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SUMMARY 10 

While combinatorial genetic data collection from biological systems in which quantitative phenotypes 11 

are controlled by functional and non-functional alleles in each of multiple genes (multi-gene systems) is 12 

becoming common, a standard analysis method for such data has not been established. A common 13 

additive model of the non-functional allele effects contrasted against the functional alleles, based on 14 

ANOVA with interaction, has three issues. First, although it is a long tradition of genetics, modeling the 15 

effect of the non-functional allele (a null mutant allele) contrasted against that of the functional allele 16 

(the wild-type allele) is not suitable for mechanistic understanding of multi-gene systems. Second, an 17 

additive model is highly problematic when the system has more than two genes and a limited 18 

phenotypic range: errors propagate toward higher order interactions. Third, interpretations of higher-19 

order interactions defined by an additive model are not intuitive. I propose an averaging model, which is 20 

suitable for mechanistic understanding of multi-gene systems. The effect of the functional allele is 21 

contrasted against the effect of the non-functional allele for easier mechanistic interpretations. Errors in 22 

interactions across the orders consistently stay low, which makes the model highly scalable to systems 23 

with many genes. The interactions defined by the averaging model are highly intuitive regardless of the 24 

orders. Yet, it is still a general linear model, so model fitting is easy and accurate using common 25 

statistical tools.   26 
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INTRODUCTION 27 

Accumulation of genetic knowledge in many biological systems and technological advances that made 28 

combining multiple genetic loci easier have facilitated combinatorial genetic analysis among multiple 29 

genes, each of which has the functional (“wild-type”) and non-functional (null “mutant”) allele states, 30 

involved in single quantitative traits [1-4], which I here call multi-gene systems. However, conventional 31 

genetics is not well built for analysis and interpretation of high-order genetic interactions among 32 

multiple genes involved in a single quantitative trait. This is because conventional genetics is an 33 

extension of early objectives of analyzing functionally independent and/or qualitative genes. First, 34 

comparing multiple mutant phenotypes to the wild-type phenotype does not allow simple mechanistic 35 

interpretations. The phenotype of a particular genotype should be compared to the phenotype of the 36 

most disrupted mutant state (e.g., a quadruple null mutant in a 4-gene system) for simple mechanistic 37 

interpretations. Second, how to define and interpret genetic interactions among multiple genes is not 38 

definitively integrated. The main topic of this paper concerns this second point. An additive model based 39 

on ANOVA with interaction is a simple implementation for analysis of high-order genetic interactions. 40 

However, such an additive model requires conservation of the distributive law involving addition and 41 

interaction (e.g., (A + B):C = A:C + B:C, where “:” indicates the interaction defined in the additive model). 42 

I demonstrate that this requirement is not generally satisfied in high-order genetic interactions in a 43 

typical biological system, in which possible phenotypic values for a trait are bounded in a limited range. 44 

Previously we proposed a network reconstitution (formerly called signaling allocation) general linear 45 

model (NR model), which assumes violation of the distributive law [2]. This non-distributivity 46 

assumption led to use of the average of interactions in each order (not including 1-gene effects) in 47 

estimation of the highest order interaction in question. Whereas the NR model resolved problems 48 

caused by non-distributivity in genetic interactions, I recently recognized an inconsistency in the NR 49 

model, which was caused by the assumption of additive relationships among the 1-gene effects (i.e., 50 

non-interactive, main effects). This inconsistency was previously overlooked because the non-51 

distributivity assumption did not constrain the 1-gene effects. The inconsistency was resolved by 52 

extending the averaging procedure to the 1-gene effects. I call the resulting model an averaging model. I 53 

demonstrate that the behavior of the averaging model is consistent regarding the level of 54 

representation of each of the 1-gene effect and multiple-gene interaction estimates. Furthermore, the 55 

averaging model allows consistent and intuitive interpretations of genetic interactions throughout all 56 

orders involved: a genetic interaction in the averaging model is a deviation of the phenotypic value of a 57 

multi-gene genotype from the average of the phenotypic values of all the genotypes that have one gene 58 

fewer than the interaction in question (e.g., A;B;C = ABC – (AB + AC + BC) / 3, where “;” indicates the 59 

interaction defined in the averaging model and the italicized upper-case letters denote genotypes 60 

carrying various combinations of wild-type alleles A, B, and C). I propose the averaging model as a 61 

standard general linear model for study of multi-gene interactions. 62 

 63 

 64 

 65 

RESULTS AND DISCUSSION 66 

 67 

Objective of the study 68 
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 69 

I define a multi-gene system as one in which multiple genes affect a single quantitative trait while each 70 

of the genes can have two states, functional and non-functional, arising from the wild-type and null 71 

mutant alleles, respectively. Such a system necessarily implies a gene network, in which the gene 72 

functions are not organized in a series (i.e., not in a single pathway). This is because a series of genes, 73 

each of which can only take a functional or non-functional state, can only generate an on or off output, 74 

so it is not quantitative. Instead, such a gene network must have a converging node(s) to generate a 75 

single trait. Converging nodes are sources of complex system behaviors [5, 6]. For a data set, I consider 76 

the measurement of the quantitative trait as the phenotype and measurements made with exhaustively 77 

combinatorial genotypes (i.e., for a n-gene system, the number of the exhaustively combinatorial 78 

genotypes is 2n). 79 

 80 

The objective of this study is to best describe the output of such a multi-gene system using the general 81 

linear model framework to facilitate mechanistic interpretations of the system behavior. Limiting the 82 

approach to a standard approach using the general linear model framework is associated with 83 

drawbacks because many biological systems contain non-linear components. However, a standard 84 

