the correct tree. For data set565
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Model Fitted L(TC20
I ) D(TC20

I ) L(TC20
II ) D(TC20

II ) L(TCAT
III ) D(TCAT

III )
C60 LG+F -715744 14 -712614 24 -626777 -2
C60 LG -716579 20 -713137 27 -627241 -1
C60 POI+F -722917 13 -718761 60 -631550 29
C60 POI -722917 13 -718761 60 -631550 29
C40 LG+F -716584 4 -713345 26 -627478 -6
C40 LG -717555 9 -713882 30 -627977 -5
C40 POI+F -724391 9 -720761 58 -633321 26
C40 POI -724391 9 -720761 58 -633321 26
C20 LG+F -718315 7 -714772 19 -628597 -10
C20 LG -719775 19 -715659 23 -629393 -8
C20 POI+F -727735 9 -723988 56 -635979 17
C20 POI -727737 9 -723988 56 -635979 17

Table 4. The log-likelihoods of the trees estimated from the empirical data sets, where D(TJ) denotes the
log-likelihood of the ‘correct tree’ (e.g. C20 or CAT superscripts) minus the ’incorrect’ tree (e.g. LG superscripts).
POI stands for POISSON matrix of exchangeabilities.

III, POISSON exchangeabilities favor the correct tree over the incorrect tree, with C60566

showing the biggest log-likelihood difference. LG exchangeabilities seem to always favor the567

incorrect tree.568

Overall, the F-class never increases support for the correct tree and sometimes569

decreases it. Whether LG improves estimation versus POISSON depends on the data set.570

However, we note that the proteins and taxa in datasets II and III heavily overlap so the571

outcomes of these analyses are not technically independent.572

Discussion573

By extending earlier results (Kiefer and Wolfowitz (1956); Lindsay (1983);574

Yourdkhani et al. (2021)), we confirm that, for profile mixture models, the tree and mixing575

parameters of profile mixture models are statistically consistent even with a large number576

of classes. However, since good performance is not guaranteed for short alignments, we577

conducted an extensive simulation study of the performance and properties of profile578

mixture models with smaller data sets with the goal of determining if579

over-parameterization was a problem. We also investigated the effects of model580

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 20, 2022. ; https://doi.org/10.1101/2022.02.18.481053doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481053


ARE PROFILE MIXTURE MODELS OVER-PARAMETERIZED? 29

misspecification through both misspecification of the frequency classes and the581

exchangeabilities. Finally, the effects of the F-class was also investigated in all possible582

settings. These analyses provide useful theoretical and practical insights regarding model583

fit. Our main findings are the following:584

(A) Over-parameterization is not a problem for complex models: For all585

alignment sizes explored here, we saw no evidence (in terms of MISE, MD, OA and586

PM) that use of more complex profile mixture models led to more variable or poorer587

estimation. This is true even for models having several classes with zero weights588

estimates. Consistent with the theoretical results for large numbers of sites,589

over-parameterization of these mixture models does not appear to be a problem for590

shorter alignments.591

Since it is the mixture structure that is important in assessing whether models are592

overparameterized, large sample results likely extend to rates-across-sites mixtures593

(Yang (1994); Felsenstein and Churchill (1996); Mayrose et al. (2005); Susko et al.594

(2003)) and the types of mixtures used to infer selection pressure (Yang et al.595

(2000)). We also speculate that some of the small sample results found here may596

extend to those settings too but additional work is needed.597

(B) Misspecification of the frequency vectors does not necessarily imply bad598

fit: Misspecification of the frequency vectors in profile mixture models does not599

cause problems if the estimated CDF can adequately approximate the true CDF.600

The more data available, the more classes are likely needed to closely approximate601

the true CDF.602

(C) Simple models behave poorly: Likely as a consequence of (B), both the603

site-homogeneous POISSON and LG models, and the site-heterogeneous LG4X model604

perform very poorly in all scenarios. We believe this is because these have one (LG605

and POISSON) or very few (LG4X) classes. Although inference using simple models606
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can be much faster we do not recommend their use given their poor performance (i.e.607

susceptibility to LBA) under realistic site-heterogeneous simulation conditions.608

