




Fig 6. Sampling schemes to estimate µL and TL for Ae. aegypti. Violin plots
depict estimates of µL and TL for sampling scenarios described in §3.2. The simulated
population consists of 3,000 adult Ae. aegypti with bionomic parameters listed in
Table 1. Boxes depict median and interquartile ranges of 100 simulation-and-analysis
replicates for each scenario, thin lines represent 5% and 95% quantiles, points represent
outliers, and kernel density plots are superimposed. The default sampling scheme
consists of 1,000 adult females and supplemental larvae sampled daily over a three
month period. In panels (A-B), total larval sample sizes of 500, 1,000, 2,000 and 4,000
are explored. In panels (C-D), a larval sample size of 4,000 is adopted, and four
sampling frequencies are considered - daily, biweekly, weekly and fortnightly. In panels
(E-F), biweekly sampling is adopted, and sampling durations of 1-4 months are
explored. The optimal sampling scheme consists of 4,000 larvae and 1,000 adult females
collected biweekly over a three month period.

4. Discussion 568

We have demonstrated the application of the CKMR formalism described by Bravington 569

et al. [1] to estimate demographic parameters for mosquitoes with Ae. aegypti, a major 570

vector of dengue, Zika, chikungunya and yellow fever, as a case study. Using an 571

individual-based simulation based on the lumped age-class model [15,16] applied to 572

mosquitoes [17], we have shown that these methods accurately estimate adult 573

population size, NA, adult mortality rate, µA, larval mortality rate, µL, and larval life 574

stage duration, TL, for logistically feasible sampling schemes when model assumptions 575

are satisfied. Encouragingly, the optimal sampling scheme inferred from this analysis is 576

consistent with Ae. aegypti ecology and field studies. Estimating adult parameters will 577

likely be of most interest, and in this case, only adult females need to be sampled. 578

Conveniently, adult females are preferentially attracted to most commercial traps 579

through cues that mimic potential blood-meals, while adult males are more difficult to 580

trap as they do not blood-feed [29]. Estimating larval parameters requires larval 581

collections, and although larval breeding sites need to be actively sought out, larvae are 582

an abundant life stage that can easily be collected with a cup or pipette [30]. 583

Other details of the CKMR-optimal sampling scheme are also consistent with Ae. 584
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aegypti ecology. The sampling duration required for accurate estimates of both adult 585

and larval parameters is three months, which is consistent with the length of a season, 586

during which time the constant population size assumption in this analysis 587

approximately holds. For estimating adult parameters, the total sample size of 1,000 588

adult females collected over three months is reasonable, and sequencing these 1,000 589

mosquitoes to the extent required to accurately infer close-kin relationships should fall 590

within the budget of current mosquito surveillance programs [7]. For estimating larval 591

parameters, the sample size of 4,000 larvae collected over three months is achievable, 592

given the abundance of this life stage, although currently the sequencing expense would 593

be burdensome. That said; as sequencing continues to become cheaper, and as more 594

scalable methods become available to estimate relatedness, large-scale larval sequencing 595

may also fall within the budget of surveillance programs. 596

Finally, the sampling frequency requirement of these CKMR methods is consistent 597

with mosquito field studies, with biweekly sampling being adequate for accurate 598

estimation of both adult and larval parameters. This is commonplace among mosquito 599

surveillance programs [29]. If estimates of only adult parameters are desired, sampling 600

frequency can be less frequent (e.g., fortnightly), although achieving the total required 601

sample size may be a barrier to less frequent sampling. For CKMR methods, temporal 602

information is of utmost importance, and so the day of collection should be known. 603

This means that samples from a mosquito trap should represent collections for a single 604

day, rather than the accumulation of mosquitoes over several days, as is the case for 605

regular mosquito surveillance programs. A total sample size of 1,000 adult females over 606

three months corresponds to biweekly collections of ca. 40 mosquitoes or weekly 607

collections of ca. 80 mosquitoes. With these numbers in mind, the expected daily 608

mosquito yield of a given location can inform the required sampling frequency. 609

As a preliminary exploration of the application of CKMR methods to mosquitoes, 610

and as a modeling exercise, this study has several limitations. Firstly, the same life 611

history model Figure 1 was used as a basis for both the population simulations and the 612

