Taguchi and Turki

RESEARCH

⁴Tensor decomposition- and principal component ⁵analysis-based unsupervised feature extraction to ⁶select more reasonable differentially expressed ¹¹genes: Optimization of standard deviation versus ¹²state-of-art methods

¹³₁₅Y-h. Taguchi^{1*} and Turki Turki²

Abstract

Background: Tensor decomposition- and principal component analysis-based unsupervised feature extraction were proposed almost 5 and 10 years ago, respectively; although these methods have been successfully applied to a wide range of genome analyses, including drug repositioning, biomarker identification, and disease-causing genes' identification, some fundamental problems have been identified: the number of genes identified was too small to assume that there were no false negatives, and the histogram of *P*-values derived was not fully coincident with the null hypothesis that principal component and singular value vectors follow the Gaussian distribution.

Results: Optimizing the standard deviation such that the histogram of P-values is as much as possible coincident with the null hypothesis results in an increase in the number and biological reliability of the selected genes.

Conclusions:

Tensor decomposition- and principal component analysis-based unsupervised feature extraction are perhaps better than state-of-art methods in regard to predicting differentially expressed genes because they achieve the desired property that the less expressed differentially expressed genes should be less likely selected or even associated with the same amount of logarithmic fold change, although they assume neither negative binomial distribution nor dispersion relation, which is usually assumed in state-of-art methods.

Keywords: tensor decomposition; principal component analysis; feature extraction; standard deviation; differentially expressed genes

Taguchi and Turki

13

14

36

¹Background

²Identifying differentially expressed genes (DEGs) on ³the basis of comparative analyses [1, 2] has always ⁴been difficult. This challenge is attributable to mul-⁵tiple reasons; however, the primary reason is it be-⁶ing a large p small n problem. In a large p small nproblem, it is difficult to select features based on statistical criteria because a small number of samples ${}^{0}(=n)$ have a tendency to lead to low significance; ¹⁰ in reality, the obtained *P*-values must be heavily cor-¹¹rected by considering a large number of features (= p). ¹²This makes it difficult to find features with signifi-13 cance. To resolve this difficulty, many methods spe-¹⁴cific to gene expression analysis have been proposed. ¹⁵For example, significant analysis microarray (SAM) [3] adds a small amount of constancy to gene expression, thereby avoiding the misidentification of low expressed ^{1°} genes as DEGs. Limma [4] applied a Bayesian strategy to logarithmic gene expression. After high-throughput ²⁰ sequencing (HTS) became popular, *P*-values are at-²¹t-ibuted to individual many provider that many an ²¹tributed to individual genes, assuming that gene ex-²² pression follows a negative binomial (NB) distribution [5, 6], which is one of the simplest positively valued distributions with a tunable mean and variance. In 25 addition to this, the so-called dispersion relation [5, 6], 27

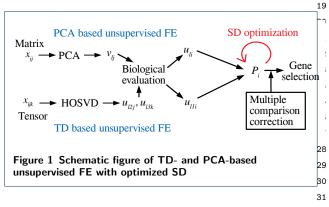
$$\frac{27}{28} \qquad \frac{\alpha(\mu)}{\mu^2} = \alpha_0 + \frac{\alpha_1}{\mu},$$
(1)

has also been assumed, where μ and α are the mean α and variance, respectively, and α_0 and α_1 are regres- $_{33}$ sion coefficients; to our knowledge, eq. (1) is purely em- $_{\rm 34} {\rm pirical}$ and lacks rationalization. Despite these difficul-₃₅ties, many proposed state-of-art methods [5, 6, 7, 8, 9] 36 have been widely employed and used in various stud-37 ies.

38 Contrary to these empirical methods, we proposed ₃₉tensor decomposition (TD)- and principal component 40 analysis (PCA)-based unsupervised feature extraction $_{41}$ (FE) [10] that only assumes that principal component $_{42}(\mathrm{PC})$ and singular value vectors (SVVs) obey Gaussian 43 distribution. Despite this simplicity, TD- and PCA-⁴⁴based unsupervised FE have been successfully applied 45 to a wide range of genomic analyses. However, there $_{46}$ have been two problems: 1. The histogram of the P-47 values is not fully coincident with the null hypothesis ₄₈that PC and SVV obey Gaussian distribution and 2. 49 The number of genes selected is too small to have no $_{50}$ false negatives. In this paper, we have shown that the

51*Correspondence: tag@granular.com

55


optimization of standard deviation (SD) in Gaussian¹ distribution can resolve these problems.

We tried optimizing SD for PCA-based unsuper-³ vised FE and applied this to two highly curated data⁴ sets—MAQC and SEQC. Then, we tested the optimization of SD for TD-based unsupervised FE and applied it to two more realistic problems: 1. drug repositioning for SARS-CoV-2 and 2. the analysis of gene expression of multiple organs treated with multiple drugs, to which TD-based unsupervised FE without¹⁰ SD optimization was already applied. 12

Results

ı

Outlines of TD and PCA based unsupervised FE 15 In this section, we have briefly explained the algorithm₁₆ of PCA- and TD-based unsupervised FE (Fig. 1) be-17 fore explaining how we could improve them. When₁₈

a gene expression profile is formatted as a matrix,³² $x_{ij} \in \mathbb{R}^{N \times M}$, which represents the gene expression of³³ the *i*th gene of the *j*th sample, we use PCA-based un- 34 supervised FE. After standardizing x_{ii} as 35

$$\sum x_{ij} = 0 \qquad (2)_{23}^{37}$$

$$\sum_{i}^{i} x_{ij}^{2} = N, \qquad (3)_{40}^{39}$$

a gram matrix $\sum_{j} x_{ij} x_{i'j} \in \mathbb{R}^{N \times N}$ was diagonalized⁴² 42 44

$$\sum_{i'} \left(\sum_j x_{ij} x_{i'j} \right) u_{\ell i'} = \lambda_{\ell} u_{\ell i} \tag{4}_{47}^{46}$$

49 where $u_{\ell i} \in \mathbb{R}^{N \times N}$ is the ℓ th PC score attributed to $\frac{1}{50}$ gene *i*. The ℓ th PC loading attributed to the *j*th sam-₅₁ ple can be computed as 52

$$\mathbf{x}_{t} = \sum \mathbf{x}_{t} \cdot \mathbf{y}_{t} \in \mathbb{R}^{M \times M}$$

$$\tag{5)54}$$

$$\mathcal{Y}_{\ell j} = \sum_{i} x_{ij} u_{\ell i} \in \mathbb{R}^{m \times m} \,. \tag{5)54}$$

⁵²¹Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, 53112-8551 Tokyo, JAPAN

⁵⁴Full list of author information is available at the end of the article $\mathbf{z}_{\mathbf{z}}^{\dagger}$ Equal contributor

Taguchi and Turki

21 22

23

¹After identifying $v_{\ell j}$, which is associated with a desired ²property, e.g., the district between control and treated ³samples, we attributed the *P*-values to the gene *i* using ⁴the corresponding PC score, $u_{\ell i}$, as

$$P_{i} = P_{\chi^{2}} \left[> \left(\frac{u_{\ell i}}{\sigma_{\ell}} \right)^{2} \right]$$

$$(6)$$

assuming that $u_{\ell i}$ obeys the Gaussian distribution, where $P_{\chi^2}[>x]$ is cumulative χ^2 distribution when an argument larger than x and σ_{ℓ} is the SD,

$$\int_{16}^{14} \sigma_{\ell} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (u_{\ell i} - \langle u_{\ell i} \rangle_{i})^{2}}$$
(7)

16

²⁰ When we have gene expression that is formatted as a ²¹tensor, $x_{ijk} \in \mathbb{R}^{N \times M \times K}$, for the expression of the *i*th ²²gene at *j*th sample with the *k*th condition, we used ²³TD-based unsupervised FE. After standardizing x_{ijk} ²⁴as ²⁵

$$\sum_{i=1}^{26} \sum_{i} x_{ijk} = 0 (9)$$

$$\sum_{i=1}^{28} \sum_{i} x_{ijk}^{2} = N \tag{10}$$

³¹Tucker decomposition of x_{ijk}

$$x_{ijk} = \sum_{\ell_1=1}^{N} \sum_{\ell_2=1}^{M} \sum_{\ell_3=1}^{K} G(\ell_1 \ell_2 \ell_3) u_{\ell_1 i} u_{\ell_2 j} u_{\ell_3 k}$$
(11)

³⁷can be computed with a higher order singular value ³⁸decomposition (HOSVD) [10]. After identifying which ³⁹ $u_{\ell_2 j} \in \mathbb{R}^{M \times M}$ and $u_{\ell_3 k} \in \mathbb{R}^{K \times K}$ are coincident with ⁴⁰the target property, e.g., distinction between control ⁴¹and treated samples specifically under kth experimen-⁴²tal condition, we try to find $u_{\ell i} \in \mathbb{R}^{N \times N}$ associated ⁴³with $G(\ell_1 \ell_2 \ell_3) \in \mathbb{R}^{N \times M \times K}$ having the largest abso-⁴⁴lute value. Then, the *P*-value is attributed to the *i*th ⁴⁵gene as

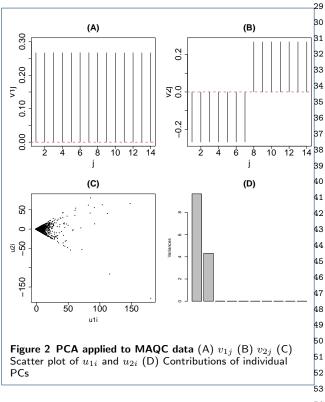
 $\begin{array}{l} {}^{46} \\ {}^{47} \\ {}^{48} \\ {}^{49} \end{array} \qquad P_i = P_{\chi^2} \left[> \left(\frac{u_{\ell_1 i}}{\sigma_{\ell_1}} \right)^2 \right].$ (12)

50
by also assuming that $u_{\ell_1 i}$ obeys the Gaussian distri
51
bution and

52

⁵³
⁵⁴
⁵⁵
$$\sigma_{\ell_1} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (u_{\ell_1 i} - \langle u_{\ell_1 i} \rangle_i)^2}$$
 (13)

$$\langle u_{\ell_1 i} \rangle_i = \frac{1}{N} \sum_{i=1}^N u_{\ell_1 i}.$$
 (14)¹₂


For both PCA- and TD-based unsupervised FE, P_i^{4} is corrected with the Benjamini-Hochberg (BH) criterion [10]; further, the *i*th genes associated with adjusted P_i less than the threshold value, which is usually 0.01, are selected.

