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Abstract

The promise of precision medicine has been limited by the pervasive therapeutic
resistance to many targeted therapies for cancer. Inferring the timing (i.e., pre-existing
or acquired) and mechanism (i.e., drug-induced) of such resistance is crucial for de-
signing effective new therapeutics. This paper studies the mechanism and timing of
cetuximab resistance in head and neck squamous cell carcinoma (HNSCC) using tumor
volume data obtained from patient-derived tumor xenografts. We propose a family of
mathematical models, with each member of the family assuming a different timing and
mechanism of resistance. We present a method for fitting these models to individual
volumetric data, and utilize model selection and parameter sensitivity analyses to ask:
which member of the family of models best describes HNSCC response to cetuximab,
and what does that tell us about the timing and mechanisms driving resistance? We
find that along with time-course volumetric data to a single dose of cetuximab, the
initial resistance fraction and, in some instances, dose escalation volumetric data are
required to distinguish among the family of models and thereby infer the mechanisms
of resistance. These findings can inform future experimental design so that we can best
leverage the synergy of wet laboratory experimentation and mathematical modeling in
the study of novel targeted cancer therapeutics.
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1 Introduction

In cancer, each individual’s tumor has undergone a distinct set of molecular and cellular
alterations that promote malignancy. Advances to high-throughput measurement technolo-
gies have enabled unprecedented characterization of these alterations, ushering in a new era
of precision medicine which selects therapies to target the specific changes in each tumor.
In spite of the promise of these precision medicine strategies, many cancers do not respond
as anticipated to such targeted therapeutic strategies, and those who do respond frequently
develop resistance.

Head and neck squamous cell carcinoma (HNSCC) is the 6th most common cancer world-
wide with a 5-year survival rate of 50% [18]. Increased expression of the epidermal growth
factor receptor (EGFR) occurs in 90% of HNSCC and is associated with poor survival [12, 39].
EGFR is a receptor in certain types of cells that binds to epidermal growth factors, which are
involved in cell signaling pathways controlling cell division and survival. Therefore, targeted
therapeutics inhibiting EGFR have been developed to block these pathways as a precision
therapeutic to prevent cancer cells from growing. Cetuximab is the only targeted therapy
FDA approved for HNSCC [45]. Including cetuximab as part of an advanced stage HNSCC
treatment plan exhibits a survival advantage for the patient compared to radiation treatment
alone. Cetuximab also improves response rates compared to chemotherapy in patients with
metastatic or recurrent HNSCC [37]. However, only a subset of patients are intrinsically
sensitive to cetuximab, and responsive patients will develop resistance within one to two
years [45, 5, 53, 34]. The widespread prevalence of cetuximab resistance is currently limiting
its clinical utility in HNSCC.

There are three different types of drug-resistance to consider in understanding resistance
to targeted therapies such as cetuximab: pre-existing resistance, randomly-acquired resis-
tance, and drug-induced acquired resistance. Pre-existing resistance is when all resistance in
the tumor population is assumed to exist before treatment begins. Treatment then selects for
these resistant cells, giving rise to a resistant tumor. Random acquired resistance occurs when
resistant cells arise during treatment due to random genetic mutations or phenotypic switch-
ing, but not as a result of the drug administered. Cells for which resistance is pre-existing
or randomly acquired act as a substrate for Darwinian evolution [3]. Lastly, drug-induced
resistance is resistance directly caused by the drug during treatment, either through genetic
changes or more likely through non-genetic cell phenotype plasticity [48, 43, 28, 3]. These
cells, often called drug-resistant or drug-tolerant persisters, act as a substrate for Lamarckian
evolution as the adaptive changes occur as a direct response to the drug itself [3]. Single-cell
data of HNSCC cell lines suggests that the molecular mechanisms of compensatory growth
factor signaling and epithelial to mesenchymal transition that underlie therapeutic resistance
to cetuximab can be induced as an early response to treatment [29]. However, their precise
contribution to subsequent resistance requires further longitudinal profiling which can be
confounded by evolutionary processes in culture [50] and infeasible to extend to powered,
temporal profiling in in vivo models.

Mathematical models have been widely utilized to help understand drug resistance, and
its consequences for treatment response and design - see [51, 7, 17, 33] for reviews of mod-
eling work on cancer drug resistance. Overwhelmingly, these models have assumed that
resistance is either pre-existing (as in [26, 16, 49, 40]), or is a combination of pre-existing
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and spontaneously acquired resistance (as in [15, 30, 22]). More recently, modeling has also
considered the contribution of the drug itself in driving the formation of resistance. Works
such as [43, 21, 9, 2, 14] consider drug-induced resistance, though they are limited in their
ability to make predictions regarding doses and dosages that differ from the data used to
validate them, as these models are dose-independent. A handful of mathematical models
have been developed in which resistance is induced by the drug itself in a dose-dependent
fashion [10, 20, 35, 23]. The modeling family herein is strongly motivated by the single
model proposed in [23], wherein pre-existing, spontaneously acquired, and dose-dependent
drug-induced resistance are modeled through a minimal system of two ordinary differential
equations.