approach using the general linear model framework has practical advantages in actual applications. In a 85 

multi-gene system, usually we do not have sufficient knowledge to assume a particular, parameterized 86 

non-linear model for the system. In addition, we often lack quantitative input-output relationship 87 

information, which would help to constrain parameter values in a more complex model. Furthermore, 88 

fitting a general linear model is computationally easier and more accurate compared with fitting 89 

complex non-linear models. The general linear model could serve as a simple and versatile platform in 90 

many cases.  91 

  92 

 93 

General notation rules 94 

 95 

In this paper, I assume that all the genes of interest are homozygous for diploid organisms. A single gene 96 

is denoted by a single alphabetical letter in italics, with the upper-case letter for the wild-type allele and 97 

the lower-case letter for the null mutant allele. For example, ABc represents the genotype with the wild-98 

type alleles for genes A and B and the mutant allele for gene C. When a description does not require 99 

noting the mutant alleles, I also use the genotype notation omitting the mutant alleles, such as AB 100 

instead of ABc for the purpose of simplicity, clarity, and generalization. The phenotype of a particular 101 

genotype is represented by the genotype notation. The non-italic lower-case letters, such as a, b, and c, 102 

represent the mutant allele effects defined in comparison to the wild-type alleles. The wild-type allele 103 

effects, represented by non-italic upper-case letters, such as A, B, and C, are defined in comparison with 104 

the mutant allele. The additive effect of A and B is denoted using a plus sign between them, A + B. The 105 

interaction between A and B effects on the phenotype in the additive model context is denoted using a 106 

colon between them, A:B. I will define another type of interaction between A and B effects on the 107 

phenotype in the averaging model context below, which is denoted using a semicolon between them, 108 

A;B. In a mechanistic network model underlying the phenotype observation, the node corresponding to 109 

gene A and the output of the node are denoted as nA. 110 
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 111 

I typically use a 3-gene system, ABC, as an example for the sake of simplicity. I also use systems with 112 

more genes for cases in which this makes the impacts in question clearer.  I typically omit the intercept 113 

term in linear models for simplicity. The points discussed in the following text can be generalized to a 114 

system consisting of an arbitrary number of genes.  115 

 116 

 117 

Comparing to the most disrupted state instead of the intact state gives better interpretability 118 

 119 

A convention in genetics is to compare a mutant phenotype to the wild-type phenotype. Here I argue 120 

that instead, comparing a phenotype of any genotype to the phenotype of the most disrupted state, 121 

e.g., comparing to the triple mutant state in a 3-gene system, leads to much better mechanistic 122 

interpretations. In this section, for the sake of simplicity, I use a system defined by an ANOVA-based, 3-123 

gene additive model although I will subsequently point out a separate issue associated with the additive 124 

model for a multi-gene system. 125 

 126 

 127 

 128 

Fig. 1a shows the mechanistic network underlying a system with 6 nodes, in which three nodes (nA, nB, 129 

and nC) can be manipulated by mutations and the other three (nX, nY, and nZ) cannot. Thus, for the 130 

purpose of genetic analysis, this is a 3-gene system. nA, nB, nX, and nY are input nodes, and their values 131 

are arbitrarily set at 5, -3, 4, and 2, respectively. nZ is the output node, and the output of nZ can be 132 

measured as the quantitative trait of the system. Simple additive rules at nodes nC and nZ are assumed, 133 

nC = nA + nB + nX and nZ = nC + nY, respectively. Fig. 1b shows the nZ output (i.e., phenotype) of 8 134 

exhaustively combinatorial genotypes. Fig. 1c shows the effects and interactions of the mutant alleles 135 

Fig. 1. A simple network behavior can be well described by the wild-type allele effects of a multi-gene system 

but not by the mutant allele effects. (a) A mechanistic model of a network containing 3 nodes that can be 

mutationally manipulated (a 3-gene system). The network consists of 6 nodes, among which nA, nB, and nC are 

mutationally manipulable and nX, nY, and nZ are not. The output of each node is given either as a value or an 

equation. The output of nZ is the quantitative phenotype of the system. (b) The phenotype values of all 8 

combinatorial genotypes. (c) The values for the mutant allele effects and interactions. (d) The values for the 

wild-type allele effects and interactions. 
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that are calculated according to an ANOVA model with interaction. Fig. 1d shows the effects and 136 

interactions of the wild-type alleles that are calculated according to an ANOVA model with interaction. 137 

With Fig. 1d, it is easy to reconstitute the mechanistic network shown in Fig. 1a: there is a basal activity 138 

of 2 without any of A, B, or C; A and B are not active by themselves, while C has its own activity of 4 139 

regardless of A and B; the connection between A and C is positive with a value of 5, and the connection 140 

between B and C is negative with a value of -3; No A:B:C interaction means that additive effects up to 141 

two-gene interactions can explain the system behavior completely. In comparison, mechanistic 142 

interpretations based on Fig. 1c are not simple. 143 

 144 

It is intuitive that mechanistically interpreting a system with functional components (i.e., wild-type 145 

alleles) is much more straightforward than mechanistically interpreting an unknown system using its 146 

deficiencies (i.e., mutant alleles). The 3-gene example system described above clearly demonstrates this 147 

principle. I conclude that a system consisting of multiple genes should be interpreted using wild-type 148 

allele effects. I will subsequently focus on modeling a system with wild-type allele effects and their 149 

interactions. 150 

 151 

 152 

Laws of algebra 153 

 154 

An additive model of gene effects and interactions involves two operators: additive, “+”, and interactive, 155 

