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RESEARCH

Tensor decomposition- and principal component
analysis-based unsupervised feature extraction to
select more reasonable differentially expressed
genes: Optimization of standard deviation versus
state-of-art methods
Y-h. Taguchi1* and Turki Turki2

Abstract

Background: Tensor decomposition- and principal
component analysis-based unsupervised feature
extraction were proposed almost 5 and 10 years
ago, respectively; although these methods have
been successfully applied to a wide range of
genome analyses, including drug repositioning,
biomarker identification, and disease-causing genes’
identification, some fundamental problems have
been identified: the number of genes identified was
too small to assume that there were no false
negatives, and the histogram of P -values derived
was not fully coincident with the null hypothesis
that principal component and singular value
vectors follow the Gaussian distribution.

Results: Optimizing the standard deviation such
that the histogram of P -values is as much as
possible coincident with the null hypothesis results
in an increase in the number and biological
reliability of the selected genes.

Conclusions:
Tensor decomposition- and principal component

analysis-based unsupervised feature extraction are
perhaps better than state-of-art methods in regard
to predicting differentially expressed genes because
they achieve the desired property that the less
expressed differentially expressed genes should be
less likely selected or even associated with the
same amount of logarithmic fold change, although
they assume neither negative binomial distribution
nor dispersion relation, which is usually assumed in
state-of-art methods.

Keywords: tensor decomposition; principal
component analysis; feature extraction; standard
deviation; differentially expressed genes
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Background
Identifying differentially expressed genes (DEGs) on
the basis of comparative analyses [1, 2] has always
been difficult. This challenge is attributable to mul-
tiple reasons; however, the primary reason is it be-
ing a large p small n problem. In a large p small n
problem, it is difficult to select features based on sta-
tistical criteria because a small number of samples
(= n) have a tendency to lead to low significance;
in reality, the obtained P -values must be heavily cor-
rected by considering a large number of features (= p).
This makes it difficult to find features with signifi-
cance. To resolve this difficulty, many methods spe-
cific to gene expression analysis have been proposed.
For example, significant analysis microarray (SAM) [3]
adds a small amount of constancy to gene expression,
thereby avoiding the misidentification of low expressed
genes as DEGs. Limma [4] applied a Bayesian strategy
to logarithmic gene expression. After high-throughput
sequencing (HTS) became popular, P -values are at-
tributed to individual genes, assuming that gene ex-
pression follows a negative binomial (NB) distribu-
tion [5, 6], which is one of the simplest positively val-
ued distributions with a tunable mean and variance. In
addition to this, the so-called dispersion relation [5, 6],

α(µ)

µ2
= α0 +

α1

µ
, (1)

has also been assumed, where µ and α are the mean
and variance, respectively, and α0 and α1 are regres-
sion coefficients; to our knowledge, eq. (1) is purely em-
pirical and lacks rationalization. Despite these difficul-
ties, many proposed state-of-art methods [5, 6, 7, 8, 9]
have been widely employed and used in various stud-
ies.
Contrary to these empirical methods, we proposed

tensor decomposition (TD)- and principal component
analysis (PCA)-based unsupervised feature extraction
(FE) [10] that only assumes that principal component
(PC) and singular value vectors (SVVs) obey Gaussian
distribution. Despite this simplicity, TD- and PCA-
based unsupervised FE have been successfully applied
to a wide range of genomic analyses. However, there
have been two problems: 1. The histogram of the P -
values is not fully coincident with the null hypothesis
that PC and SVV obey Gaussian distribution and 2.
The number of genes selected is too small to have no
false negatives. In this paper, we have shown that the
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112-8551 Tokyo, JAPAN
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optimization of standard deviation (SD) in Gaussian
distribution can resolve these problems.

We tried optimizing SD for PCA-based unsuper-
vised FE and applied this to two highly curated data
sets––MAQC and SEQC. Then, we tested the opti-
mization of SD for TD-based unsupervised FE and
applied it to two more realistic problems: 1. drug repo-
sitioning for SARS-CoV-2 and 2. the analysis of gene
expression of multiple organs treated with multiple
drugs, to which TD-based unsupervised FE without
SD optimization was already applied.

Results
Outlines of TD and PCA based unsupervised FE
In this section, we have briefly explained the algorithm
of PCA- and TD-based unsupervised FE (Fig. 1) be-
fore explaining how we could improve them. When

xij

xijk

PCA

HOSVD

vlj

ul2j , ul3k

Biological 
evaluation

ul1i

uli 

Pi
Gene 

selection

SD optimization
Matrix

Tensor
TD based unsupervised FE

PCA based unsupervised FE

Multiple 
comparison 
correction

Figure 1 Schematic figure of TD- and PCA-based
unsupervised FE with optimized SD

a gene expression profile is formatted as a matrix,
xij ∈ RN×M , which represents the gene expression of
the ith gene of the jth sample, we use PCA-based un-
supervised FE. After standardizing xij as∑

i

xij = 0 (2)∑
i

x2
ij = N, (3)

a gram matrix
∑

j xijxi′j ∈ RN×N was diagonalized
as

∑
i′

∑
j

xijxi′j

uℓi′ = λℓuℓi (4)

where uℓi ∈ RN×N is the ℓth PC score attributed to
gene i. The ℓth PC loading attributed to the jth sam-
ple can be computed as

vℓj =
∑
i

xijuℓi ∈ RM×M . (5)
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After identifying vℓj , which is associated with a desired
property, e.g., the district between control and treated
samples, we attributed the P -values to the gene i using
the corresponding PC score, uℓi, as

Pi = Pχ2

[
>

(
uℓi

σℓ

)2
]

(6)

assuming that uℓi obeys the Gaussian distribution,
where Pχ2 [> x] is cumulative χ2 distribution when an
argument larger than x and σℓ is the SD,

σℓ =

√√√√ 1

N

N∑
i=1

(uℓi − ⟨uℓi⟩i)2 (7)

⟨uℓi⟩i =
1

N

N∑
i=1

uℓi (8)