In this work, we propose a family of mathematical models, with each “member” of the
family assuming a different timing and mechanism of cetuximab resistance. In Section 2 we
detail the protocol for collecting the experimental data, describe the family of mathematical
models (where each member of the family represents a different set of mechanisms driving
resistance), explain the algorithm for fitting these models to individual volumetric data, and
introduce the methodology for assessing parameter sensitivity/identifiability. In Section 3
we employ information criteria (IC) to try and identify the “best” model to describe the data
(that is, the model with the lowest IC value across the individual samples). This informa-
tion theoretic approach determined that control growth can be well-described using a simple
exponential model. Extending such an information theoretic approach to our family of resis-
tance models allowed us to confidently conclude that the data cannot be explained without
resistance, and that the combination of pre-existing and randomly acquired resistance is
very unlikely to be mechanism responsible for the resistance to cetuximab observed in the
experiments. In Section 3 we use a profile likelihood analysis to demonstrate that single-cell
experiments which measure the resistance fraction in the initial tumor population provide
powerful data for selecting the model (and therefore the underlying mechanisms) most parsi-
monious with the experimental data. In the case where this measure of pre-existing resistance
does not allow the mechanism of resistance to be definitively determined using our family of
models, we further propose that a dose-escalation experiment would provide the needed data
to identify the model whose mechanisms best-explain the resistance observed to cetuximab.
Section 4 contains closing remarks and reflections about the role mathematical modeling can
play in experimental design to decipher the mechanism of resistance to targeted therapeutics.

2 Methods and Model

2.1 Experimental Data

In this project, we utilize tumor volume data obtained from temporally monitoring a ce-
tuximab responsive patient-derived tumor xenograft HNSCC model. Tumor tissue were col-
lected from surgically resected HNSCC patients under the auspices of a tissue bank protocol
approved by Johns Hopkins University Institutional Review Board. All animal studies and
care were approved by the Institutional Animal Care and Use Committee of the Johns Hop-
kins University and Moffitt Cancer Center. Following HNSCC tumor resection, de-identified
patient samples were implanted into athymic nude mice (Crl: NU-Foxn1nu, 4–6 weeks old;
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20 g; Harlan Laboratories, Indianapolis, IN) and passaged to subsequent generations of mice
for expansion. The mice are then divided into two groups: the control group and the treat-
ment group. For each group, tumor volume is tracked over time under the assumption that
V = lw2 π

6
, where l is length and w is width of the tumor. Treatment (either with a placebo,

or with cetuximab) starts when the tumor volume is ∼200 mm3. Mice were euthanized if
tumor volume surpassed ∼2,000 mm3, if they lost more than 25% of their body weight, or
if ulceration occurred on the skin over the tumors.

The control data is obtained by administering a weekly dose of phosphate-buffered saline
(PBS) to tumor-bearing mice. We classified each control mouse into one of three categories:
increasing volume, decreasing volume, and stabilized volume. Out of 25 control mice, 19
show increasing volume (see Mouse 23 in Fig. 2), one shows decreasing volume (see Mouse
11 in Fig. 2), and five show stabilization (see Mouse 22 in Fig. 2).

The treatment data is obtained by following the same procedure as the control mice,
except that mice were given a 5 mg/kg intraperitoneal injection of cetuximab once every
7 days. As with the control mice, each mouse was classified as either increasing in volume
(treatment failure), decreasing in volume (treatment success), or stabilized volume. Out of
29 mice, 19 show increasing volume (see Mouse 13 in Fig. 4), seven show decreasing volume
(see Mouse 23 in Fig. 4), and three show stabilization (see Mouse 24 in Fig. 4). A Fisher’s
exact test has a p-value of 0.06 of decreased tumor volume occurring in the treatment group
relative to control group, suggesting a trend towards Cetuximab response in this xenograft
model.

To account for outliers and noise in our data, we applied a censor to remove any data
points deemed not biologically plausible. Estimates from literature of doubling time for
HNSCC vary widely, from 26 hours in culture to 44 days in vivo [19, 25]. According to
exponential fits, in the control data the fastest cell-doubling time observed was 13 days.
We took a conservative approach to censoring the data: in any case where the data show
the tumor more than doubling in volume in 3-4 days, and the subsequent time points are
not consistent with that rapid doubling time (meaning, the larger increase in volume is not
sustained beyond that one point), we remove the outlier volume. We show two examples to
depict our censoring approach in Fig. S1, one with a censored point due to an unsustained
rapid doubling, and one without censoring despite a rapid doubling as it was sustained
beyond that time point. In the control data, exactly one data point was removed from five
of 25 mice, and in the treatment data nine data points were censored across seven of 29 mice.

2.2 Modeling Control Data

Before building a model of tumor growth in response to treatment, we first considered how
to best-describe tumor growth in the absence of treatment. There are a multitude of math-
ematical equations to describe tumor growth, and the equation chosen can have important
consequences on model predictions [46, 41]. Herein, we considered three different models
of tumor growth: exponential, logistic, and Allee. These models were chosen because they
represent a hierarchy of complexity.