“:”. Different models can be derived if we assume different laws for these operations. Three types of 156 

laws define algebra involving two operators: commutative, associative, and distributive laws. The 157 

commutative laws are A + B = B + A and A:B = B:A. The associative laws are (A + B) + C = A + (B + C) and 158 

(A:B):C = A:(B:C). The distributive law is (A + B):C = A:C + B:C.  159 

 160 

I assume the commutative laws for both “+” and “:” because a single quantitative phenotype cannot 161 

experimentally distinguish A + B from B + A or A:B from B:A. I also assume the associative law for “+” 162 

since without this assumption the general linear model framework cannot be used.  163 

 164 

The associative law for “:” is also required for the general linear model framework (see below). 165 

However, as I show below, the impact of a violation of the associative law for “:” can be moderated 166 

using an averaging principle, in which the arithmetic mean of multiple different expressions for the same 167 

quantity is taken as the true value of the quantity. This moderation by the averaging principle is 168 

important in applications of the general linear model framework to multi-gene systems because we 169 

cannot generally assume that the associative law for “:” holds. For example, in the case of Fig. 1, A:B = 0, 170 

and thus, (A:B):C = 0. However, B:C ≠ 0, so, A:(B:C) may not be 0 particularly when A:C ≠ 0. Thus, (A:B):C 171 

≠ A:(B:C) could happen. 172 

 173 

In the following sections, I will show that the distributive law is required in the additive model. I will also 174 

show that a range-limiting non-linearity of a system, such as a saturation response, would violate the 175 

distributive law. Such responses are common in biological systems. Further I will show that there is a 176 
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general linear model that allows violation of the distributive law under the assumption of the averaging 177 

principle. I call this model an averaging model. 178 

 179 

 180 

Derivation of the averaging model 181 

 182 

The part of the following discussion describing derivation of the NR model was modified from Text S1 in 183 

[2]. In this section, for simplicity the intercept value (i.e., the phenotype value for the most disrupted 184 

state) is subtracted from all measured values so that the intercept value is 0. 185 

 186 

According to the additive model, I assume AB = A + B + A:B  … (1) as the starting point. In this case, the 187 

interaction is the deviation of the corresponding genotype from arithmetic addition of the 1-gene 188 

effects. Let’s extend this to a system consisting of three genes A, B, and C. The phenotype ABC can be 189 

considered as being expressed in three different ways: adding C to the genetic background of AB; adding 190 

A to the genetic background of BC; or adding B to the genetic background of CA. 191 

By adding C to AB, the genotype ABC is expressed as: 192 

 ABC = AB + C + AB:C = (A + B + A:B) + C + AB:C = A + B + C + A:B + AB:C  … (2) 193 

If the distributive law is not assumed, (2) cannot be simplified. 194 

If the distributed law is assumed, (2) can be simplified to: 195 

ABC = A + B + C + A:B + (A + B + A:B):C = A + B + C + A:B + B:C + C:A + (A:B):C   … (3) 196 

Similarly, if the distributive law is not assumed: 197 

By adding A to BC, ABC = A + B + C + B:C + BC:A   … (4) 198 

By adding B to CA, ABC = A + B + C + C:A + CA:B   … (5) 199 

If the distributive law is assumed: 200 

By adding A to BC, ABC =  A + B + C + A:B + B:C + C:A + A:(B:C)  … (6) 201 

By adding B to CA, ABC = A + B + C + A:B + B:C + C:A + B:(C:A)  … (7) 202 

 203 

Although the expressions are not the same, (3), (6), and (7) must be the same in a model to explain ABC. 204 

Therefore, for this model framework to work exactly, the associative law for the interaction operator “:”  205 

is necessary,  206 

(A:B):C =  A:(B:C) =  B:(C:A) = A:B:C  … (8) 207 

If (8) is true, (3), (6), and (7) become the same expression: 208 

ABC = A + B + C + A:B + B:C + C:A + A:B:C  … (9) 209 

(9) is the additive model for three genes. This can be extended to a system consisting of more genes. In 210 

summary, the additive model is a good description of a multi-gene system if the associative law for “:” 211 

and the distributive law hold. 212 

  213 

However, as discussed above, the associative law cannot be generally assumed for the “:” operator in a 214 

multi-gene system. This contradiction about associativity indicates a failure of the general linear model 215 

as a general description of a multi-gene system. A compromise to maintain the general linear model 216 

framework is to define ABC as the arithmetic mean of (3), (6), and (7): 217 

ABC = [{A + B + C + A:B + B:C + C:A + (A:B):C} + {A + B + C + A:B + B:C + C:A + A:(B:C)}  218 
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           + { A + B + C + A:B + B:C + C:A + B:(C:A)}] / 3  219 

= A + B + C + A:B + B:C + C:A + {(A:B):C + A:(B:C) + B:(C:A)} / 3  … (10)  220 

I call this practical approach to avoiding the contradiction in the general linear model by averaging all 221 

possible cases an averaging principle. 222 

Since {(A:B):C + A:(B:C) + B:(C:A)} cannot be expressed by the lower order terms, A, B, C, A:B, B:C, and 223 

C:A, it is reasonable to define A:B:C = {(A:B):C + A:(B:C) + B:(C:A)} / 3  … (11). Then, 224 

