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Abstract

Motivation: Intra-sample heterogeneity describes the phenomenon where a genomic sample contains

a diverse set of genomic sequences. In practice, the true string sets in a sample are often unknown due to

limitations in sequencing technology. In order to compare heterogeneous samples, genome graphs can be

used to represent such sets of strings. However, a genome graph is generally able to represent a string set

universe that contains multiple sets of strings in addition to the true string set. This difference between

genome graphs and string sets is not well characterized. As a result, a distance metric between genome

graphs may not match the distance between true string sets.

Results: We extend a genome graph distance metric, Graph Traversal Edit Distance (GTED) proposed

by Ebrahimpour Boroojeny et al., to FGTED to model the distance between heterogeneous string sets

and show that GTED and FGTED always underestimate the Earth Mover’s Edit Distance (EMED)

between string sets. We introduce the notion of string set universe diameter of a genome graph. Using

the diameter, we are able to upper-bound the deviation of FGTED from EMED and to improve FGTED

so that it reduces the average error in empirically estimating the similarity between true string sets. On

simulated TCR sequences and Hepatitis B virus genomes, we show that the diameter-corrected FGTED

reduces the average deviation of the estimated distance from the true string set distances by more than

250%.

Availability: Data and source code for reproducing the experiments are available at:

https://github.com/Kingsford-Group/gtedemedtest/

Contact: carlk@cs.cmu.edu

1 Introduction

Intra-sample heterogeneity describes the phenomenon where a genomic sample contains a diverse set

of genomic sequences. A heterogeneous string set is a set of strings where each string is assigned a weight

representing its abundance in the set. Computing the distance between heterogeneous string sets is essentially

computing the distance between two distributions of strings. We formulate the problem of heterogeneous

sample comparison as the heterogeneous string set comparison problem.

This problem can be used to compare samples where differences can be traced to the differences between

sets of genomic sequences. For example, cancer samples are clustered based on differences in their genomic
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and transcriptomic features [1, 2] into cancer subtypes that correlate with patient survival rates. The

dissimilarities between T-cell receptor (TCR) sequences are computed between individuals to study immune

responses [3]. Different compositions of these sequences result in different clinical outcomes such as response

to treatment.

We point out that the Earth Mover’s Distance (EMD) [4], or the Wasserstein distance [5], with edit

distance as the ground metric is an elegant metric to compare a pair of heterogeneous string sets. Given

two distributions of items and a cost to transform one item into another, EMD computes the total cost

of transforming one distribution into another. The EMD was initially used in computer vision to compare

distributions of pixel values in images [6] and later adapted to natural language processing [7]. It has also

been used to approximate the distance between two genomes [8] by computing the distance between two

distributions of k-mers. To compare heterogeneous string sets, when the strings and their distributions are

known, we use edit distance as the cost to transform one string to another. We refer to this as the Earth

Mover’s Edit Distance (EMED).

In practice, the complete strings of interest and their abundances are often unknown, and these strings

are only observed as fragmented sequencing reads. It is impossible to exactly compute EMED between the

true sets of complete strings from the sequencing reads only.

The challenges posed by incomplete observed sequences can be alleviated by representing the string set

using a graph structure. Multiple types of genome graphs have been introduced [9, 10, 11, 12, 13, 14, 15, 16,

17, 18]. For our purposes, a genome graph is a directed multigraph with labeled nodes and weighted edges,

along with a source and a sink node. A string is spelled by a source-to-sink path, or s− t path, if it is equal

to the concatenation of node labels on the path. We say that a genome graph represents a string set if the

union of paths that spells each string in the set is equal to the graph. In other words, a string set can be

spelled by a decomposition of the genome graph.

There are several methods that compute the distance between genome graphs [19, 20, 21]. Among those,

Graph Traversal Edit Distance (GTED) [21] is a general measure that can be applied to genome graphs and

does not rely on the type of genome graphs nor the knowledge of the true string sets. Given two genome

graphs, GTED finds an Eulerian cycle in each graph that minimizes the edit distance between the strings

spelled by each cycle.

However, applying GTED on genome graphs representing heterogeneous string sets may overestimate

the similarity between these string sets for two reasons. First, since GTED computes the distance between

Eulerian cycles in genome graphs, it may align the prefix of a string to the suffix of another string with no

additional penalties. We address this challenge by proposing an extension of GTED, called FGTED, that

penalizes direct alignment of prefixes of a string with suffixes of other strings.

Second, and more significantly, both FGTED and GTED compute the edit distance between the two

string sets represented by each genome graph that are most similar to each other. However, a genome

graph that is constructed from sequencing fragments typically is able to represent more than one set of

strings [22, 23]. As a genome graph merges shared sequences into the same node, it creates chains of bubble

structures [24] that result in exponential number of possible paths, and these paths spell a much more diverse

collection of strings than the original set. We call the degree to which a genome graph encodes a larger set

of strings than the true underlying set the “expressiveness” of a genome graph. Due to the expressiveness of

a genome graph, the Eulerian cycles found by GTED may not spell the true set of strings and the computed
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Figure 1: (a) Genome graph expressiveness results in inexact representations of true string sets. (b) Overview
of part of theoretical contributions.

distance may be far from the true distance between string sets used to construct the graphs (Figure 1(a)).