Exponential growth simply assumes the growth rate of the tumor volume V is propor-
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tional to the tumor volume:
dV

dt
= rV. (1)

Logistic growth adds a rate-limiting factor to uncontrolled exponential growth, accounting
for environmental constraints on tumor progression through a carrying capacity K:

dV

dt
= rV

(
1− V

K

)
. (2)

Finally, the Allee effect further adds the assumption that the growth rate can also be limited
by a population size that is below the Allee threshold m:

dV

dt
= rV

(
1− V

K

)(
V

m
− 1

)
. (3)

There are multiple plausible explanations for why tumor growth could be described by such
a differential equation. It may be that tumors grow slower because of uptake challenges
in the xenograft system, or because they have yet to accumulate significant mutations. As
an example, the growth kinetics of BT-474 luminal B breast cancer cells was shown to be
best-described by a model structure that considers the Allee effect [27].

2.3 Modeling Treatment Data

Once the “best” control model is selected, we can move to build a model that incorporates
treatment response to cetuximab. We will use the following general modeling framework,
where S is the volume of cells that are sensitive to cetuximab, R is the volume of cells with
some level of resistance to cetuximab, and D is the concentration of drug:

dS

dt
= (sensitive growth)− (transition to resistant)− (drug-induced sensitive death) (4)

dR

dt
= (resistant growth)+(transition to resistant)− (drug-induced resistant death) (5)

dD

dt
= −(decay). (6)

We assume that growth is exponential (justified in Section 3.1), that the death rate is
proportional to the drug concentration and the volume of the subpopulation, and that in
eqn. (6) the only dynamics modeled are the natural decay of the drug. This simplifies our
general modeling framework to have the form:

dS

dt
= rSS − f(S,D)− λSDS (7)

dR

dt
= rRR + f(S,D)− λRDR (8)
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dD

dt
= −γD, (9)

where rS is the growth rate for sensitive cells, and rR is the growth rate for resistant cells.
We assume that rS ≥ rR, as resistance will either not impact the growth rate of cells, or it
will result in a fitness disadvantage [47, 6]. λS is the drug-induced death term for sensitive
cells, and λR is the drug-induced death term for resistant cells. We assume that λS > λR,
as by definition, sensitive cells must be easier for the drug to kill. f(S,D) is the function
that represents the transition of sensitive cells to resistant ones (i.e., acquired resistance).
This may or may not depend on the drug D. Finally, γ is decay rate of the drug, which we
fix using the the fact that the mean half-life of cetuximab is 4.75 days [1], corresponding to
γ ≈ 0.1459 days−1.

Depending on the assumptions made, this model can represent any combination of: pre-
existing resistance (when R(0) > 0), randomly acquired resistance (when the transition
to resistance f(S,D) is independent of the drug D), and drug-induced acquired resistance
(when f(S,D) depends on D). The different sub-models that we consider are explained here,
and visually explained in Fig. 1.

• Model 1: No Acquired Resistance. This requires setting f(S,D) = 0 in eqns. (7)-
(8). This model can be further broken down into two sub-cases:

– Model 1.1: No Pre-Existing Resistance. Achieved by setting R(0) = 0,
meaning the entire tumor population is sensitive to cetuximab.

– Model 1.2: Pre-Existing Resistance. Achieved by allowing R(0) > 0.

• Model 2: Randomly Acquired Resistance. We model this with a random tran-
sition term f(S,D) = f(S) = gS in eqns. (7)-(8). This model can be further broken
down into two sub-cases:

– Model 2.1: No Pre-Existing Resistance. Achieved by setting R(0) = 0,
meaning resistance can only result from the random acquisition of resistance that
happen during treatment.

– Model 2.2: Pre-Existing Resistance. Achieved by allowing R(0) > 0, mean-
ing resistance can pre-exist treatment and can be randomly acquired during treat-
ment.

• Model 3: Drug-Induced Acquired Resistance. We model this with a drug-
dependent transition term f(S,D) = gSD in eqns. (7)-(8), as similarly done in [23].
This model can be further broken down into two sub-cases:

– Model 3.1: No Pre-Existing Resistance. Achieved by setting R(0) = 0,
meaning resistance can only result from the drug-induced acquisition of resistance.

– Model 3.2: Pre-Existing Resistance. Achieved by allowing R(0) > 0, mean-
ing resistance can pre-exist treatment and can be induced by the drug during
treatment.
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Figure 1: Schematic illustrating the family of resistance models. Sensitive cells are illustrated
as blue circles, pre-existing resistant cells as red-striped circles, spontaneously-created resis-
tant cells as black-and-white checkered circles, and drug-induced resistant cells as black-and-
white checkered diamonds. Second row contains all models without pre-existing resistance,
and the third row contains all models with pre-existing resistance. Second column contains
all models with no acquired resistance, third column contains all models with randomly ac-
quired resistance, and fourth column contains all models with drug-induced resistance.

2.4 Fitting Algorithm

As we have proposed a variety of models to describe resistance of HNSCC to cetuximab, we
must determine which model (or models) most accurately describes the experimental data.
That is, we must fit each model to the volumetric time-course data of treatment response
to cetuximab. Due to the extreme variability between mice, we chose to fit each mouse
individually, rather than fit to the average of the time-course data.

