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Abstract

Close-kin mark-recapture (CKMR) methods have recently been used to infer
demographic parameters such as census population size and survival for fish of interest
to fisheries and conservation. These methods have advantages over traditional
mark-recapture methods as the mark is genetic, removing the need for physical marking
and recapturing that may interfere with parameter estimation. For mosquitoes, the
spatial distribution of close-kin pairs has been used to estimate mean dispersal distance,
of relevance to vector-borne disease transmission and novel biocontrol strategies. Here,
we extend CKMR methods to the life history of mosquitoes and comparable insects. We
derive kinship probabilities for mother-offspring, father-offspring, full-sibling and
half-sibling pairs, where an individual in each pair may be a larva, pupa or adult. A
pseudo-likelihood approach is used to combine the marginal probabilities of all kinship
pairs. To test the effectiveness of this approach at estimating mosquito demographic
parameters, we develop an individual-based model of mosquito life history incorporating
egg, larva, pupa and adult life stages. The simulation labels each individual with a
unique identification number, enabling close-kin relationships to be inferred for sampled
individuals. Using the dengue vector Aedes aegypti as a case study, we find the CKMR
approach provides unbiased estimates of adult census population size, adult and larval
mortality rates, and larval life stage duration for logistically feasible sampling schemes.
Considering a simulated population of 3,000 adult mosquitoes, estimation of adult
parameters is accurate when a total of 1,000 adult females are sampled
biweekly-to-fortnightly over a three month period. Estimation of larval parameters is
accurate when adult sampling is supplemented with a total of 4,000 larvae sampled
biweekly over the same period. As the cost of genome sequencing declines, these
methods hold great promise for characterizing the demography of mosquitoes and
comparable insects of epidemiological and agricultural significance.

Author summary

Close-kin mark-recapture (CKMR) methods are a genetic analogue of traditional
mark-recapture methods in which the frequency of marked individuals in a sample is
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used to infer demographic parameters such as census population size and mean dispersal
distance. In CKMR, the mark is a close-kin relationship between individuals (parents
and offspring, siblings, etc.). While CKMR methods have mostly been applied to
aquatic species to date, opportunities exist to apply them to insects and other terrestrial
species. Here, we explore the application of CKMR to mosquitoes, with Aedes aegypti, a
primary vector of dengue, chikungunya and yellow fever, as a case study. By analyzing
simulated Ae. aegypti populations, we find the CKMR approach provides unbiased
estimates of adult census population size, adult and larval mortality rates, and larval
life stage duration. Optimal sampling schemes are consistent with Ae. aegypti ecology
and field studies, requiring only minor adjustments to current mosquito surveillance
programs. This study represents the first theoretical exploration of the application of
CKMR to an insect species, and demonstrates its potential for characterizing the
demography of insects of epidemiological and agricultural importance.

1. Introduction 1

In the last few years, there has been a growth of interest in close-kin mark-recapture 2

(CKMR) methods to characterize the demography of wild populations [1]. These 3

methods are analogous to traditional mark-recapture methods, which estimate census 4

population size and other demographic parameters based on the recapture rates of 5

marked individuals. The advantages of CKMR methods stem from the mark being a 6

genetically-inferred close-kin relationship, removing the need for physical marking and 7

recapturing. Initial applications of these methods have included a wide range of fish 8

species - southern bluefin tuna [2], white sharks [3], brook trout [4] and Atlantic 9

salmon [5]. Fish provide a good case for CKMR because their populations are 10

well-mixing, physical marking and recapturing pose logistical challenges, and there is a 11

willingness to invest in population size estimates given their importance to fisheries and 12

conservation [1]. CKMR studies on fish have also estimated annual juvenile and adult 13

survival probabilities and rates of population growth [2, 3]. 14

As high-throughput genomic sequencing, which enables accurate kinship estimation, 15

becomes cheaper, it is expected that CKMR methods will be applied to an increasing 16

number of species. For insects, two recent studies used the spatial distribution of 17

close-kin pairs to characterize dispersal patterns of Aedes aegypti [6, 7], the mosquito 18

vector of dengue, Zika, chikungunya and yellow fever. Both studies were set in urban 19

landscapes - in Malaysia [6] and Singapore [7] - where mosquitoes inhabit high-rise 20

apartment buildings. These locations were chosen to support releases of 21

Wolbachia-infected mosquitoes intended for population replacement [8] and 22

suppression [9]. Characterizing mosquito movement is important to understanding the 23

spatial transmission of vector-borne diseases [10], and to designing optimal biocontrol 24

strategies, such as those involving Wolbachia, for vector-borne disease control. By 25

analyzing close-kin pairs, these two studies estimated mean dispersal distances in 26

agreement with previous mark-recapture studies [7, 11], and isolated a radius of 27

dispersal specific to Ae. aegypti oviposition behavior [6]. 28

In this paper, we extend the CKMR formalism described by Bravington et al. [1] to 29

mosquitoes, using Ae. aegypti as a case study, in order to derive demographic 30

parameters from close-kin pairs. These methods involve deriving “kinship probabilities” 31

describing the chance that a given individual is related to another in the population. 32

These are calculated as the reproductive output consistent with a given kinship 33

relationship divided by the total reproductive output of all adult females in the 34

population, and depend upon a parameterized model of life history and mating 35

behavior, including egg production and mortality rates. Because the age of adult Ae. 36

aegypti mosquitoes is difficult to estimate in the field, age must be accommodated as a 37

February 19, 2022 2/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.19.481126doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.19.481126
http://creativecommons.org/licenses/by-nc-nd/4.0/


latent variable, with marginal kinship probabilities being calculated by considering all 38

consistent event histories. For fish species to which CKMR methods have been applied 39

thus far, full-siblings are rare as adults tend to be polygamous [3]. In contrast, for 40

mosquitoes, full-siblings are common as adult females tend to mate only once, soon after 41

emergence, and lay eggs from this mating event over an extended period. Mosquito 42

half-siblings are also common, and tend to be paternal (i.e. have the same father and 43

different mothers). Taking these considerations into account, we derive kinship 44

probabilities for mother-offspring, father-offspring, full-sibling and half-sibling pairs 45

where either individual in each pair may be a larva, pupa or adult. A pseudo-likelihood 46

approach is used to combine the marginal probabilities of all kinship pairs [1]. 47

To test the effectiveness of this approach at estimating mosquito demographic 48

parameters, we develop an individual-based model of mosquito life history, 49

incorporating egg, larva, pupa and adult life stages. By labeling each individual with a 50

unique identification number (IN) and tracking parental INs, this enables close-kin 51

relationships to be inferred for sampled individuals. As studies of aquatic species have 52

shown, a parsimonious individual-based simulation of life history allows a variety of 53

CKMR sampling schemes to be explored, and for effectiveness at parameter estimation 54

to be assessed [12, 13]. The short generation time of mosquitoes - less than a month for 55

Ae. aegypti [14] - means that sampling may take place over a few months, as opposed to 56

several years for long-lived fish species [2]. Open questions regarding sampling schemes 57

for mosquitoes relate to the required sample size, optimal frequency (e.g., daily, biweekly 58

or weekly), duration (i.e., number of months), and distribution of collections across 59

larval, pupal and adult life stages in order to estimate population size, mortality rates, 60

and durations of juvenile life stages. Here, we use our simulation model and CKMR 61

framework to address these questions, and in doing so, provide a case study for CKMR 62

applications to comparable insects of epidemiological and agricultural significance. 63

2. Materials and methods 64

2.1. Mosquito population dynamics 65

We use a discrete-time version of the lumped age-class model [15,16], applied to 66

mosquitoes [17], as the basis for our population simulation and CKMR analysis 67

(Figure 1). This model considers discrete life history stages - egg (E), larva (L), pupa 68

(P) and adult (A) - with sub-adult stages having defined durations - TE , TL and TP for 69

eggs, larvae and pupae, respectively. We use a daily time-step, since mosquito samples 70

tend to be recorded by day, and this is adequate to model the organism’s population 71

dynamics [18]. Daily mortality rates vary according to life stage - µE , µL, µP and µA 72

for eggs, larvae, pupae and adults, respectively - and density-dependent mortality 73

occurs at the larval stage. Sex is modeled at the adult stage - half of pupae emerge as 74

females (F), and the other half as males (M). Females mate once upon emergence, and 75

retain the genetic material from that mating event for the remainder of their lives. 76

Males mate at a rate equal to the female emergence rate which, for a population at 77

equilibrium, is equal to the female mortality rate, µA. Females lay eggs at a rate, β, 78

which is assumed to be independent of age. 79

Default life history and demographic parameters for Ae. aegypti are listed in Table 1. 80

Given the difficulty of measuring juvenile stage mortality rates in the wild, these are 81

chosen for consistency with observed population growth rates in the absence of 82

density-dependence (see S1 Text §1.1 for formulae and derivations). Larval mortality 83

increases with larval density and, according to the lumped age-class model, reaches a set 84

value when the population is at equilibrium. Although mosquito populations vary 85

seasonally, we assume a constant adult population size, NA, for the CKMR analysis, 86
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Fig 1. The lumped age-class model of mosquito life history. Mosquitoes are
divided into four life stages: egg, larva, pupa and adult. The durations of the sub-adult
stages are TE , TL and TP for eggs, larvae and pupae, respectively. Sex is modeled at the
adult stage, with half of pupae developing into females and half developing into males.
Daily mortality rates vary by life stage - µE , µL, µP and µA for eggs, larvae, pupae and
adults, respectively. Density-dependent mortality occurs at the larval stage and is a
function of the total number of larvae, NL. Females mate once upon emergence, and
retain the genetic material from that mating event for the remainder of their lives.
Males mate at a rate equal to the female emergence rate. Females lay eggs at a rate, β.

and restrict sampling to a maximum period of four months, corresponding to a season. 87

Minor population size fluctuations occur in the simulation model due to sampling and 88

stochasticity. 89

Table 1. Demographic and life history parameters for Aedes aegypti
mosquitoes.