ABC = A + B + C + A:B + B:C + C:A + A:B:C  … (9) 225 

Thus, with the averaging principle, the additive model can conform to the assumption of no associativity 226 

in the interaction operator “:”. This can be extended to a system consisting of more genes. In summary, 227 

the additive model should be a reasonable description of a multi-gene system if the distributive law 228 

holds. 229 

 230 

If the distributive law cannot be assumed, (2), (4), and (5) must still be the same to express ABC. Here 231 

again we observe a failure of the linear model as a general description of a multi-gene system. I apply 232 

the averaging principle to (2), (4), and (5) to express ABC: 233 

ABC = [{A + B + C + A:B + AB:C} + {A + B + C + B:C + BC:A} + {A + B + C + C:A + CA:B}] / 3 234 

= A + B + C + (A:B + B:C + C:A) / 3 + (AB:C + BC:A + CA:B) / 3  … (12) 235 

Since (AB:C + BC:A + CA:B) cannot be expressed by the lower order terms, A, B, C, A:B, B:C, and C:A, it is 236 

reasonable to define A;B;C = (AB:C + BC:A + CA:B) / 3  … (13). I use the semicolon “;” to distinguish this 237 

different definition of interaction from that of the interaction in the additive model and call  “;” an 238 

averaging interaction operator and “:” an additive interaction operator. 239 

ABC = A + B + C + (A:B + B:C + C:A) / 3 + A;B;C  … (14) 240 

Therefore, if the distributive law is not assumed, the average of the 2-gene additive interactions should 241 

be used to express the all wild-type allele state of ABC. In general, the rule that the terms in each order 242 

of the interactions (2-gene additive interactions, 3-gene averaging interactions, 4-gene averaging 243 

interactions, …) must be averaged can be derived by extending this to a system with more genes. 244 

For example, with a system consisting of 4 genes, A, B, C, and D: 245 

ABCD = A + B + C + D + (A:B + A:C + A:D + B:C + B:D + C:D) / 6 + (A;B;C + A;B;D + A;C;D + B;C;D) /4 + 246 

A;B;C;D  … (15) 247 

This is the NR model [7] (previously called the signaling allocation model [2]). Note that in the NR model, 248 

2-gene interactions are additive interactions while 3 or higher order interactions are averaging 249 

interactions. 250 

 251 

The assumption of the non-distributivity does not require any more changes in the model. However, the 252 

above derivation of NR model started with an arbitrary definition of the 2-gene additive interaction, AB 253 

= A + B + A:B  … (1), which is the reason the NR model is a mixture of additive and averaging interactions. 254 

The model would be more mathematically consistent if the averaging interaction definition is extended 255 

to 1-gene effect terms to make the 2-gene interactions averaging interactions as well, i.e., AB = (A + B) / 256 

2 + A;B  … (16). I demonstrate in a subsequent section that (16) is indeed required for mathematical 257 

consistency of the model. 258 

 259 

By applying (16): 260 
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ABC = (A + B + C) / 3 + (A;B + B;C + C;A) / 3 + A;B;C  … (17) 261 

ABCD = (A + B + C + D) / 4 + (A;B + A;C + A;D + B;C + B;D + C;D) / 6 + (A;B;C + A;B;D + A;C;D + B;C;D) /4 + 262 

A;B;C;D  … (18) 263 

Now the rule is that the terms in each order of the interactions, including 1-gene effects (the first order), 264 

must be averaged. (17) and (18) are equivalents of: 265 

ABC = (AB + BC + CA) / 3 + A;B;C  … (19) 266 

ABCD = (ABC + ABD + ACD + BCD) /4 + A;B;C;D … (20) 267 

Thus, the highest order averaging interaction is defined as the deviation of the corresponding genotype 268 

from the average of all genotypes with one gene fewer. This definition of the averaging interaction is 269 

highly interpretable. I call this extended model with all averaging interactions an averaging model. With 270 

the definitions of the averaging interactions of different orders in (16), (19), and (20), it is clear the 271 

averaging model does not require the distributive law because these definitions do not include any 272 

terms that could be affected by whether the distributive law holds or not. 273 

 274 

Note that the mean estimates from the additive model, NR model, averaging model, and 1-way ANOVA 275 

for all genotypes are just different ways to linearly decompose the phenotype values (when the full 276 

model terms are kept). Thus, when the models are fit to actual data with replication, all these models 277 

yield the same fitted and residual values. The numbers of estimated values are the same, i.e., the 278 

models have the same residual degree of freedom. Therefore, I use only the mean estimates of the 279 

models for my arguments in the following comparisons of the models. The coefficient matrices to solve 280 

the linear equations for the means in the three models using the genotype mean values in a 3-gene 281 

system are shown in Fig. 2. 282 

 283 

 284 
 285 

Violation of the distributive law is prevalent in multi-gene systems 286 

 287 

Fig. 2. Matrices for the linear equations to obtain model 

coefficients from the genotype values in a 3-gene system 

for (a) additive, (b) NR, and (c) averaging models. The 

rows are genotypes and the columns are model variables. 

“:” and “;” indicate the additive and averaging 

interactions, respectively. 
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The averaging model does not assume the distributive law. Do we really need to consider non-288 

distributivity in a biological system? Let’s consider a simple 3-gene system, in which nA and nB are input 289 

nodes and nC is the output node (Fig. 3a). Mechanistically, signals from nA and nB are first summed, and 290 

then modulated by a non-linear function 𝑓1 before the signal is output from nC. Thus,  291 

(A + B):C = nC = 𝑓1(nA + nB)  … (21) 292 

A:C + B:C = 𝑓1 (nA) + 𝑓1 (nB)  … (22) 293 

Therefore, if the distributive law holds, 294 

𝑓1(nA + nB)  = 𝑓1 (nA) + 𝑓1 (nB)  … (23) 295 

 296 

Let’s make 𝑓1 a Michaelis-Menten function for a saturating response (Fig. 3b): 297 