For each model, and for each mouse i, the parameter set we seek is the one that minimizes
the sum of the squared error (SSE), which we will call ζi:

ζi =

ni∑
t=1

(yi(t)− ȳi(t))
2, (10)

where yi(t) represents the experimental tumor volume for mouse i at time t, and ȳi(t) is the
tumor volume obtained through the model at time t. This is indexed over ni, the number of
time points in the data set for mouse i.

We implement a two-step fitting approach. The first step uses a Quasi-Monte Carlo
(QMC) method to randomly sample the parameter space. Herein we use Sobol’s low-
discrepancy sequences to uniformly place the randomly-sampled points across a k-dimensional
hyperrectangle [31]. k-dimensions represents the k parameters in the model that are being
fit to the data (including the initial condition S(0), and R(0) in the case of pre-existing
resistance).

Our algorithm utilizes QMC by first randomly sampling 1.5 × 106 Sobol points of the
form (p1, . . . , pk). We chose this number of Sobol points to minimize the computational
time required while maximizing coverage of the parameter space. Each pi in a sampled
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point are in the range [0, 1]. We then have to scale the values of pi so that they are in a
biologically reasonable range for that parameter value. Somewhat arbitrarily, we found it
sufficient to scale all non-initial condition and non-carrying capacity parameters except for
rS to be in the range [0, 0.1], as parameter values beyond this result in model predictions
of completely different magnitudes than the experimental data. Numerical experimentation
suggested optimal rS values to be greater than 0.1, so this parameter was scaled to be in
the range [0, 0.2]. The scaled range for the initial tumor volume was mouse-dependent. The
initial condition per mouse were scaled to be in the range [0, 2V0], where V0 is the actual
initial tumor volume for each mouse (see Table S1 in the Appendix). Further, the carrying
capacity was searched over the range [V0, 10

5]. Finally, in the case of the Allee effect, the
existential threshold m was searched over the range [0, 10V0].

The model of interest is then solved at the 1.5 × 106 scaled Sobol parameter sets for
a given mouse i, provided the parameter set is biologically realistic. Biological viability
is determined by the restrictions detailed in Section 2.3 based on the fitness disadvantage
conferred by drug resistance (rS ≥ rR and λS > λR). Each biologically viable parameter set
provides us with a cost function value, ζi(p1, . . . , pk). Then, for each mouse i we identify the
parameter set with the lowest ζi value. This parameter set should be close to the optimal
parameter set, though generally it is not the actual optimal. The Quasi-Monte Carlo step is
summarized in Algorithm 1.

Algorithm 1: Quasi-Monte Carlo Method

Result: Identification of an acceptable initial parameter set for gradient descent
Read in mouse data;
for each mouse i do

Generate 1.5× 106 k-dimensional Sobol points, where each point is in range [0, 1];
Scale parameters to be in biologically restricted range;
for biologically acceptable subset of 1.5× 106 scaled Sobol points do

solve ODE for parameter set;
Determine ζi for parameter set;

end
Find parameter set with lowest ζi;

end
Save optimal parameter set and ζi for each mouse i to use for gradient descent;

Once QMC has established an initial “guess” parameter set for each mouse that minimizes
ζi, a simplified version of simulated annealing (gradient descent) is performed to refine the
optimal parameter prediction. Simulated annealing is a stochastic optimization method with
the goal of finding a global optimum [52]. It begins with an initial set of parameters and
evolves the parameters with random perturbations until a specified criteria is met. Each new
set of randomly perturbed parameters is either accepted or rejected according to the change
in ζ, which is denoted as ∆ = ζ̄ - ζ where ζ̄ is the SSE of the newly perturbed parameter set
and ζ is the SSE of last accepted parameter set. If ∆ < 0 (i.e., the new SSE is lower), then the
change is always accepted, and the new parameter set is saved. As numerical experimental
revealed that accepting uphill parameter changes decreased algorithm performance (likely
due to starting “close to” the optimal from the QMC step), we decided not to accept uphill
moves, so if ∆ > 0, the change not accepted. This algorithm is therefore equivalent to

8

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 18, 2022. ; https://doi.org/10.1101/2022.02.18.481078doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.18.481078
http://creativecommons.org/licenses/by-nd/4.0/


gradient descent. This perturbation process is repeated 5 × 105 times for each mouse, and
the last accepted parameter set with the lowest ζi is taken to be the global optimum. The
gradient descent procedure is summarized in Algorithm 2.

Algorithm 2: Gradient Descent

Result: Finding best-fit (globally optimal) parameter set
Read in mouse data;
for each mouse i do

initialization: the parameter set output of Algorithm 1 for mouse i;
for 5× 105 steps do

For each parameter value pj compute αj = O(pj) and generate a random
number rj in the range [−10αj−1, 10αj−1] ;
ptemp ← p(i) + r ;
Calculate goodness of fit of ODE model at perturbed parameter set ptemp to
get ζ̄i;
∆ = ζ̄i − ζi;
if ∆ < 0 then

Probability = 1;
Accept perturbed parameters;
ζi = ζ̄i;

else
Probability = 0;
Reject perturbed parameters;

end

end

end
Save optimal parameter set and ζ for each mouse;

This two-step algorithm is used in all instances, whether fitting the control or treatment
data, with the exception of fitting an exponential curve to the control data as that can be
done analytically. In all instances where this numerical fitting algorithm was used, the two-
step procedure was repeated 15 times, and for each mouse the parameter set with the lowest
SSE of the 15 repetitions was chosen as the optimal parameter set.