CKMR analysis. Additionally, other than the parameters being estimated, the same 613

parameters were used in both simulations and analysis. This represents an overly 614

generous scenario as compared to the field, where true life history is varied and complex, 615

and where life history parameters are only approximately known. That said; this is an 616

appropriate starting point to verify the utility of the method for mosquitoes - it first 617

needs to be shown to infer the true value of a parameter given the true model. 618

Subsequent analyses should explore the robustness of parameter inference when other 619

parameters in the model are dynamic or misspecified, or when kinship data are 620

generated from a more detailed model - e.g., the CIMSiM model of Ae. aegypti 621

population dynamics [22]. Another modest model variation would be to increase the 622

variance in the fecundity parameter, β. Presently, the daily number of offspring 623

generated by each adult female is Poisson-distributed and distributing this according to 624

an overdispersed negative Binomial distribution would reduce the effective population 625

size, Ne, while maintaining the census adult population size, NA [13], the impact of 626

which would be interesting to explore. 627

A second limitation of the application of our methods is that we have assumed 628

perfect kinship inference throughout. A variety of molecular methods for kinship 629

inference are available [31–33], the accuracy of which should be assessed for Ae. aegypti 630

and other species of interest. Incorporating kinship uncertainty into the CKMR 631

likelihood equations is theoretically possible [34], although this has produced little 632

improvement in parameter inference at large computational cost when applied to data 633

from fish species [2]. Likely, the best approach would be to introduce errors in kinship 634

assignment at the simulation phase, and to test the robustness of the methods to this. 635

Here, there is an important distinction between type I (false positive) and II (false 636
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negative) error rates. Studies in fish species suggest that kinship inference must have an 637

especially low type I error rate in order for CKMR parameter inference to be 638

informative [1]. Kinship inference methods should be calibrated accordingly. On a 639

related note, there is a debate over the conditions for inclusion of half-siblings in CKMR 640

analyses. Half-sibling relationships are indistinguishable from avuncular (e.g., 641

aunt-niece) and grandparent-grandchild relationships, introducing kinship assignment 642

errors into likelihood calculations. Possible solutions have been proposed - e.g., 643

restricting the time window of recording half-sibling pairs to include mostly same-cohort 644

captures [1] - however this is a moot point for the present analysis, given that inclusion 645

of half-siblings reduces the accuracy of parameter estimates even when precisely known. 646

A third limitation of the current analysis is that it ignores spatial structure. The 647

population of 3,000 adults in the Ae. aegypti simulation was based on studies that 648

suggest this to be a reasonable estimate for the number of Ae. aegypti adults within a 649

characteristic dispersal radius in a variety of settings [19–21]; however, Ae. aegypti 650

adults tend to be relatively sessile, often remaining within the same household unit for 651

the duration of their lifetime [11]. With this in mind, a more accurate model might be 652

Ae. aegypti populations distributed across households with migration between them [35]. 653

Areas of future research would be to test the robustness of single-population CKMR 654

methods to data from spatially-structured simulations [36], and to incorporate spatial 655

structure into the CKMR analyses themselves, opening the potential to estimate 656

dispersal parameters using these methods. The theoretical underpinnings of this latter 657

approach have been outlined by Bravington et al. [1], and an analogous approach 658

limited to discrete generations and parentage data has been used to estimate dispersal 659

parameters for coral trout [37]. Alternative close-kin methods have also been used to 660

characterize dispersal distances for Ae. aegypti [6, 7], and it will be interesting to see 661

whether a spatially-structured CKMR approach can infer complementary information. 662

The application of CKMR methods beyond fish species has been contemplated since 663

their inception [1], and extending their application to the egg-larva-pupa-adult life 664

history of Ae. aegypti mosquitoes is promising for their application to insect species 665

with comparable life histories. A species of particular interest is Anopheles gambiae, the 666

main African malaria vector, which has a similar life history, increased dispersal [11] 667

and larger population sizes than Ae. aegypti [38, 39]. Age-grading methods are also 668

available for this species, based on ovariole measurements and emerging biochemical and 669

spectroscopic techniques [27]. Incorporating approximate age-at-capture information 670

with kinship data should greatly enhance the precision of CKMR parameter inference, 671

as has been seen for applications to southern bluefin tuna [2] and sharks [3]. The larger 672

size of An. gambiae populations also means that smaller population proportions need to 673

be sampled in order to obtain accurate parameter estimates [13]. Although the total 674

required sample size will be higher, lethal sampling is less likely to bias the mortality 675

rate estimate upwards and the population size estimate downwards (as seen for Ae. 676