When we have gene expression that is formatted as a
tensor, xijk ∈ RN×M×K , for the expression of the ith
gene at jth sample with the kth condition, we used
TD-based unsupervised FE. After standardizing xijk

as ∑
i

xijk = 0 (9)∑
i

x2
ijk = N (10)

Tucker decomposition of xijk

xijk =

N∑
ℓ1=1

M∑
ℓ2=1

K∑
ℓ3=1

G(ℓ1ℓ2ℓ3)uℓ1iuℓ2juℓ3k (11)

can be computed with a higher order singular value
decomposition (HOSVD) [10]. After identifying which
uℓ2j ∈ RM×M and uℓ3k ∈ RK×K are coincident with
the target property, e.g., distinction between control
and treated samples specifically under kth experimen-
tal condition, we try to find uℓi ∈ RN×N associated
with G(ℓ1ℓ2ℓ3) ∈ RN×M×K having the largest abso-
lute value. Then, the P -value is attributed to the ith
gene as

Pi = Pχ2

[
>

(
uℓ1i

σℓ1

)2
]
. (12)

by also assuming that uℓ1i obeys the Gaussian distri-
bution and

σℓ1 =

√√√√ 1

N

N∑
i=1

(uℓ1i − ⟨uℓ1i⟩i)
2

(13)

⟨uℓ1i⟩i =
1

N

N∑
i=1

uℓ1i. (14)

For both PCA- and TD-based unsupervised FE, Pi

is corrected with the Benjamini-Hochberg (BH) cri-
terion [10]; further, the ith genes associated with ad-
justed Pi less than the threshold value, which is usually
0.01, are selected.
Although PCA- as well as TD-based unsupervised

FE were successfully applied to a wide range of ge-
nomic analyses, there were two weak points:

• Too small a number of genes were selected to have
no false negatives.

• The histogram of Pi did not fully obey the null
assumption that uℓi and uℓ1i obey the Gaussian
distribution.

In this paper, by fixing these two problems, we have
tried to establish a new method at least comparable
to or even superior to state-of-art methods.

Trials using highly curated data sets
Application to MAQC dataset
Initially, to assess what the problem is, we compared
the performance of PCA-based unsupervised FE with
DESeq2, a state-of-art method, using the MAQC [11]
data set, which has been carefully curated and fre-
quently used for benchmark studies. Figure 2C shows
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Figure 2 PCA applied to MAQC data (A) v1j (B) v2j (C)
Scatter plot of u1i and u2i (D) Contributions of individual
PCs

a scatter plot of genes using u1i and u2i. Figure 2A
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and B show the PC loading v1j and v2j ; v1j represents
the mean gene expression and v2j represents the dif-
ferential expression between universal human reference
(UHR) and brain. Occasionally, this reminds us of the
horizontal and vertical axes of an MAPlot; the horizon-
tal axis of an MAPlot represents the mean expression
of individual genes, typically the mean logarithmic ex-
pression,

1

M

M∑
j=1

log2 xij (15)

whereas the vertical axis of an MAPlot represents the
differential expression between the two classes, typi-
cally the mean logarithmic fold change (LFC),

1

MA

∑
j∈A

log2 xij −
1

MB

∑
j∈B

log2 xij (16)

where MA and MB(= M −MA) are sample numbers
within one of the two classes, A and B, respectively,
and summations are taken within individual classes.
As can be seen in Fig. 2D, which represents the contri-
bution of PC loading, xij can be expressed almost fully
in the 2-dimensional space spanned by the first two
PCs. Thus, PCA can derive, in a fully unsupervised
manner, something that qualitatively corresponds to
an MAPlot (Fig.8), which is usually drawn artificially.
In spite of that, unfortunately, the genes selected by
the adjusted Pi are too small to have no false negatives
(Table 3) and an histogram of Pi is hardly regarded to
obey the null hypothesis; the left panel of Fig. 3 shows
the histogram of 1−Pi, where Pis were computed from
u2i by eq. (6) using σ2 defined as

σ2 =

√
1

N

∑
i

(u2i − ⟨u2i⟩)2 (17)

⟨u2i⟩ =
1

N

∑
i

u2i. (18)

If 1 − Pi is coincident with the null hypothesis; the
histogram of 1−Pi < 1 should have a flat distribution
and that of 1− Pi ∼ 1 should have a sharp peak.

Top ranked genes are coincident with DESeq2
To understand the problem of Pis computed by PCA-
based unsupervsied FE, we compared Pis computed
by PCA-based unsupervised FE with those computed
by DESeq2, a state-of-art method. At first, AUC was
computed to predict the top 1000 genes based on Pi de-
rived with DESeq2 using Pis computed by PCA-based
unsupervised FE; the area under the curve (AUC) was
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Figure 3 Histogram of 1 − Pi of the MAQC data set with
PCA-based unsupervised FE Left: Pis by eq. (6) using SD σ2

directly computed from u2i, right: using SD optimized to obey
the Gaussian distribution as much as possible.

0.97. Next, in contrast, the AUC was computed to pre-
dict the top 1000 genes based on Pi derived with PCA-
based unsupervised FE using Pis computed using DE-
Seq2; the AUC was 0.98. This indicated that the top-
ranked genes were suitably shared between PCA-based
unsupervised FE and DESeq2. Thus, the problem of
PCA-based unsupervised FE is not the genes’ ranking
but the absolute value of Pis.