2.5 Identifiability

Identifiability analysis gives us one way to assess the “goodness” of a mathematical model.
It is especially relevant in computational models of biological systems given the limited
availability and quality (measurement error, noise) of experimental data [54]. Here we will
focus on practical identifiability, analyzing if we have sufficient data to have well-determined
values for the model parameters. We use profile likelihood (without a confidence interval,
since these are fits to the individual, not the average) to evaluate the practical identifiability
of a particular model parameter: the initial resistance fraction. This is defined by:

r0frac =
R(0)

S(0) +R(0)
.
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To this end, we define the relevant range for the parameter value, and consider a discrete
set of values for the parameter across that range. Since the initial fraction of resistance cells
must be in the range [0, 1], we define this range and consider every 0.05 value within this
range. At each such r̄0frac value, we find the best-fit values of the remaining parameters and
plot the optimal value of the cost function ζi across the parameter’s range to get a profile
likelihood curve. The profile likelihood curve for a practically identifiable parameter should
appear quadratic, with a clear minimum at the optimal parameter value. If such a quadratic
shape is not achieved, the parameter is not practically identifiable [13]. While this analysis
could be performed for all model parameters, we choose to focus on the initial resistant
fraction, as it is a parameter that is easy to interpret biologically, and therefore will help us
in identifying the most likely model describing the experimental data.

3 Results and Discussion

To select model that “best” describes the mouse data, we utilized two different model selec-
tion methods, the Akaike information criterion (AIC):

AIC = ni ln

(
ζi
ni

)
+ 2k, (11)

and the Bayesian information criterion (BIC) [38]:

BIC = ni ln

(
ζi
ni

)
+ k ln (ni). (12)

In these equations, ni is the number of data points for mouse i, k is the number of model
parameters to be fit, and ζi is the SSE from the optimal parameter set for mouse i.

Both information criterion consider the trade-offs between goodness of fit (ζi) and sim-
plicity of the model (i.e. the number of parameters, k), allowing us to compare models with
different assumptions. However, these measures penalize the number of parameters differ-
ently. The AIC model assumes a penalty of the form 2k, which is independent of the number
of data points. BIC assumes the penalty term k ln (ni), meaning the weight of the parameter
penalty increases as the number of data points increases. The more data points there are,
the greater this penalty term is for the BIC as opposed to the AIC. The model with the
lowest AIC (or BIC) score is considered to be the “best”. We will use these two information
criterion as we compare our proposed models for the control and treatment data.

3.1 Selecting a Model: Control Data

In Section 2.2 we proposed three models to fit the control data: exponential, logistic, and
Allee. Mouse 23, 11 and 22 each show different tumor growth behavior of increasing in
volume, decreasing in volume, or stabilized volume, respectively. Therefore, we use these
three mice in Fig. 2 as representatives to visualize the goodness-of-fit of the various models
to the experimental data.

AIC and BIC values are used for model selection, where the lower the IC value, the better
the model is at describing the data. As shown in the top row of Fig. 3, the exponential model
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Figure 2: Best fit exponential, logistic, and Allee model for three representative mice. Left
(Mouse 23) is representative of the case where the tumor volume increases. Center (Mouse
11) is representative of the case where the tumor volume decreases. Right (Mouse 22) is
representative of the case where the tumor volume remains relatively stable.

appears to be the “best” model, as it has the lowest AIC in 12 of 25 control mice. In 9 of the
12 control mice for which exponential has the lowest AIC, its AIC is at most 5% smaller than
the other AIC values for that mouse - we classify this in Fig. 3 as having “low confidence”
in the choice for that mouse. The 3 remaining mice for which the exponential model gives
the lowest AIC are classified as “medium confidence” (meaning the AIC is 5-10% smaller
in best-case). The trends are very similar if we use BIC instead. The exponential has the
lowest BIC (and is thus the “best” model) for 14 of the 25 control mice. We have “low
confidence” in this prediction for 10 of 13 mice in which exponential has the lowest BIC and
“medium confidence” for the remaining 4 mice.

Despite this preference for the exponential model according to both the AIC and BIC,
caution is warranted. Selecting a model by minimizing the IC would result in choosing the
Allee differential equation for 8 of the mice according to AIC, and 6 of the mice according
to BIC. Given the ambiguities in selecting the model for control growth when looking at
the lowest IC values, we also looked at the breakdown of which model is the “worst” for
describing the data across the control mice; that is, we look for models with the highest IC
values. As shown in the bottom row of Fig. 3, the Allee model has the highest IC value in the
majority of mice (in 13 of 25 mice according to the AIC, and 14 of 25 mice according to the
BIC). Compare this to exponential growth, where the IC is rarely the largest (this occurs in
6 of 25 mice using AIC and 5 of 25 mice using BIC). Considering how often the exponential
is the best option of the three (as defined by having the lowest IC) and how rarely it is the
worst (as defined by having the highest IC) we will proceed by using an exponential growth
term in the treatment data. To assess the robustness, we also consider how our predictions
change if we used logistic growth instead.
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Figure 3: AIC (left column) and BIC (right column) comparisons across control models.
Top row shows the number of mice for which each model has the lowest IC value (i.e., is the
best model). Bottom row shows the number of mice for which each model has the highest
IC value (i.e., is the worst model). We have low confidence in our classification (blue) when
the best (or worst, for high IC) IC varies by 5% or less from the other IC values. We have
medium confidence (red) when it varies by 5-10%, and high confidence (yellow-orange) when
it varies by > 10%.