aegypti in Figure 4). Several species of insect agricultural crop pests should also be 677

suited to these CKMR methods, including the medfly and spotted wing Drosophila; 678

although theoretical assessments will first be needed, especially for more long-lived pest 679

species such as the pink bollworm. 680

5. Conclusions 681

We have theoretically demonstrated the application of CKMR methods to estimate 682

adult and larval parameters for mosquitoes, with Ae. aegypti as a case study. CKMR 683

methods have advantages over traditional mark-release methods, as the mark is genetic, 684

removing the need for physical marking and recapturing. Particularly encouraging is the 685

fact that the inferred optimal sampling scheme is consistent with Ae. aegypti ecology 686
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and field studies, meaning that the requisite samples may be obtained with only minor 687

adjustments to current mosquito surveillance programs. Sequencing requirements are 688

significant, particularly for estimating larval parameters; however, as sequencing 689

becomes cheaper and more efficient, this will become less burdensome and perhaps even 690

routine. Work remains to test the robustness of these methods under a range of 691

scenarios in which model components and parameters vary, and in which kinship 692

inference is imperfect; however this study represents an important first demonstration 693

that parameter inference is accurate when the underlying model is known. Application 694

to other insects of epidemiological and agricultural significance is promising, particularly 695

for An. gambiae, a major malaria vector for which age-grading methods are available. 696

Supporting information 697

S1 Text. Supplemental model equations. Additional equations describing the 698

lumped age-class model of mosquito population dynamics, and kinship probabilities for 699
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We thank Dr. Igor Filipović for help with parallelizing code and running simulation 702

replicates, Dr. Eileen Jeffrey Gutiérrez and Dr. Tomás León for discussions regarding 703

mosquito sampling and life history, and Yi Li for help with formulating the kinship 704

probabilities. 705

Author contributions 706

Conceptualization: John M. Marshall, Gordana Rašić 707
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7. Filipović I, Hapuarachchi HC, Tien WP, Razak MA, Lee C, Tan CH, Devine GJ,
Rašić G. Using spatial genetics to quantify mosquito dispersal for control
programs. BMC Biology. 2020; 18:1-5.

8. Nazni WA, Hoffmann AA, NoorAfizah A, Cheong YL, Mancini MV, Golding N,
Kamarul GM, Arif MA, Thohir H, NurSyamimi H, ZatilAqmar MZ.
Establishment of Wolbachia strain wAlbB in Malaysian populations of Aedes
aegypti for dengue control. Current Biology. 2019; 29:4241-4248.

9. The Project Wolbachia – Singapore Consortium, Ng LC. Wolbachia-mediated
sterility suppresses Aedes aegypti populations in the urban tropics. medRxiv.
2021; doi:10.1101/2021.06.16.21257922.

10. Perkins TA, Scott TW, Le Menach A, Smith DL. Heterogeneity, mixing, and the
spatial scales of mosquito-borne pathogen transmission. PLoS Computational
Biology. 2013; 9:e1003327.

February 19, 2022 25/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.19.481126doi: bioRxiv preprint 

https://github.com/GilChrist19/mPlex
https://github.com/MarshallLab/CKMR
https://doi.org/10.1101/2022.02.19.481126
http://creativecommons.org/licenses/by-nc-nd/4.0/


11. Guerra CA, Reiner RC, Perkins TA, Lindsay SW, Midega JT, Brady OJ, Barker
CM, Reisen WK, Harrington LC, Takken W, Kitron U. A global assembly of
adult female mosquito mark-release-recapture data to inform the control of
mosquito-borne pathogens. Parasites & Vectors. 2014; 7:1-5.

12. Anderson, EC. CKMRpop: Forward-in-time simulation and tabulation of
pairwise kin relationships in age-structured populations. Molecular Ecology
Resources. 2021; doi:10.1111/1755-0998.13513.

13. Waples RS, Feutry P. Close-kin methods to estimate census size and effective
population size. Fish and Fisheries. 2022; 23:273-293.

14. Eisen L, Monaghan AJ, Lozano-Fuentes S, Steinhoff DF, Hayden MH, Bieringer
PE. The impact of temperature on the bionomics of Aedes (Stegomyia) aegypti,
with special reference to the cool geographic range margins. Journal of Medical
Entomology. 2014; 51:496-516.