(D) Misspecification of exchangeabilities and the presence of an F-class can609

severely affect tree estimation:610

A severe decrease in accuracy of tree estimation is observed for data generated under611

the POISSON matrix and fitted using the LG matrix. In this scenario, it is clear that612

the F-class degrades performance. Such misspecification resulted in large weights of613

the F-class. For data generated under the LG matrix and fitted using the POISSON614

matrix, performance is affected but not as severely as in the previous case.615

From this, we hypothesize that misspecification of exchangeabilities is more616

problematic when the matrix used to fit is less uniform than the true exchangeability617

matrix. In that case, the F-class tends to be accorded a large weight that leads to618

poorer tree estimation performance. Although the reverse misspecification scenario619

also degrades performance somewhat, the F-class has a little role in that case. We620

suspect that because the LG matrix was originally estimated as an “approximation”621

of a GTR matrix for many alignments in a site-homogeneous context, the LG matrix622

is less uniform than it would be if it was estimated in the presence of profile mixture623

models like the CXX set. Thus, we suspect the pathological behavior of the F-class624

and poor performance may apply to real estimation settings. We note that use of625

both the LG matrix and the F-class lead to higher likelihoods, so model selection626

criteria like AIC will frequently favor their use in real settings. Since the F-class627

never appeared to improve estimation in any of the simulations or real data analysis628

settings we examined, we discourage its use in site-profile mixture models.629

(E) Better likelihood estimates do not imply better tree estimates: As a630

consequence of (D), and also observed in the data, better estimates in likelihood do631

not imply better tree estimates. This is also weakly observed even when there is no632
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misspecification of the exchangeabilities.633

(F) Adding more taxa can improve or hurt tree estimation accuracy: Adding634

more taxa generally improves MISE and tree estimation. Surprisingly, when the635

model is misspecified (e.g. using UDM frequencies and misspecification of636

exchangeabilities) adding taxa does not always improve estimation; in one case it637

actually decreases performance (Fig. 4).638

The poor performance of the methods when exchangeabilities are misspecified639

provides a strong motivation to develop software tools that allow ML estimation of a GTR640

matrix over all sites in the presence of a profile mixture model. In future work, we plan to641

construct mixing distributions that closely approximate the true CDF for data, hoping this642

would lead to more accurate tree estimation than current models.643

To finalize, we give some practical recommendations for single gene phylogeny644

inference. First, we do not discourage the use of ‘rich models’ (those with many frequency645

classes), even when several classes have zero weight estimates. We suggest avoiding models646

with one or very few frequency classes. We also discourage the use of the F-class, unless647

both scenarios, with and without the F-class, can be explored.648
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Appendix800

Statistical consistency of the MLE801

As mentioned in the section entitled “Mixture models and over-parameterization802

with large samples”, the results of Kiefer and Wolfowitz (1956) imply that the tree and803
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mixing parameters are consistent. In this section we elaborate on why this is true in the804

context of site-profile mixture models. To do this, we first introduce the concept of a forest.805

This allows us to then extend the parameter space of the model (to a compact one) so the806

regularity conditions in Kiefer and Wolfowitz (1956) are satisfied.807

A phylogenetic forest F on X is a collection of phylogenetic trees Fq on Xq, known808

as components, where X = ∪Xq and Xq ∩Xp = ∅ for any two components.809

We extend the parameter space Θ defined in Section “Mixture models and810

over-parameterization with large samples” by substituting point (i) of that section with:811

(i’) A metric forest F on N taxa obtained after removing a, possibly empty, set of edges812

from a rooted metric binary tree on N taxa and retaining only components that813

display taxa.814

In this case, the substitution process of a profile mixture model is as follows: for each site,

a class πππc is sampled with probability wc, and a rate parameter rk is sampled with

probability dk. On each component Fq of F an independent substitution process on Fq

with exchangeabilities R, root distribution πππc, and a rate parameter rk is conducted. For a

given site pattern xxxi, the likelihood function is determined by a weighted average of the

product of partial site likelihoods conditional on each site-profile class and site-rate class

per component:

L(θ|xxxi) =
C∑
c=1

wc

K∑
k=1

dk

Q∏
q=1

P (xxxi|Fq, R,πππc, rk),

where θ = (F,R, {πππc}, {wc}, {rk}, {dk}) ∈ Θ and Q are the number of components815

of F . The reasoning behind forests is to account for infinite edge lengths, which are816

represented by the edges missing from the tree defining F . This not only allows us to817

consider this limiting case but also, it weakly depicts the effects of functional divergence818

(Gaston et al. (2011)). Note that when no edges are removed from the tree in (i’), the819

resulting forest has one component and the likelihood is the same as the one defined in the820

section “Mixture models and over-parameterization with large samples.”821
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We now show we “compactified” the parameter space Θ of the profile mixture. We822

show this by proving (i’) above, and elements (iii) and (iv) of parameter space Θ are823

compact. We do not consider (ii) (i.e. the matrix of exchangeabilities) in the parameter824

space because, for the models we consider here, it is fixed beforehand.825

Clearly (iii) is compact since both, the root distribution vectors and the class826

weights are closed and bounded. To argue (i’) is compact, we need to recall that the space827

of rooted metric phylogenetic trees on n taxa can be viewed as a collection of (2n− 3)!!828

open cubes corresponding to all different tree topologies (Billera et al. (2001)). The829

limiting cases in these cubes correspond to infinite edge lengths on the trees. We can830

ensure boundedness by re-parameterizing edge lengths via the logistic function p = et

1+et
.831

Cases with an edge length p = 1 corresponds to those edge lengths being infinite. The832

limiting likelihoods in those cases correspond to forests. Therefore (i’) can be viewed as a833

compact space.834

For (iv), the rate weights are clearly compact (closed and bounded). Now, even if835

the rate parameters are unbounded from above, the limiting case, i.e. when r →∞, is836

equivalent to the process occurring in the forest where all components are just single taxa.837

Therefore Θ is compact, and the results of Kiefer and Wolfowitz (1956) hold in our context.838

Another important statement mentioned in the section “Mixture models and839

over-parameterization with large samples” is: even when the parameter estimation is840

unrestricted and any mixing distribution is allowed, the maximum likelihood estimator will841

be a finite mixing distribution. This is an implication from Theorem 3.1 in Lindsay (1983).842

For this result to hold, the trace of the likelihood curve over the mixing parameters must843

be compact. This follows immediately from the fact that: (1) the mixing parameter space844

is compact; and (2) the image of continuous functions, such as the trace of the likelihood845

curve, is compact whenever the domain is compact.846
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Identifiability847

In this section we argue why, as mentioned in the section “Mixture models and848

over-parameterization with large samples,” for many of the cases considered here the tree849

parameter is identifiable.850

In Theorem 5.7 in Yourdkhani et al. (2021) it is shown that for profile mixture851

models with C ·K < 72, where C is the number of classes and K the number of rates, and852

more than 8 taxa, the tree and numerical parameters are generically identifiable, up to853

arbitrary re-scaling of the tree and the exchangeability matrix. Generically identifiable854

means identifiable except maybe in a set of measure zero; informally speaking this means855

identifiable except maybe in a tiny subset of parameters relative to the full parameter856

space. Although in such work there is no description of the generic setting of the857

parameter space, we argue that with just a small perturbation of the parameters one can858

always guarantee the result to hold.859

Since in all models considered here fixed parameters are obtained empirically (that860

is these have no structure for eg. be solutions of a phylogenetic invariant) and the861

parametric function is continuous, there exists εεε such that a translation of the numerical862

parameters by εεε will make these generic. This is true for the frequency vectors, weights,863

rate parameters, edge lengths, and the exchangeabilities matrices. While the POISSON864

matrix is not generated from data, the proof of Theorem 5.7 in Yourdkhani et al. (2021) is865

built on this matrix up to a constant and therefore identifiability also holds in this case.866
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