Parameter: Definition: Value: References:
NA Adult population size 3000 [19–21]
µA Adult mortality rate 0.09 / day [22]
β Female fecundity 20 / day [23]
TE Duration of egg stage 2 days [14]
TL Duration of larval stage 5 days [14]
TP Duration of pupal stage 1 day [14]
µE Egg mortality rate 0.175 / day S1 Text §1, [24]
µL Larval mortality rate 0.554 / day S1 Text §1
µP Pupal mortality rate 0.175 / day S1 Text §1, [24]

2.2. Kinship probabilities 90

Following the methodology of Bravington et al. [1], we now derive kinship probabilities 91

for mother-offspring, father-offspring, full-sibling and half-sibling pairs based on the 92

lumped age-class mosquito life history model. Each kinship probability is calculated as 93
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the reproductive output consistent with that relationship divided by the total 94

reproductive output of all adult females in the population. In each case, we consider 95

two individuals (adult, larva or pupa) sampled at known times, t1 and t2, with 96

probability symbols and references to equations listed in Table 2. Important details to 97

note for this analysis are that: i) mosquito sampling is lethal, ii) although age is a latent 98

variable, temporal information is captured in the life stages of sampled individuals, and 99

iii) mosquito mating behaviour, in which females mate once upon emergence and males 100

mate throughout their adult lifespan, is reflected in the calculations. 101

Table 2. Kinship categories, sampled life stages, sampling times, and probability
symbols used in close-kin mark-recapture analysis.

Kinship category: Sampled life stages: Probability symbol: Equations:

Mother-offspring
Adult female (t1), larva (t2) PMOL(t1, t2) §2.2.1
Adult female (t1), adult (t2) PMOA(t1, t2) §2.2.1
Adult female (t1), pupa (t2) PMOP (t1, t2) S1 Text §2.1

Father-offspring
Adult male (t1), larva (t2) PFOL(t1, t2) S1 Text §2.2
Adult male (t1), adult (t2) PFOA(t1, t2) §2.2.2
Adult male (t1), pupa (t2) PFOP (t1, t2) S1 Text §2.2

Full-siblings

Larva (t1), larva (t2) PFSLL(t1, t2) §2.2.3
Adult (t1), adult (t2) PFSAA(t1, t2) §2.2.3
Larva (t1), adult (t2) PFSLA(t1, t2) S1 Text §2.3
Adult (t1), larva (t2) PFSAL(t1, t2) S1 Text §2.3
Pupa (t1), pupa (t2) PFSPP (t1, t2) S1 Text §2.3
Pupa (t1), larva (t2) PFSPL(t1, t2) S1 Text §2.3
Larva (t1), pupa (t2) PFSLP (t1, t2) S1 Text §2.3
Pupa (t1), adult (t2) PFSPA(t1, t2) S1 Text §2.3
Adult (t1), pupa (t2) PFSAP (t1, t2) S1 Text §2.3

Half-siblings

Larva (t1), larva (t2) PHSLL(t1, t2) S1 Text §2.4
Adult (t1), adult (t2) PHSAA(t1, t2) §2.2.4
Larva (t1), adult (t2) PHSLA(t1, t2) S1 Text §2.4
Adult (t1), larva (t2) PHSAL(t1, t2) S1 Text §2.4
Pupa (t1), pupa (t2) PHSPP (t1, t2) S1 Text §2.4
Pupa (t1), larva (t2) PHSPL(t1, t2) S1 Text §2.4
Larva (t1), pupa (t2) PHSLP (t1, t2) S1 Text §2.4
Pupa (t1), adult (t2) PHSPA(t1, t2) S1 Text §2.4
Adult (t1), pupa (t2) PHSAP (t1, t2) S1 Text §2.4

2.2.1. Mother-offspring 102

Let us begin with the simplest possible kinship probability, PMOL(t1, t2), which 103

represents the probability that, given an adult female sampled on day t1, a larva 104

sampled on day t2 is her offspring. This can be expressed as the relative larval 105

reproductive output on day t2 of an adult female sampled on day t1: 106

PMOL(t1, t2) =
E [Larval offspring at time t2 from an adult female sampled at time t1]

E [Larval offspring at time t2 from all adult females at consistent times]
=
EMOL(t1, t2)

EL
. (1)

Here, EMOL(t1, t2) represents the expected number of surviving larval offspring on 107

day t2 from an adult female sampled on day t1, and EL represents the expected number 108

of surviving larval offspring from all adult females in the population at times consistent 109

February 19, 2022 5/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.19.481126doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.19.481126
http://creativecommons.org/licenses/by-nc-nd/4.0/


with the time of larval sampling. Note that, since we are assuming a constant 110

population size, EL is independent of time and is given by: 111

EL =

0−TE∑
y2=0−TE−TL

NF × β × (1− µE)TE × (1− µL)(0−y2−TE). (2)

Here, NF represents the equilibrium adult female population size (which is equal to 112

half the equilibrium adult population size, NA/2), and y2 represents the day of egg 113

laying. Considering day 0 as the reference day (in place of t2), the egg must have been 114

laid between days (0− TE − TL) and (0− TE) (Figure 2, panel B). Equation 2 therefore 115

represents the expected number of offspring laid by all adult females in the population 116

that survive the egg and larva stages up to the time of sampling (day 0). 117

EMOL(t1, t2), on the other hand, is specific to the sampled adult female and the day 118

of larval sampling, t2. This is given by: 119

EMOL(t1, t2) =

t2−TE∑
y2=t2−TE−TL

(1−µA)(t1−y2)×
(
I[(t1 − TA) ≤ y2 ≤ t1]× β × (1− µE)TE × (1− µL)(t2−y2−TE)

)
. (3)

Here, the day of egg-laying, y2, is summed over days (t2 − TE − TL) through 120

(t2 − TE), for consistency with the larva being present on the day of sampling (Figure 2, 121

panel A). The first term in the summation represents the probability that the adult 122

female sampled on day t1 is alive on the day of egg-laying, and the second term (in 123

larger brackets) represents the expected surviving larval output of this adult female on 124

day t2. This latter term is equal to their daily egg production, β, multiplied by the 125

proportion of eggs that survive the egg and larva stages from the day they were laid up 126

to the day of sampling. An indicator function is included to limit consideration to cases 127

where the day of egg-laying lies within the adult female’s possible lifetime - i.e., between 128

days t1 and (t1 − TA), where TA represents the maximum possible age of an adult 129

mosquito. Although adult lifetime is exponentially-distributed, a value of TA may be 130

chosen that captures most of this distribution and leads to accurate parameter inference. 131

Next, we adapt the mother-offspring kinship probability for adult offspring to obtain 132

PMOA(t1, t2), the probability that, given an adult female sampled on day t1, an adult 133

sampled on day t2 is her offspring: 134

PMOA(t1, t2) =
E [Adult offspring at time t2 from an adult female sampled at time t1]

E [Adult offspring at time t2 from all adult females at consistent times]
=
EMOA(t1, t2)

EA
. (4)

Here, EMOA(t1, t2) represents the expected number of surviving adult offspring on 135

day t2 from an adult female sampled on day t1, and EA represents the expected number 136

of surviving adult offspring from all adult females at times consistent with the time of 137

adult offspring sampling. Assuming a population at equilibrium, EA is independent of 138

time and is given by: 139

EA =

0−TE−TL−TP∑
y2=0−TE−TL−TP−TA

NF × β × (1− µE)TE × (1− µL)TL × (1− µP )TP × (1− µA)(0−y2−TE−TL−TP ). (5)