Although PCA- as well as TD-based unsupervised⁹ FE were successfully applied to a wide range of ge-¹⁰ nomic analyses, there were two weak points:

- Too small a number of genes were selected to have 12 no false negatives.
- The histogram of P_i did not fully obey the null¹⁴ assumption that $u_{\ell i}$ and $u_{\ell_1 i}$ obey the Gaussian¹⁶ distribution.

In this paper, by fixing these two problems, we have 18 tried to establish a new method at least comparable 19 to or even superior to state-of-art methods.

Initially, to assess what the problem 18, we compared $_{24}$ the performance of PCA-based unsupervised FE with $_{25}$ DESeq2, a state-of-art method, using the MAQC $[11]_{26}$ data set, which has been carefully curated and fre- $_{27}$ quently used for benchmark studies. Figure 2C shows $_{28}$

a scatter plot of genes using u_{1i} and u_{2i} . Figure 2A⁵⁴₅₅

Taguchi and Turki

24

25

26

36

37

¹and B show the PC loading v_{1i} and v_{2i} ; v_{1i} represents ²the mean gene expression and v_{2j} represents the dif-³ferential expression between universal human reference ⁴(UHR) and brain. Occasionally, this reminds us of the ⁵horizontal and vertical axes of an MAPlot; the horizon-⁶tal axis of an MAPlot represents the mean expression ⁷of individual genes, typically the mean logarithmic ex-⁸pression,

14whereas the vertical axis of an MAPlot represents the ¹⁵differential expression between the two classes, typi-16 cally the mean logarithmic fold change (LFC),

$$\frac{1}{18} \qquad \frac{1}{M_A} \sum_{j \in A} \log_2 x_{ij} - \frac{1}{M_B} \sum_{j \in B} \log_2 x_{ij}$$
(16)

²¹where M_A and $M_B (= M - M_A)$ are sample numbers ²²within one of the two classes, A and B, respectively, ²³and summations are taken within individual classes. $^{24}\mathrm{As}$ can be seen in Fig. 2D, which represents the contri-²⁵ bution of PC loading, x_{ij} can be expressed almost fully $^{26}\mathrm{in}$ the 2-dimensional space spanned by the first two ²⁷PCs. Thus, PCA can derive, in a fully unsupervised $^{28}\mathrm{manner},$ something that qualitatively corresponds to ²⁹an MAPlot (Fig.8), which is usually drawn artificially. $^{30}\mathrm{In}$ spite of that, unfortunately, the genes selected by ³¹the adjusted P_i are too small to have no false negatives ³²(Table 3) and an histogram of P_i is hardly regarded to ³³obey the null hypothesis; the left panel of Fig. 3 shows ³⁴the histogram of $1 - P_i$, where P_i s were computed from ${}^{35}u_{2i}$ by eq. (6) using σ_2 defined as 36

37

3

17

$$\sigma_{2} = \sqrt{\frac{1}{N} \sum_{i} (u_{2i} - \langle u_{2i} \rangle)^{2}}$$

⁴³If $1 - P_i$ is coincident with the null hypothesis; the ⁴⁴histogram of $1 - P_i < 1$ should have a flat distribution ⁴⁵ and that of $1 - P_i \sim 1$ should have a sharp peak.

⁴⁷ Top ranked genes are coincident with DESeq2

⁴⁸To understand the problem of P_i s computed by PCA-⁴⁹ based unsupervsied FE, we compared P_i s computed ⁵⁰by PCA-based unsupervised FE with those computed ⁵¹by DESeq2, a state-of-art method. At first, AUC was ⁵² computed to predict the top 1000 genes based on P_i de-⁵³rived with DESeq2 using P_i s computed by PCA-based ⁵⁴unsupervised FE; the area under the curve (AUC) was 55

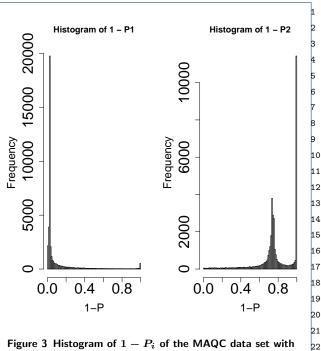
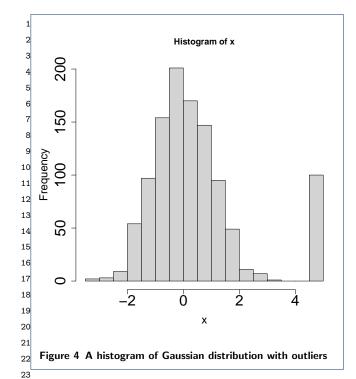


Figure 3 Histogram of $1 - P_i$ of the MAQC data set with **PCA-based unsupervised FE** Left: P_i s by eq. (6) using SD σ_2 23 directly computed from u_{2i} , right: using SD optimized to obey the Gaussian distribution as much as possible.

27 0.97. Next, in contrast, the AUC was computed to pre-_{28} dict the top 1000 genes based on P_i derived with PCA-29 based unsupervised FE using P_i s computed using DE-₃₀ Seq2; the AUC was 0.98. This indicated that the top- $_{31}$ ranked genes were suitably shared between PCA-based₃₂ unsupervised FE and DESeq2. Thus, the problem of₃₃ PCA-based unsupervised FE is not the genes' ranking₃₄ but the absolute value of P_i s. 35

Optimization of SD

(17)


Based on the observations at the end of the subsub-³⁸ section, we arrived at optimizing σ_{ℓ} such that $u_{\ell i}$ and³⁹ $u_{\ell_1 i}$ obeyed the Gaussian distribution. Generally, op-⁴⁰ timizing SD to be fitted to the null hypothesis is not^{41} easy. For example, Mudge et al [12] had to assume the⁴² equivalence between Type I and II errors, which we^{43} cannot assume because of an imbalance of $\operatorname{numbers}^{44}$ between DEGs and the other genes; typically, DEGs^{45} are expected to be minorities. Next, we decided to em^{-46} ploy an alternative and more empirical approach. To^{47} visualize the idea, we have shown some illustrative ex- $\frac{48}{49}$ amples. Figure 4 shows a historgam of the variable x_i^{49} derived from the Gaussian distribution and outliers. If we attribute the *P*-values to the *i*th variable with x_i

$$P_i = P_{\chi^2} \left[> \left(\frac{x_i}{\sigma}\right)^2 \right] \tag{19)}^{54}$$

Taguchi and Turki

24

Page 5 of 17

²⁵using the SD, σ , directly computed by all points ²⁶

$$\sum_{29}^{27} \sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \langle x_i \rangle)^2}$$
(20)

³⁴and select outliers associated with adjusted *P*-values ³⁵< 0.01, we cannot select any of the outliers (Table 1); ³⁶this is because the SD computed, $\sigma = \frac{1000 \times 1+100 \times 5^2}{1000+100} =$ ³⁷1.75, is larger than that of the Gaussian distribution, ³⁸ $\sigma = 1$, because of outliers. Because P_i s computed with ⁴⁰ $\sigma = 1.75$ is larger than that with $\sigma = 1$, it fails to ⁴¹recognize outliers correctly.

 $^{42}\textbf{Table 1}$ Confusion matrix of the Gaussian distribution with 43outliers and prediction for x_i , the historam for which is given in $_{44}\text{Fig. 4.}$

45		True	not outliers	outliers
	predicted	adjusted P -values > 0.01	1000	100
46		adjusted P -values ≤ 0.01	0	0
47				

⁴⁸ We computed the histogram of $1-P_i$, Fig. 5A, which ⁴⁹ is far being idealized, Fig. 5C, that should have a con-⁵⁰ stant histogram $h(1-P_i)$ up to $1-P_i$ very close to ⁵¹ 1 and has one with a narrow peak near $1-P_i \sim 1$. ⁵² To optimize the SD, we tried to find an optimal SD ⁵³ such that the histogram for those not recognized as ⁵⁴ outliers was as flat as possible, i.e, obeying the null ⁵⁵ hypothesis of the Gaussian distribution; we decided¹ to find the optimal SD that results in the most flat² $h(1-P_i)$ for 1 – adjusted P_i less than threshold value³ 1 – adjusted P_0 (adjusted P_0 should be small enough).⁴ To minimize the SD of binned $h_i = h(1-P_i), \sigma_h, \frac{5}{6}$

$$\sigma_{h} = \sqrt{\frac{\sum_{\text{adjusted } P_{i} < \text{adjusted } P_{0}} \left(h_{i} - \langle h_{i} \rangle\right)^{7}_{2}}{N(\text{adjusted } P_{0})}}$$

$$\langle h_{i} \rangle = \frac{\sum_{\text{adjusted } P_{i} < \text{adjusted } P_{0}} h_{i}}{N(\text{adjusted } P_{0})} \qquad (23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