𝑓1(𝑥) =
10

1+
7

𝑥

  … (24) 298 

When nA = 5, nB = 2, 299 

𝑓1(nA + nB)  = 𝑓1(5 + 2) = 5 300 

𝑓1 (nA) + 𝑓1 (nB) = 𝑓1(5) + 𝑓1(2) =  4.16… + 2.22… = 6.38… 301 

Thus, 𝑓1(nA + nB) ≠ 𝑓1 (nA) + 𝑓1 (nB)  … (25) 302 

and the distributive law is violated.  303 

Generally, non-linearity in a system leads to violation of the distributive law. 304 

 305 

 306 

 307 

A saturating response limits the output range. Without non-linearity, the range of the system output is 308 

not limited, and this is the condition the additive model requires. Thus, the additive model generally 309 

cannot be used in a system consisting of multiple genes (more than 2 genes, strictly speaking: see 310 

below) when the phenotype value range is limited compared to the ranges of the gene effects and 311 

interactions. To demonstrate this point, I use a 7-gene system as this problem becomes more severe 312 

when more genes are in the system. With 7 genes, the number of exhaustively combinatorial genotypes 313 

is 27 = 128. I randomly generated phenotype values by sampling from a uniform distribution ranging 314 

from 1 to 10, and each model was solved using these randomly generated data values. This procedure 315 

was repeated 10,000 times and the model estimate distributions, except for the model intercept (i.e., 316 

the septuple mutant value), were visualized as a box plot (Fig. 4). Fig. 4a shows that in the additive 317 

Fig. 3. Non-linearity in a system violates the 

distributive law. (a) a 3-gene system, in 

which signals from nA and nB feed into nC. 

The output of nC is defined as 𝑓1(nA + nB). (b) 

When 𝑓1(𝑥) =
10

1+
7

𝑥

 , the input-output 

relationships at nC are shown. If the input is 

nA, the output is expressed as A:C in the 

additive model. This plot clearly shows that 

(A + B):C ≠ A:C + B:C (Y-axis values in orange 

and green, respectively), a violation of the 

distributive law. (the y-axis values in orange 

and green) 
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model, the higher the order of interactions is, the higher the representations of the interactions are. The 318 

length of the box (the difference between the 75th and 25th percentiles) of the 7-gene interaction is 319 

about 7.5 times larger than those of the 1-gene effects. Therefore, if the additive model is used, the 320 

absolute values of higher order additive interactions are grossly overestimated in general. This problem 321 

is much smaller using the NR model (Fig. 4b). Note the scale difference in the y-axes between Fig. 4a and 322 

Figs. 4b and 4c: the distributions of the 1-gene effects are essentially the same across the models. 323 

However, the NR model still has an overrepresentation issue with the 2-gene additive interactions, 324 

suggesting that the NR model is still affected when the phenotype value range is limited. The 325 

distributions of estimates were very consistent across all the effects and averaging interactions in the 326 

averaging model (Fig. 4c). These results strongly suggest that the averaging model well handles non-327 

distributivity arising from range-limiting non-linearity in the system response even when the number of 328 

the genes in the system is high. 329 

 330 

 331 
 332 

 333 

Evidence of non-distributivity in an actual multi-gene data set 334 

 335 

Fig. 4. Distributions of the gene effects and 

interaction values when the phenotype values 

were randomly sampled from a uniform 

distribution with (a) additive, (b) NR, and (c) 

averaging models. Each order of interactions is 

color-coded separately, and the color coding is 

shown in the bottom of (a). Note that the scales in 

the y-axes are very different in (a) compared to (b) 

and (c). 
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Do we see this problem associated with non-distributivity in actual biological systems? We initially 336 

recognized the problem in 4-gene systems [2] when we started to omit high order additive interaction 337 

terms from the full additive model. We expected that such reduced models should be good 338 

approximations of the model containing higher orders of additive interactions. However, in the full 339 

additive model, when the 4-gene additive interaction term was omitted, the estimates for the 3-gene 340 

additive interactions were reduced substantially (Fig 5a, black and red segments for the 3-gene additive 341 

interactions). Smaller, yet still substantial increases of the 2-gene additive interactions were also evident 342 

(black and red segments for the 2-gene additive interactions). Large changes of estimate values in the 343 

opposite directions for the 3-gene and 2-gene additive interactions strongly suggests artifactual 344 

overrepresentation of the 4-gene additive interaction. In the full NR model, the estimate changes in the 345 

3-gene averaging and 2-gene additive interactions when the 4-gene averaging interaction term was 346 

omitted were much smaller (Fig. 5b). In the averaging model, the estimate changes in the 3-gene and 2-347 

gene averaging interactions when the 4-gene averaging interaction term was omitted were almost 348 

unnoticeable (Fig. 5c).  349 

 350 

 351 
 352 

Another evident trend in the additive model is that the 95% confidence intervals (the lengths of the 353 

horizontal lines) were wider for the higher order additive interactions (Fig. 5a; compare the segments of 354 

the same color, which have the same order of model reduction). With the NR model, the confidence 355 

Fig. 5. The coefficient estimates for the 

contribution to immunity using the data from 

Tsuda et al. in (a) additive, (b) NR, and (c) 

averaging models. The 95% confidence 

interval is shown as a horizontal bar, with the 

mean as a point. Different levels of model 

reduction (omitting higher order interactions 

from the model) are color-coded according to 

the color code in (a). Different shades of gray 

background are used to show different orders 

of interactions. “:” and “;” indicate additive 

and averaging interactions, respectively. 
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interval was widest with the 2-gene additive interactions although overall confidence interval width 356 

differences were much smaller than in the additive model (Fig. 5b). This confidence interval width trend 357 

suggest that the overrepresentation of higher order averaging interactions was strongly reduced in the 358 