Here, considering day 0 as the reference day (in place of t2), the day of egg-laying, 140

y2, is summed over days (0− TE − TL − TP − TA) through (0− TE − TL − TP ), for 141

consistency with the adult offspring being present on the day of sampling (Figure 2, 142
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Fig 2. Consistent event histories for parent-offspring kinship probabilities.
Parameters and state variables are as defined in Table 1 and §2.1. Subscript 1 refers to
the parent, and subscript 2 refers to the offspring (the perspective from which
probabilities are calculated). Circles represent living individuals and squares represent
sampled individuals. Parents are sampled on day t1, eggs are laid on day y2, and
offspring are sampled on day t2. Offspring kinship probabilities are the ratio of the
expected number of surviving offspring from a given adult on day t2, and the expected
number of surviving offspring from all adult females on this day. For mother-offspring
pairs, this requires considering days of egg-laying, y2, consistent with maternal ages at
egg-laying in the range [0, TA], and with larval offspring ages at sampling in the range
[0, TL] (A), or adult offspring ages at sampling in the range [0, TA] (C). The expected
number of surviving offspring from all adult females requires considering days of
egg-laying consistent with larval ages at sampling in the range [0, TL] (for larval
offspring) (B), or adult ages at sampling in the range [0, TA] (for adult offspring) (D).
Calculating the expected number of surviving adult offspring on day t2 from an adult
male requires considering days of mating, ti, and egg-laying, y2, consistent with
maternal ages at egg-laying, and paternal and adult offspring ages at sampling in the
range [0, TA] (E).
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panel D). Equation 5 therefore represents the expected number of offspring laid by all 143

adult females in the population that survive the egg, larva, pupa and adult stages up to 144

the time of sampling (day 0). EMOA(t1, t2) is then given by: 145

EMOA(t1, t2) =

t2−TE−TL−TP∑
y2=t2−TE−TL−TP−TA

(1−µA)(t1−y2)×
(
I[(t1 − TA) ≤ y2 ≤ t1]× β × (1− µE)TE × (1− µL)TL

× (1− µP )TP × (1− µA)(t2−y2−TE−TL−TP )

)
. (6)

Here, the day of egg-laying, y2, is summed over days (t2 − TE − TL − TP − TA) 146

through (t2 − TE − TL − TP ), for consistency with the adult offspring being present on 147

the day of sampling (Figure 2, panel C). The terms within the summation are the same 148

as for the mother-larval offspring case, with the exception that daily egg production is 149

multiplied by the proportion of eggs that survive the egg, larva, pupa and adult stages 150

from the day they were laid up to the day of sampling, t2, which reflects the additional 151

time elapsed for adult sampling. 152

Extending the mother-offspring kinship probability for pupal offspring is 153

straightforward, involving similar adaptations as for the case of mother-adult offspring 154

pairs. These extensions are provided in S1 Text §2.1. 155

2.2.2. Father-offspring 156

Next, we consider the father-adult offspring kinship probability, PFOA(t1, t2), which 157

represents the probability that, given an adult male sampled on day t1, an adult sampled 158

on day t2 is his offspring. This can be expressed as the relative adult reproductive 159

output on day t2 of adult females that mated with an adult male sampled on day t1: 160

PFOA(t1, t2) =
E [Adult offspring at time t2 from an adult male sampled at time t1]

E [Adult offspring at time t2 from all adult females at consistent times]
=
EFOA(t1, t2)

EA
. (7)

Here, EFOA(t1, t2) represents the expected number of surviving adult offspring on 161

day t2 of an adult male sampled on day t1, and EA is given in Equation 5. Each adult 162

female mates once upon emergence and, since there are equal numbers of adult females 163

and males in the population, each adult male mates on average once in their lifetime too. 164

The day of this mating event, ti, is unknown and so, in calculating EFOA(t1, t2), we 165

treat this as a latent variable and take an expectation over all possible values it can take: 166

EFOA(t1, t2) =

t1∑
ti=t1−TA

pA(t1 − ti)× EFOA(t1, t2|ti). (8)

Here, the expectation over the day of mating, ti, is taken over days (t1 − TA) 167

through t1, for consistency with the day of adult male sampling (Figure 2, panel E). 168

The term EFOA(t1, t2|ti) represents the expected number of adult offspring on day t2 of 169

an adult male sampled on day t1, conditional upon the day of mating being ti, and 170

pA(t1 − ti) represents the probability that the mating event occurs on day (t1 − ti). In 171

general, pA(t) represents the probability that a given adult in the population has age t 172

which, following from the daily survival probability, (1− µA), is given by: 173

pA(t) = (1− µA)t
/ TA∑

tj=0

(1− µA)tj . (9)
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EFOA(t1, t2|ti) is then given by: 174

EFOA(t1, t2|ti) =

ti+TA∑
y2=ti

(1−µA)(y2−ti)×

 I[(y2 + TE + TL + TP ) ≤ t2 ≤ (y2 + TE + TL + TP + TA)]

× β × (1− µE)TE × (1− µL)TL

× (1− µP )TP × (1− µA)(t2−y2−TE−TL−TP )

 . (10)

Here, the day of egg-laying, y2, is summed over days ti through (ti + TA), for 175

consistency with the mother’s potential lifespan (Figure 2, panel E). The first term in 176

the summation represents the probability that the mother is alive on the day of 177

egg-laying, and the second term (in larger brackets) represents the expected surviving 178

adult output of this adult female on day t2. This latter term is the same as for the 179

mother-adult offspring case, with the exception that the indicator function limits 180

consideration to cases where the day of adult sampling, t2, lies within the adult 181

offspring’s possible lifetime - i.e. between days (y2 + TE + TL + TP ) and 182

(y2 + TE + TL + TP + TA). 183

Extending the father-offspring kinship probability for larval and pupal offspring is 184

straightforward, involving similar adaptations as per the case of mother-offspring pairs. 185

These extensions are provided in S1 Text §2.2. 186

2.2.3. Full-siblings 187

Next, we consider the full-sibling kinship probability for larva-larva pairs, PFSLL(t1, t2), 188

which represents the probability that, given a larva sampled on day t1, a larva sampled 189

on day t2 is their full-sibling. This can be expressed as the relative larval reproductive 190

output on day t2 of the mother of a larva sampled on day t1: 191

PFSLL(t1, t2) =
E [Larvae at time t2 that are full-siblings of a larva sampled at time t1]

E [Larval offspring at time t2 from all adult females at consistent times]
=
EFSLL(t1, t2)

EL
. (11)

Here, EFSLL(t1, t2) represents the expected number of surviving larvae on day t2 192

that are full-siblings of a larva sampled on day t1, and EL is given in Equation 2. For 193

convenience, let us refer to the larva sampled on day t1 as individual 1. To calculate 194

EFSLL(t1, t2), there are two unknown event times that we treat as latent variables and 195

take an expectation over - i) the day that egg 1 is laid, y1, and ii) the day that 196

individual 1’s mother emerges as an adult, ti: 197

EFSLL(t1, t2) =

t1−TE∑
y1=t1−TE−TL

pL(t1− y1− TE)×
y1∑

ti=y1−TA

pA(y1− ti)×EFSLL(t1, t2|y1, ti). (12)

Here, the expectation over the day that egg 1 is laid, y1, is taken over days 198

(t1 − TE − TL) through (t1 − TE), for consistency with the day that larva 1 is sampled, 199

and the expectation over the day of their mother’s emergence, ti, is taken over days 200

(y1 − TA) through y1, so that egg 1 may be laid during their mother’s potential lifetime 201

(Figure 3, panel A). The term EFSLL(t1, t2|y1, ti) represents the expected number of 202

surviving larvae on day t2 that are full-siblings of larva 1, conditional upon egg 1 being 203

laid on day y1, and their mother emerging as an adult on day ti. Additionally, 204

pL(t1 − y1 − TE) represents the probability that egg 1 is laid on day (t1 − y1 − TE), and 205

pA(y1 − ti) represents the probability that their mother emerges on day (y1 − ti). In 206

general, pA(t) is given in Equation 9, and pL(t) represents the probability that a given 207
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larva in the population has age t which, following from the daily larval survival 208

probability, (1− µL), is given by: 209

pL(t) = (1− µL)t
/ TL∑

tj=0

(1− µL)tj . (13)

Fig 3. Consistent event histories for sibling kinship probabilities. Parameters
and state variables are as defined in Table 1 and §2.1. Subscript 1 refers to the reference
sibling, and subscript 2 refers to the sibling from whose perspective the probabilities are
calculated. Circles represent living individuals and squares represent sampled
individuals. The reference sibling is sampled on day t1 and laid on day y1. Sibling 2 is
sampled on day t2 and laid on day y2. Sibling kinship probabilities are the ratio of the
expected number of surviving siblings of a given individual on day t2, and the expected
number of surviving offspring from all adult females on this day. Calculating the
expected number of surviving full-siblings requires considering days of their mother
emerging as an adult, ti, and of egg-laying, y1 and y2, that are consistent with maternal
ages at egg-laying in the range [0, TA], and with larval ages at sampling in the range
[0, TL] (for larval siblings) (A), or adult ages at sampling in the range [0, TA] (for adult
siblings) (B). Calculating the expected number of surviving adult half-siblings of an
adult requires considering days of their father emerging as an adult, tj , their mothers
emerging as adults, ti and tk, and of egg-laying, y1 and y2, that are consistent with
paternal ages at mating in the range [0, TA], maternal ages at egg-laying in the range
[0, TA], and adult ages at sampling in the range [0, TA] (C).
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EFSLL(t1, t2|y1, ti) is then given by: 210