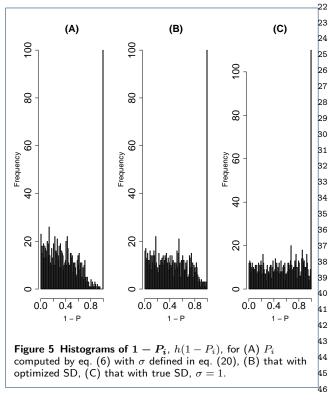
$$(23)$$

$$(23)$$

$$(23)$$

$$(23)$$

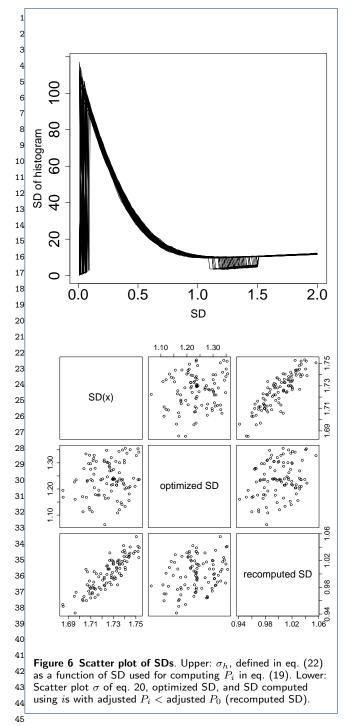
$$(23)$$


$$(23)$$

$$(23)$$

$$(23)$$

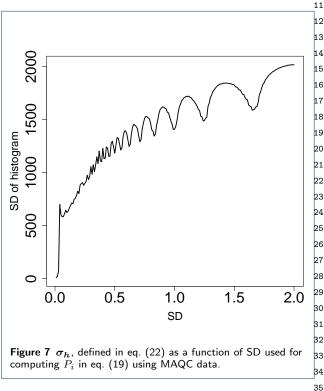
$$(23)$$


with respect to σ , where $N(\text{adjusted } P_0)$ is the number₁₄ of *is* associated with adjusted $P_i > \text{adjusted } P_0$, i.e.,₁₅ not recognized as outliers and recognized as a part₁₆ of the Gaussian distribution. After optimizing σ_{ℓ} , we₁₇ recomputed P_i . Fig. 5A and 5B show the histogram of₁₈ $1 - P_i$ using $\sigma = 1.75$ and optimized SD, respectively;₁₉ the latter is closer to an idealized histogram of P_i , Fig.₂₀ 5C, than the former.

To validate the effectiveness of the optimization of ⁴⁷ SD, we repeated this procedure 100 times. Figure ⁴⁹ 6 shows the dependence of σ_h on SD (upper panel) ⁴⁹ and the comparison between SD in Eq. (20), optimized SD, and SD computed using *i*s for adjusted $P_i < ^{51}$ adjusted P_0 (lower panel). In the lower panel, the optimized SD was approximately 1.2, which is much closer ⁵³ to 1 than 1.75, computed by eq. (20). In addition, the ⁵⁴

Taguchi and Turki

Page 6 of 17


⁴⁷fact that SD computed using *is* for adjusted $P_i < {}^{48}$ adjusted P_0 , which is expected to correspond to the ⁴⁹Gaussian distribution part in Fig. 4, is almost 1 ⁵⁰helps justify our optimization procedure (Fig. 6, lower ⁵¹panel). The reason why SD = 0 with $\sigma_h = 0$ in the ⁵²upper panel of Fig. 6 was not selected as optimal (as ⁵³having the smallest σ_h) is because $\sigma = 0$ corresponds ⁵⁴to nothing selected and is thus meaningless. Using P_i

46

computed by optimized SD, we can discriminate the outliers almost perfectly (Table 2).	1 2
	3
Table 2 Averaged confusion matrix of Gaussian distribution with outliers and prediction using ontimized SD	4

utilers and	prediction using optimized	50.		5
predict	True adjusted P -values > 0.01	1000	outliers 0	6 7
	adjusted P -values ≤ 0.01	0	100	8

Next, we applied this strategy to the MAQC data⁹ set. Figure 7 shows σ_h , defined in eq. (22), as a func-10

tion of SD to compute P_i in eq. (19) using the MAQC₃₆ data set; the optimal SD was 0.05557979. It is close₃₇ to the SD recomputed using *i*s with adjusted $P_i <_{38}$ adjusted P_0 , 0.03871846; moreover, $h(1 - P_i)$ derived₃₉ from optimal SD looks more idealized (the right panel₄₀ of Fig. 3). Thus, the optimal SD improved PCA-based₄₁ unsupervised FE.

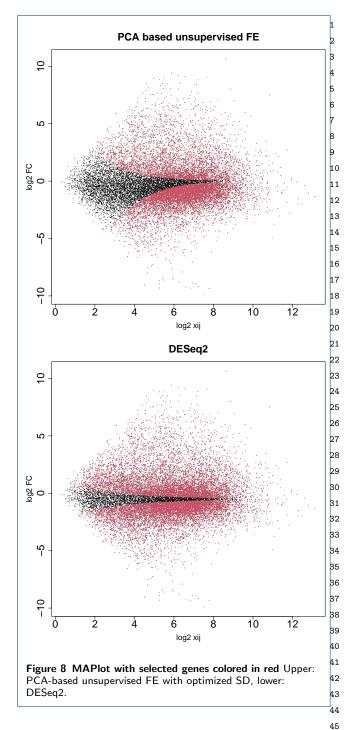
Table 3 shows the number of genes selected using₄₃ DESeq2 (list of genes available as Additional file 1),₄₄ the original PCA-based unsupervised FE, than by us-₄₅ ing optimal SD (list of genes available as Additional₄₆ file 2). Although the number of genes selected by orig-₄₇ inal PCA-based unsupervised FE, 344, is too small₄₈ to regard no false negatives, that of genes selected by ⁴⁹ PCA-based unsupervised FE with optimal SD, 12252,⁵⁰ is large enough to regard no false negatives. Furthermore, that of DESeq2, 20546, seems to be too large⁵² to have no false positives, because it is unlikely true that more than half the genes (40933) are distinctly⁵³ expressed between the brain and controls. ⁵⁵ Taguchi and Turki

Page 7 of 17

, Table 3 The number of genes selected with original PCA-based
¹ unsupervised FE, that with optical SD, and DESeq2.

2	The second secon		
-		adjust	$ed P_i$
3		> 0.01	≤ 0.01
4	PCA based unsupervised FE		
5	original (without optimal SD)	40589	344
	with optimal SD	28681	12252
6	DESeq2	8789	20546
7			
8			

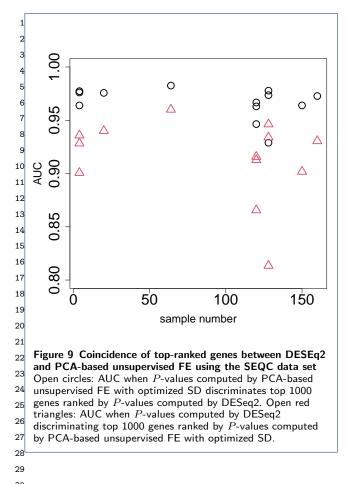
⁹Less expressed genes are less likely to be DEGs


¹⁰Figure 8 shows the selected genes in MAPlot. Although ¹¹we assumed neither NB distribution nor dispersion re-¹²lation, eq. (1), the distribution of selected genes in the ¹³MAPlot is reasonable; genes with the same LFC (ver-¹⁴tical axis) are less likely selected when associated with ¹⁵smaller mean expression (horizontal axis). Although ¹⁶this property is explicitly assumed in DESeq2 with ¹⁷dispersion relation, eq. (1), PCA-based unsupervised ¹⁸FE seems to possess the property without assuming ¹⁹dispersion relation explicitly (see the Discussion sec-²⁰tion). On the other hand, DESeq2 selects too many ²¹genes and is less likely reasonable. This suggests that ²²PCA-based unsupervised FE with optimized σ_{ℓ} is a ²³promising method. ²⁴

$^{25}Confirmation using the SEQC dataset$

²⁶To see if it occurs only occasionally, we repeated all ²⁷computations on as many as 13 data sets in SEQC [13], ²⁸which is yet another curated data set. Coincidence be-²⁹tween DESeq2 and PCA-based unsupervised FE (Fig. ³⁰9), a reasonable number of selected genes ($\sim 10^3$, Fig. ³¹10), and a lower opportunity of less expressed genes ³²to be DEGs (Fig. 11) are also observed, as in the case ³³of MAQC. In addition to this, although the number of ³⁴genes selected by DESeq2 are too large ($\sim 10^4$) and ³⁵heavily dependent upon sample numbers ($\sim 10^3$ for ³⁶the smallest sample number $\sim 10^0$), that by PCA-³⁷based unsupervised FE is not and is always $\sim 10^3$, ³⁸regardless of sample numbers. Thus, PCA-based un-³⁹supervised FE is seemingly superior to DESeq2.

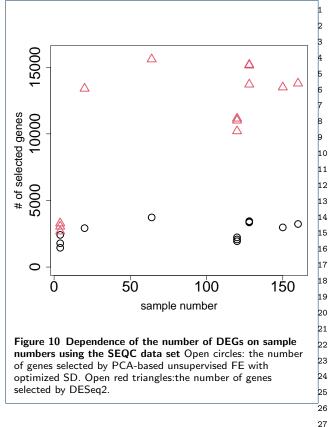
${}^{41}Biological\ validation$


⁴²Based on the above results, PCA-based unsupervised ⁴³FE is seemingly better than DESeq2. Nonetheless, ⁴⁴PCA-based unsupervised FE can select a reasonable ⁴⁵number of genes regardless of sample numbers (Fig. ⁴⁶10), and less expressed genes are unlikely to be DEGs ⁴⁷when genes are selected by PCA-based unsupervised ⁴⁸FE with optimized SD (Figs. 8 and 11), even with-⁴⁹out assuming NB distribution and dispersion relations, ⁵⁰eq. (1), which DESeq2 requires, if the selected genes ⁵¹are not biological, it is meaningless. To evaluate the ⁵²selected genes biologically, we uploaded the genes se-⁵³lected using MAQC to Enrichr. As can be seen in Fig. ⁵⁴12, the genes selected by PCA-based unsupervised FE

were better than those selected by DESeq2 (Full list 46 of enrichment analysis is available in Additional files 1^{47}_{48} and 2).

One may still wonder the other state-of-art meth-⁴⁹ ods might be better than PCA-based unsupervised⁵⁰ FE. To deny this possibility, we biologically evaluated⁵¹ the genes selected for MAQC using edgeR [6] (full list⁵² of enrichment analysis available in Additional file 3),⁵³ voom [8] (full list of enrichment analysis available in ⁵⁵

Taguchi and Turki



 ³⁰Additional file 4), and NOISeq [9] (full list of enrichment analysis available in Additional file 5); it is obvious that these three methods are even inferior to aDESeq2 biologically (Fig. 13).