We prove both that FGTED always produces a distance that is larger than or equal to GTED, and that

FGTED computes a metric that is always less than or equal to the EMED between true sets of strings.

However, FGTED and GTED can be quite far from the EMED. To resolve this discrepancy between

FGTED and EMED, we define the collection of strings that can be represented by the genome graph as its

string set universe, and genome graph expressiveness as the diameter of its string set universe (SUD), which

is the maximum EMED between two string sets that can be represented by the graph (Figure 1(b)).

Using diameters, we are able to upper-bound the deviation of FGTED from EMED. Additionally, we are

able to correct FGTED and more accurately estimate the true string set distance empirically. On simulated

TCR sequences, we reduce the average deviation of FGTED from EMED by more than 300%, and increase

the correlation between the true and estimated string set distances by 20%. On Hepatitis B virus genomes,

we reduce the average deviation by more than 250%.

These results provide the first connection between comparisons of genome graphs that encode multiple

sequences and a natural string distance and provide the first formalization of the expressiveness of genome

graphs. Additionally, they provide a practical method to estimate and reduce discrepancy between genome

graph distances and string set distances.

2 Preliminary Concepts

2.1 Strings

Definition 1 (Heterogeneous string set). A heterogeneous string set S = {(w1, s1), . . . , (wn, sn)} contains

a set of strings, where each string si is assigned a weight wi ∈ [0, 1] that indicates the abundance of si in S.

We say that the total weight of S is
∑

i∈[1,n] wi = 1.
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ED(s1, s2) is the minimum cost to transform s1 into s2 under edit distance [25]. The set of operations

that transforms s1 to s2 can be written as an alignment between s1 and s2, or A = align(s1, s2). The i-th

position in A is denoted by A[i] =
[
c(1,i)
c(2,i)

]
, where c(a,i) is either a gap character “-” or a character in sa.

2.2 Earth Mover’s Edit Distance

To find a distance between two heterogeneous string sets, we need to take into account not only the

distance between pairs of strings, but also the weight, or abundance of each string in the set. When we are

comparing two heterogeneous string sets, we are essentially comparing two distributions of strings. Therefore,

we propose using the Earth Mover’s Distance (EMD) as a natural distance measure.

Given two distributions of items (here, strings) and a cost function that quantifies the cost of transforming

one item into another, the EMD between the two distributions is the minimum cost to transform one

distribution into another. Computing EMD can be viewed as a transportation problem that finds a many-

to-many mapping between two sets of items and minimizes the total cost of the mapping [4, 5].

Given two heterogeneous string sets S1 = {(w1, s1), . . . , (wn, sn)} and S2 = {(wn+1, sn+1), . . . , (wm, sm)},
to compute the Earth Mover’s Edit Distance (EMED), we use the edit distance between si and sj as the cost

of transforming one string to another. Following procedures to compute EMD [4] as a min-cost max-flow

problem, we find a mapping M , where M(si, sj) is the amount of si ∈ S1 to be transformed into sj ∈ S2,

that minimizes cost(M) =
∑

si∈S1
sj∈S2

M(si, sj) · ED(si, sj). We define that EMED(S1,S2) = minM cost(M).

2.3 Flow Networks

Definition 2 (Valid flow network). A directed graph G = (V,E,w), where w(e) is the weight of each edge,

is a valid flow network if there exists a source s and sink node t such that:

(Flow conservation)
∑

(u,v)∈E

w(u, v) =
∑

(v,w)∈E

w(v, w) ∀v ∈ V, v 6= s, v 6= t

(Total capacity)
∑

(s,u)∈E

w(s, u) =
∑

(v,t)∈E

w(v, t).

Definition 3 (Flow decomposition). A flow decomposition of a valid flow graph G, denoted as D(G), is

a collection of paths and their weights P = {(w1, p1), . . . , (wn, pn)}, where pi =
(
(s, u1), . . . , (um, t)

)
is an

ordered sequence of edges in G, such that:

(Flow coverage)
∑
pi∈P

O(e, i) · wi = w(e) ∀e ∈ G,

where O(e, i) is equal to the number of occurrences of edge e in path pi.

A valid flow network typically has more than one flow decomposition. Let the set of possible flow

decompositions of G be DG .
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2.4 Genome Graphs

There are many variants of genome graphs used for various purposes and in various settings. Here, we

introduce the definition of genome graphs we will use.

Definition 4 (Genome graph). A genome graph G = (V,E, l, w) is a valid flow network with node set V ,

edge set E, node labels l(u) for each u ∈ V and edge weights w(e) for each e ∈ E. A genome graph contains

a source node s and a sink node t, and l(s) =“$”, l(t) =“#”, where $ and # are special characters that do

not appear in any string set considered in the scope of this manuscript.

Define operator S(·) that transforms a set of paths in a genome graph G to a set of strings by concatenating

the node labels on each path. S(P) = {
(
concat(p), w(p)

)
| p ∈ P} is a heterogeneous string set where the

weight of each string is equal to the weight of the path that spells the string.