15. Gurney WS, Nisbet RM. The systematic formulation of delay-differential models
of age or size structured populations. In Freedman HI, Strobeck C (Eds.),
Population Biology (pp. 163-172). 1983; Springer, Berlin.

16. Gurney WS, Nisbet RM, Lawton JH. The systematic formulation of tractable
single-species population models incorporating age structure. Journal of Animal
Ecology. 1983; 52:479-495.

17. Hancock PA, Godfray HC. Application of the lumped age-class technique to
studying the dynamics of malaria-mosquito-human interactions. Malaria Journal.
2007; 6:98.

18. Deredec A, Godfray HC, Burt A. Requirements for effective malaria control with
homing endonuclease genes. Proceedings of the National Academy of Sciences.
2011; 108:E874-880.

19. Carvalho DO, McKemey AR, Garziera L, Lacroix R, Donnelly CA, Alphey L,
Malavasi A, Capurro ML. Suppression of a field population of Aedes aegypti in
Brazil by sustained release of transgenic male mosquitoes. PLoS Negl Trop Dis.
2015; 9:e0003864.

20. Lounibos LP. Genetic-control trials and the ecology of Aedes aegypti at the
Kenya coast. In Takken W, Scott TW (Eds.), Ecological Aspects for Application
of Genetically Modified Mosquitoes (pp. 33-46). 2003; Springer, Wageningen.

21. Sheppard PM, Macdonald WW, Tonn RJ, Grab B. The dynamics of an adult
population of Aedes aegypti in relation to dengue haemorrhagic fever in Bangkok.
Journal of Animal Ecology. 1969; 38:661-702.

22. Focks DA, Haile DG, Daniels E, Mount GA. Dynamic life table model for Aedes
aegypti (Diptera: Culicidae): analysis of the literature and model development.
Journal of Medical Entomology. 1993; 30:1003-1017.

23. Otero M, Solari HG, Schweigmann N. A stochastic population dynamics model
for Aedes aegypti : formulation and application to a city with temperate climate.
Bulletin of Mathematical Biology. 2006; 68:1945-1974.

24. Simoy MI, Simoy MV, Canziani GA. The effect of temperature on the population
dynamics of Aedes aegypti . Ecological Modelling. 2015; 314:100-110.

February 19, 2022 26/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.19.481126doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.19.481126
http://creativecommons.org/licenses/by-nc-nd/4.0/


25. Nash JC, Varadhan R. Unifying optimization algorithms to aid software system
users: optimx for R. Journal of Statistical Software. 2011;
doi:10.18637/jss.v043.i09.

26. Sánchez C. HM, Wu SL, Bennett JB, Marshall JM (2018) MGDrivE: A modular
simulation framework for the spread of gene drives through spatially-explicit
mosquito populations. Methods in Ecology and Evolution. 2020; 11:229–239.

27. Johnson BJ, Hugo LE, Churcher TS, Ong OTW, Devine GJ. Mosquito age
grading and vector-control programmes. Trends in Parasitology. 2020; 36:39-51.

28. Ha T, León TM, Lalangui K, Ponce P, Marshall JM, Cevallos V. Household-level
risk factors for Aedes aegypti pupal density in Guayaquil, Ecuador. Parasites
Vectors. 2021; 14:458.

29. Ndiaye EH, Diallo D, Fall G, Ba Y, Faye O, Dia I, Diallo M. Arboviruses isolated
from the Barkedji mosquito-based surveillance system, 2012-2013. BMC
Infectious Diseases. 2018; 18:642.

30. Ferede G, Tiruneh M, Abate E, Kassa WJ, Wondimeneh Y, Damtie D, Tessema
B. Distribution and larval breeding habitats of Aedes mosquito species in
residential areas of northwest Ethiopia. Epidemiol Health. 2018; 40:e2018015.

31. Christie MR. Parentage in natural populations: novel methods to detect
parent-offspring pairs in large data sets. Molecular Ecology Resources. 2010;
10:115-128.

32. Wang J. Estimating pairwise relatedness in a small sample of individuals.
Heredity. 2017; 118:302.

33. Waples RK, Albrechtsen A, Moltke I. Allele frequency-free inference of close
familial relationships from genotypes or low-depth sequencing data. Molecular
Ecology. 2018; 28:35-48.

34. Skaug HJ. Allele-sharing methods for estimation of population size. Biometrics.
2001; 57:750-756.

35. Sánchez C. HM, Bennett JB, Wu SL, Rašić G, Akbari OS, Marshall JM.
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