³⁵Drug discovery for SARS-CoV-2

³⁶Although we have demonstrated that PCA-based un-³⁷supervised FE with optimized SD can outperform ³⁸other state-of-art methods in highly curated data, one ³⁹might wonder that it is not the case for a realistic ⁴⁰and more noisy case. To check if PCA-based unsu-⁴¹pervised FE with optimized SD can outperform DE-⁴²Seq2 in more realistic data sets, we considered the ⁴³drug repositioning of SARS-CoV-2, to which we ap-⁴⁴plied TD-based unsupervised FE [14] and its kernel-⁴⁵ized version [15].

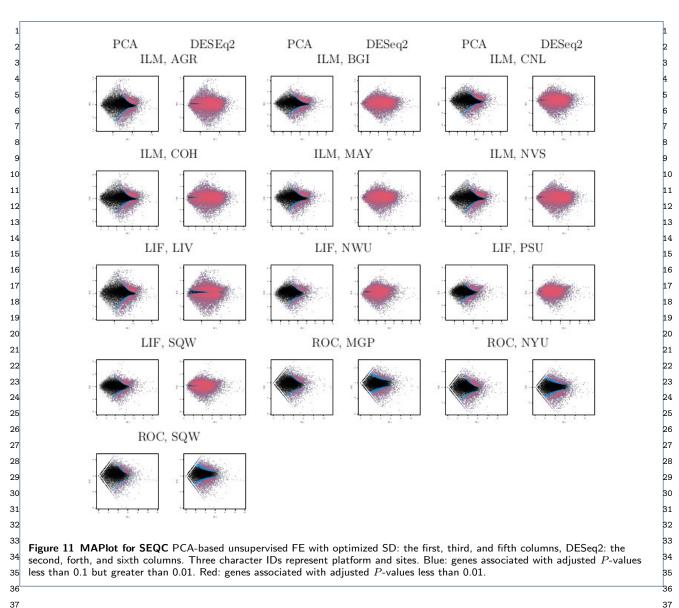
⁴⁶ In our implementation, we employed HOSVD to ⁴⁷ obtain the tensor decomposition, eq. (11); because ⁴⁸ HOSVD is equivalent to SVD applied to a matrix ob-⁴⁹ tained by unfolding a tensor, we can obtain the iden-⁵⁰ tical $u_{\ell i}$ independent of which of PCA or HOSVD is ⁵¹ used; SD used in eq. (12) can be optimized too. Next, ⁵² we applied the optimization of SD and could select ⁵³ 3627 genes associated with adjusted *P*-values of less ⁵⁴ than 0.1 (list of genes available as Additional file 6), ⁵⁵

which is a much higher number of genes than 163 genes²⁸ than that selected in previous studies [14, 15].²⁹

Overlap with human genes known to interact with SARS-CoV-2 protein

We evaluated the selected 3627 genes based on the³³ overlap with the human genes known to interact with³⁴ SARS-CoV-2, as has been done in previous stud-³⁵ ies [14, 15] (Fig. 14). It is obvious that TD-based un-³⁶ supervised FE with an optimized SD can outperform³⁷ kernel TD-based unsupervised FE, original (without³⁸ optimized SD) TD-based unsupervised FE as well as³⁹ DESeq2 (list of overlap available in Additional File 7).⁴⁰ Thus, it is indeed an outstanding method.

Drug repositioning


We also tried drug discovery using the genes selected⁴⁴ by TD-based unsupervised FE with optimized SD. See⁴⁵ Table 4 (Full list of drug repositioning available as Additional file 6). The first one, imatinib, was once iden-⁴⁷ tified as a promising drug toward COVID-19, although⁴⁸ it was rejected later [16]. The second one, apratoxin A,⁴⁹ was reported to be a promising compound based on its⁵¹ protein binding affinity [17]. The third and fourth one,⁵² doxycycline, was supposed to be a promising drug to-⁵³ ward COVID-19 [18]. The seventh one, trovafloxacin,⁵⁴ was reported to be a promising compound based on its⁵⁴

30

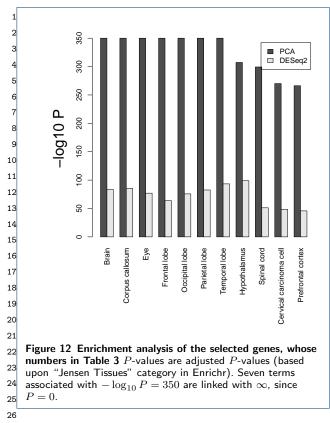
31

32

Taguchi and Turki

38 protein binding affinity [19]. The eighth one, doxoru-39 bicin, was also reported to be a promising compound ⁴⁰based on its protein binding affinity [20]. The ninth one, cisplatin, and the tenth one, carboplatin, were ⁴² proposed as a result of drug repositioning [21]. Seven of the nine compounds identified as the top 10 com-44 pounds have been previously reported as drugs toward 45 SARS-CoV-2. 46

See Table 5. The first, fourth, and tenth one, estra-⁴⁷diol, was reported as a promising compound [22]. The ⁴⁸second one, tamoxifen, was reported to inhibit SARS-⁴⁹CoV-2 infection by suppressing viral entry [23]. The ⁵⁰third one, apratoxin A, has been listed in Table 4, too. ⁵¹The fifth one, MK-886, was reported to be an inhibitor ⁵² of 3CL protease [24], although its efficiency was lim-⁵³ited to 40 %. The sixth one, IFN-alphacon1, was re- 54 ported to be an inhibitor of SARS-CoV [25] but not 55


38 for SARS-CoV-2. The seventh one, arachidonic acid was generally expected to inhibit SARS-CoV-2 infection [26]. The eighth one, arsenic, was also generally $\frac{40}{100}$ expected to act against the RdRp of coronavirus $[27]_{42}^{41}$ The ninth one, metoprolo, was reported to be a promising drug toward COVID-19 [28]. Thus, all the top 10^{43} compounds were reported to be promising.

On the other hand, for DESeq2, see Table 6 (full list⁴⁵ of drug repositioning is available in Additional file 8), $_{47}^{40}$ The use of the second and third one, dexamethasone,⁴/₄₈ resulted in lower 28-day mortality among those who received either invasive mechanical ventilation or oxygen⁴⁹₅₀ alone at randomization but not among those receiving $\frac{1}{51}$ no respiratory support. [29], The seventh one, metformin, suppressed SARS-CoV-2 in cell culture [30].⁵² The eighth one, etanercept, significantly decreased the⁵³ risk of developing COVID-19 in patients with rheuma-

Taguchi and Turki

Page 10 of 17

7

27

²⁸toid arthritis or spondyloarthropathies [31]. The tenth
²⁹one, lipopolysaccharide, is not a compound but a bac³⁰terial protein reported to bind to the SARS-CoV-2
³¹spike protein [32].

³² See Table 7. The first and fourth one, resveratrol, in³³hibits HCoV-229E and SARS-CoV-2 coronavirus repli³⁴cation in vitro [33]. The second, third, and fifth one,
³⁵carboplatin, was proposed as a result of drug repo³⁶sitioning [21]. The seventh one, lipopolysaccharide, is
³⁷listed in Table 6, too.

³⁸ The proposed method can predict effective drugs for ³⁹COVID-19 based on gene expression analysis, at least, ⁴⁰comparatively to DESeq2. Nevertheless, DESeq2 has ⁴¹less significance and has a tendency to list the same ⁴²compounds multiple times. The proposed method can ⁴³identify more convincing and diverse candidate com-⁴⁴pounds than DESeq2.

⁴⁵ Based on the overlap between human genes known to
 ⁴⁶interact with SARS-CoV-2 proteins and selected genes
 ⁴⁷(Fig. 14) and from the point of drug repositioning, TD ⁴⁸based unsupervised FE with optimized SD is, at least,
 ⁴⁹competitive with DESeq2.

50

⁵¹Comparison of methods using multi-organ

⁵²measurements with multiple drug treatments

 53 One might wonder if the proposed methods, TD- and $^{54}_{54}$ PCA-based unsupervised FE with optimized SD, are $_{55}$

applicable to a more complicated set-up. To investigate¹ this point, we checked the case where multiple drugs² are applied to mice whose gene expression of multiple³ tissues are measured, to which we applied TD-based⁴ unsupervised FE [34].

Enrichment of tissue-specific genes

In the previous study [34], although we applied TD-8 based unsupervised FE to gene expression profiles,9 there existed some problems. First of all, the number of 10 genes selected was too small to have no false negatives.11 Using the optimized SD, the number of selected genes₁₂ increased (Table 8; for more details, e.g., the defini-13 tion of the four gene sets, neurons and testis, muscle,₁₄ gastrointestine 1 and 2, see the previous study $[34]_{.15}$ This topic has not been discussed herein as it is not_{16} directly related to the comparison of the performance₁₇ between the original TD-based unsupervised FE and $_{18}$ that with the optimised SD. The full list of the se-19 lected genes is available in Additional file 9). Although $_{20}$ an increased number of genes is meaningless if the biological reliability is less, the biological reliability of $\frac{1}{22}$ selected genes is also improved (lower panel of Fig. $15,_{23}^{22}$ which corresponds to a present study and is associated²⁰ with a greater number of cell lines and tissue specificity $^{24}_{25}$ than that in the upper panel of Fig. 15, which corresponds to a previous study). Thus, the employment²⁶ of optimized SD is also effective to a more complicated²⁷ data set than simple pairwise comparisons between the $^{\rm 28}$ treated and control samples investigated in the previ-²⁹ 30 ous sections. 31

Coincidence with drug treatment

We have also performed additional validation of the³³ genes selected by TD-based unsupervised FE with34 optimized SD associated with adjusted P-values less35 than 0.1 (Table 8, full list is available in Additionalse files 10–13). We have uploaded selected genes to En-37 richr [36] and evaluated the overlaps between the genes₃₈ selected and those whose expression wasaltered with₃₉ the treatment of the 15 drugs used in this study.₄₀ Then, we found that all four gene sets in Table 8_{41} had a significant overlap with the genes whose $expres_{42}$ sion was altered with the treatment of 5 of the drugs_{43} (acetaminophen, cisplatin, clozapine, doxycycline, and₄₄ olanzapine) in DrugMatrix, which does not include₄₅ other drug treatments (Supplementary material). This _{\mathbf{46}} suggests that TD-based unsupervised FE with $optimal_{47}$ SD can correctly recognize drug treatments based on $_{\tt 48}$ gene expression; this was impossible in the previous₄₉ study [34] because of the very small number of genes selected (Table 8). Thus, considering the optimization 5_{11} of SD enables TD-based unsupervised FE to recognize $\frac{1}{52}$ a greater number of biologically reliable genes than the original TD-based unsupervised FE, which did not include the optimization of SD.