NR model compared to the additive model.  In the averaging model, the widths of the confidence 359 

intervals were quite consistent across the orders of averaging interactions. The trend of the confidence 360 

interval width in the three models directly corroborates the observations made using random simulation 361 

data in Fig. 4.  362 

 363 

An additional evident trend in the confidence intervals in the additive model is that when the same 364 

coefficients (1-gene effects and additive interactions) were compared, the more reduced the model was, 365 

the narrower the confidence intervals were (Fig. 5a). With the NR model, the trend of narrower 366 

confidence intervals in the more reduced models was evident only in the 1-gene effects (Fig. 5b). This 367 

trend suggests that some problem remained with the 1-gene effect estimation in the NR model. In the 368 

averaging model, the widths of the confidence intervals were very consistent across the orders of model 369 

reduction (Fig. 5c). In summary, the problem associated with non-distributivity in this biological data set 370 

is evident in the additive model while the averaging model appears free of this problem. 371 

 372 

 373 

Why does the averaging model describe a multi-gene system better than the additive model? 374 

 375 

Let’s consider simple additive and averaging models with no interaction using a 7-gene system. With the 376 

additive model, ABCDEFG = A + B + C + D + E + F + G. It is highly conceivable that the sum of all 1-gene 377 

effects could go well outside the system output range. In such a case, it is necessary for the additive 378 

model to have non-zero additive interaction(s) to keep the ABCDEFG phenotype within the system 379 

output range. On the other hand, with the averaging model, ABCDEFG = (A + B + C + D + E + F + G) / 7, 380 

the ABCDEFG phenotype range is bounded by the maximum and minimum of the 1-gene effects without 381 

non-zero averaging interactions. Thus, with the additive model, a range-limiting non-linearity generally 382 

forces non-zero additive interaction(s) in a multi-gene system while this does not occur in the averaging 383 

model. 384 

 385 

Next, let’s look at how interactions affect estimates of other interactions. A range-limiting non-linearity 386 

can be handled easily with the additive model in a 2-gene system. AB = A + B + A:B  … (1). Any non-linear 387 

effect can be attributed to the 2-gene additive interaction A:B, and therefore, non-linearity is not an 388 

issue. However, in a 3-gene system, ABC = A + B + C + A:B + A:C + B:C + A:B:C  …(9), the 2-gene additive 389 

interactions in (9) likely have values different from the 2-gene additive interactions in the 2-gene 390 

systems (e.g., A:B in (1) and (9) should have different values) due to the non-linearity. Consequently, 391 

estimation of an additive interaction accumulates this type of non-linearity-associated errors from the 392 

lower order additive interaction estimates: i.e., non-linearity-associated errors propagate in estimation 393 

of higher-order additive interactions. This problem of propagating errors was clearly demonstrated by 394 

overrepresentation of higher-order additive interaction estimates (Fig. 4a) and by wider confidence 395 

intervals for higher-order additive interaction estimates (Fig. 5a).  396 

 397 
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On the other hand, estimation of an averaging interaction requires only observed values and does not 398 

require any of the lower-order averaging interaction estimates (e.g., equations (16), (19), and (20) for 399 

the 2-, 3-, and 4-gene averaging interactions). Thus, non-linearity-originated error is confined to each 400 

averaging interaction and does not propagate (Figs. 4c and 5c). This is the reason the averaging model 401 

performs better than the additive model when the range-limited system involves more than two genes. 402 

 403 

 404 

Interpretation of the averaging model outcome 405 

 406 

It should be emphasized that the definitions of the interactions are different in additive and averaging 407 

models.  How do different interaction definitions affect interpretations of the 1-gene effects and 408 

interactions? With the additive model, the 2-gene additive interaction is understood as the difference 409 

from the addition of the 1-gene effects, A:B = AB – (A + B)  …(1)’. When A, B, A:B > 0, A and B have a 410 

synergistic effect. When A, B > 0, A:B < 0, A and B have a compensating effect (Fig. 6a). However, such 411 

interpretations of additive interaction, synergistic or compensating, become unclear when A and B have 412 

opposite signs (Fig. 6b). In addition, with more genes in a system, the interpretation of higher-order 413 

additive interactions become nonintuitive. For example, the 3-gene additive interaction is A:B:C = ABC - 414 

(A + B + C + A:B + A:C + B:C)  … (9)’ (Fig. 6c). 415 

 416 

In contrast, the interpretation of averaging interactions in the averaging model is consistent and highly 417 

interpretable, however many genes are in the system and whatever the orders of averaging interactions 418 

are, i.e., the averaging model is highly scalable to the number of genes in the system. An averaging 419 

interaction is the deviation of the corresponding genotype from the average of all involved genotypes 420 

that have one gene fewer (equations (19) and (20)). For example, in a 2-gene system, A;B = AB – (A + 421 

B)/2  … (13)’ (Fig. 6d). Note that not just the values but also the signs of the interaction could be 422 

different between the additive and averaging interactions (compare AB (case 1) in Figs. 6a and 6d). The 423 

interpretations of averaging interactions are consistent even when A and B have opposite signs (Fig. 6e) 424 

or the system has three genes, A, B, and C (Fig. 6f).  425 

 426 

In the case of a 3-gene averaging interaction, A;B;C = ABC – (AB + AC + BC) / 3  … (19)’ (Fig. 6d). This 427 

could be a 3-gene interaction in a 7-gene system, A;B;C = ABCdefg – (ABcdefg +  AbCdefg + aBCdefg) / 3 428 

… (19)’’. Thus, the genotype notation not showing the mutant alleles, such as equation (19)’, is a more 429 

generalized notation. 430 

  431 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 22, 2022. ; https://doi.org/10.1101/2022.02.21.481332doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481332
http://creativecommons.org/licenses/by/4.0/