3.2 Insufficiency of volumetric data for treatment model selection

In Section 2.3, we proposed a family of six models to describe the resistance of cetuximab in
our xenograft data (see Fig. 1): Model 1.1 with no resistance, Model 1.2 with pre-existing
resistance only, Model 2.1 with randomly-acquired resistance only, Model 2.2 with randomly-
acquired and pre-existing resistance, Model 3.1 with drug-induced resistance only, and Model
3.2 with drug-induced and pre-existing resistance. Assuming exponential growth as justified
in Section 3.1, the fits of the six treatment models to data for three representative mice
that exhibit different tumor growth dynamics are shown in Fig. 4. The best-fit value of
all parameters, across all mice and models, is shown in Fig. S2. An interesting observation
is that whenever the model allows for pre-existing resistance, resistant cells are present in
substantial numbers prior to treatment. In particular, Model 1.2 has a median resistance
fraction of 53.01%, with a mean of 57.18 ± 27.28%. Model 2.2 has a median resistance
fraction of 25.55%, with a mean of 35.96±28.80%. Model 3.2 has a median initial resistance
fraction of 10.48%, with a mean of 31.75 ± 38.06%. While these values do seem large
when considering that resistance often results in a fitness disadvantage in the absence of
drug [47, 6], the existence of a significant pool of HNSCC resistant to cetuximab prior to
treatment is consistent with single-cell data from cetuximab sensitive HNSCC cell lines [29].
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Figure 4: Best fit of six proposed resistance models to treatment data for three representative
mice. Left (Mouse 13) is representative of the case where the tumor volume increases in
spite of treatment. Center (Mouse 23) is representative of the case where the tumor volume
decreases during treatment. Right (Mouse 24) is representative of the case where the tumor
volume remains relatively stable during treatment.

A visual inspection alone suggests that Model 1.1 (no resistance) cannot adequately
explain treatment response to cetuximab. In order to quantitatively approach model selection
so as to determine which “member(s)” of our family of resistance models most likely captures
the mechanisms in the data, we computed the AIC and BIC for each mouse and model
(Fig. 5). This analysis confirms that some form of resistance must be driving treatment
response to cetuximab, as Model 1.1 very rarely has the lowest IC value (happens 2 of 29
times for AIC, and 4 of 29 times for BIC), and very frequently has the highest IC value
(happens 22 of 29 times for AIC, and 19 of 29 times for BIC). By a similar argument, the IC
values indicate that the resistance in the data likely cannot be attributed to a combination
of randomly acquired and pre-existing resistance (Model 2.2). As indicated in Fig. 5, Model
2.2 never has the lowest IC value, and occasionally has the highest IC value (happens 4 of
29 times for AIC, and 9 of 29 times for BIC). Therefore, this information theoretic analysis
was able to rule out several mechanistic explanations of cetuximab resistance, but it is not
sufficient to select the model whose mechanisms most likely explain this resistance. Notably,
the case of no resistance, and the case of resistance being pre-existing and randomly-acquired,
are also ruled out if growth is assumed to be logistic instead of exponential (see Fig. S3).

3.3 Initial pre-existing resistance fraction facilitates treatment
model selection

Our analyses thus far assume that the only available data is the time-course describing tumor
volume in individual xenografts. However, advances in single-cell technology now allows the
initial fraction of resistant cells in a tumor to be quantified [29]. While such analyses were
not undertaken for the volumetric data presented herein, our modeling framework could be
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Figure 5: AIC (left column) and BIC (right column) comparisons across treatment models
when exponential growth is used. Top row shows the number of mice for which each model
has the lowest IC value (i.e., is the best model). Bottom row shows the number of mice for
which each model has the highest IC value (i.e., is the worst model).

readily used to ask: does the inclusion of the initial resistance fraction improve our model
selection capabilities? Trivially, knowledge that there are or are not pre-existing resistant
cells automatically eliminates half the models considered in our family of models. Therefore,
for the sake of this analysis, we will assume that resistance cells exist prior to treatment,
as demonstrated in [29]. Under this assumption we now explore how having this additional
data point does, or does not, facilitate treatment model selection.