55

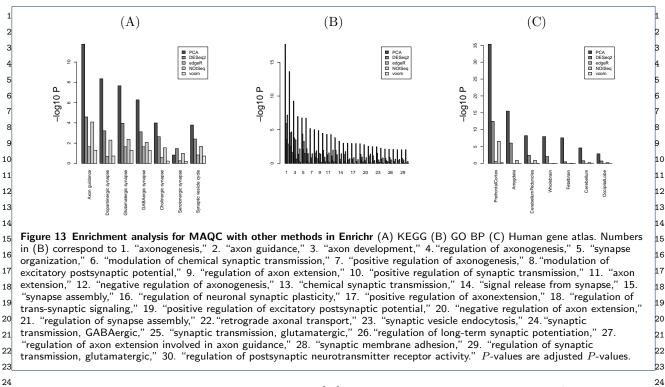
Taguchi and Turki

1							1
² -	ahla 1 F	Prug perturbations from GEO down					2
	Rank	Term	Overlap	P-value	Adjusted P-value	e Odds Ratio	3
4	1	imatinib (glivec) 123596 human GSE12211 sample 2518	316/442		-	12.3	4
5	2	apratoxin A 6326668 human GSE2742 sample 3071	279/389			12.3	5
6	3 4	doxycycline DB00254 human GSE2624 sample 3074 doxycycline DB00254 human GSE2624 sample 3077	294/425 278/391			10.9 11.9	6
7	5	grepafloxacin 72474 human GSE9166 sample 2627	320/495			8.96	7
8	6 7	clinafloxacin 60063 human GSE9166 sample 2625	309/470			9.38	8
9	8	trovafloxacin 62959 human GSE9166 sample 2629 doxorubicin, 2xEC50, 5 d 31703 human GSE6930 sample 3265	302/459 314/493			9.38 8.57	9
10	9	cisplatin DB00515 human GSE6410 sample 2532	239/315	1.06E-112		15.1	10
11	10	carboplatin DB00958 human GSE7035 sample 3060	284/422	4.57E-112	4.13E-110	9.99	11
12							12
13							13
14 15							14 15
							16
¹⁰ Ta 17		Prug perturbations from GEO up					17
18	Rank 1	Term estradiol 5757 human GSE4668 sample 3063	Overlap 276/367	P-value 1.26E-128	Adjusted P-value 1.14E-125	Odds Ratio 14.74	18
19	2	tamoxifen DB00675 human GSE4008 sample 5005	270/307 271/361	6.30E-126	2.85E-123	14.74	19
20	3	apratoxin A 6326668 human GSE2742 sample 3068	278/389	4.61E-120	1.12E-117	12.16	20
21	4 5	estradiol DB00783 human GSE4668 sample 2727 MK-886 CID 3651377 human GSE3202 sample 3193	261/350 268/368	4.96E-120 5.29E-119	1.12E-117 9.59E-117	14.19 12.98	21
22	6	IFN-alphacon1 DB05258 human GSE5542 sample 2474	242/313	2.21E-117	3.34E-115	16.41	22
23	7	Arachidonic acid DB04557 human GSE3737 sample 3171	277/395	2.80E-116	3.63E-114	11.39	23
24	8 9	ARSENIC 5359596 human GSE6907 sample 3529 metoprolol DB00264 human GSE3356 sample 2786	276/394 306/469	1.15E-115 2.67E-115	1.30E-113 2.68E-113	11.35 9.16	24
25	10	estradiol 5757 human GSE4668 sample 3062	245/325	1.92E-114	1.74E-112	14.75	25
26							26
27							27
28							28
29							29
30 T a	able 6 D	orug perturbations from GEO down for A549 by DESeq2					30
31	Rank		Overlap	P-value	Adjusted P-value	Odds Ratio	31
32	1 2	PLX4032 DB05238 human GSE24862 sample 2568 dexamethasone DB01234 human GSE34313 sample 2714	65/318 51/297	1.59E-29 7.68E-20	1.42E-26 3.44E-17	7.06 5.59	32
33	3	dexamethasone DB01234 human GSE54608 sample 3093	52/322	5.45E-19	1.63E-16	5.19	33
34	4	VX 39793 human GSE33606 sample 3376	54/367	8.17E-18	1.58E-15	4.65	34
35	5 6	PLX4032 DB05238 human GSE24862 sample 2570 formoterol DB00983 human GSE30242 sample 2631	56/393 49/315	8.78E-18 2.83E-17	1.58E-15 4.23E-15	4.49 4.94	35
36	7	metformin DB00331 human GSE33612 sample 2483	50/343	2.07E-16	2.65E-14	4.58	36
37	8 9	etanercept DB00005 human GSE41663 sample 2605 cisplatin DB00515 human GSE47856 sample 3145	45/322 40/267	3.29E-14 8.93E-14	3.69E-12 8.91E-12	4.33 4.68	37
38	10	Lipopolysaccharide 11970143 human GSE5504 sample 3486	35/224	9.25E-13	8.30E-11	4.89	38
39							39 40
40 41							40 41
42							42
43							43
	able 7 D	Prug perturbations from GEO up for A549 by DESeq2					44
45	Rank	Term	Overlap	P-value	Adjusted P-value	Odds Ratio	45
46	1 2	resveratrol DB02709 human GSE25412 sample 3500	70/250 85/423	2.90E-41 7 47E-38	2.63E-38 3.38E-35	10.81	46
47	2	carboplatin (30 h) 10339178 human GSE13525 sample 3031 carboplatin (36 h) 10339178 human GSE13525 sample 3032		7.47E-38 3.93E-31	3.38E-35 1.19E-28	7.09 6.46	47
48	4	resveratrol DB02709 human GSE25412 sample 3501	51/194	7.59E-29	1.72E-26	9.66	48
49	5 6	Carboplatin DB00958 human GSE13525 sample 3089 NSC319726 5351307 human GSE35972 sample 2479	65/357 59/309	1.69E-26 2.99E-25	3.07E-24 4.52E-23	6.11 6.43	49
50	7	Lipopolysaccharide 11970143 human GSE5504 sample 3483	72/468	1.29E-24	1.67E-22	5.01	50
51	8	dasatinib DB01254 human GSE59357 sample 3306	57/298	1.81E-24	1.98E-22	6.43 5.42	51
52	9 10	thapsigargin 446378 human GSE19519 sample 3236 Y15 23627197 human GSE43452 sample 2554	66/399 64/390	1.97E-24 1.59E-23	1.98E-22 1.44E-21	5.43 5.37	52
53	-	······································	,				53
54							54
55							55

Taguchi and Turki

Page 12 of 17

30


31

32

33

34

36

-		TD-based unsupervised FE [34]	ID-based un	supervised FE with optimized SD
5	adjusted P -values	≤ 0.01	≤ 0.01	≤ 0.1
5	Neuron	18	356	472
7	Muscle	51	547	663
	Gastrointestine 1	97	1026	1322
	Gastrointestine 2	128	574	722

³⁰

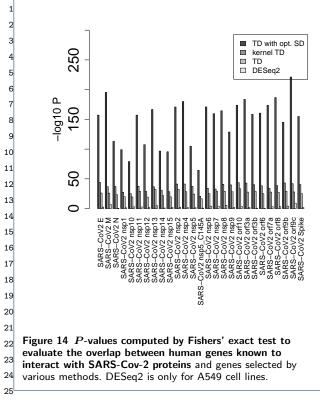
31

³²Discussion

34In this study, we have introduced the optimization of ³⁵SD to TD- and PCA-based unsupervised FE and have ³⁶improved their performance by increasing the identi-³⁷fied DEGs associated with greater biological reliabil- $^{\mathbf{38}}$ ity. One of the striking features is that DEGs with ³⁹₄₀lesser gene expression are less likely recognized even 41 with the same LFC, if the genes are selected by TD- $_{\rm 42} {\rm and}$ PCA-based unsupervised FE with optimized SD. 43In DESeq2, the tendency that less expressed genes are 44hardly recognized as DEGs is artificially introduced by ⁴⁵assuming dispersion relation, eq. (1). Nevertheless, in ⁴⁶PCA- and TD-based unsupervised FE, it is automati-⁴⁷cally introduced. Generally, there exists a relationship $^{\tt 48} {\rm between}$ difference, Δ of two variables, x and y, and ⁴⁹₅₀LFC as

$$\Delta \equiv x - y$$

⁵⁴ LFC
$$\equiv \log_2 \frac{x}{y} = \log_2 \left(1 + \frac{\Delta}{y}\right)$$
 (25)

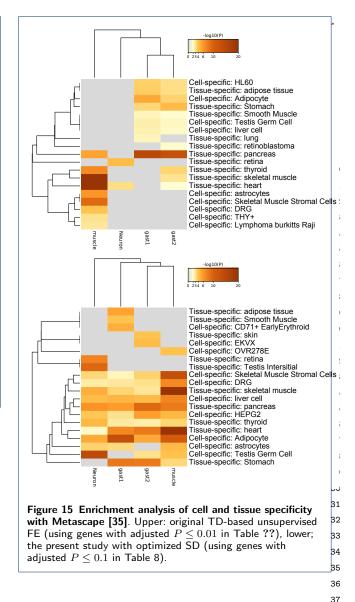

Then

$\Delta = y(2^{\text{LFC}} - 1)$ $(26)_{35}$

Because v_{2j} (Fig. 2B) corresponds to Δ , if DEGs are³⁷ identified using u_{2i} that corresponds to v_{2i} as in TD-38 and PCA-based unsupervised FE (see eqs. (6) and³⁹ (12)), DEGs associated with the same LFC are less⁴⁰ likely selected for the smaller y that corresponds to μ .⁴¹ This results in the distribution of DEGs in MAPlot⁴² (Fig. 8), where genes with the same LFC (vertical⁴³ axis) are less likely identified as DEGs with smaller⁴⁴ gene expression (horizontal axis). Figure 16 shows the⁴⁵ MAPlot drawn using two independent random vari-⁴⁶ ables obeying the same positive uniform distribution;⁴⁷ the red colored region associated with $|\Delta|$ larger than⁴⁸ some threshold values qualitatively represents the ten-⁴⁹ dency that indicates that a smaller x + y is less likely⁵⁰ selected even with the same LFC, $\log_2 \frac{x}{y}$. Thus, TD-⁵¹ and PCA-based unsupervised FE can introduce the⁵² tendency that genes with less expression are less likely 53 to be DEGs, even with the same amount of LFC more⁵⁴

Taguchi and Turki

Page 13 of 17



26

²¹ naturally than DESeq2, which has to manually intro-²⁸ duce a dispersion relation, eq. (1).