Definition 5 (String set represented by a genome graph). A genome graph G represents a string set S if

there exists a decomposition D(G) ∈ DG, such that S(D(G)) = S.

We use G = G(S) to denote when G represents S.

Definition 6 (String set universe represented by a genome graph). The string set universe SU(G) of a

genome graph G is the collection of heterogeneous string sets that can be represented by G. Formally, SU(G) =

{S(D) | D ∈ DG}.

2.5 Alignment Graph

An alignment graph is used to align two genome graphs [21] and can be viewed as a graph product

between two genome graphs. A special case of the alignment graph [26] is used to align a string to a graph

where the string is represented as a graph with only one path. We assume that the genome graphs to be

aligned are transformed so that the label of each node contains only one character.

Definition 7 (Alignment graph). Given genome graphs G1 = (V1, E1, l1, w1) and G2 = (V2, E2, l2, w2), an

alignment graph AG(G1,G2) = (VA, EA, cost, w) is a directed graph with node set VA, edge set EA, edge cost

cost(e) and edge weight w(e) for each edge e ∈ EA. The alignment graph is defined following the steps:

• VA is constructed by adding pairings of nodes in V1 and V2; that is VA = {(u1, u2) | u1 ∈ V1, u2 ∈ V2}.

• For each edge (u1, v1) ∈ E1 and (u2, v2) ∈ E2, create three types of edges:

1. A match/mismatch edge e = ((u1, u2), (v1, v2)) with w(e) = min{w1(u1, v1), w2(u2, v2)}.

2. An insertion (in) edge e = ((u1, u2), (u1, v2)) with w(e) = w2(u2, v2).

3. A deletion (del) edge e = ((u1, u2), (v1, u2)) with w(e) = w1(u1, v1).

The cost of an in/del edge and a mismatch edge is equal to a customized penalty. The cost of a

match edge is equal to zero. A match/mismatch edge should be distinguished with an in/del edge if the

corresponding edge in one of the input graphs is a self-loop.

Each edge e = ((u1, u2), (v1, v2)) in an alignment graph can be projected onto one edge in each of the

input graphs. An edge in each of the input graphs can also be projected onto a set of edges in AG.
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Definition 8 (Projection function). Define the projection function as P(G,H)(e) = E′ that maps an edge e

from graph G to a set of edges E′ in graph H. The projection function maps an edge in the alignment graph

to the edges in the input graphs that are matched together by that edge. It also maps an edge in one of the

input graphs to a set of edges in the alignment graph where it is matched with other edges in another input

graph. Specifically:

Projection from alignment graph to one of the input graphs is defined by

P(AG,Gi)((u1, u2), (v1, v2)) = {(ui, vi)}, i ∈ {1, 2}.

Projection from one of the input graphs to alignment graph is defined by

P(G1,AG)((u1, v1)) = {e | e = ((u1, u2), (v1, v2)) ∈ EAG},

P(G2,AG)((u2, v2)) = {e | e = ((u1, u2), (v1, v2)) ∈ EAG}.

Given a set of paths P in AG, we use P(AG,Gi)(P) to denote the projection of P onto Gi, where

P(AG,Gi)(P) = {
(
P(AG,Gi)(e) | e ∈ p

)
| p ∈ P}.

For convenience, we define that fi(D(AG)) = S(P(AG,Gi)(D(AG))), which is the set of strings spelled by

a path decomposition in AG that is projected onto Gi.

2.6 Graph Traversal Edit Distance (GTED)

Graph Traversal Edit Distance (GTED), proposed by Ebrahimpour Boroojeny et al. [21], is a distance

between two labeled graphs which are assumed to be Eulerian graphs. Given a genome graph in our definition,

we add an edge directing from sink to source with weight equal the sum of edge weights that are directing

from the source node in order to make an Eulerian graph.

Let the language of G, L(G), be the set of strings spelled by Eulerian cycles in G. Formally, L(G) =

{S(c) | c is an Eulerian cycle in G}.

Definition 9 (Graph Traversal Edit Distance [21]). Let G1 and G2 be two Eulerian graphs, where the weights

on the edges are seen as the number of times an edge must be visited in each Eulerian cycle. Then,

GTED(G1,G2) = min
s1∈L(G1)
s2∈L(G2)

ED(s1, s2).

GTED finds one Eulerian cycle in each genome graph such that the edit distance between the strings

spelled by the Eulerian cycles is minimized. GTED is computed by solving a linear programming (LP)
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formulation (Equations (1)-(4)) on the alignment graph AG(G1,G2). The LP formulation is as follows:

min
x∈R|EA|

∑
e∈EA

cost(e) · xe (1)

s.t.
∑
j,l

x((i,j),(k,l)) = w1(i, k) ∀(i, k) ∈ E1 (2)

∑
i,k

x((i,j),(k,l)) = w2(j, l) ∀(j, l) ∈ E2 (3)

∑
(u,v)∈EA

x(u,v) =
∑

(v,w)∈EA

x((v, w)) ∀v ∈ VA (4)

Ebrahimpour Boroojeny et al. [21] prove that GTED is equal to the optimal solution of this LP formulation.
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Figure 2: (a) An alignment graph AG between G1 (vertical) and G2 (horizontal). Insertion, deletion and
match/mismatch edges are labeled with different colors. (b) AG∗ after removing all the edges with zero
flow in a solution to FGTED(G1,G2). Edges in G1 and G2 that are highlighted with matching colors are
projections from edges in AG∗ to G1 and G2, respectively. Path ($, A, T,#) ∈ G1 is aligned to ($, A, T,#) ∈ G2
and path ($, A,C,#) ∈ G1 is aligned to ($, A,#) ∈ G2. The weights on AG and AG∗ edges are omitted for
simplicity.