Optimization of SD

Based on the observations at the end of the subsub-
section, we arrived at optimizing σℓ such that uℓi and
uℓ1i obeyed the Gaussian distribution. Generally, op-
timizing SD to be fitted to the null hypothesis is not
easy. For example, Mudge et al [12] had to assume the
equivalence between Type I and II errors, which we
cannot assume because of an imbalance of numbers
between DEGs and the other genes; typically, DEGs
are expected to be minorities. Next, we decided to em-
ploy an alternative and more empirical approach. To
visualize the idea, we have shown some illustrative ex-
amples. Figure 4 shows a historgam of the variable xi

derived from the Gaussian distribution and outliers. If
we attribute the P -values to the ith variable with xi

Pi = Pχ2

[
>

(xi

σ

)2
]

(19)
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Figure 4 A histogram of Gaussian distribution with outliers

using the SD, σ, directly computed by all points

σ =

√√√√ 1

N

N∑
i=1

(xi − ⟨xi⟩)2 (20)

⟨xi⟩ =
1

N

N∑
i=1

xi (21)

and select outliers associated with adjusted P -values
< 0.01, we cannot select any of the outliers (Table 1);

this is because the SD computed, σ = 1000×1+100×52

1000+100 =
1.75, is larger than that of the Gaussian distribution,
σ = 1, because of outliers. Because Pis computed with
σ = 1.75 is larger than that with σ = 1, it fails to
recognize outliers correctly.

Table 1 Confusion matrix of the Gaussian distribution with
outliers and prediction for xi, the historam for which is given in
Fig. 4.

True not outliers outliers
predicted adjusted P -values > 0.01 1000 100

adjusted P -values ≤ 0.01 0 0

We computed the histogram of 1−Pi, Fig. 5A, which
is far being idealized, Fig. 5C, that should have a con-
stant histogram h(1 − Pi) up to 1 − Pi very close to
1 and has one with a narrow peak near 1 − Pi ∼ 1.
To optimize the SD, we tried to find an optimal SD
such that the histogram for those not recognized as
outliers was as flat as possible, i.e, obeying the null

hypothesis of the Gaussian distribution; we decided
to find the optimal SD that results in the most flat
h(1−Pi) for 1− adjusted Pi less than threshold value
1−adjusted P0 (adjusted P0 should be small enough).
To minimize the SD of binned hi = h(1− Pi), σh,

σh =

√√√√∑
adjusted Pi<adjusted P0

(hi − ⟨hi⟩)2

N(adjusted P0)
(22)

⟨hi⟩ =

∑
adjusted Pi<adjusted P0

hi

N(adjusted P0)
(23)

with respect to σ, where N(adjusted P0) is the number
of is associated with adjusted Pi > adjusted P0, i.e.,
not recognized as outliers and recognized as a part
of the Gaussian distribution. After optimizing σℓ, we
recomputed Pi. Fig. 5A and 5B show the histogram of
1− Pi using σ = 1.75 and optimized SD, respectively;
the latter is closer to an idealized histogram of Pi, Fig.
5C, than the former.
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Figure 5 Histograms of 1 − Pi, h(1− Pi), for (A) Pi

computed by eq. (6) with σ defined in eq. (20), (B) that with
optimized SD, (C) that with true SD, σ = 1.

To validate the effectiveness of the optimization of
SD, we repeated this procedure 100 times. Figure
6 shows the dependence of σh on SD (upper panel)
and the comparison between SD in Eq. (20), opti-
mized SD, and SD computed using is for adjusted Pi <
adjusted P0 (lower panel). In the lower panel, the opti-
mized SD was approximately 1.2, which is much closer
to 1 than 1.75, computed by eq. (20). In addition, the
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Figure 6 Scatter plot of SDs. Upper: σh, defined in eq. (22)
as a function of SD used for computing Pi in eq. (19). Lower:
Scatter plot σ of eq. 20, optimized SD, and SD computed
using is with adjusted Pi < adjusted P0 (recomputed SD).

fact that SD computed using is for adjusted Pi <
adjusted P0, which is expected to correspond to the
Gaussian distribution part in Fig. 4, is almost 1
helps justify our optimization procedure (Fig. 6, lower
panel). The reason why SD = 0 with σh = 0 in the
upper panel of Fig. 6 was not selected as optimal (as
having the smallest σh) is because σ = 0 corresponds
to nothing selected and is thus meaningless. Using Pi

computed by optimized SD, we can discriminate the
outliers almost perfectly (Table 2).

Table 2 Averaged confusion matrix of Gaussian distribution with
outliers and prediction using optimized SD.

True not outliers outliers
predict adjusted P -values > 0.01 1000 0

adjusted P -values ≤ 0.01 0 100

Next, we applied this strategy to the MAQC data
set. Figure 7 shows σh, defined in eq. (22), as a func-
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Figure 7 σh, defined in eq. (22) as a function of SD used for
computing Pi in eq. (19) using MAQC data.

tion of SD to compute Pi in eq. (19) using the MAQC
data set; the optimal SD was 0.05557979. It is close
to the SD recomputed using is with adjusted Pi <
adjusted P0, 0.03871846; moreover, h(1 − Pi) derived
from optimal SD looks more idealized (the right panel
of Fig. 3). Thus, the optimal SD improved PCA-based
unsupervised FE.
Table 3 shows the number of genes selected using

DESeq2 (list of genes available as Additional file 1),
the original PCA-based unsupervised FE, than by us-
ing optimal SD (list of genes available as Additional
file 2). Although the number of genes selected by orig-
inal PCA-based unsupervised FE, 344, is too small
to regard no false negatives, that of genes selected by
PCA-based unsupervised FE with optimal SD, 12252,
is large enough to regard no false negatives. Further-
more, that of DESeq2, 20546, seems to be too large
to have no false positives, because it is unlikely true
that more than half the genes (40933) are distinctly
expressed between the brain and controls.
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Table 3 The number of genes selected with original PCA-based
unsupervised FE, that with optical SD, and DESeq2.

adjusted Pi

> 0.01 ≤ 0.01
PCA based unsupervised FE

original ( without optimal SD) 40589 344
with optimal SD 28681 12252

DESeq2 8789 20546

Less expressed genes are less likely to be DEGs
Figure 8 shows the selected genes in MAPlot. Although
we assumed neither NB distribution nor dispersion re-
lation, eq. (1), the distribution of selected genes in the
MAPlot is reasonable; genes with the same LFC (ver-
tical axis) are less likely selected when associated with
smaller mean expression (horizontal axis). Although
this property is explicitly assumed in DESeq2 with
dispersion relation, eq. (1), PCA-based unsupervised
FE seems to possess the property without assuming
dispersion relation explicitly (see the Discussion sec-
tion). On the other hand, DESeq2 selects too many
genes and is less likely reasonable. This suggests that
PCA-based unsupervised FE with optimized σℓ is a
promising method.