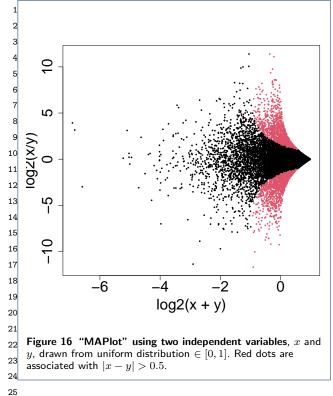
In addition to this, although DESeq2 assumes NB distribution that does not have any rationalization other than that it takes only positive values and has a tunable mean as well as variance simultaneously, TDand PCA-based unsupervised FE assume only that $u_{\ell i}$ obeys the Gaussian distribution (eqs. (6) and (12)), which is more reasonable because Gaussian distributions can generally appear when independent random variables are summed up. Actually, NOISeq does not assume NB distribution as well but achieves comparative performance with DESeq2 (Fig. 13). In this sense, TD- and PCA-based unsupervised FE can realize DEG distribution in an MAPlot more naturally than DE-Seq2.

⁴³ Another remarkable point of TD- and PCA-based ⁴⁴ unsupervised FE with optimized SD is that it does ⁴⁵ not have to screen for selected genes by LFC after the ⁴⁶ genes are selected using *P*-values. As can be seen in ⁴⁷ Fig. 10, state-of-art methods, including DESeq2, often ⁴⁸ identify too many DEGs. In these circumstances, LFC ⁴⁹ is often used to reduce the number of DEGs. Nev-⁵⁰ ertheless, Stupnikov et al [37] found that the coinci-⁵¹ dence of the selected genes among the various state-of-⁵² art methods drastically decreases if the genes selected ⁵³ based on *P*-values are further screened with LFC. In ⁵⁴ this sense, TD- and PCA-based unsupervised FE with ⁵⁵

optimized SD are more promising methods than state-38 of-art methods that need screening by LFC to yield a39 reasonable number of DEGs. 40

Yet another advantage is that TD- and PCA-based41 unsupervised FE have already been applied to a wide42 range of problems. Not only can optimized SD improve43 the performance of PCA- and TD-based unsupervised44 FE, as can be seen in Figs. 14 and 15, but also the al-45 teration is limited to the last stage, i.e., *P*-value com-46 putation, eqs. (6) and (12). Thus, the optimized SD is47 expected to improve the performance in a wide range48 of problems, to which TD- and PCA-based unsuper-49 vised FE have been applied. 50

Conclusions


In this study, we optimized SD to improve TD- and 53 PCA-based unsupervised FE. As a result, not only the $_{re}^{54}$

51

SEQC

Taguchi and Turki

Page 14 of 17

26

27obtained DEGs increased and became reasonable in 28
number but also the histogram of 1-P became more ²⁹reliable, i.e., more coincident with the null hypothesis ³⁰that SVV and PC obey Gaussian distribution. In ad-³¹dition to this, TD- and PCA-based unsupervised FE ³²provide reliable distribution of DEGs in MAPlot, i.e., ³³less expressed genes are less likely selected as DEGs ³⁴even if they are associated with the same LFC; this ³⁵property was implemented manually by assuming dis-³⁶persion relation, eq.(1), in DESeq2. The biological re-³⁷liability of the selected genes is also much better by $^{38}{\rm this}$ method than by other state-of-art methods. These $^{39}\mathrm{points}$ suggest that TD- and PCA-based unsupervised ⁴⁰FE are superior than state-of-art methods in terms of ⁴¹achieving better performance with less assumption. 42

44 Methods

45Gene expression profiles

46MAQC

43

⁴⁷Seven human brain expression profiles were down- $^{48}\mathrm{loaded}$ from SRA [38] (ID SRX016359), and seven $^{49}\mathrm{UHR}$ expression profiles were downloaded from SRA $^{50}(\mathrm{ID}\ \mathrm{SRX016367}).$ Fourteen FASTQ files were mapped ⁵¹to the hg38 human genome using rapmap [39]. htseq-⁵²count [40] was used to convert the obtained bam ⁵³files to count data files using the gtf file taken from ⁵⁴ftp://ftp.ensembl.org/pub/release-105/gtf/ homo_sapiens#HomeSeptenseCallu38etD5ygtflg& (Fig. 9) as follows. 55

SEQC [13] were obtained from bioconductor [41] as an² experimental package, seqc. It includes thirteen pro-³ files shown in Fig. 11. For more details, see Vignettes⁴ in the seqc experimental package. 6 7 The histogram composed of Gaussian distribution and outliers in Fig. 4 The Gaussian part is one thousand values drawn from Gaussian distribution with zero mean and an SD of 11 one. Outliers are 100 values, which are equal to 5. 12 13 PCA-based unsupervised FE applied 14 MAQC 15 Genes not expressed in any of the 14 samples have been 16 excluded. Four rows having annotations "__no_feature" ¹⁷ "__ambiguous", "__not_aligned", and "__alignment_not_unique" have also been excluded. As a result, we got $x_{ij} \in \mathbf{19}$ $\mathbb{R}^{40933\times 14}.$ The x_{ij} was processed as described in the $_{\texttt{20}}$ main text. 21

SEQC

Regardless of which of the 13 data sets was considered,24 only those genes expressed in all samples were consid-25 ered. An individual data set has a distinct number of $_{26}$ rows (genes) and columns (samples). The x_{ij} obtained₂₇ from an individual data set was processed as described₂₈ in the main text. 29

SARS-CoV-2

All processes used were exactly the same as those de-32 scribed in the previous study [14]. After obtaining u_{5i} ,33 the SD was optimized as described in the main text. 34

Multi-organ

All processes used were exactly the same as those de-37 scribed in the previous study [34]. After getting $u_{\ell i}$,³⁸ the SD was optimized as described in the main text. ³⁹ 40

Optimization of SD

At first, a histogram of $1 - P_i$ was computed using⁴² hclust function in R with the "break=100" option.⁴³ Then, an SD of the binned histogram, hc\$count as-⁴⁴ sociated with hc\$breaks less than 1-P whose adjusted⁴⁵ *P*-value was less than threshold value P_0 , was mini-⁴⁶ mized using optim function in R. The R code has been⁴⁷ provided in additional file 14 to show how to optimize 48 49 SD in an individual data set. 50

51 Coincidence between PCA-based unsupervised FE and 52 DESeq2

The coincidence between PCA-based unsupervised ${\rm FE}^{53}$

35

22

23

30

31

36

Taguchi and Turki

¹At first, the top 1000 genes based on *P*-values com-²puted by DESeq2 were regarded positive and the re-³maining genes were regarded negative. Then, *P*-values ⁴computed by PCA-based unsupervised FE were used ⁵to predict positive genes. Using this result, AUC was ⁶computed. Next, on the contrary, the top 1000 genes ⁷based on *P*-values computed by PCA-based unsuper-⁸vised FE were regarded positive and the remaining ⁹genes were negatives. Then, *P*-values computed by ¹⁰DESeq2 were used to predict positive genes. Using this ¹¹result, AUC was computed.

12

¹³Enrichment analyses

¹⁴Enrichment analyses were performed using either ¹⁵Metascape [35] or Enrichr [36] by uploading gene sym-¹⁶bols. If the gene ID was not a gene symbol in individual $^{17}\mathrm{data}$ sets, the gene ID conversion tool in Database for ¹⁸Annotation, Visualization, and Integrated Discovery ¹⁹(DAVID) [42, 43] was used for conversion. 20

²¹DEG identification of SARS-CoV-2 data by DESeq2

 $^{22}\mathrm{We}$ used author-provided adjusted P-values and LFC 23 (in supplementary data in their paper) to identify $^{24}\mathrm{DEGs.}$ If we considered only adjusted P-values to iden- $^{25}\mathrm{tify}$ DEGs, DESeq2 would identify too many genes ²⁶(Table 9). Thus, we had to consider LFC as well. Ta-²⁷ble 9 shows the number of DEGs used in this study. ²⁸The evaluation of the overlap with human genes known ²⁹to interact with SARS-CoV-2 proteins is available in ³⁰Supplementary materials. The best one, that for the ³¹ACE2-expressed A549 cell line, is also included in the ³²main text as Fig. 14. 33

34 Declarations

³⁵Ethics approval and consent to participate 36Not applicable.

38Consent for publication Not applicable.

⁴⁰Availability of data and materials

41The MAQC data set can be downloaded from SRA with ID SRX016359 $_{42}$ and SRX016367. The SEQC data is a part of the bioconductor seqc ⁴² package. SARS-CoV-2 data can be downloaded from Gene Expression ⁴³Omnibus (GEO) with the GEO ID GSE147507. Multi-organ data can be 44downloaded from GEO with the GEO ID GSE142068.