EFSLL(t1, t2|y1, ti) =

ti+TA∑
y2=ti

(1−µA)(y2−ti)×
(
I[(t2 − TE − TL) ≤ y2 ≤ (t2 − TE)]

× β × (1− µE)TE × (1− µL)(t2−y2−TE)

)
. (14)

Here, the day of sibling egg-laying, y2, is summed over days ti through (ti + TA), for 211

consistency with the mother’s potential lifespan (Figure 3, panel A). The first term in 212

the summation represents the probability that the mother is alive on the day of sibling 213

egg-laying, and the second term (in larger brackets) represents the expected larval 214

output of the mother on day t2. This latter term is the same as for the mother-larval 215

offspring case, with the exception that the indicator function limits consideration to 216

cases where the day of sibling egg-laying, y2, is between days (t2 − TE − TL) and 217

(t2 − TE), for consistency with a larval sibling being sampled on day t2. 218

Extending the full-sibling kinship probability to other life stage pairs is 219

straightforward. We consider the case of adult-adult full-sibling pairs here, and provide 220

the remaining cases in S1 Text §2.3. For adult-adult pairs, the full-sibling kinship 221

probability is denoted by PFSAA(t1, t2) and represents the probability that, given an 222

adult sampled on day t1, an adult sampled on day t2 is their full-sibling. This can be 223

expressed as: 224

PFSAA(t1, t2) =
E [Adults at time t2 that are full-siblings of an adult sampled at time t1]

E [Adult offspring at time t2 from all adult females at consistent times]
=
EFSAA(t1, t2)

EA
. (15)

Here, EFSAA(t1, t2) represents the expected number of surviving adults on day t2 225

that are full-siblings of an adult sampled on day t1, and EA is given in Equation 5. For 226

convenience, let us refer to the adult sampled on day t1 as individual 1. To calculate 227

EFSAA(t1, t2), there are two unknown event times that we treat as latent variables and 228

take an expectation over - i) the day that egg 1 is laid, y1, and ii) the day that 229

individual 1’s mother emerges as an adult, ti: 230

EFSAA(t1, t2) =

t1−TE−TL−TP∑
y1=t1−TE−TL−TP−TA

pA(t1 − y1 − TE − TL − TP )×
y1∑

ti=y1−TA

pA(y1 − ti)×EFSAA(t1, t2|y1, ti). (16)

This is the same equation as for the larva-larva case with two exceptions: i) the 231

expectation over the day that individual 1 is laid is taken over days 232

(t1 − TE − TL − TP − TA) through (t1 − TE − TL − TP ) to account for the additional 233

time elapsed between the larva and adult life stages, and ii) the probability that egg 1 is 234

laid on day (t1 − y1 − TE − TL − TP ), pA(t1 − y1 − TE − TL − TP ), reflects the adult 235

age probability distribution in Equation 9 as this is the relevant life stage (Figure 3, 236

panel B). The term EFSAA(t1, t2|y1, ti) represents the expected number of surviving 237

adults on day t2 that are full-siblings of adult 1, conditional upon egg 1 being laid on 238

day y1, and their mother emerging as an adult on day ti. This is given by: 239

EFSAA(t1, t2|y1, ti) =

ti+TA∑
y2=ti

(1−µA)(y2−ti)×

 I[(t2 − TE − TL − TP − TA) ≤ y2 ≤ (t2 − TE − TL − TP )]

× β × (1− µE)TE × (1− µL)TL

× (1− µP )TP × (1− µA)(t2−y2−TE−TL−TP )

 . (17)

This is the same equation as for the larva-larva case with two exceptions: i) daily 240

egg production is multiplied by the proportion of eggs that survive the egg, larva, pupa 241
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and adult stages up to the day of sampling to reflect the fact that adults rather than 242

larvae are being sampled, and ii) the indicator function limits consideration to cases 243

where the day of sibling egg-laying, y2, is between days (t2 − TE − TL − TP − TA) and 244

(t2 − TE − TL − TP ), again accounting for the additional time elapsed between the larva 245

and adult life stages. 246

2.2.4. Half-siblings 247

Next, we consider the half-sibling kinship probability for adult-adult pairs, 248

PHSAA(t1, t2), which represents the probability that, given an adult sampled on day t1, 249

an adult sampled on day t2 is their half-sibling. This can be expressed as the relative 250

adult reproductive output on day t2 of adult females that mate with the father of an 251

adult sampled on day t1: 252

PHSAA(t1, t2) =
E [Adults at time t2 that are half-siblings of an adult sampled at time t1]

E [Adult offspring at time t2 from all adult females at consistent times]
=
EHSAA(t1, t2)

EA
. (18)

Here, EHSAA(t1, t2) represents the expected number of surviving adults on day t2 253

that are half-siblings of an adult sampled on day t1, and EA is given in Equation 5. For 254

convenience, let us refer to the adult sampled on day t1 as individual 1. To calculate 255

EHSAA(t1, t2), there are three unknown event times that we treat as latent variables 256

and take an expectation over - i) the day that egg 1 is laid, y1, ii) the day of the mating 257

event between individual 1’s mother and father, ti, and iii) the day that individual 1’s 258

father emerges as an adult, tj : 259

EHSAA(t1, t2) =

t1−TE−TL−TP∑
y1=t1−TE−TL−TP−TA

pA(t1 − y1 − TE − TL − TP )×
y1∑

ti=y1−TA

pA(y1 − ti)

×
ti∑

tj=ti−TA

pA(ti − tj)× EHSAA(t1, t2|y1, ti, tj).
(19)

Here, i) the expectation over the day that egg 1 is laid, y1, is taken over days 260

(t1 − TE − TL − TP − TA) through (t1 − TE − TL − TP ), for consistency with the day 261

that adult 1 is sampled, ii) the expectation over the day of the mating event, ti, is taken 262

over days (y1 − TA) through y1, for consistency with egg 1 being laid during their 263

mother’s potential lifetime, and iii) the expectation over the day that their father 264

emerges, tj , is taken over days (ti − TA) through ti, so that the mating event overlaps 265

with their father’s potential lifetime (Figure 3, panel C). The term 266

EHSAA(t1, t2|y1, ti, tj) represents the expected number of surviving adults on day t2 267

that are half-siblings of adult 1, conditional upon egg 1 being laid on day y1, their 268

mother and father mating on day ti, and their father emerging as an adult on day tj . 269

Additionally, pA(t1 − y1 − TE − TL − TP ) represents the probability that egg 1 is laid on 270

day (t1 − y1 − TE − TL − TP ), pA(y1 − ti) represents the probability that the mating 271

event happens on day (y1 − ti), and pA(ti − tj) represents the probability that their 272

father emerges on day (ti − tj), where pA(t) is given by Equation 9. 273

EHSAA(t1, t2|y1, ti, tj) is then given by: 274

EHSAA(t1, t2|y1, ti, tj) =

tj+TA∑
tk=tj

(1−µA)(tk−tj)×µA×
tk+TA∑
y2=tk

(1−µA)(y2−tk)×


I[(t2 − TE − TL − TP − TA) ≤ y2

≤ (t2 − TE − TL − TP )]

× β × (1− µE)TE

× (1− µL)TL × (1− µP )TP

× (1− µA)(t2−y2−TE−TL−TP )

 . (20)
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In order to produce a half-sibling, adult 1’s father must mate with another adult 275

female and that adult female must produce an offspring. Here, the day of the second 276

mating event, tk, is summed over days tj through (tj + TA), for consistency with the 277

father’s potential lifespan, and the day of sibling egg-laying, y2, is summed over days tk 278

through (tk + TA), for consistency with the mother’s potential lifespan (Figure 3, panel 279

C). The terms in the first summation represent: i) the probability that the father 280

survives days tk through tj and therefore is alive on the day of the second mating event, 281

and ii) the probability that the father mates on this day. This latter probability is equal 282

to the adult mortality rate, µA, since, for a population at equilibrium, the adult 283

emergence and mortality rates are the same, and the mating rate is equal to the 284

emergence rate since females are assumed to mate upon emergence. Finally, the terms 285

in the second summation represent the probability that the mother is alive on the day 286

of sibling egg-laying, and the expected adult output of the mother on day t2. This latter 287

term (in big brackets) is the same as that for the full-sibling adult-adult case. We 288

provide half-sibling kinship probabilities for other life stage pairs in S1 Text §2.4. 289