Confirmation using the SEQC dataset
To see if it occurs only occasionally, we repeated all
computations on as many as 13 data sets in SEQC [13],
which is yet another curated data set. Coincidence be-
tween DESeq2 and PCA-based unsupervised FE (Fig.
9), a reasonable number of selected genes (∼ 103, Fig.
10), and a lower opportunity of less expressed genes
to be DEGs (Fig. 11) are also observed, as in the case
of MAQC. In addition to this, although the number of
genes selected by DESeq2 are too large (∼ 104) and
heavily dependent upon sample numbers (∼ 103 for
the smallest sample number ∼ 100), that by PCA-
based unsupervised FE is not and is always ∼ 103,
regardless of sample numbers. Thus, PCA-based un-
supervised FE is seemingly superior to DESeq2.

Biological validation
Based on the above results, PCA-based unsupervised
FE is seemingly better than DESeq2. Nonetheless,
PCA-based unsupervised FE can select a reasonable
number of genes regardless of sample numbers (Fig.
10), and less expressed genes are unlikely to be DEGs
when genes are selected by PCA-based unsupervised
FE with optimized SD (Figs. 8 and 11), even with-
out assuming NB distribution and dispersion relations,
eq. (1), which DESeq2 requires, if the selected genes
are not biological, it is meaningless. To evaluate the
selected genes biologically, we uploaded the genes se-
lected using MAQC to Enrichr. As can be seen in Fig.
12, the genes selected by PCA-based unsupervised FE
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Figure 8 MAPlot with selected genes colored in red Upper:
PCA-based unsupervised FE with optimized SD, lower:
DESeq2.

were better than those selected by DESeq2 (Full list
of enrichment analysis is available in Additional files 1
and 2).
One may still wonder the other state-of-art meth-

ods might be better than PCA-based unsupervised
FE. To deny this possibility, we biologically evaluated
the genes selected for MAQC using edgeR [6] (full list
of enrichment analysis available in Additional file 3),
voom [8] (full list of enrichment analysis available in
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Figure 9 Coincidence of top-ranked genes between DESEq2
and PCA-based unsupervised FE using the SEQC data set
Open circles: AUC when P -values computed by PCA-based
unsupervised FE with optimized SD discriminates top 1000
genes ranked by P -values computed by DESeq2. Open red
triangles: AUC when P -values computed by DESeq2
discriminating top 1000 genes ranked by P -values computed
by PCA-based unsupervised FE with optimized SD.

Additional file 4), and NOISeq [9] (full list of enrich-
ment analysis available in Additional file 5); it is ob-
vious that these three methods are even inferior to
DESeq2 biologically (Fig. 13).

Drug discovery for SARS-CoV-2
Although we have demonstrated that PCA-based un-
supervised FE with optimized SD can outperform
other state-of-art methods in highly curated data, one
might wonder that it is not the case for a realistic
and more noisy case. To check if PCA-based unsu-
pervised FE with optimized SD can outperform DE-
Seq2 in more realistic data sets, we considered the
drug repositioning of SARS-CoV-2, to which we ap-
plied TD-based unsupervised FE [14] and its kernel-
ized version [15].
In our implementation, we employed HOSVD to

obtain the tensor decomposition, eq. (11); because
HOSVD is equivalent to SVD applied to a matrix ob-
tained by unfolding a tensor, we can obtain the iden-
tical uℓi independent of which of PCA or HOSVD is
used; SD used in eq. (12) can be optimized too. Next,
we applied the optimization of SD and could select
3627 genes associated with adjusted P -values of less
than 0.1 (list of genes available as Additional file 6),
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Figure 10 Dependence of the number of DEGs on sample
numbers using the SEQC data set Open circles: the number
of genes selected by PCA-based unsupervised FE with
optimized SD. Open red triangles:the number of genes
selected by DESeq2.

which is a much higher number of genes than 163 genes
than that selected in previous studies [14, 15].

Overlap with human genes known to interact with
SARS-CoV-2 protein
We evaluated the selected 3627 genes based on the
overlap with the human genes known to interact with
SARS-CoV-2, as has been done in previous stud-
ies [14, 15] (Fig. 14). It is obvious that TD-based un-
supervised FE with an optimized SD can outperform
kernel TD-based unsupervised FE, original (without
optimized SD) TD-based unsupervised FE as well as
DESeq2 (list of overlap available in Additional File 7).
Thus, it is indeed an outstanding method.

Drug repositioning
We also tried drug discovery using the genes selected
by TD-based unsupervised FE with optimized SD. See
Table 4 (Full list of drug repositioning available as Ad-
ditional file 6). The first one, imatinib, was once iden-
tified as a promising drug toward COVID-19, although
it was rejected later [16]. The second one, apratoxin A,
was reported to be a promising compound based on its
protein binding affinity [17]. The third and fourth one,
doxycycline, was supposed to be a promising drug to-
ward COVID-19 [18]. The seventh one, trovafloxacin,
was reported to be a promising compound based on its
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Figure 11 MAPlot for SEQC PCA-based unsupervised FE with optimized SD: the first, third, and fifth columns, DESeq2: the
second, forth, and sixth columns. Three character IDs represent platform and sites. Blue: genes associated with adjusted P -values
less than 0.1 but greater than 0.01. Red: genes associated with adjusted P -values less than 0.01.