3 An Extension of GTED

GTED was originally used to compare genome graphs that are assumed to contain single genomes. It is

therefore intuitive that each string represented by the genome graph is spelled with an Eulerian cycle. This

property follows the property of assembly graphs [27]. When the genome graph represents more than one

string, finding a string spelled by an Eulerian cycle c in the graph is equivalent to finding a concatenation of

a permutation of strings in a string set. When aligning two Eulerian cycles, c1 and c2, from input graphs, the

boundaries between strings are ignored and the prefix of one string may be aligned to the suffix of another

string with no cost. However, such alignment is not allowed when we align sets of strings using EMED.
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We propose an extension of GTED with a modified cost function in edit distance computation so that

the cost of aligning the sink character # with any other character is infinity.

Figure 2(a) shows an example of the alignment graph built from two input graphs using the proposed

cost function. Let the sink nodes in G1 and G2 be t1 and t2, and the source nodes be s1 and s2, respectively.

After removing all the alignment edges with infinite costs, there is an edge to the alignment node (t1, t2) in

AG if and only if there exists an edge (u1, t1) in G1 and an edge (u2, t2) in G2. The only incoming edge to

(s1, s2) is ((t1, t2), (s1, s2)). We refer to the edge ((t1, t2), (s1, s2)) as the sink-to-source edge, or t − s edge

in alignment graph in the rest of the manuscript.

We let Flow-GTED, or FGTED, denote the distance computed using the alignment graph after removing

all infinity cost edges that forbid aligning the sink with any nodes other than the source node.

Theorem 1. GTED(G1,G2) ≤ FGTED(G1,G2) for any pair of genome graphs G1,G2.

Proof. Since FGTED is computed on a smaller alignment graph that contains fewer edges than that for

computing GTED, FGTED explores a smaller solution space than GTED in solving the LP formulation.

Therefore, any feasible solution to the LP formulation for FGTED(G1,G2) is a feasible solution to the LP

formulation for GTED(G1,G2). Since GTED(G1,G2) minimizes the objective, the theorem is true.

4 The Relationship Between GTED, FGTED and EMED

Let AG∗ be the alignment graph after removing the t−s edge and all the edges from {e | xe = 0, e ∈ EA}
from the LP solution to Equations (1)–(4). We say that AG∗ is a solution of FGTED. Due to constraints

(2)–(4), AG∗ is a valid flow network. Let D(AG∗) be a flow decomposition in AG∗. Similar to the Eulerian

cycles found during the GTED computation, each path in D(AG∗) can be projected to a path in G1 and a

path in G2.

Denote S∗1 = f1(D(AG∗)) = S(P(AG∗,G1)(D(AG∗))) as the set of strings spelled by the set of projected

paths from a decomposition D(AG∗) to G1. Similarly, S∗2 = f2(D(AG∗)) = S(P(AG∗,G2)(D(AG∗))). We

show an example of path projections in Figure 2(b).

Observing that we can do flow decomposition in both the FGTED solution and input genome graphs, we

will show in this section that FGTED can be bounded by EMED between decompositions in input genome

graphs and in the alignment graph solutions.

Theorem 2. Given two sets of strings S1 and S2, and genome graphs representing these string sets, G1 =

G(S1) and G2 = G(S2),

0 ≤ EMED(S1,S2)− FGTED(G1,G2)

≤ min
D(AG∗)∈DAG∗
S∗1=f1(D(AG∗))
S∗2=f2(D(AG∗))

(
EMED(S1,S∗1 ) + EMED(S2,S∗2 )

)

where AG∗ is the solution obtained from FGTED(G1,G2).

The proof of this theorem is completed in two parts. The first inequality is proven in Section 4.1 and the

second is proven in Section 4.2. Since FGTED computes a distance that is larger than GTED between the
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same pair of genome graphs (Theorem 1), Theorem 2 also shows that FGTED always estimates the distance

between true string sets more accurately than GTED.

4.1 FGTED is Always Less Than or Equal to EMED

We show in this section that FGTED can be expressed in terms of EMED between string sets constructed

from decomposing AG∗. In other words, similar to GTED, FGTED finds a decomposition in G1 and G2,

respectively, that minimizes the EMED between them. Analogous to Definition 9, we have:

Theorem 3. Given two genome graphs G1 and G2,

FGTED(G1,G2) = min
D(G1)∈DG2 ,
D(G2)∈DG2

EMED(S(D(G1)), S(D(G2)))

To prove Theorem 3, we first explore the relationship between an s − t path in AG∗ and the strings

spelled by the projections of this path onto G1 and G2.