2.3. Likelihood calculation 290

The goal of this mosquito CKMR analysis is to make inferences about demographic and 291

life history parameters given data on the frequency and timing of observed close-kin 292

pairs. Here, we calculate the likelihood of parent-offspring and sibling pairs in a manner 293

that takes advantage of the nature of the kinship probabilities and the sampling process. 294

The kinship probabilities for each pair of individuals are assumed to be independent of 295

each other, even though they are not. For this reason the combined likelihood is 296

referred to as a “pseudo-likelihood” [1]. The pseudo-likelihood approach has been shown 297

to produce accurate parameter and variance estimates provided the size of each 298

sampling event is sufficiently low relative to the total population size [2, 3]. 299

2.3.1. Parent-offspring pairs 300

Let us begin by considering the mother-adult offspring kinship probability, pMOA(t1, t2), 301

which represents the probability that, given an adult female sampled on day t1, an adult 302

sampled on day t2 is her offspring. Now consider nF (t1) adult females sampled on day 303

t1. The probability that a given adult has a mother amongst the nF (t1) sampled adult 304

females, pMOA(t1, t2), is equal to one minus the probability that none of the nF (t1) 305

sampled adult females are the adult’s mother, i.e.: 306

pMOA(t1, t2) = 1− (1− PMOA(t1, t2))nF (t1). (21)

Here, PMOA(t1, t2) is as defined in Equation 4. Now consider nA(t2) adults sampled 307

on day t2, and let kMOA(t1, t2) be the number of adults sampled on day t2 that have a 308

mother amongst the adult females sampled on day t1. The pseudo-likelihood that 309

kMOA(t1, t2) of the nA(t2) adults sampled on day t2 have a mother amongst the adult 310

females sampled on day t1 follows from the binomial distribution: 311

L(kMOA(t1, t2)) =

(
nA(t2)

kMOA(t1, t2)

)
×pMOA(t1, t2)kMOA(t1,t2)× (1−pMOA(t1, t2))nA(t2)−kMOA(t1,t2). (22)

The full log-pseudo-likelihood for mother-adult offspring pairs, ΛMOA, follows from 312

summing the log-pseudo-likelihood over all adult female sampling days, t1, and over 313
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consistent adult offspring sampling days, t2: 314

ΛMOA =
∑
t1

t1+TE+TL+TP+TA∑
t2=t1+TE+TL+TP−TA

kMOA(t1, t2) log pMOA(t1, t2)+(nA(t2)−kMOA(t1, t2)) log (1−pMOA(t1, t2)). (23)

Note that, for the purpose of parameter interference, we can drop the first term in 315

the pseudo-likelihood equation, and for the purpose of efficient computation, we 316

consider consistent adult sampling days from (t1 + TE + TL + TP − TA) through 317

(t1 + TE + TL + TP + TA). The earliest adult sampling day (relative to t1) corresponds 318

to the case where the mother laid the offspring at the beginning of her life, was sampled 319

at the end of her life, and the adult offspring was sampled at the beginning of its life. 320

The latest adult sampling day (relative to t1) corresponds to the case where the mother 321

was sampled on the day they laid their offspring, and the adult offspring was sampled at 322

the end of its life. For cases where t1 = t2, the number of sampled adults, nA(t2), is 323

reduced by one to account for the fact that an adult cannot be its own parent. 324

Parent-offspring pseudo-likelihood equations for other sampled sexes and life stages 325

follow an equivalent formulation. The main point to note is that consistent offspring 326

sampling days are specific to the kinship and sampled life stages being considered (these 327

can be deduced from event history diagrams like those in Figure 2). The joint 328

log-pseudo-likelihood for parent-offspring pairs is then given by: 329

ΛPO = ΛMOL + ΛMOP + ΛMOA + ΛFOL + ΛFOP + ΛFOA. (24)

Here, ΛMOL, ΛMOP , ΛFOL, ΛFOP and ΛFOA denote the log-pseudo-likelihoods for 330

mother-larval offspring pairs, mother-pupal offspring pairs, father-larval offspring pairs, 331

father-pupal offspring pairs and father-adult offspring pairs, respectively. 332

2.3.2. Full-sibling pairs 333

For siblings, we begin with the adult-adult full-sibling kinship probability, 334

PFSAA(t1, t2), defined in Equation 15, which represents the probability that, given an 335

adult sampled on day t1, an adult sampled on day t2 is their full-sibling. We consider a 336

given adult, indexed by i and sampled on day t1(i), and nA(t2) adults sampled on day 337

t2. Let kFSAA(i, t2) be the number of adults sampled on day t2 that are full-siblings of 338

adult i. The pseudo-likelihood that kFSAA(i, t2) of the nA(t2) sampled adults on day t2 339

are full-siblings of adult i follows from the binomial distribution: 340

L(kFSAA(i, t2)) =

(
nA(t2)

kFSAA(i, t2)

)
×PFSAA(t1(i), t2)kFSAA(i,t2)× (1−PFSAA(t1(i), t2))nA(t2)−kFSAA(i,t2). (25)

Note that, for cases where t1(i) = t2, the number of sampled adults on day t2, 341

nA(t2), is reduced by one to account for the fact that an adult cannot be its own sibling. 342

Additionally, when counting siblings, we only consider siblings with indices > i to avoid 343

double-counting. The full log-pseudo-likelihood for adult-adult full-sibling pairs, ΛFSAA, 344

follows from summing the log-pseudo-likelihood over all sampled adults, i, and over 345

consistent adult sampling days, t2: 346

ΛFSAA =

nA−1∑
i=1

t1(i)+2TA∑
t2=t1(i)−2TA

kFSAA(i, t2) log PFSAA(t1(i), t2)+(nA(t2)−kFSAA(i, t2)) log (1−PFSAA(t1(i), t2)). (26)
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Consistent adult sampling days for this case are from (t1(i)− 2TA) through 347

(t1(i) + 2TA). The earliest adult sampling day (relative to t1(i)) corresponds to the case 348

where the mother laid individual 2 at the beginning of her life and individual 1 at the 349

end of her life, adult 1 was sampled at the end of its life, and adult 2 was sampled soon 350

after emergence. The latest adult sampling day (relative to t1(i)) corresponds to the 351

reverse case. Full-sibling pseudo-likelihood equations for other life stage pairs follow an 352

equivalent formulation, with consistent sampling days specific to the kinship and 353

sampled life stages being considered (these can be deduced from event history diagrams 354

like those in Figure 3). The joint log-pseudo-likelihood for full-sibling pairs is then given 355

by: 356

ΛFS = ΛFSLL + ΛFSLP + ΛFSLA + ΛFSPL + ΛFSPP + ΛFSPA + ΛFSAL + ΛFSAP + ΛFSAA. (27)

Here, ΛFSLL, ΛFSLP , ΛFSLA, ΛFSPL, ΛFSPP , ΛFSPA, ΛFSAL and ΛFSAP denote 357

the log-pseudo-likelihoods for larva-larva, larva-pupa, larva-adult, pupa-larva, 358

pupa-pupa, pupa-adult, adult-larva and adult-pupa full-sibling pairs, respectively. 359

2.3.3. All sibling pairs 360

In moving from full-siblings to both full and half-siblings, we adopt a multinomial 361

approach in which each pair of individuals can either be full-siblings, half-siblings or 362

neither. Consider again a given adult, indexed by i and sampled on day t1(i), and 363

nA(t2) adults sampled on day t2, and let kHSAA(i, t2) be the number of adults sampled 364

on day t2 that are half-siblings of adult i. The pseudo-likelihood that kFSAA(i, t2) and 365

kHSAA(i, t2) of the nA(t2) sampled adults on day t2 are full-siblings and half-siblings of 366

adult i, respectively, follows from the multinomial distribution: 367

L(kFSAA(i, t2), kHSAA(i, t2)) ∝
(
PFSAA(t1(i), t2)kFSAA(i,t2) × PHSAA(t1(i), t2)kHSAA(i,t2)

× (1− PFSAA(t1(i), t2)− PHSAA(t1(i), t2))nA(t2)−kFSAA(i,t2)−kHSAA(i,t2)

)
. (28)

Here, PFSAA(t1(i), t2) is as defined in Equation 15, and PHSAA(t1(i), t2) represents 368

the probability that, given an adult sampled on day t1(i), an adult sampled on day t2 is 369

their half-sibling, as defined in Equation 18. The full log-pseudo-likelihood for all 370

adult-adult sibling pairs, ΛSAA, follows from summing the log-pseudo-likelihood over all 371

sampled adults, i, and over consistent adult sampling days, t2: 372

ΛSAA =

nA−1∑
i=1

t1(i)+3TA∑
t2=t1(i)−3TA

 kFSAA(i, t2) log PFSAA(t1(i), t2) + kHSAA(i, t2) log PHSAA(t1(i), t2)
+ (nA(t2)− kFSAA(i, t2)− kHSAA(i, t2))

× log (1− PFSAA(t1(i), t2)− PHSAA(t1(i), t2))

 .