protein binding affinity [19]. The eighth one, doxoru-
bicin, was also reported to be a promising compound
based on its protein binding affinity [20]. The ninth
one, cisplatin, and the tenth one, carboplatin, were
proposed as a result of drug repositioning [21]. Seven
of the nine compounds identified as the top 10 com-
pounds have been previously reported as drugs toward
SARS-CoV-2.
See Table 5. The first, fourth, and tenth one, estra-

diol, was reported as a promising compound [22]. The
second one, tamoxifen, was reported to inhibit SARS-
CoV-2 infection by suppressing viral entry [23]. The
third one, apratoxin A, has been listed in Table 4, too.
The fifth one, MK-886, was reported to be an inhibitor
of 3CL protease [24], although its efficiency was lim-
ited to 40 %. The sixth one, IFN-alphacon1, was re-
ported to be an inhibitor of SARS-CoV [25] but not

for SARS-CoV-2. The seventh one, arachidonic acid,
was generally expected to inhibit SARS-CoV-2 infec-
tion [26]. The eighth one, arsenic, was also generally
expected to act against the RdRp of coronavirus [27].
The ninth one, metoprolo, was reported to be a promis-
ing drug toward COVID-19 [28]. Thus, all the top 10
compounds were reported to be promising.
On the other hand, for DESeq2, see Table 6 (full list

of drug repositioning is available in Additional file 8),
The use of the second and third one, dexamethasone,
resulted in lower 28-day mortality among those who re-
ceived either invasive mechanical ventilation or oxygen
alone at randomization but not among those receiving
no respiratory support. [29], The seventh one, met-
formin, suppressed SARS-CoV-2 in cell culture [30].
The eighth one, etanercept, significantly decreased the
risk of developing COVID-19 in patients with rheuma-
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Figure 12 Enrichment analysis of the selected genes, whose
numbers in Table 3 P -values are adjusted P -values (based
upon “Jensen Tissues” category in Enrichr). Seven terms
associated with − log10 P = 350 are linked with ∞, since
P = 0.

toid arthritis or spondyloarthropathies [31]. The tenth
one, lipopolysaccharide, is not a compound but a bac-
terial protein reported to bind to the SARS-CoV-2
spike protein [32].
See Table 7. The first and fourth one, resveratrol, in-

hibits HCoV-229E and SARS-CoV-2 coronavirus repli-
cation in vitro [33]. The second, third, and fifth one,
carboplatin, was proposed as a result of drug repo-
sitioning [21]. The seventh one, lipopolysaccharide, is
listed in Table 6, too.
The proposed method can predict effective drugs for

COVID-19 based on gene expression analysis, at least,
comparatively to DESeq2. Nevertheless, DESeq2 has
less significance and has a tendency to list the same
compounds multiple times. The proposed method can
identify more convincing and diverse candidate com-
pounds than DESeq2.
Based on the overlap between human genes known to

interact with SARS-CoV-2 proteins and selected genes
(Fig. 14) and from the point of drug repositioning, TD-
based unsupervised FE with optimized SD is, at least,
competitive with DESeq2.

Comparison of methods using multi-organ
measurements with multiple drug treatments
One might wonder if the proposed methods, TD- and
PCA-based unsupervised FE with optimized SD, are

applicable to a more complicated set-up. To investigate
this point, we checked the case where multiple drugs
are applied to mice whose gene expression of multiple
tissues are measured, to which we applied TD-based
unsupervised FE [34].

Enrichment of tissue-specific genes
In the previous study [34], although we applied TD-
based unsupervised FE to gene expression profiles,
there existed some problems. First of all, the number of
genes selected was too small to have no false negatives.
Using the optimized SD, the number of selected genes
increased (Table 8; for more details, e.g., the defini-
tion of the four gene sets, neurons and testis, muscle,
gastrointestine 1 and 2, see the previous study [34].
This topic has not been discussed herein as it is not
directly related to the comparison of the performance
between the original TD-based unsupervised FE and
that with the optimised SD. The full list of the se-
lected genes is available in Additional file 9). Although
an increased number of genes is meaningless if the bi-
ological reliability is less, the biological reliability of
selected genes is also improved (lower panel of Fig. 15,
which corresponds to a present study and is associated
with a greater number of cell lines and tissue specificity
than that in the upper panel of Fig. 15, which corre-
sponds to a previous study). Thus, the employment
of optimized SD is also effective to a more complicated
data set than simple pairwise comparisons between the
treated and control samples investigated in the previ-
ous sections.

Coincidence with drug treatment
We have also performed additional validation of the
genes selected by TD-based unsupervised FE with
optimized SD associated with adjusted P -values less
than 0.1 (Table 8, full list is available in Additional
files 10–13). We have uploaded selected genes to En-
richr [36] and evaluated the overlaps between the genes
selected and those whose expression wasaltered with
the treatment of the 15 drugs used in this study.
Then, we found that all four gene sets in Table 8
had a significant overlap with the genes whose expres-
sion was altered with the treatment of 5 of the drugs
(acetaminophen, cisplatin, clozapine, doxycycline, and
olanzapine) in DrugMatrix, which does not include
other drug treatments (Supplementary material). This
suggests that TD-based unsupervised FE with optimal
SD can correctly recognize drug treatments based on
gene expression; this was impossible in the previous
study [34] because of the very small number of genes
selected (Table 8). Thus, considering the optimization
of SD enables TD-based unsupervised FE to recognize
a greater number of biologically reliable genes than the
original TD-based unsupervised FE, which did not in-
clude the optimization of SD.
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Table 4 Drug perturbations from GEO down

Rank Term Overlap P-value Adjusted P-value Odds Ratio
1 imatinib (glivec) 123596 human GSE12211 sample 2518 316/442 7.81E-137 7.06E-134 12.3
2 apratoxin A 6326668 human GSE2742 sample 3071 279/389 3.77E-121 1.57E-118 12.3
3 doxycycline DB00254 human GSE2624 sample 3074 294/425 5.22E-121 1.57E-118 10.9
4 doxycycline DB00254 human GSE2624 sample 3077 278/391 3.83E-119 8.64E-117 11.9
5 grepafloxacin 72474 human GSE9166 sample 2627 320/495 5.62E-119 1.02E-116 8.96
6 clinafloxacin 60063 human GSE9166 sample 2625 309/470 8.04E-118 1.21E-115 9.38
7 trovafloxacin 62959 human GSE9166 sample 2629 302/459 3.05E-115 3.94E-113 9.38
8 doxorubicin, 2xEC50, 5 d 31703 human GSE6930 sample 3265 314/493 4.76E-114 5.37E-112 8.57
9 cisplatin DB00515 human GSE6410 sample 2532 239/315 1.06E-112 1.07E-110 15.1
10 carboplatin DB00958 human GSE7035 sample 3060 284/422 4.57E-112 4.13E-110 9.99