Lemma 1. Given an s-t path p ∈ D(AG∗), let s1 = S(P(AG∗,G1)(p)) be the string spelled by projecting p

onto G1, and s2 = S(P(AG∗,G2)(p)). Then for any p ∈ D(AG∗),∑
e∈p

cost(e) = ED(s1, s2).

Proof. We prove in two directions.

(≥ direction) We construct A = align(s1, s2) from p. For each e = ((u1, u2), (v1, v2)) ∈ p:

(1) if u1 = v1, add c =
[ −
l(v2)

]
to A, (2) if u2 = v2, add c =

[
l(v1)
−
]

to A, (3) else, add c =
[l(v1)
l(v2)

]
to A.

By definition of an alignment graph, cost(e) = cost(c) in for all e, and therefore cost(A) =
∑

c∈A cost(c) =∑
e∈p cost(e). Since edit distance minimizes the cost of edit operations, cost(A) = cost(p) ≥ ED(s1, s2).

(≤ direction) We construct p′ from A∗ = align(s1, s2) such that cost(A∗) = ED(s1, s2). The procedure

is similar as above — for each pair of adjacent entries in A∗, add corresponding edge to p′. Then cost(p′) =

cost(A∗) = ED(s1, s2).

Let AG′ = AG∗ \ p ∪ p′. Both p and p′ can be found in AG, and both p and p′ can be constructed by

the alignment of the same pair of strings. Therefore, AG′ is also a valid flow network and a feasible solution

to FGTED. Since AG∗ is the optimal solution to FGTED, cost(AG∗) ≤ cost(AG′), and

cost(AG∗)− cost(AG′) ≤ 0

⇒ w(p) · (cost(p)− cost(p′)) ≤ 0

⇒ w(p) · (cost(p)− ED(s1, s2)) ≤ 0

⇒ cost(p) ≤ ED(s1, s2).

We have shown that the cost of an s− t path in AG∗ is equal to the edit distance between its projections

onto input graphs. Using this lemma, we can transform an optimal FGTED solution into an EMED solution.
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Given an optimal FGTED solution, AG∗, let the set of possible flow decompositions of AG∗ be DAG∗ .

Let D(AG∗) be one of the flow decompositions that is a set of weighted s − t paths. We can con-

struct heterogeneous string sets S∗1 and S∗2 by projecting paths in D(AG∗) to G1 and G2. Formally,

S∗1 =
{
S(P(AG∗,G1)(p)) | p ∈ D(AG∗)

}
and S∗2 =

{
S(P(AG∗,G2)(p)) | p ∈ D(AG∗)

}
.

Lemma 2. Given S∗1 and S∗2 obtained from any decomposition D(AG∗) ∈ DAG∗ ,

EMED(S∗1 ,S∗2 ) = cost(AG∗),

where cost(AG∗) is sum of edge costs in the solution alignment graph to FGTED.

Proof. We prove in two directions.

(≤ direction) We construct a mapping M between strings in S∗1 and S∗2 from the decomposition D(AG∗),

where M(si, sj) is the portion of si ∈ S1 and sj ∈ S2 that are aligned. For each p ∈ D(AG∗), we obtain

s1 and s2 as strings constructed from projections of p onto G1 and G2 and increment the weight of mapping

M(s1, s2) by w(p). After iterating through all paths in D(AG∗), the cost of M is

cost(M) =
∑

(s1,s2)∈M

M(s1, s2) · ED(s1, s2)

=
∑

p∈D(AG∗)

w(p) · cost(p) = cost(AG∗).

M is also a feasible solution to the LP formulation of EMED. Since EMED minimizes the cost of mapping

between S∗1 and S∗2 , EMED(S∗1 ,S∗2 ) ≤ cost(AG∗).

(≥ direction) We construct a valid flow network, AG′ using an optimal solution to EMED(S∗1 ,S∗2 ). For

each pairing (si, sj) for si ∈ S1 and sj ∈ S2, we obtain its weight w and cost c from the EMED solution.

Let A = align(si, sj) be an optimal alignment under edit distance, and cost(A) = c. We then add a path

corresponding to A with weight w in AG′. This follows the same procedure in the proof of Lemma 1.

After adding all paths, we obtain AG′ with cost(AG′) = EMED(S∗1 ,S∗2 ). Since cost(AG∗) is minimized by

FGTED, cost(AG′) ≥ cost(AG∗)⇒ EMED(S∗1 ,S∗2 ) ≥ cost(AG∗).

Lemma 2 provides a transformation algorithm between optimal solutions to EMED and solutions to

FGTED. Using Lemma 2, we can show that the EMED between S∗1 and S∗2 constructed from any decompo-

sition in AG∗ is equal to the decompositions of G1 and G2 that are closest in terms of EMED.