15 
 

 432 
 433 

The averaging model-based multi-gene analysis should contain only the genes significantly involved in 434 

the phenotype.  435 

 436 

Since the averaging interaction is the phenotypic deviation of the corresponding genotype from the 437 

average of all genotypes with one gene fewer, it is affected if the analysis includes unnecessary genes. 438 

Such unnecessary genes can be detected by comparing all the genotypes containing the gene in 439 

question to the corresponding genotypes without the gene. For example, in a 3-gene system with genes 440 

A, B, and C, the test for whether gene C should be included is whether any of ABC – AB, AC – A, BC – B, 441 

and C – abc have values significantly different from 0. If none of them are significantly different from 0, 442 

gene C must be removed from the averaging model. 443 

 444 

 445 

Reinterpretation of previous results using the averaging model 446 

 447 

Using the averaging model, I reinterpreted results from my laboratory of exhaustively combinatorial 448 

genotype analysis in a 4-gene system, which were originally analyzed using the NR model shown in Fig. 6 449 

of [2]. The study consisted of four cases of inducible immunity in the model plant Arabidopsis against 450 

strains of the bacterial pathogen Pseudomonas syringae, which are designated as the AvrRpt2-ETI, 451 

AvrRpm1-ETI, flg22-PTI, and elf18-PTI cases. ETI is Effector-Triggered Immunity, and AvrRpt2 and 452 

AvrRpm1 are triggering effectors [8-12]. PTI is Pattern-Triggered Immunity, and flg22 and elf18 are 453 

triggering molecular patterns [13-15]. The inhibition of bacterial growth in the plant leaf, in 454 

log10(cfu/cm2), was the immunity phenotype measure. The hub genes of four major signaling sectors 455 

Fig. 6. Interpretations of interactions in (a-c) 

additive and (d-f) averaging models. (a, d) 

Two-gene interactions when both 1-gene 

effects A and B are positive. Two different 

cases (cases 1 and 2) of the AB phenotype 

values are used. (b, e) Two-gene interactions 

when 1-gene effects have opposite signs. (c, f) 

Three-gene interactions. “:” and “;” indicate 

additive and averaging interactions, 

respectively. 
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(subnetworks) in the plant immune signaling network were subjected to mutational analysis. The 456 

signaling sectors were the jasmonate, ethylene, PAD4, and salicylate sectors, which are indicated as J, E, 457 

P, and S, respectively. I also call their hub genes J, E, P, and S, in this context of analysis of the 4-gene 458 

system. Biological and experimental details are provided in [2].  459 

 460 

Each of the AvrRpt2-ETI, AvrRpm1-ETI, flg22-PTI, and elf18-PTI cases was first tested to determine 461 

whether all four genes were significantly involved in the phenotype variation. Except for the elf18-PTI 462 

case, all four genes were significant, and the averaging model for the 4-gene system was used. However, 463 

the elf18-PTI phenotype was not significantly affected by the J gene in any genotype context. Therefore, 464 

the averaging model for the 3-gene system with the E, P, and S genes was used.  465 

 466 

 467 
 468 

The results of applications of the averaging model to these four immunity cases are shown in Fig. 7. The 469 

95% confidence interval is shown as a horizontal black bar with the mean estimate as the point in the 470 

middle. In the left part of each plot, the Holm-corrected p-values smaller than 0.05, which are 471 

considered significant, are shown in red. 472 

 473 

There are several differences between the averaging and NR models. The 1-gene effects did not change 474 

much since the 1-gene effect definition for the genotype with a single wild-type allele, J, E, P, or S, was 475 

the same between the two models. The interactions changed substantially as the definitions of the 476 

interactions are different. Although the relative differences within the interactions of the same order did 477 

not change much between the two models, the interaction values in the averaging model were generally 478 

higher than those in the NR models because the 1-gene effects were non-negative and the 1-gene 479 

effects in genotypes with multiple wild-type alleles were averaged in the averaging model. 480 

 481 

In AvrRpt2-ETI with the averaging model (Fig. 7a), the values for the 1-gene effects were all positive, and 482 

P had the largest effect. Most 2-gene averaging interactions were not significant, indicating that addition 483 

of another gene as the second gene does not change the immunity much from the average of 1-gene 484 

effects of the first and the second genes. However, J;S was significantly positive: while the J and S effects 485 

Fig. 7. The coefficient estimates for the 

contribution to immunity from averaging 

model analysis of the data in Tsuda et al. 

(a) AvrRpt2-ETI, (b) AvrRpm1-ETI, (c) flg22-

PTI, and (d) elf18-PTI. The 95% confidence 

interval is shown as a horizontal bar, with 

the mean as a point. The Holm-corrected 

p-values are shown in the left part of each 

plot: red, p < 0.05; blue, p ≥ 0.05. The 

dataset used for AvrRpt2-ETI in Fig. 7a is 

the same as that in used in Fig. 5, and Fig. 