Table 5 Drug perturbations from GEO up

Rank Term Overlap P-value Adjusted P-value Odds Ratio
1 estradiol 5757 human GSE4668 sample 3063 276/367 1.26E-128 1.14E-125 14.74
2 tamoxifen DB00675 human GSE4025 sample 2820 271/361 6.30E-126 2.85E-123 14.61
3 apratoxin A 6326668 human GSE2742 sample 3068 278/389 4.61E-120 1.12E-117 12.16
4 estradiol DB00783 human GSE4668 sample 2727 261/350 4.96E-120 1.12E-117 14.19
5 MK-886 CID 3651377 human GSE3202 sample 3193 268/368 5.29E-119 9.59E-117 12.98
6 IFN-alphacon1 DB05258 human GSE5542 sample 2474 242/313 2.21E-117 3.34E-115 16.41
7 Arachidonic acid DB04557 human GSE3737 sample 3171 277/395 2.80E-116 3.63E-114 11.39
8 ARSENIC 5359596 human GSE6907 sample 3529 276/394 1.15E-115 1.30E-113 11.35
9 metoprolol DB00264 human GSE3356 sample 2786 306/469 2.67E-115 2.68E-113 9.16
10 estradiol 5757 human GSE4668 sample 3062 245/325 1.92E-114 1.74E-112 14.75

Table 6 Drug perturbations from GEO down for A549 by DESeq2

Rank Term Overlap P-value Adjusted P-value Odds Ratio
1 PLX4032 DB05238 human GSE24862 sample 2568 65/318 1.59E-29 1.42E-26 7.06
2 dexamethasone DB01234 human GSE34313 sample 2714 51/297 7.68E-20 3.44E-17 5.59
3 dexamethasone DB01234 human GSE54608 sample 3093 52/322 5.45E-19 1.63E-16 5.19
4 VX 39793 human GSE33606 sample 3376 54/367 8.17E-18 1.58E-15 4.65
5 PLX4032 DB05238 human GSE24862 sample 2570 56/393 8.78E-18 1.58E-15 4.49
6 formoterol DB00983 human GSE30242 sample 2631 49/315 2.83E-17 4.23E-15 4.94
7 metformin DB00331 human GSE33612 sample 2483 50/343 2.07E-16 2.65E-14 4.58
8 etanercept DB00005 human GSE41663 sample 2605 45/322 3.29E-14 3.69E-12 4.33
9 cisplatin DB00515 human GSE47856 sample 3145 40/267 8.93E-14 8.91E-12 4.68
10 Lipopolysaccharide 11970143 human GSE5504 sample 3486 35/224 9.25E-13 8.30E-11 4.89

Table 7 Drug perturbations from GEO up for A549 by DESeq2

Rank Term Overlap P-value Adjusted P-value Odds Ratio
1 resveratrol DB02709 human GSE25412 sample 3500 70/250 2.90E-41 2.63E-38 10.81
2 carboplatin (30 h) 10339178 human GSE13525 sample 3031 85/423 7.47E-38 3.38E-35 7.09
3 carboplatin (36 h) 10339178 human GSE13525 sample 3032 74/392 3.93E-31 1.19E-28 6.46
4 resveratrol DB02709 human GSE25412 sample 3501 51/194 7.59E-29 1.72E-26 9.66
5 Carboplatin DB00958 human GSE13525 sample 3089 65/357 1.69E-26 3.07E-24 6.11
6 NSC319726 5351307 human GSE35972 sample 2479 59/309 2.99E-25 4.52E-23 6.43
7 Lipopolysaccharide 11970143 human GSE5504 sample 3483 72/468 1.29E-24 1.67E-22 5.01
8 dasatinib DB01254 human GSE59357 sample 3306 57/298 1.81E-24 1.98E-22 6.43
9 thapsigargin 446378 human GSE19519 sample 3236 66/399 1.97E-24 1.98E-22 5.43
10 Y15 23627197 human GSE43452 sample 2554 64/390 1.59E-23 1.44E-21 5.37
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Figure 13 Enrichment analysis for MAQC with other methods in Enrichr (A) KEGG (B) GO BP (C) Human gene atlas. Numbers
in (B) correspond to 1. “axonogenesis,” 2. “axon guidance,” 3. “axon development,” 4.“regulation of axonogenesis,” 5. “synapse
organization,” 6. “modulation of chemical synaptic transmission,” 7. “positive regulation of axonogenesis,” 8.“modulation of
excitatory postsynaptic potential,” 9. “regulation of axon extension,” 10. “positive regulation of synaptic transmission,” 11. “axon
extension,” 12. “negative regulation of axonogenesis,” 13. “chemical synaptic transmission,” 14. “signal release from synapse,” 15.
“synapse assembly,” 16. “regulation of neuronal synaptic plasticity,” 17. “positive regulation of axonextension,” 18. “regulation of
trans-synaptic signaling,” 19. “positive regulation of excitatory postsynaptic potential,” 20. “negative regulation of axon extension,”
21. “regulation of synapse assembly,” 22.“retrograde axonal transport,” 23. “synaptic vesicle endocytosis,” 24.“synaptic
transmission, GABAergic,” 25. “synaptic transmission, glutamatergic,” 26.“regulation of long-term synaptic potentiation,” 27.
“regulation of axon extension involved in axon guidance,” 28. “synaptic membrane adhesion,” 29. “regulation of synaptic
transmission, glutamatergic,” 30. “regulation of postsynaptic neurotransmitter receptor activity.” P -values are adjusted P -values.