Lemma 3. Given S∗1 and S∗2 obtained from any decomposition D(AG∗) ∈ DAG∗ ,

EMED(S∗1 ,S∗2 ) = min
D(G1)∈DG2 ,
D(G2)∈DG2

EMED(S(D(G1)), S(D(G2)))

Proof. In Lemma 2, S∗1 and S∗2 can be constructed from decomposing G1 and G2. Suppose for contradic-

tion that there exists a decomposition that constructs string sets S ′1 and S ′2, such that EMED(S∗1 ,S∗2 ) >

EMED(S ′1,S ′2). Following the procedure in the proof of Lemma 2, we can construct a feasible solution

to FGTED with cost equal to EMED(S ′1,S ′2), which is less than cost(AG∗) = EMED(S∗1 ,S∗2 ). This

contradicts with the assumption that FGTED minimizes cost(AG∗).
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Theorem 3 is therefore true because of Lemma 2 and 3. Using Theorem 3, we are able to prove the first

inequality in Theorem 2 with Lemma 4.

Lemma 4. Given heterogeneous string sets S1 and S2 and genome graphs representing these string sets,

G1 = G(S1) and G2 = G(S2), FGTED(G1,G2) ≤ EMED(S1,S2).

Proof. Given Theorem 3, FGTED finds flow decomposition in DG1 and DG2 that minimizes the EMED

between them. Since S1 and S2 can be constructed from a flow decomposition in DG1 and DG2 , respectively,

this lemma is true.

4.2 Genome Graph Expressiveness

A genome graph typically can represent more than one set of strings. We name the collection of string sets

representable by a genome graph the string set universe of that genome graph, or SU(G). Using Theorem 3,

we can say that FGTED finds two sets of strings in the string set universe of G that are closest in the metric

space of EMED. We define the expressiveness of a genome graph as the diameter of its string set universe,

which is the maximum EMED between the string sets in SU(G).

Definition 10 (String Set Universe Diameter (SUD)). Given a genome graph G,

SUD(G) = max
Sa,Sb∈SU(G)

EMED(Sa,Sb)

4.2.1 String Set Universe Diameter as an Upper Bound on Deviation of FGTED from EMED

The string set universe diameter gives one measure of the size of SU(G), and it can also be used to

characterize the deviation of GTED from EMED.

Recall that S∗1 and S∗2 are string sets obtained from a decomposition D(AG∗), and that EMED(S∗1 ,S∗2 ) =

FGTED(G(S1), G(S2)), where S1 and S2 are true string sets. From Theorem 2, we have that EMED(S1,S2) ≥
EMED(S∗1 ,S∗2 ). We can bound the deviation of EMED(S∗1 ,S∗2 ) from EMED(S1,S2) using triangle in-

equalities.

Lemma 5. Given string sets S1 and S2 and genome graphs G1 = G(S1) and G2 = G(S2),

EMED(S1,S2)− FGTED(G1,G2) ≤ min
D(AG∗)∈DAG∗
S∗1=f1(D(AG∗))
S∗2=f2(D(AG∗))

(
EMED(S1,S∗1 ) + EMED(S2,S∗2 )

)
, (5)

where AG∗ is the solution obtained from FGTED(G1,G2).

Proof. Both edit distance and EMD are metrics [4, 25], which means that triangle inequality holds for EMED

between strings. Therefore, for any string sets S∗1 and S∗2 ,

EMED(S1,S∗1 ) + EMED(S∗1 ,S2) ≥ EMED(S1,S2)

EMED(S2,S∗2 ) + EMED(S∗1 ,S∗2 ) ≥ EMED(S∗1 ,S2)
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Combining two inequalities, we have

EMED(S∗1 ,S∗2 ) = FGTED(G1,G2) ≥ EMED(S1,S2)− (EMED(S1,S∗1 ) + EMED(S2,S∗2 ))

⇒EMED(S1,S2)− FGTED(G1,G2) ≤ EMED(S1,S∗1 ) + EMED(S2,S∗2 ). (6)

The above inequality (6) holds for any string sets S∗1 and S∗2 . To give a tight upper bound on the deviation,

we take the minimum over all possible pairs of string sets constructed from decomposing AG∗ that yields

inequality (5).

Lemma 5 proves the second inequality of Theorem 2 thus completing the proof for Theorem 2 with

Lemma 4.

The upper-bound found in Lemma 5 can be used as a factor that evaluates the pair-wise expressiveness

of two genome graphs. While a genome graph may represent a large universe of string sets, as long as the

true string set is close to the “best” string set in the pair-wise comparison, the deviation of FGTED from

EMED is small. We define this upper bound as the String Universe Co-Expansion Factor (SUCEF), which

can be used to evaluate the discrepancy between FGTED and EMED.

Definition 11 (String Universe Co-Expansion Factor (SUCEF)).

SUCEF (S1,S2,G1,G2) = min
D(AG∗)∈DAG∗
S∗1=f1(D(AG∗))
S∗2=f2(D(AG∗))

(
EMED(S1,S∗1 ) + EMED(S2,S∗2 )

)
,

where AG∗ is the solution to FGTED(G1,G2).

On the other hand, finding SUCEF not only requires knowledge of true string sets S1 and S2, but SUCEF

is also a pair-dependent measure that needs to be calculated for every pair of string sets and corresponding

genome graphs. In order to characterize the effect of the expressiveness of individual genome graphs, we

derive another upper bound on the deviation of FGTED from EMED using the string set universe diameters.

The sum of string set universe diameters of two genome graphs is an upper bound on SUCEF of these

graphs and any two sets of strings they represent.