We approach this question by determining the practical identifiability of the initial re-
sistance fraction in our models using profile likelihood. We consider Model 1.2 (pre-existing
resistance only) and Model 3.2 (drug-induced acquired plus pre-existing resistance), though
not Model 2.2 as our information theoretic analysis already concluded that the combination
of randomly acquired and pre-existing resistance is a highly unlikely to explain cetuximab
resistance in our xenograft data. In 20 of 29 mice fit using Model 1.2, the profile likelihood
curves for the initial resistance fraction reveal this parameter to be practically identifiable.
The profile likelihood curve for Mouse 1 (left panel of Fig. 6) is representative of these 20
mice. For Mouse 1, we observe a clear optimal value for the initial resistance at r0frac ≈ 0.55.
Any significant deviation from this resistance fraction drastically increases the cost function
(that is, decreases the goodness-of-fit). In this case, having the true value of the initial
resistance fraction could greatly inform the process of model selection. If the true initial
resistance fraction was r0frac = 0.25, the cost function increases three-fold. This in turn
increases the IC values in eqns. (11) and (12), and significantly reduces the likelihood of
Model 1.2 having the lowest IC values. In other words, this would provide strong evidence
that pre-existing resistance alone does not explain cetuximab resistance in the data.

Compare this to what happens in the same mouse fit using Model 3.2 (pre-existing
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Figure 6: Profile likelihood curves of the initial resistance fraction for a representative mouse,
Mouse 1. Left curve (Model 1.2) is practically identifiable and places the optimal parameter
at approximately 55%. Right curve (Model 3.2) is not practically identifiable.

plus drug-induced resistance). The profile likelihood curve for the same parameter is not
practically identifiable, as demonstrated in Fig. 6 (right panel) by a shallow profile with a
one-sided minimum. This is not unique to Mouse 1 - the profile likelihood curves for the
initial resistance fraction in Model 3.2 reveal this parameter to be practically non-identifiable
in 22 of 29 mice. Returning to our prior thought experiment, for Mouse 1 in particular, if we
had measured the initial resistance fraction to be r0frac = 0.25, we would have strong evidence
that Model 3.2 should be selected over Model 1.2. While the lack of practical identifiability
poses mathematical challenges, it does give Model 3.2 a lot more “flexibility” to conform to
additional experimental data without sacrificing goodness-of-fit.

Finally, it is important to note that the addition of the initial resistance fraction is not
always sufficient to select a model. Continuing to use Mouse 1 as an example, if we had mea-
sured the true initial resistance fraction to be r0frac = 0.55, both Models 1.2 and 3.2 remain
viable choices. Therefore we conclude that while measuring the initial resistance fraction
is an essential step to understanding the mechanisms underlying cetuximab resistance, it is
not guaranteed to determine the mechanism of resistance using our family of mathematical
models.

3.4 Dose escalation study further facilitates treatment model sec-
tion

Thus far we have established that time-course volumetric data combined with a measurement
of the initial resistance fraction may or may not be sufficient to deduce the underlying
mechanism of resistance using our family of models. Here, we propose a final experiment
that, combined with the other data, would be sufficient to select a treatment model. In
particular, we propose a dose escalation study where we use the optimal parameter set for
each mouse to simulate tumor response to a range of drug doses. We measure the fold
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reduction in the tumor volume per mouse by comparing the initial tumor volume in each
mouse to its volume two weeks later, with one dose of cetuximab given per week as in the
experimental protocol. The median fold reduction across all 29 mice, at each dose, is then
computed (see Fig. 7). As an example, a median fold reduction of 4 means the median
tumor volume is four times smaller post-treatment than it was pre-treatment. Thus a higher
median fold reduction represents a more effective treatment.

Figure 7: Dose escalation study of median reduction in tumor volume (relative to initial
volume) after 2 weeks. Dose varies from 16 to 20 mg/kg. Growth is assumed to be expo-
nential. Left: plausible models involving no pre-existing resistance. Right: plausible models
including pre-existing resistance.

As shown in the left panel of Fig. 7, in the case of no pre-existing resistance, the two plau-
sible models show drastically different responses to a dose escalation. Starting at a dose of
16 mg/kg, simulations show a much more significant fold reduction in median tumor volume
when resistance is randomly acquired (8.571 median fold reduction) than when resistance is
drug-induced (6.822 median fold reduction). The lower response in the drug-induced case
can be explained by the fact that the transition from the sensitive to the resistant pheno-
type is directly promoted by the drug itself. Thus higher drug doses drive more resistance
formation in the drug-induced case, though not in the randomly acquired case.

Looking across doses, we also observe a noticeably different change in the median vol-
umetric fold-reduction as the dose is escalated from 16 mg/kg to 20 mg/kg. The average
rate of change in the randomly acquired case is 1.955, whereas the average rate of change
in the drug-induced case is only 1.143. This strongly suggests that one way to distinguish
between modes of acquired resistance, at least in the absence of pre-existing resistance, is to
experimentally perform this dose escalation study.