TD-based unsupervised FE [34] TD-based unsupervised FE with optimized SD
adjusted P -values ≤ 0.01 ≤ 0.01 ≤ 0.1

Neuron 18 356 472
Muscle 51 547 663

Gastrointestine 1 97 1026 1322
Gastrointestine 2 128 574 722

Table 8 Comparison of selected genes between TD-based unsupervised FE [34] and optimal SD with multi-organ data sets

Discussion

In this study, we have introduced the optimization of

SD to TD- and PCA-based unsupervised FE and have

improved their performance by increasing the identi-

fied DEGs associated with greater biological reliabil-

ity. One of the striking features is that DEGs with

lesser gene expression are less likely recognized even

with the same LFC, if the genes are selected by TD-

and PCA-based unsupervised FE with optimized SD.

In DESeq2, the tendency that less expressed genes are

hardly recognized as DEGs is artificially introduced by

assuming dispersion relation, eq. (1). Nevertheless, in

PCA- and TD-based unsupervised FE, it is automati-

cally introduced. Generally, there exists a relationship

between difference, ∆ of two variables, x and y, and

LFC as

∆ ≡ x− y (24)

LFC ≡ log2
x

y
= log2

(
1 +

∆

y

)
(25)

Then

∆ = y(2LFC − 1) (26)

Because v2j (Fig. 2B) corresponds to ∆, if DEGs are
identified using u2i that corresponds to v2j as in TD-
and PCA-based unsupervised FE (see eqs. (6) and
(12)), DEGs associated with the same LFC are less
likely selected for the smaller y that corresponds to µ.
This results in the distribution of DEGs in MAPlot
(Fig. 8), where genes with the same LFC (vertical
axis) are less likely identified as DEGs with smaller
gene expression (horizontal axis). Figure 16 shows the
MAPlot drawn using two independent random vari-
ables obeying the same positive uniform distribution;
the red colored region associated with |∆| larger than
some threshold values qualitatively represents the ten-
dency that indicates that a smaller x+ y is less likely
selected even with the same LFC, log2

x
y . Thus, TD-

and PCA-based unsupervised FE can introduce the
tendency that genes with less expression are less likely
to be DEGs, even with the same amount of LFC more
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Figure 14 P -values computed by Fishers’ exact test to
evaluate the overlap between human genes known to
interact with SARS-Cov-2 proteins and genes selected by
various methods. DESeq2 is only for A549 cell lines.

naturally than DESeq2, which has to manually intro-
duce a dispersion relation, eq. (1).
In addition to this, although DESeq2 assumes NB

distribution that does not have any rationalization
other than that it takes only positive values and has a
tunable mean as well as variance simultaneously, TD-
and PCA-based unsupervised FE assume only that uℓi

obeys the Gaussian distribution (eqs. (6) and (12)),
which is more reasonable because Gaussian distribu-
tions can generally appear when independent random
variables are summed up. Actually, NOISeq does not
assume NB distribution as well but achieves compara-
tive performance with DESeq2 (Fig. 13). In this sense,
TD- and PCA-based unsupervised FE can realize DEG
distribution in an MAPlot more naturally than DE-
Seq2.
Another remarkable point of TD- and PCA-based

unsupervised FE with optimized SD is that it does
not have to screen for selected genes by LFC after the
genes are selected using P -values. As can be seen in
Fig. 10, state-of-art methods, including DESeq2, often
identify too many DEGs. In these circumstances, LFC
is often used to reduce the number of DEGs. Nev-
ertheless, Stupnikov et al [37] found that the coinci-
dence of the selected genes among the various state-of-
art methods drastically decreases if the genes selected
based on P -values are further screened with LFC. In
this sense, TD- and PCA-based unsupervised FE with
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Figure 15 Enrichment analysis of cell and tissue specificity
with Metascape [35]. Upper: original TD-based unsupervised
FE (using genes with adjusted P ≤ 0.01 in Table ??), lower;
the present study with optimized SD (using genes with
adjusted P ≤ 0.1 in Table 8).

optimized SD are more promising methods than state-
of-art methods that need screening by LFC to yield a
reasonable number of DEGs.
Yet another advantage is that TD- and PCA-based

unsupervised FE have already been applied to a wide
range of problems. Not only can optimized SD improve
the performance of PCA- and TD-based unsupervised
FE, as can be seen in Figs. 14 and 15, but also the al-
teration is limited to the last stage, i.e., P -value com-
putation, eqs. (6) and (12). Thus, the optimized SD is
expected to improve the performance in a wide range
of problems, to which TD- and PCA-based unsuper-
vised FE have been applied.

Conclusions
In this study, we optimized SD to improve TD- and
PCA-based unsupervised FE. As a result, not only the
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Figure 16 “MAPlot” using two independent variables, x and
y, drawn from uniform distribution ∈ [0, 1]. Red dots are
associated with |x− y| > 0.5.

obtained DEGs increased and became reasonable in
number but also the histogram of 1-P became more
reliable, i.e., more coincident with the null hypothesis
that SVV and PC obey Gaussian distribution. In ad-
dition to this, TD- and PCA-based unsupervised FE
provide reliable distribution of DEGs in MAPlot, i.e.,
less expressed genes are less likely selected as DEGs
even if they are associated with the same LFC; this
property was implemented manually by assuming dis-
persion relation, eq.(1), in DESeq2. The biological re-
liability of the selected genes is also much better by
this method than by other state-of-art methods. These
points suggest that TD- and PCA-based unsupervised
FE are superior than state-of-art methods in terms of
achieving better performance with less assumption.

Methods
Gene expression profiles

MAQC

Seven human brain expression profiles were down-
loaded from SRA [38] (ID SRX016359), and seven
UHR expression profiles were downloaded from SRA
(ID SRX016367). Fourteen FASTQ files were mapped
to the hg38 human genome using rapmap [39]. htseq-
count [40] was used to convert the obtained bam
files to count data files using the gtf file taken from
ftp://ftp.ensembl.org/pub/release-105/gtf/ homo sapiens/Homo sapiens.GRCh38.105.gtf.gz

SEQC
SEQC [13] were obtained from bioconductor [41] as an
experimental package, seqc. It includes thirteen pro-
files shown in Fig. 11. For more details, see Vignettes
in the seqc experimental package.