Lemma 6. Given two genome graphs G1 and G2 and two sets of strings S1 and S2 they represent,

EMED(S1,S2)− FGTED(G1,G2) ≤ SUCEF (S1,S2,G1,G2)

≤ SUD(G1) + SUD(G2).

Proof. Both S1 and S∗1 are represented by G1 and belong to SU(G1). Therefore, by definition of string set

universe diameter, EMED(S1,S∗1 ) ≤ SUD(G1) as the diameter maximizes the distance between any pair of

strings represented by the genome graph. The same holds for EMED(S2,S∗2 ) ≤ SUD(G2).

Using Lemma 6, we can now bound the deviation of FGTED from EMED using the expressiveness of

individual genome graphs. In the following sections, we show that we can empirically estimate the anticipated

discrepancy between FGTED and EMED using string set universe diameters, and we can produce improved

FGTED which reduces the anticipated deviation from EMED and better correlates with EMED.
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5 Practically Correcting the Discrepancy between FGTED and EMED

5.1 Estimating String Set Universe Diameters

The string set universe diameter of a genome graph can be estimated by sampling flow decompositions

of the graph. To sample a flow decomposition, we first sample one s − t path. At each node u, we choose

the neighbor v with the highest edge weight w(u, v) with probability 0.5 and randomly choose a neighbor

otherwise. After sampling a path, we send flow that is equal to the minimum edge weight on that path and

produce the residual graph by subtracting the flow from edge weights on that s − t path. We repeat this

process on the residual graph until all edge weights are zero. This process assumes that the input genome

graphs are acyclic to ensure all edge capacities (weights) are satisfied. If a genome graph is cyclic, string sets

from SU(G1) can be obtained by sampling Eulerian cycles in the genome graph. After sampling 50 pairs

of flow decompositions, we construct string sets from sampled flow decompositions and calculate pairwise

EMED. We then obtain the highest pairwise EMED and use it as the estimated diameter.

5.2 Correcting FGTED Using String Set Universe Diameters

Using sum of SUDs, we empirically estimate the deviation of FGTED from EMED with a linear regression

model. We denote the deviation of FGTED from EMED by deviation(S1,S2,G1,G2), which is computed as

|EMED(S1,S2)− FGTED(G(S1), G(S2))|. The linear regression model, LR, has the following form

deviation(S1,S2,G1,G2) = a ·
(
SUD(G1) + SUD(G2)

)
+ b = LR(SUD(G1) + SUD(G2)),

where a is the coefficient of the model and b is the intercept. The fitted model will minimize the mean

squared error between predicted deviation and true deviation in the training set.

The corrected FGTED for each pair of graphs is calculated using the learned linear regression model as

follows.

correctedFGTED(G1,G2) = FGTED(G1,G2) + LR(SUD(G1) + SUD(G2))

The deviation of corrected FGTED from EMED has the same form as the deviation of uncorrected FGTED

from EMED.

5.3 Data

We evaluate the use of string set universe diameters on two sequence sets:

1. Simulated T-Cell Receptor (TCR) Repertoire. We simulate 50 sets of TCR sequences and assign

weights to each sequence using reference gene sequences of V, D and J genes from Immunogenetics

(IMGT) V-Quest sequence directory [28]. The number of sequences in each set varies from 2 to 5. We

then generate 225 pairs of TCR string sets. Each TCR sequence is about 300 base pairs long. See the

Appendix for detailed simulation process.

2. Hepatitis B Virus (HBV) Genomes. We collect 9 sets of HBV genomes from three hosts —

humans, bats and ducks — from the NCBI virus database [29]. We build 36 pairs of HBV string sets.

See the Appendix for detailed string set construction process.
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Figure 3: Correlation between EMED and FGTED before and after correction with string set universe
diameters on half of (a) simulated TCR sequences and (b) HBV genomes. The relationship between EMED
and uncorrected FGTED is shown in blue and corrected FGTED is shown in orange. Grey lines signify
equality between EMED and FGTED. The data shown in Figure 3 are held-out sets from TCR and HBV
genomes that consist of 50% of the data. The corrected FGTED is computed using the LR models fit on
the other half.

We construct a partial order MSA graph on each string set [30]. We first conduct multiple sequence

alignment (MSA) for each string set using Clustal Omega [31]. Then for each column of the MSA, we create

a node for each unique character and add an edge between two nodes if the characters in node labels are

adjacent in the input strings at that column. For each consecutive stretch of gap characters, no nodes are

created, but an edge is added between flanking columns of the stretch of gaps. We also create a source node

and a sink node that are connected to nodes representing the first and last characters of the input strings.

The MSA graphs created in this process are all acyclic. We compute FGTED on MSA graphs by adding

sink-to-source edges.

5.4 Corrected FGTED More Accurately Estimates Distance Between Unseen

String Sets Encoded With Genome Graphs

We compute EMED and FGTED on string set pairs and genome graph pairs. Computing FGTED takes

about 1 hour using 10 threads for each MSA graph of the simulated TCR sequence sets and 4 hours on using

10 threads for each MSA graph on the HBV genomes. The LP optimizations are done using the Gurobi

solver [32].