(29)

The range of consistent adult sampling days is larger when half-siblings are included, 373

due to the additional event histories involved. The full and half-sibling 374

pseudo-likelihood equations for other life stage pairs follow an equivalent formulation, 375

and the joint log-pseudo-likelihood is given by: 376

ΛS = ΛSLL + ΛSLP + ΛSLA + ΛSPL + ΛSPP + ΛSPA + ΛSAL + ΛSAP + ΛSAA. (30)

Here, ΛSLL, ΛSLP , ΛSLA, ΛSPL, ΛSPP , ΛSPA, ΛSAL and ΛSAP denote the 377

log-pseudo-likelihoods for larva-larva, larva-pupa, larva-adult, pupa-larva, pupa-pupa, 378

pupa-adult, adult-larva and adult-pupa full and half-sibling pairs, respectively. 379
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2.3.4. Parameter inference 380

Despite parent-offspring and sibling kinship probabilities not being independent, the 381

pseudo-likelihood approach enables us to combine these likelihoods, provided the size of 382

each sampling event is sufficiently low relative to the total population size [1]. As we 383

will see later, our simulation studies suggest this to be the case. We therefore combine 384

these log-pseudo-likelihoods to obtain a log-pseudo-likelihood for the entire data set: 385

Λ = ΛPO + ΛS . (31)

Parameter inference can then proceed by varying a subset of the demographic and 386

life history parameters in Table 1 in order to minimize −Λ. We used the nlminb 387

function implemented in the optimx function in R [25] to perform our optimizations. 388

This function implements a Newton-type algorithm and performed the best, in terms of 389

speed and accuracy, among the 13 algorithms available through the optimx function. 390

2.4. Individual-based simulation model 391

We developed an individual-based simulation model of mosquito life history to test the 392

effectiveness of the CKMR approach at estimating mosquito demographic and bionomic 393

parameters. The model is an individual-based adaptation of our previous model, 394

MGDrivE [26], which is a genetic and spatial extension of the lumped age-class model 395

applied to mosquitoes by Hancock and Godfray [17] and Deredec et al. [18] (Figure 1). 396

The simulation time-step is one day. Functionality is included to account for spatial 397

population structure, with mosquitoes being distributed across populations in a 398

metapopulation [26], and each population having an equilibrium adult population size, 399

N∗
A, and exchanging migrants with the other populations; however, in the present 400

analysis, a single panmictic population is modeled. Each population is partitioned 401

according to discrete life stages - egg, larva, pupa and adult - with sub-adult stages 402

having fixed durations as defined earlier. Daily mortality rates are as defined earlier, 403

and implemented according to a Bernoulli distribution for each individual. 404

Density-independent juvenile mortality rates are calculated for consistency with 405

observed population growth rates for Ae. aegypti (Table 1). Additional 406

density-dependent mortality occurs at the larval stage and regulates population size (see 407

S1 Text §1 for formulae and derivations). Sex is modeled at the adult stage - half of 408

pupae emerge as females, and the other half as males, implemented according to a 409

Bernoulli distribution with probability 0.5. Females mate once upon emergence, with 410

the male mate being chosen at random. Males mate throughout their lifespan, and 411

independently of previous mating events. Females lay eggs at a daily fecundity rate, β, 412

for the duration of their lifespan with daily egg production of each adult female 413

following a Poisson distribution. 414

Sampling is lethal, and is implemented as specified, with collection days, locations 415

and sample sizes for each life stage defined by the user. To enable close-kin relationships 416

to be inferred for sampled individuals, each individual is labeled with a unique IN, and 417

parental INs are stored as attributes. Output CSV (comma-separated value) files are 418

produced for each sampled life stage (larva, pupa, adult female and adult male, as 419

appropriate), and include the time (day) and location (patch) of collection, as well as 420

the individual’s age at the time of sampling, their IN, and maternal and paternal INs. 421

Inference of mother-offspring, father-offspring, full-sibling and (paternal) half-sibling 422

pairs from this data is straightforward. Age information was not used in this analysis; 423

but may be useful in the future as new technologies emerge to estimate the age of 424

wild-caught adults [27]. 425
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3. Results 426

We used simulated data from the individual-based mosquito model to explore the 427

feasibility of CKMR methods to infer demographic and bionomic parameters for Ae. 428

aegypti. Our simulated population consisted of 3,000 adults with bionomic parameters 429

listed in Table 1. Open questions concern the suitability of CKMR methods for Ae. 430

aegypti, and the range of demographic and bionomic parameters that can be accurately 431

estimated using them. To address these questions, we explored logistically-feasible 432

sampling schemes to accurately infer adult and juvenile parameters by varying: i) 433

sampled life stage (larva, pupa or adult), sex (adult female or male), sampling frequency 434

(daily, biweekly, weekly or fortnightly), sampling duration (1-4 months), and total 435

sample size (500-5,000 sequenced individuals). For adults, we focused on adult 436

population size, NA, and mortality rate, µA, and for juvenile life stages, we focused on 437

larval mortality rate, µL, and the duration of the larval stage, TL. By default, our 438

likelihood calculations were based on parent-offspring and full-sibling pairs. Half-sibling 439

pairs were only included for optimal sampling schemes, due to the computational 440

burden that half-siblings present by requiring integration over six latent event times 441

(Figure 3, panel C). We also considered subsets of likelihood components in our 442

analyses, in the event that these may provide increased accuracy or precision. 443

3.1. Optimal sampling schemes to estimate adult parameters 444

To estimate adult parameters, our default sampling scheme consisted of a total of 1,000 445

sequenced individuals sampled daily over a three-month period (i.e., ca. 11-12 446

individuals sampled each day, for a total of 1,000 individuals after three months of 447

sampling). We first explored the optimal distribution of sampled life stage and sex to 448

estimate NA and µA. Sampled larval, adult female and adult male life stage proportions 449

were varied in 25% increments and limited to scenarios where the number of sampled 450

adult females was greater than or equal to the number of sampled adult males (this 451

reflects the case in the field due to the relative difficulty of sampling adult males). We 452

also considered the case where only pupae were sampled, as pupae are often used as 453

indicators of adult population size in entomological field studies [28]. Results of 100 454

simulation-and-analysis replicates for each of ten sampling scenarios are depicted in 455

Figure 4 (panels A and B). The key result from this analysis is that the most accurate 456

estimates of NA and µA - in terms of both accuracy of the median and tightness of the 457

interquartile range (IQR) - are obtained when only adult females are sampled. This is 458

an intuitive result, as NA and µA both describe the adult population, and adult females 459

provide the most direct information on kinship - i.e., calculating the kinship probability 460

for father-offspring pairs as compared to mother-offspring pairs involves integrating over 461

an additional latent event time (Figure 2). Other key messages from this analysis are 462

that IQRs of inferred parameters are wider for samples dominated by larvae (75% or 463

higher) or pupae (100%), and there is a bias towards higher estimates of population size 464

and lower estimates of adult mortality in all cases except the optimal case of adult 465

female sampling. Given these results, we focused on adult female sampling while 466

refining other details of the sampling schemes for estimating adult parameters. 467

Next, we explored the most efficient sampling frequency to estimate NA and µA. 468

While we consider daily sampling a theoretical gold standard, mosquito collections in the 469

field tend to be at most biweekly [29], with weekly collections being more common [7]. 470

For completeness, we also considered collections occurring every two weeks, with results 471

of 100 replicates for each of the four sampling scenarios depicted in Figure 4 (panels C 472

and D). The key result from this analysis is that CKMR estimates of NA and µA are 473

robust for daily, biweekly, weekly, and even fortnightly collections, which is reassuring 474

for the logistical feasibility of the method. In the field, the decision on sampling 475
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Fig 4. Sampling schemes to estimate NA and µA for Ae. aegypti. Violin plots
depict estimates of NA and µA for sampling scenarios described in §3.1. The simulated
population consists of 3,000 adult Ae. aegypti with bionomic parameters listed in
Table 1. Boxes depict median and interquartile ranges of 100 simulation-and-analysis
replicates for each scenario, thin lines represent 5% and 95% quantiles, points represent
outliers, and kernel density plots are superimposed. The default sampling scheme
consists of 1,000 individuals sampled as ca. 11-12 individuals a day over three months.
In panels (A-B), sampled larval, adult female and adult male life stage proportions are
varied in 25% increments and limited to scenarios where the number of sampled adult
females exceeds the number of sampled adult males. The case 100% sampled pupae is
also included. In panels (C-D), all sampled individuals are adult females, and four
sampling frequencies are considered - daily, biweekly, weekly and fortnightly. In panels
(E-F), biweekly sampling is adopted, and sampling durations of 1-4 months are
explored. In panels (G-H), a sampling duration of three months is adopted, and total
sample sizes of 500, 1,000, 1,500 and 2,000 adult females are explored. The optimal
sampling scheme consists of 1,000 adult females collected biweekly-to-fortnightly over a
three month period.