45

46Competing interests

The authors declare that they have no competing interests. 47

48 Funding

49This work was supported by the Japan Society for the Promotion of 50Science, KAKENHI [Grant numbers 19H05270, 20K12067, and 20H04848] to YHT. 51

⁵²Author's contributions

53YHT planned the research and performed analyses. YHT and TT evaluated 54 the results, discussions, and outcomes and drafted and reviewed the manuscript. 55

Acknowledgements	1			
Not applicable.	2			
Author details	3			
¹ Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku,	4			
112-8551 Tokyo, JAPAN. ² Department of Computer Science, King	5			
Abdulaziz University, 21589 Jeddah, Saudi Arabia.	6			
References	7			
Taguchi, Yh.: Comparative transcriptomics analysis. In: Ranganathan				
S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of				
Bioinformatics and Computational Biology, pp. 814–818. Academic Press, Oxford (2019). doi:10.1016/B978-0-12-809633-8.20163-5.	10			
https://www.sciencedirect.com/science/article/pii/B97801280963382	0 16 35			
2. Rapaport, F., Khanin, R., Liang, Y., Pirun, M., Krek, A., Zumbo, P.,	12			
Mason, C.E., Socci, N.D., Betel, D.: Erratum to: Comprehensive	13			
evaluation of differential gene expression analysis methods for RNA-se	q14			
data. Genome Biology 16 (1) (2015). doi:10.1186/s13059-015-0813-z	15			

2	data. Genome Biology 16 (1) (2015). doi:10.1186/s13059-015-0813-z	15
3.	Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of	16
	the National Academy of Sciences 98 (9), 5116–5121 (2001).	17
	doi:10.1073/pnas.091062498.	
	https://www.pnas.org/content/98/9/5116.full.pdf	18
4.		19
	Smyth, G.K.: limma powers differential expression analyses for	20
	RNA-sequencing and microarray studies. Nucleic Acids Research 43(7)	,01
	47–47 (2015). doi:10.1093/nar/gkv007.	
	https://academic.oup.com/nar/article-	22
	pdf/43/7/e47/7207289/gkv007.pdf	23
5.		24
	change and dispersion for RNA-seq data with DESeq2. Genome	25
-	Biology 15(12) (2014). doi:10.1186/s13059-014-0550-8	
6.		r 26
	package for differential expression analysis of digital gene expression	27
	data. Bioinformatics 26 (1), 139–140 (2009). doi:10.1093/bioinformatics/btp616.	28
	https://academic.oup.com/bioinformatics/article-	29
	pdf/26/1/139/443156/btp616.pdf	
7.		30 s
• •	of multifactor RNA-Seq experiments with respect to biological	31
	variation. Nucleic Acids Research 40 (10), 4288–4297 (2012).	32
	doi:10.1093/nar/gks042. https://academic.oup.com/nar/article-	33
	pdf/40/10/4288/25335174/gks042.pdf	
8.	Law, C.W., Chen, Y., Shi, W., Smyth, G.K.: voom: precision weights	34
	unlock linear model analysis tools for RNA-seq read counts. Genome	35
	Biology 15(2), 29 (2014). doi:10.1186/gb-2014-15-2-r29	36
9.		a 37
	RNA-seq differential expression method robust for sequencing depth	
	biases. EMBnet.journal 17 (B), 18–19 (2012).	38
0	doi:10.14806/ej.17.B.265	39
10.	Taguchi, Yh.: Unsupervised Feature Extraction Applied to Bioinformatics. Springer, Sinpapore (2020).	40
	doi:10.1007/978-3-030-22456-1.	41
	https://doi.org/10.1007/978-3-030-22456-1	
1.	Shi, L., Shi, L., Reid, L.H., Jones, W.D., Shippy, R., Warrington, J.A.,	42

⁴³ Baker, S.C., Collins, P.J., de Longueville, F., Kawasaki, E.S., Lee, K.Y., Luo, Y., Sun, Y.A., Willey, J.C., Setterquist, R.A., Fischer, 44 G.M., Tong, W., Dragan, Y.P., Dix, D.J., Frueh, F.W., Goodsaid, 45 F.M., Herman, D., Jensen, R.V., Johnson, C.D., Lobenhofer, E.K., 46 Puri, R.K., Scherf, U., Thierry-Mieg, J., Wang, C., Wilson, M., Wolber, P.K., Zhang, L., Amur, S., Bao, W., Barbacioru, C.C., Lucas, 47 A.B., Bertholet, V., Boysen, C., Bromley, B., Brown, D., Brunner, A., 48 Canales, R., Cao, X.M., Cebula, T.A., Chen, J.J., Cheng, J., Chu, 49 T.-M., Chudin, E., Corson, J., Corton, J.C., Croner, L.J., Davies, C., Davison, T.S., Delenstarr, G., Deng, X., Dorris, D., Eklund, A.C., Fan, 50 X.-h., Fang, H., Fulmer-Smentek, S., Fuscoe, J.C., Gallagher, K., Ge, 51 W., Guo, L., Guo, X., Hager, J., Haje, P.K., Han, J., Han, T., Harbottle, H.C., Harris, S.C., Hatchwell, E., Hauser, C.A., Hester, S., ⁵² Hong, H., Hurban, P., Jackson, S.A., Ji, H., Knight, C.R., Kuo, W.P., 53 LeClerc, J.E., Levy, S., Li, Q.-Z., Liu, C., Liu, Y., Lombardi, M.J., Ma, 54 Y., Magnuson, S.R., Magsodi, B., McDaniel, T., Mei, N., Myklebost, 55

Taguchi and Turki

Page 16 of 17

1	Cell lines	adjusted P -values ≤ 0.0	01 alto	ernative conditions	the number of DEG2	1
1	Calu3	16432	adjusted I	P-value ≤ 0.05 , LFC> 2.0	340	
2	NHBE	327	adjusted I	P-value ≤ 0.05 , LFC> 0.5	171	2
3	A549	15050			170	3
4	MOI 0.2 MOI 2.0	15852 7431	2	P -value ≤ 0.05 , LFC> 2.0 P-value < 0.05 , LFC> 2.0	176 547	4
5	ACE2 expressed	7431	3	$P-value \le 0.05, LFC > 2.0$ $P-value \le 0.05, LFC > 1.0$	756	5
6Tah	le 9 The number of DEGs in		-			6
7			DEDCQ2 (Dasca			7
8						8
9	O., Ning, B., Novoradovskaya, N	Orr M.S. Osborn T.W.	Papallo	Deng Y-Q Cheng G Ta	moxifen and clomiphene inhibit	9
• •	A., Patterson, T.A., Perkins, R.O.				ppressing viral entry. Signal Transduction	n ¹⁰
	K.L., Pine, P.S., Pusztai, L., Qia		,,	-	(2021). doi:10.1038/s41392-021-00853-4	
	Rosenzweig, B.A., Samaha, R.R.		, 24	. Zhu, W., Xu, M., Chen, C.Z	., Guo, H., Shen, M., Hu, X., Shinn, P.,	12
	Shchegrova, S., Smith, D.D., Sta	aedtler, F., Su, Z., Sun, H.,	Szallasi,		el, S.G., Zheng, W.: Identification of	
	Z., Tezak, Z., Thierry-Mieg, D.,				hibitors by a quantitative high-throughp	
	Turpaz, Y., Vallanat, B., Van, C	-	-		gy & Translational Science $3(5)$,	14
.o	Wolfinger, R., Wong, A., Wu, J. Zhang J. Zhang S. Zong Y.		-	1008–1016 (2020). doi:10.10	rtmann, C., Huggins, J.W., Endy, T.P.:	15
0	Zhang, L., Zhong, S., Zong, Y., control (MAQC) project shows in			-	ibitor of SARS-corona virus in cell-based	16
	of gene expression measurements		-	models. Antiviral Research 6		17
	1151–1161 (2006). doi:10.1038/	、	<i></i>	doi:10.1016/j.antiviral.2005.		
°12.	Mudge, J.F., Baker, L.F., Edge,		ıg an 26		R., Amin, M.T., Hossain, M.S.: Role of	
	optimal α that minimizes errors				-19 infection: A review. Prostaglandins &	¹⁹ و
20	PLOS ONE 7(2), 1-7 (2012). do	oi:10.1371/journal.pone.0032	2734	Other Lipid Mediators 154,		20
21 ^{13.}	A comprehensive assessment of	KINA-seq accuracy, reproduci	ibility and	doi:10.1016/j.prostaglandins		21
2	information content by the seque Nature Biotechnology 32 (9), 903				tra, G., Mandal, S.M.: In silico	22
	Taguchi, Yh., Turki, T.: A new				senic based approved drug darinaparsin tor of RNA dependent RNA polymerase	23
	method for novel coronavirus (S	-	overy	(RdRp) and necessary protein		
4	decomposition-based unsupervise	<i>'</i>	ONE	doi:10.26434/chemrxiv.1220		24
-	15(9), 1-16 (2020). doi:10.1371			· · · · · · · · · · · · · · · · · · ·	tínez-Milla, J., Oliver, E., Santos, A.,	25
615.	Taguchi, YH., Turki, T.: Applic	cation of tensor decomposition	on to gene	Flandes, J., Fernández, I., R	odríguez-González, L., del Castillo, C.S.,	26
7	expression of infection of mouse	hepatitis virus can identify c	critical	Ioan, AM., López-Álvarez,	M., Gómez-Talavera, S., Galán-Arriola,	C., ₂₇
~	human genes and efffective drug			Fuster, V., Pérez-Calvo, C.,	Ibáñez, B.: Metoprolol in critically ill	
	Journal of Selected Topics in Sig		758	· · · · · ·	urnal of the American College of	28
29	(2021). doi:10.1109/JSTSP.2021	1.3061251		()	11 (2021). doi:10.1016/j.jacc.2021.07.00	
10. 10.	Zhao, H., Mendenhall, M., Deini anti-SARS-CoV-2 drug. Leukemi	nger, 101.00.: Imatinib is not $3.24(11)$ 2005 2027 (2020)	a potent 29	Journal of Medicine 384(8),	ed patients with covid-19. New England	30
	doi:10.1038/s41375-020-01045-9	. , ,)-	doi:10.1056/nejmoa2021436		31
	Naidoo, D., Roy, A., Kar, P., Mu		30	, -)., Harshan, K.H.: Metformin suppresses	
	Cyanobacterial metabolites as pr	-		SARS-CoV-2 in cell culture.		
5	and plpro of sars-cov-2: an in sill		-	doi:10.1101/2021.11.18.469	078.	33
4	Structure and Dynamics 39(16),	6218–6230 (2021).		https://www.biorxiv.org/cor	ntent/early/2021/11/22/2021.11.18.469	078.¶ull.
5	doi:10.1080/07391102.2020.1794	4972. PMID: 32691680.				35
0	https://doi.org/10.1080/073911				jzadegan, Z., Salesi, N., Mohammadi, E.	36
18.	Dorobisz, K., Dorobisz, T., Janc				phylactic effects in preventing COVID-19	37
	the coronavirus disease 2019 the		cal Kisk	in patients with rheumatoid		
	Management Volume 17, 1023– doi:10.2147/tcrm.s314923	1020 (2021).			se-control study. Rheumatology and 2021). doi:10.1007/s40744-021-00342-8	38
9	Gimeno, A., Mestres-Truyol, J.,	Oieda-Montes M I Macin	.G., 30		lova, J., Samsudin, F., Strömdahl, AC.	39
0	Saldivar-Espinoza, B., Cereto-Ma	• • • • •			m, S., Bond, P.J., Schmidtchen, A.:	40
	S.: Prediction of novel inhibitors				inds to bacterial lipopolysaccharide and	41
	SARS-CoV-2 through consensus		,		vity. Journal of Molecular Cell Biology	42
	International Journal of Molecula	ar Sciences 21 (11) (2020).		12(12), 916-932 (2020). do		
	doi:10.3390/ijms21113793			https://academic.oup.com/j		43
	Jamal, Q.M.S., Alharbi, A.H., A			pdf/12/12/916/36546065/n		44
5	as a potential therapeutic agains	,			Haidar Ahmad, S., Daouad, F.,	45
~	a molecular docking and dynami Biomolecular Structure and Dyn		ai of		Schwartz, C., Rohr, O., Morot-Bizot, S.,	46
	Biomolecular Structure and Dyn. doi:10.1080/07391102.2021.190	() ()		coronavirus replication in vit	ibits HCoV-229E and SARS-CoV-2	
	https://doi.org/10.1080/073911			doi:10.3390/v13020354	10. 1000 10(2) (2021).	47
ö	MotieGhader, H., Safavi, E., Rez		, asl 34		ersal nature of drug treatment responses	48 5 in
9	Iranifam, R.: Drug repurposing for			drug-tissue-wide model-anim		49
	on gene co-expression network a	,	,	-	ervised feature extraction. Frontiers in	50
0	(2021). doi:10.1038/s41598-021-			Genetics 11 (2020). doi:10.3		51
		iazadeh M. Hakimi H. Mi	vamoto 35	. Zhou, Y., Zhou, B., Pache,	L., Chang, M., Khodabakhshi, A.H.,	
22.	Mansouri, A., Kowsar, R., Zakar					
51 22. 52	A.: The impact of calcitriol and	estradiol on the SARS-CoV-	-2	Tanaseichuk, O., Benner, C.	, Chanda, S.K.: Metascape provides a	52
51 22. 52 53	A.: The impact of calcitriol and biological activity: a molecular m	estradiol on the SARS-CoV- nodeling approach. Scientific	-2	Tanaseichuk, O., Benner, C. biologist-oriented resource fo	or the analysis of systems-level datasets.	52 53
51 _{22.} 52 53	A.: The impact of calcitriol and	estradiol on the SARS-CoV- nodeling approach. Scientific	2 Reports	Tanaseichuk, O., Benner, C.	or the analysis of systems-level datasets. 1) (2019).	