For each pair of string sets, we obtain the deviation of FGTED from EMED and sum of estimated

SUDs. We fit two linear regression models, LRTCR and LRHBV , to predict deviation from sum of SUDs on

simulated TCR sequences and HBV genomes separately.

We evaluate the corrected and uncorrected FGTED by performing Pearson correlation experiments. We

fit LR models on half of the data and compute the corrected FGTED on the other half as the test set. We

evaluate the correlation between corrected and uncorrected FGTED and EMED on the test set. Two-tail

P-values are calculated for each correlation experiment to test for non-correlation.

The LR models are evaluated with 10-fold cross validation. We randomly permute and split data into
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10 equal parts. In each of the 10 iterations, we use one part as the test set and the rest as the training set.

An average deviation is calculated across all iterations.

FGTED
Pearson Correlation Average Deviation

Simulated TCR HBV Simulated TCR HBV

Uncorrected 0.74 0.99 32.74 140.12
Corrected 0.90 0.99 9.13 54.87

Table 1: Pearson correlation and average deviation between EMED and corrected and uncorrected FGTED
on simulated TCR and HBV sequences. Pearson correlation is calculated on a held-out set of data for both
simulated TCR and HBV that consist of 50% of data, and LR model is fit on the other half. Average
deviation is calculated by taking the average of mean deviations across 10-fold cross validation.

In Table 1, we show that using string set universe diameters, we are able to improve the correlation

between FGTED and EMED on both the simulated TCR sequences and HBV genomes (Figure 3). Both

Pearson correlation experiments are statistically significant with P-values < 0.01. On HBV genomes, since

the correlation between uncorrected FGTED and EMED is approaching 1, no significant improvement is

observed. On the other hand, significant reduction in average deviation is observed on both types of data.

We are able to reduce the average deviation from 32.74 to 9.13 on simulated TCR sequences and from 140.12

to 54.87 on HBV genomes.

One caveat of using SUDs for correcting distances between genome graphs is that this correction is not

guaranteed to always improve the distance. Given two string sets, there is always an adversarial worst case

where adjusting the distance using this approach reduces the accuracy in estimating string sets distances. As

seen from Figure 3, when EMED between true string sets are small, the corrected FGTED may overestimate

the EMED and result in a larger deviation. Nevertheless, we show that corrected FGTED reduces the

anticipated deviation from EMED.

6 Discussion

A genome graph’s string set universe diameter (SUD) provides information on the size and diversity of the

represented string sets. We show that we can use SUDs to practically characterize the discrepancy between

GTED and EMED and to obtain a more accurate distance between unseen string sets encoded in genome

graphs on average. While the results are obtained on short genomic sequences due to the high computational

cost of FGTED and GTED, this result is encouraging, and string set universe diameters could be also used

on approximate genome graph comparison methods to evaluate and improve their accuracies [19, 20].

SUDs could also be used to characterize the diversity of strings represented by reference genome graphs

that are used in sequence-to-graph alignment [33, 34]. In sequence-to-graph alignment, it is often desired

that a more diverse set of strings than the original reference string set is represented by the graph. Here,

SUDs could be used as a measure to control the right amount of variation in the string set universe of created

genome graphs.

Another future direction is to use expressiveness as a regularization term in the objective function to

construct better genome graphs. To ensure efficiency of genome graphs in storing sequences, we can construct

genome graphs that minimize their sizes [35, 36]. However, only optimizing for the size of a genome graph
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may result in graphs that are highly expressive, and the distance between these genome graphs will deviate

further from distances between true string sets. Adding a SUD term to the objective may address this

problem.
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8 Appendix: Procedures to generate data sets

Group 1 Group 2 Group 3 Group 4 Group 5

TRB V 5 34 63 92 121
TRB J 5 8 11 14 15
TRB D 3 3 3 3 3

Table 2: The number of unique V, J and D gene sequences in each reference gene group.

8.1 Synthetic Sets of T-cell Receptor Sequences

We construct five reference gene groups by sampling reference sequences obtained from the IMGT

database [28] that represent varied diversities of V, D, J gene repertoires. The number of sequences in

each group is shown in Table 2. We construct five TCR sequence groups, and each group of TCR sequences

are constructed using genes from one of the five reference gene groups. To generate each TCR sequence, we

randomly select a V, D and J gene from corresponding gene group, and randomly introduce m ∈ {1, 3, 5, 8, 10}
single-nucleotide mutations to each sequence at random locations. This step is to simulate recombination

and occurrences of junction single nucleotide polymorphisms (SNPs). 500 sequences are generated in each

TCR sequence group.

We construct 50 immune repertoires in five groups. Each repertoire group are constructed using simulated

TCR sequences from corresponding TCR sequence group. Within each group, each sequence set contains

2–10 sequences with randomly assigned weights that sum to 100. 45 string set pairs are generated within

each group.

8.2 Heterogeneous sets of Hepatitis B Virus genomes

We downloaded 30 HBV genomes from each of three host species — human, bat, duck — from the NCBI

virus database [29]. We construct 3 string sets for each host species. For each string set, we randomly select

5 HBV genomes from one host and randomly assign a weight to each string so that the sum of string weights

in each set is equal to 100.
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