The histogram composed of Gaussian distribution and
outliers in Fig. 4
The Gaussian part is one thousand values drawn from
Gaussian distribution with zero mean and an SD of
one. Outliers are 100 values, which are equal to 5.

PCA-based unsupervised FE applied
MAQC
Genes not expressed in any of the 14 samples have been
excluded. Four rows having annotations “ no feature”,
“ ambiguous”, “ not aligned”, and “ alignment not unique”
have also been excluded. As a result, we got xij ∈
R40933×14. The xij was processed as described in the
main text.

SEQC
Regardless of which of the 13 data sets was considered,
only those genes expressed in all samples were consid-
ered. An individual data set has a distinct number of
rows (genes) and columns (samples). The xij obtained
from an individual data set was processed as described
in the main text.

SARS-CoV-2
All processes used were exactly the same as those de-
scribed in the previous study [14]. After obtaining u5i,
the SD was optimized as described in the main text.

Multi-organ
All processes used were exactly the same as those de-
scribed in the previous study [34]. After getting uℓi,
the SD was optimized as described in the main text.

Optimization of SD
At first, a histogram of 1 − Pi was computed using
hclust function in R with the “break=100” option.
Then, an SD of the binned histogram, hc$count as-
sociated with hc$breaks less than 1-P whose adjusted
P -value was less than threshold value P0, was mini-
mized using optim function in R. The R code has been
provided in additional file 14 to show how to optimize
SD in an individual data set.

Coincidence between PCA-based unsupervised FE and
DESeq2
The coincidence between PCA-based unsupervised FE
and DESeq2 was evaluated by AUC (Fig. 9) as follows.
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At first, the top 1000 genes based on P -values com-
puted by DESeq2 were regarded positive and the re-
maining genes were regarded negative. Then, P -values
computed by PCA-based unsupervised FE were used
to predict positive genes. Using this result, AUC was
computed. Next, on the contrary, the top 1000 genes
based on P -values computed by PCA-based unsuper-
vised FE were regarded positive and the remaining
genes were negatives. Then, P -values computed by
DESeq2 were used to predict positive genes. Using this
result, AUC was computed.

Enrichment analyses
Enrichment analyses were performed using either
Metascape [35] or Enrichr [36] by uploading gene sym-
bols. If the gene ID was not a gene symbol in individual
data sets, the gene ID conversion tool in Database for
Annotation, Visualization, and Integrated Discovery
(DAVID) [42, 43] was used for conversion.

DEG identification of SARS-CoV-2 data by DESeq2
We used author-provided adjusted P -values and LFC
(in supplementary data in their paper) to identify
DEGs. If we considered only adjusted P -values to iden-
tify DEGs, DESeq2 would identify too many genes
(Table 9). Thus, we had to consider LFC as well. Ta-
ble 9 shows the number of DEGs used in this study.
The evaluation of the overlap with human genes known
to interact with SARS-CoV-2 proteins is available in
Supplementary materials. The best one, that for the
ACE2-expressed A549 cell line, is also included in the
main text as Fig. 14.
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Cell lines adjusted P -values ≤ 0.01 alternative conditions the number of DEG2
Calu3 16432 adjusted P -value ≤ 0.05, LFC> 2.0 340
NHBE 327 adjusted P -value ≤ 0.05, LFC> 0.5 171
A549

MOI 0.2 15852 adjusted P -value ≤ 0.05, LFC> 2.0 176
MOI 2.0 7431 adjusted P -value ≤ 0.05, LFC> 2.0 547

ACE2 expressed 7509 adjusted P -value ≤ 0.05, LFC> 1.0 756
Table 9 The number of DEGs in SARS-CoV-2 study by DESeq2 (based on author-provided supplementary material)
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Additional file 1 — Genes selected by DESeq2 for MAQC

Genes associated with adjusted P -values less than 0.1 using DESeq2 and

enrichment analysis associated with them.

Additional file 2 — Genes selected by PCA-based unsupervised FE with

optimized SD for MAQC

Genes associated with adjusted P -values less than 0.1 using PCA-based

unsupervised FE with optimized SD and enrichment analysis associated

with them.

Additional file 3 — Genes selected by EdgeR for MAQC

Genes associated with adjusted P -values less than 0.1 using EdgeR and

enrichment analysis associated with them.

Additional file 4 — Genes selected by voom for MAQC

Genes associated with adjusted P -values less than 0.1 using voom and

enrichment analysis associated with them.

Additional file 5 — Genes selected by NOISeq for MAQC

Genes associated with adjusted P -values less than 0.1 using NOISeq and

enrichment analysis associated with them.

Additional file 6 — Genes selected by TD-based unsupervised FE with

optimized SD for SARS-CoV-2

Genes associated with adjusted P -values less than 0.1 by TD-based

unsupervised FE with optimized SD for SARS-CoV-2 and drug

repositioning associated with the genes.

Additional file 7 — Overlap with human genes known to interact with

SARS-CoV-2 protein by DESeq2

Overlap with human genes known to interact with SARS-CoV-2 proteins by

DESeq2.

Additional file 8 — Genes selected for SARS-CoV-2 infected A549 cell lines

by DESeq2

Genes selected by DESeq2, for A549 cell lines, shown in Table 14, and drug

repositioning.

Additional file 9 — Genes selected by TD-based unsupervised FE with

optimized SD for multi-organ study

Genes selected by TD-based unsupervised FE with optimized SD for a

multi-organ study.

Additional file 10 — Drug repositioning for neuron and tesis gene sets

Drug repositioning for neuron and tesis gene sets.

Additional file 11 — Drug repositioning for muscle gene sets

Drug repositioning for muscle gene sets.

Additional file 12 — Drug repositioning for gast 1 gene sets

Drug repositioning for gast 1 gene sets.

Additional file 13 — Drug repositioning for gast 2 gene sets

Drug repositioning for gast 2 gene sets.

Additional file 14 — Source code

R source code to perform PCA- and TD-based unsupervised FE with

optimized SD.
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