frequency will be based on the required total sample size, and the sampling frequency 476

required to achieve it. We decided to focus on biweekly sampling henceforth, given its 477

precedent in the field, and considering it allows more mosquitoes to be collected than 478

weekly sampling. CKMR methods rely on the day of sampling to be known, and so 479

mosquitoes must be collected within a single day of trapping, unlike regular mosquito 480

surveillance efforts in which they are pooled over the days between collections. 481

Following this, we explored the most efficient sampling duration to estimate NA and 482

µA. We explored durations of 1-4 months as, given the short generation time of 483

mosquitoes [14], parent-offspring pairs could potentially be collected within a month, 484

and given the seasonality of mosquito populations, a maximum sampling period of four 485

months corresponds to a season when the constant population assumption may 486

approximately apply. 100 replicates for each of four sampling scenarios are depicted in 487

Figure 4 (panels E and F). These results suggest that sampling durations of 3-4 months 488

provide unbiased estimates of NA and µA, while sampling durations of 1-2 months lead 489

to adult mortality being overestimated, and adult population size being underestimated. 490

Interestingly, NA is also underestimated for sampling durations of 1-2 months when it is 491
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the only parameter being estimated (results not shown). Given these results, we 492

retained a three-month sampling period as the most efficient option. 493

Next, we explored the optimal sample size to estimate NA and µA for Ae. aegypti. 494

We performed 100 simulation-and-analysis replicates for each of four total sample sizes - 495

500, 1,000, 1,500 and 2,000 adult females - depicted in Figure 4 (panels G and H). 496

Results suggest that, while estimates of NA and µA become more precise for larger 497

sample sizes (as measured by the IQR), adult mortality is overestimated for total 498

sample sizes of 1,500 or higher, and adult population size is correspondingly 499

underestimated. These are likely a reflection of lethal sampling removing individuals 500

from the population and hence increasing adult mortality and reducing adult population 501

size. We therefore converged on an optimal sample size of 1,000 adult females, collected 502

biweekly-to-fortnightly over a three month period, as providing accurate and unbiased 503

estimates of NA and µA. 504

Given this optimal sampling scheme to estimate NA and µA, we next explored the 505

likelihood components used in these analyses. Curiously, we found that including 506

half-siblings in our analyses introduced significant biases in our parameter estimates, 507

leading to an underestimate of µA and an overestimate of NA (Figure 5). This could 508

potentially be due to the half-sibling likelihood component requiring a sampling period 509

longer than three months to produce accurate parameter estimates, as half-sibling 510

kinship probabilities require integrating over several more latent event times than 511

full-sibling and parent-offspring kinship probabilities. Interestingly, adult parameter 512

estimates inferred from combined parent-offspring and full-sibling likelihood components 513

are more accurate and precise (as measured by the median and IQR of replicate 514

parameter estimates, respectively) compared to those inferred from either likelihood 515

component in isolation (Figure 5). This confirms that the parameter estimates from the 516

optimal sampling scheme in Figure 4 are indeed optimal - namely an adult population 517

size estimate of 3,000 (IQR: 2,719-3,241), and an adult mortality rate estimate of 0.087 518

per day (IQR: 0.081-0.089 per day). 519

3.2. Optimal sampling schemes to estimate juvenile parameters 520

Preliminary explorations of sampling schemes to estimate juvenile parameters suggested 521

this was not possible when including all likelihood components. We therefore tested 522

likelihood components on a component-by-component basis to see whether some were 523

more informative of juvenile parameters than others. We found that mother-larval 524

offspring pairs provided accurate estimates of larval mortality, µL, and that 525

mother-adult offspring pairs provided accurate estimates of the duration of the larval 526

stage, TL. We were not able to estimate pupal parameters (µP or TP ), likely due to the 527

brevity of this life stage. Preliminary explorations suggested a sample of 1,000 adult 528

females satisfied the adult requirement for larval parameter estimates, and had already 529

been recommended for estimation of NA and µA. We therefore focused our systematic 530

exploration on the supplemental larval sampling requirement to estimate µL and TL. 531

We estimated these parameters simultaneously using a grid search, varying TL discretely 532

in the range [1, 10], inferring the value of µL that minimized −Λ for each value of TL, 533

and determining the values of µL and TL that minimized −Λ overall. 534

Our default sampling scheme consisted of a total of 1,000 sequenced adult females 535

and an additional number of larvae sampled daily over a three month period. We first 536

explored the optimal larval sample size to estimate µL and TL. We performed 100 537

simulation-and-analysis replicates for each of four total larval sample sizes - 500, 1,000, 538

2,000 and 4,000 - depicted in Figure 6 (panels A and B). Results suggest that estimates 539

of µL and TL are unbiased for the larval sample sizes of 1,000 or more, but precision of 540

the estimates, particularly of µL (as measured by the IQR), improves as larval sample 541

size is increased. E.g., for a larval sample size of 1,000, the IQR for µL is 0.454-0.580 542
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Fig 5. Likelihood components to estimate NA and µA for Ae. aegypti. Violin
plots depict estimates of NA (A) and µA (B) for the optimal sampling scheme
determined in Figure 4 (1,000 adult females collected biweekly over a three month
period) and various included likelihood components. The simulated population consists
of 3,000 adult Ae. aegypti with bionomic parameters listed in Table 1. Boxes depict
median and interquartile ranges of 100 simulation-and-analysis replicates for each
scenario, thin lines represent 5% and 95% quantiles, points represent outliers, and kernel
density plots are superimposed. Adult parameter estimates inferred from combined
parent-offspring and full-sibling likelihood components are more accurate than those
inferred from either likelihood component in isolation and more accurate than those
inferred by inclusion of half-sibling pairs.

per day, while for a larval sample size of 4,000, the IQR is 0.499-0.573 per day (the true 543

value is 0.554 per day, Table 1). We therefore proceeded with a sample size of 4,000 544

larvae in addition to the 1,000 adult females previously recommended, although note 545

that a larval sample of 1,000 or 2,000 is also adequate for daily sampling. 546

Next, we explored the most efficient sampling frequency to estimate µL and TL. As 547

for the adult parameter case, we considered four sampling frequencies - daily, biweekly, 548

weekly and fortnightly - with results of 100 replicates for each scenario depicted in 549

Figure 6 (panels C and D). The key result from this analysis is that CKMR estimates of 550

µL and TL are accurate and unbiased for daily and biweekly collections; but that weekly 551

and fortnightly collections are inadequate for estimating µL and less reliable for 552

estimating TL. While this is a more frequent sampling requirement than that for 553

estimating adult parameters, there is a precedent for biweekly collections in the 554

field [29]. Biweekly collections were also our default recommendation for adult 555

collections due to their field precedent, and because they allow a greater number of 556

individuals to be collected over time. 557

Finally, we explored the most efficient sampling duration to estimate µL and TL. As 558

for the adult parameter case, we explored durations of 1-4 months, with results of 100 559

replicates for each scenario depicted in Figure 6 (panels E and F). These results suggest 560

that sampling durations of 3-4 months provide accurate estimates of µL and TL, while 561

sampling durations of 1-2 months lead to larval mortality being underestimated, and 562

estimates of TL being less accurate. We therefore converged on an optimal sample size 563

of 4,000 larvae supplementing the 1,000 adult females recommended earlier, collected 564

biweekly over a three month period, as providing accurate and accurate and unbiased 565

estimates of µL and TL. This produces parameter estimates for µL of 0.534 (IQR: 566

0.499-0.573), and for TL of 5 days (IQR: 4-6 days). 567
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Fig 6. Sampling schemes to estimate µL and TL for Ae. aegypti. Violin plots
depict estimates of µL and TL for sampling scenarios described in §3.2. The simulated
population consists of 3,000 adult Ae. aegypti with bionomic parameters listed in
Table 1. Boxes depict median and interquartile ranges of 100 simulation-and-analysis
replicates for each scenario, thin lines represent 5% and 95% quantiles, points represent
outliers, and kernel density plots are superimposed. The default sampling scheme
consists of 1,000 adult females and supplemental larvae sampled daily over a three
month period. In panels (A-B), total larval sample sizes of 500, 1,000, 2,000 and 4,000
are explored. In panels (C-D), a larval sample size of 4,000 is adopted, and four
sampling frequencies are considered - daily, biweekly, weekly and fortnightly. In panels
(E-F), biweekly sampling is adopted, and sampling durations of 1-4 months are
explored. The optimal sampling scheme consists of 4,000 larvae and 1,000 adult females
collected biweekly over a three month period.