The right panel of Fig. 7 shows the two plausible models in the case of pre-existing
resistance. Focusing on the dose of 16 mg/kg, simulations show a more significant fold
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reduction in median tumor volume when resistance can be induced by the drug. This occurs
because the initial resistance fraction required to fit the data when the model does not
include drug-induced resistance is necessarily larger than the initial resistance fraction when
there is a secondary mechanism for creating resistant cells (in the case of Model 3.2, the
drug itself promotes the transition to resistance). Therefore, Model 1.2 mice always have
a larger initial resistance fraction, and thus experience a smaller response to the drug over
the relatively short time period of two weeks. However, as observed in the case of no pre-
existing resistance, we still observe a more significant change in the median fold reduction in
the case of drug-induced resistance as the dose is escalated from 16 mg/kg to 20 mg/kg. In
particular, the average rate of change in the drug-induced case is 1.309, whereas the average
rate of change in the case where all resistance is pre-existing is 0.749. Whether resistance is
pre-existing or not, we see an approximately 1.7-fold difference in the median across models,
demonstrating that an experimental dose escalation study would provide meaningful data in
trying to elucidate the mechanisms driving cetuximab resistance.

4 Conclusion

In this work, we introduced a family of six ordinary differential equation models, with each
model assuming a different underlying biological mechanism(s) driving cetuximab resistance
in patient-derived xenografts of head and neck squamous cell carcinoma. Model selection
techniques alone allowed us to conclude that some form of resistance must be driving the
treatment response dynamics, and that this resistance was highly unlikely to be explained
by randomly acquired resistance coupled with pre-existing resistance.

With four remaining family members remaining to plausibly describe cetuximab resis-
tance, we next asked: what additional data would be needed so that we can identify model
from the family that is most parsimonious with the data? Through the use of profile like-
lihood curves, we uncover that quantifying the initial fraction of resistant cells in a tumor
population, which can now be readily done due to advances in single-cell technology [29],
improves the likelihood of identifying the model within the family that is most parsimonious
with the data. Finally, we find that if this experiment is coupled with a dose escalation study,
the combination of the experimental data and mathematical modeling allows the mechanism
and timing of cetuximab resistance to be determined.

The conclusions drawn in this work are dependent on the family of models constructed.
While we have demonstrated some robustness in the results to the underlying growth term
in the absence of treatment, other functional forms for both tumor growth and drug effects
could certainly be considered. As future work, one option would be to expand the family
of models and repeating the analyses herein to determine if a combination of time-course
volumetric data at a single dose, measurements of the initial resistance fraction, and dose
escalation data are sufficient experimental data to pinpoint the mechanism and timing of
resistance. Alternatively, model learning techniques [4, 11, 8, 36, 55, 24, 42, 44], possibly
informed by biological knowledge [32], provide tools for considering a much larger class of
mathematical models of cetuximab resistance in HNSCC.

Understanding the mechanisms driving cetuximab resistance is essential, as optimal ther-
apeutic design is likely dependent on the underlying mode(s) of resistance. For instance,
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work in [23] computationally demonstrated that tumor response to the same drug dose and
delivery schedule is qualitatively impacted by the ability (or lack therefore) of a drug to
induce resistance. Therefore it is essential that any mathematical model accurately capture
the mechanism driving resistance if that model is to be used to optimize drug dosing and
the delivery schedule. This work demonstrates how mathematical modeling can inform fu-
ture experimental design, allowing for an improved understanding of dosing novel cancer
therapeutics.

Data Availability

All experimental data and fitting codes are publicly available at https://github.com/

jgevertz/HNSCC-Cetuximab-Resistance.
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5 Supplemental Information

Mouse
ID

Initial Control
Volume (mm3)

Initial Treatment
Volume (mm3)

1 150 538.28
2 473.8 298.58
3 549.5 159.83
4 596.8 288.71
5 346.4 871.67
6 522.6 501.84
7 571.8 105.47
8 1008.4 279.4
9 442 410.60
10 628.6 279.20
11 155.9 547.97
12 339.8 205.27
13 624.4 350.98
14 1073.2 616.01
15 559.4 1188.23
16 281 524.62
17 727.8 935.25
18 410.6 391.13
19 550.1 551.35
20 422.2 1274.23
21 909.6 452.07
22 145.8 348.55
23 317.7 424.87
24 228.3 310.44
25 724.9 744.675
26 − 397.37
27 − 1111.57
28 − 1097.87
29 − 842.41

Table S1: Volume measurements (mm3) for the 25 control mice and 29 treatment mice. Note
that Mouse m in the control case is not related to Mouse m in the treatment case.
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Figure S1: Two representative treatment mice to depict censoring protocol. Uncensored data
for Mouse 1 (left panel) is shown in black dots with the censored point as a red asterisk. The
best-fit curve from Model 1.2 on both censored and uncensored data is shown. Mouse 28
(right panel) had no censored data points. The magenta data point is candidate for censoring
because of the rapid growth over a short period of time, but it is not censored because the
subsequent points follow the trend.

Figure S2: Box plot showing best-fit parameter values across six models for sensitive cell
growth rate rS (top left), resistant cell growth rate rR (top right), rate of random transition
to resistance g (center left), drug-induced death rate of sensitive cells λS (center right),
drug-induced death rate of resistant cells λR (bottom left), and initial resistant fraction
r0frac = R(0)/(S(0) +R(0)) (bottom right).
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Figure S3: AIC (left column) and BIC (right column) comparisons across treatment models
when logistic growth is used. Top row shows the number of mice for which each model has
the lowest IC value (i.e., is the best model). Bottom row shows the number of mice for which
each model has the highest IC value (i.e., is the worst model).
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