Taguchi and Turki

Page 17 of 17

	¹ 36.	Xie, Z., Bailey, A., Kuleshov, M.V., Clarke, D.J.B., Evangelista, J.E.,	Additional file 7 — Overlap with human genes known to interact with	1
	2	Jenkins, S.L., Lachmann, A., Wojciechowicz, M.L., Kropiwnicki, E., Jagodnik, K.M., Jeon, M., Ma'ayan, A.: Gene set knowledge discovery	SARS-CoV-2 protein by DESeq2 Overlap with human genes known to interact with SARS-CoV-2 proteins by	2
	3	with Enrichr. Current Protocols 1(3), 90 (2021). doi:10.1002/cpz1.90.	DESeq2.	/3
	4	https://currentprotocols.onlinelibrary.wiley.com/doi/pdf/10.1002/cpz1.90		4
	5		Additional file 8 — Genes selected for SARS-CoV-2 infected A549 cell lines	,5
	₆ 37.	Stupnikov, A., McInerney, C.E., Savage, K.I., McIntosh, S.A., Emmert-Streib, F., Kennedy, R., Salto-Tellez, M., Prise, K.M., McArt,	by DESeq2	6
	7	D.G.: Robustness of differential gene expression analysis of RNA-seq.	Genes selected by DESeq2, for A549 cell lines, shown in Table 14, and drug repositioning.	<i>§</i> 7
	8	Computational and Structural Biotechnology Journal 19, 3470–3481	repositioning.	8
	9	(2021). doi:10.1016/j.csbj.2021.05.040	Additional file 9 — Genes selected by TD-based unsupervised FE with	9
1	10 ^{38.}	Leinonen, R., Sugawara, H., Shumway, o.b.o.t.I.N.S.D.C. Martin: The Sequence Read Archive. Nucleic Acids Research 39 (suppl_1), 19–21	optimized SD for multi-organ study	1(
1	11	(2010). doi:10.1093/nar/gkq1019.	Genes selected by TD-based unsupervised FE with optimized SD for a	1:
1	12	https://academic.oup.com/nar/article-	multi-organ study.	1:
		pdf/39/suppl_1/D19/7624335/gkq1019.pdf		1:
1	¹³ 39. 14	Srivastava, A., Sarkar, H., Gupta, N., Patro, R.: RapMap: a rapid,	Additional file 10 — Drug repositioning for neuron and tesis gene sets	14
	15	sensitive and accurate tool for mapping RNA-seq reads to transcriptomes. Bioinformatics 32 (12), 192–200 (2016).	Drug repositioning for neuron and tesis gene sets.	1
		doi:10.1093/bioinformatics/btw277.	Additional file 11 — Drug repositioning for muscle gene sets	
	16	https://academic.oup.com/bioinformatics/article-	Drug repositioning for muscle gene sets.	10
	17	pdf/32/12/i192/17130476/btw277.pdf		1
	1840.	Putri, G.H., Anders, S., Pyl, P.T., Pimanda, J.E., Zanini, F.: Analysing high-throughput sequencing data in Python with HTSeq 2.0 (2021).	Additional file 12 — Drug repositioning for gast 1 gene sets	18
1	19	2112.00939. https://arxiv.org/abs/2112.00939	Drug repositioning for gast 1 gene sets.	19
2	2041.	Huber, W., Carey, V.J., Gentleman, R., Anders, S., Carlson, M.,		20
2	21	Carvalho, B.S., Bravo, H.C., Davis, S., Gatto, L., Girke, T., Gottardo,	Additional file 13 — Drug repositioning for gast 2 gene sets	2
2	22	R., Hahne, F., Hansen, K.D., Irizarry, R.A., Lawrence, M., Love, M.I., MacDonald, J., Obenchain, V., Oleś, A.K., Pagès, H., Reyes, A.,	Drug repositioning for gast 2 gene sets.	2
2	23	Shannon, P., Smyth, G.K., Tenenbaum, D., Waldron, L., Morgan, M.:	Additional file 14 Course and	2
2	24	Orchestrating high-throughput genomic analysis with bioconductor.	Additional file 14 — Source code R source code to perform PCA- and TD-based unsupervised FE with	2
2	25	Nature Methods 12(2), 115–121 (2015). doi:10.1038/nmeth.3252	optimized SD.	2
-	42. 26	Huang, D.W., Sherman, B.T., Lempicki, R.A.: Systematic and		20
	27	integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4 (1), 44–57 (2008).		2
		doi:10.1038/nprot.2008.211		
4	²⁸ 43.	Huang, D.W., Sherman, B.T., Lempicki, R.A.: Bioinformatics		28
	29	enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research 37 (1), 1–13 (2008).		29
	30	doi:10.1093/nar/gkn923. https://academic.oup.com/nar/article-		3(
3	31	pdf/37/1/1/17059338/gkn923.pdf		3
	32 Figι			3:
3	³³ Tab	les		3
3	34 Add	litional Files		34
3		itional file 1 — Genes selected by DESeq2 for MAQC		3!
3	Gen 36 _{enri}	es associated with adjusted P -values less than 0.1 using DESeq2 and chment analysis associated with them.		30
3	37			3
3	38Add	itional file 2 — Genes selected by PCA-based unsupervised FE with		3
3	opti	mized SD for MAQC		39
	Gen	es associated with adjusted <i>P</i> -values less than 0.1 using PCA-based upervised FE with optimized SD and enrichment analysis associated		40
		them.		4
				4:
	¹² Add	itional file 3 — Genes selected by EdgeR for MAQC		
		es associated with adjusted <i>P</i> -values less than 0.1 using EdgeR and chment analysis associated with them.		4:
				4
4	¹⁵ Add	itional file 4 — Genes selected by voom for MAQC		4
4	¹⁶ Gen	es associated with adjusted P -values less than 0.1 using voom and		4
4	17enri	chment analysis associated with them.		4
4	¹⁸ Add	itional file 5 — Genes selected by NOISeq for MAQC		48
4		es associated with adjusted <i>P</i> -values less than 0.1 using NOISeq and		4
		chment analysis associated with them.		50
5	51			5
5	Add 52 ₀₀ +;	itional file 6 — Genes selected by TD-based unsupervised FE with mized SD for SARS-CoV-2		53
5	53Gen	es associated with adjusted P -values less than 0.1 by TD-based		5
F	54 ^{unsi}	upervised FE with optimized SD for SARS-CoV-2 and drug		54
	repc 55	ositioning associated with the genes.		5
				0