4. Discussion 568

We have demonstrated the application of the CKMR formalism described by Bravington 569

et al. [1] to estimate demographic parameters for mosquitoes with Ae. aegypti, a major 570

vector of dengue, Zika, chikungunya and yellow fever, as a case study. Using an 571

individual-based simulation based on the lumped age-class model [15,16] applied to 572

mosquitoes [17], we have shown that these methods accurately estimate adult 573

population size, NA, adult mortality rate, µA, larval mortality rate, µL, and larval life 574

stage duration, TL, for logistically feasible sampling schemes when model assumptions 575

are satisfied. Encouragingly, the optimal sampling scheme inferred from this analysis is 576

consistent with Ae. aegypti ecology and field studies. Estimating adult parameters will 577

likely be of most interest, and in this case, only adult females need to be sampled. 578

Conveniently, adult females are preferentially attracted to most commercial traps 579

through cues that mimic potential blood-meals, while adult males are more difficult to 580

trap as they do not blood-feed [29]. Estimating larval parameters requires larval 581

collections, and although larval breeding sites need to be actively sought out, larvae are 582

an abundant life stage that can easily be collected with a cup or pipette [30]. 583

Other details of the CKMR-optimal sampling scheme are also consistent with Ae. 584
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aegypti ecology. The sampling duration required for accurate estimates of both adult 585

and larval parameters is three months, which is consistent with the length of a season, 586

during which time the constant population size assumption in this analysis 587

approximately holds. For estimating adult parameters, the total sample size of 1,000 588

adult females collected over three months is reasonable, and sequencing these 1,000 589

mosquitoes to the extent required to accurately infer close-kin relationships should fall 590

within the budget of current mosquito surveillance programs [7]. For estimating larval 591

parameters, the sample size of 4,000 larvae collected over three months is achievable, 592

given the abundance of this life stage, although currently the sequencing expense would 593

be burdensome. That said; as sequencing continues to become cheaper, and as more 594

scalable methods become available to estimate relatedness, large-scale larval sequencing 595

may also fall within the budget of surveillance programs. 596

Finally, the sampling frequency requirement of these CKMR methods is consistent 597

with mosquito field studies, with biweekly sampling being adequate for accurate 598

estimation of both adult and larval parameters. This is commonplace among mosquito 599

surveillance programs [29]. If estimates of only adult parameters are desired, sampling 600

frequency can be less frequent (e.g., fortnightly), although achieving the total required 601

sample size may be a barrier to less frequent sampling. For CKMR methods, temporal 602

information is of utmost importance, and so the day of collection should be known. 603

This means that samples from a mosquito trap should represent collections for a single 604

day, rather than the accumulation of mosquitoes over several days, as is the case for 605

regular mosquito surveillance programs. A total sample size of 1,000 adult females over 606

three months corresponds to biweekly collections of ca. 40 mosquitoes or weekly 607

collections of ca. 80 mosquitoes. With these numbers in mind, the expected daily 608

mosquito yield of a given location can inform the required sampling frequency. 609

As a preliminary exploration of the application of CKMR methods to mosquitoes, 610

and as a modeling exercise, this study has several limitations. Firstly, the same life 611

history model Figure 1 was used as a basis for both the population simulations and the 612

CKMR analysis. Additionally, other than the parameters being estimated, the same 613

parameters were used in both simulations and analysis. This represents an overly 614

generous scenario as compared to the field, where true life history is varied and complex, 615

and where life history parameters are only approximately known. That said; this is an 616

appropriate starting point to verify the utility of the method for mosquitoes - it first 617

needs to be shown to infer the true value of a parameter given the true model. 618

Subsequent analyses should explore the robustness of parameter inference when other 619

parameters in the model are dynamic or misspecified, or when kinship data are 620

generated from a more detailed model - e.g., the CIMSiM model of Ae. aegypti 621

population dynamics [22]. Another modest model variation would be to increase the 622

variance in the fecundity parameter, β. Presently, the daily number of offspring 623

generated by each adult female is Poisson-distributed and distributing this according to 624

an overdispersed negative Binomial distribution would reduce the effective population 625

size, Ne, while maintaining the census adult population size, NA [13], the impact of 626

which would be interesting to explore. 627

A second limitation of the application of our methods is that we have assumed 628

perfect kinship inference throughout. A variety of molecular methods for kinship 629

inference are available [31–33], the accuracy of which should be assessed for Ae. aegypti 630

and other species of interest. Incorporating kinship uncertainty into the CKMR 631

likelihood equations is theoretically possible [34], although this has produced little 632

improvement in parameter inference at large computational cost when applied to data 633

from fish species [2]. Likely, the best approach would be to introduce errors in kinship 634

assignment at the simulation phase, and to test the robustness of the methods to this. 635

Here, there is an important distinction between type I (false positive) and II (false 636

February 19, 2022 22/27

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.19.481126doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.19.481126
http://creativecommons.org/licenses/by-nc-nd/4.0/


negative) error rates. Studies in fish species suggest that kinship inference must have an 637

especially low type I error rate in order for CKMR parameter inference to be 638

informative [1]. Kinship inference methods should be calibrated accordingly. On a 639

related note, there is a debate over the conditions for inclusion of half-siblings in CKMR 640

analyses. Half-sibling relationships are indistinguishable from avuncular (e.g., 641

aunt-niece) and grandparent-grandchild relationships, introducing kinship assignment 642

errors into likelihood calculations. Possible solutions have been proposed - e.g., 643

restricting the time window of recording half-sibling pairs to include mostly same-cohort 644

captures [1] - however this is a moot point for the present analysis, given that inclusion 645

of half-siblings reduces the accuracy of parameter estimates even when precisely known. 646

A third limitation of the current analysis is that it ignores spatial structure. The 647

population of 3,000 adults in the Ae. aegypti simulation was based on studies that 648

suggest this to be a reasonable estimate for the number of Ae. aegypti adults within a 649

characteristic dispersal radius in a variety of settings [19–21]; however, Ae. aegypti 650

adults tend to be relatively sessile, often remaining within the same household unit for 651

the duration of their lifetime [11]. With this in mind, a more accurate model might be 652

Ae. aegypti populations distributed across households with migration between them [35]. 653

Areas of future research would be to test the robustness of single-population CKMR 654

methods to data from spatially-structured simulations [36], and to incorporate spatial 655

structure into the CKMR analyses themselves, opening the potential to estimate 656

dispersal parameters using these methods. The theoretical underpinnings of this latter 657

approach have been outlined by Bravington et al. [1], and an analogous approach 658

limited to discrete generations and parentage data has been used to estimate dispersal 659

parameters for coral trout [37]. Alternative close-kin methods have also been used to 660

characterize dispersal distances for Ae. aegypti [6, 7], and it will be interesting to see 661

whether a spatially-structured CKMR approach can infer complementary information. 662

The application of CKMR methods beyond fish species has been contemplated since 663

their inception [1], and extending their application to the egg-larva-pupa-adult life 664

history of Ae. aegypti mosquitoes is promising for their application to insect species 665

with comparable life histories. A species of particular interest is Anopheles gambiae, the 666

main African malaria vector, which has a similar life history, increased dispersal [11] 667

and larger population sizes than Ae. aegypti [38, 39]. Age-grading methods are also 668

available for this species, based on ovariole measurements and emerging biochemical and 669

spectroscopic techniques [27]. Incorporating approximate age-at-capture information 670

with kinship data should greatly enhance the precision of CKMR parameter inference, 671

as has been seen for applications to southern bluefin tuna [2] and sharks [3]. The larger 672

size of An. gambiae populations also means that smaller population proportions need to 673

be sampled in order to obtain accurate parameter estimates [13]. Although the total 674

required sample size will be higher, lethal sampling is less likely to bias the mortality 675

rate estimate upwards and the population size estimate downwards (as seen for Ae. 676

aegypti in Figure 4). Several species of insect agricultural crop pests should also be 677

suited to these CKMR methods, including the medfly and spotted wing Drosophila; 678

although theoretical assessments will first be needed, especially for more long-lived pest 679

species such as the pink bollworm. 680

5. Conclusions 681

We have theoretically demonstrated the application of CKMR methods to estimate 682

adult and larval parameters for mosquitoes, with Ae. aegypti as a case study. CKMR 683

methods have advantages over traditional mark-release methods, as the mark is genetic, 684

removing the need for physical marking and recapturing. Particularly encouraging is the 685

fact that the inferred optimal sampling scheme is consistent with Ae. aegypti ecology 686
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and field studies, meaning that the requisite samples may be obtained with only minor 687

adjustments to current mosquito surveillance programs. Sequencing requirements are 688

significant, particularly for estimating larval parameters; however, as sequencing 689

becomes cheaper and more efficient, this will become less burdensome and perhaps even 690

routine. Work remains to test the robustness of these methods under a range of 691

scenarios in which model components and parameters vary, and in which kinship 692

inference is imperfect; however this study represents an important first demonstration 693

that parameter inference is accurate when the underlying model is known. Application 694

to other insects of epidemiological and agricultural significance is promising, particularly 695

for An. gambiae, a major malaria vector for which age-grading methods are available. 696

Supporting information 697

S1 Text. Supplemental model equations. Additional equations describing the 698

lumped age-class model of mosquito population dynamics, and kinship probabilities for 699

parent-offspring and sibling pairs that, for brevity, were not included in the manuscript. 700
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