7a is the same as the full model (black 

lines) in Fig. 5c. “:” and “;” indicate additive 

and averaging interactions, respectively. 
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are both positive, combining these two genes together (JS genotype) increases the immunity from the 486 

average of the J and S genotypes. All the 3-gene and 4-gene averaging interactions were significantly 487 

positive, indicating that all the genes increase immunity when added to the system as the 3rd or 4th 488 

genes. Note that the averaging model made interpretations of the 3-gene and 4-gene interactions easy 489 

and consistent. 490 

 491 

In AvrRpm1-ETI with the averaging model (Fig. 7b), most immunity was explained by the intercept (i.e., 492 

the immunity level in the jeps genotype), showing that the quadruple mutant still maintains most of the 493 

immunity of wild-type plants. This observation can be explained by the fast kinetics of AvrRpm1-ETI 494 

signaling compared to AvrRpt2-ETI, in respect to the gating timing of the ETI-Mediated and PTI-Inhibited 495 

Sector (EMPIS) by PTI signaling [16]. Although all the 1-gene effects and the averaging interactions had 496 

lower amplitudes, they generally had a similar trend of up and down as those of AvrRpt2-ETI, suggesting 497 

that the 4-gene network apart from EMPIS behaves similarly in AvrRpm1-ETI and AvrRpt2 ETI. J;S was 498 

the only significant averaging interaction with a positive contribution to immunity. 499 

 500 

In flg22-PTI (Fig. 7c), all the 1-gene effects except S were significantly positive with E as the highest. The 501 

2-gene averaging interactions were largely low and/or not significant, except P;S, which was significantly 502 

and strongly positive. The 3-gene and 4-gene averaging interactions were significantly and strongly 503 

positive, indicating that all the genes substantially increase the immunity level when added to the 504 

system as the 3rd or 4th genes.  505 

 506 

In elf18-PTI (Fig. 7d), the J gene was removed and a 3-gene averaging model including the E, P, and S 507 

genes was used. Only P;S was significant among all the averaging model terms, except the intercept. The  508 

P;S averaging interaction was strongly positive, indicating that a single mutation in genes P or S almost 509 

completely abolishes the immunity. The difference in the importance of the E gene clearly separated 510 

flg22-PTI and elf18-PTI. Another difference between flg22-PTI and elf18-PTI was the 3-gene and 4-gene 511 

averaging interactions. All were strongly positive in flg22-PTI, and none were significant in elf18-PTI.  512 

 513 

It is noteworthy that the roles of J;S and P;S were very different in ETI and PTI. A strongly positive P;S 514 

averaging interaction was observed in PTI (Figs. 7c and 7d). Positive functional interactions between the 515 

P and S genes have been well documented in many aspects of plant immunity [17]. In contrast, this 516 

averaging interaction was insignificant in ETI, except for their contributions through higher-order 517 

averaging interactions, J;P;S, E;P;S, and J;E;P;S. On the other hand, a strongly positive J;S averaging 518 

interaction was observed in ETI while it was insignificant in PTI (Fig. 7). Although negative functional 519 

interactions between the J and S genes are often described in plant immunity [17], these two genes 520 

positively interact in ETI (Figs. 7a and 7b). In addition, in flg22-PTI the 3-gene and 4-gene averaging 521 

interactions were strongly positive while they were moderately positive in AvrRpt2-ETI. A disadvantage 522 

of strong 3-gene and 4-gene averaging interactions is that a mutation(s) in one or two genes results in 523 

large loss of immunity. Relatively weak 3-gene and 4-gene averaging interactions in ETI indicates that ETI 524 

is more resilient against damage to one or two of these major immune signaling sectors, which could be 525 

caused by pathogen effectors [6]. In summary, the averaging model analysis highlighted that while the 526 

4-gene system is important in both ETI and PTI (with flg22), how they are used in ETI and PTI is quite 527 
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different, and ETI is more resilient than PTI against perturbations to the signaling sectors. It also 528 

highlighted substantial differences, particularly in the role of the J and E genes, in regulation between 529 

flg22-PTI and elf18-PTI. 530 

 531 

 532 

Limitations of using the general linear model platform 533 

 534 

The goal of this study is to propose a standard statistical model that works reasonably well with most 535 

multi-gene systems to gain mechanistic information about the systems. Among the models discussed 536 

here, the additive, NR, and averaging models, the averaging model is the most versatile, consistent, 537 

scalable, and interpretable general linear model. Fundamentally all models are linear models, so of 538 

course they have limitations in applications to non-linear systems. I assumed the associative law for the 539 

addition operator “+”, which may not be true for every biological system. I also used the averaging 540 

principle, in which the arithmetic mean of multiple different expressions for the same quantity was 541 

taken as the true value of the quantity. This principle was used to practically accommodate the non-542 

associativity of the interaction operators within the general linear model framework, which in principle 543 

does not allow non-associativity for the interaction operators. Although the averaging principle is 544 

probably the best compromise for the purpose of accommodating the non-associativity of interactions 545 

in the model framework, whether it truly provides a good approximation in the averaging model 546 

depends on the type of non-linearity. Since the highest order of averaging interaction is defined as the 547 

deviation of the corresponding genotype from the arithmetic mean of all involved genotypes with one 548 

gene fewer (equations (16), (19), and (20) and Fig. 6f), if the system is strongly non-linear in the 549 

phenotypic range of these genotypes with one gene fewer, the averaging principle fails and, 550 

consequently, the averaging model fails. However, with a range-limiting non-linearity, which does not 551 

have strong non-linearity in the middle of the phenotypic range, the chance that such major failure of 552 

the averaging principle and the averaging model occurs is not very high. Therefore, the averaging model 553 

should work well in systems with range-limiting non-linearity. 554 

 555 

 556 

Concluding Remarks 557 

 558 

I have demonstrated that multi-gene systems subjected to exhaustively combinatorial mutation analysis 559 

typically violate the distributive law and that therefore, the additive model is not appropriate for 560 

analysis of such systems consisting of more than two genes. In contrast, an averaging model conforms to 561 

non-distributivity and maintains consistency from the 1-gene effects to the highest order of averaging 562 

interactions. Furthermore, averaging model results are consistently and intuitively interpretable from 563 

the 1-gene effects to the highest order of averaging interactions. I propose the averaging model as a 564 

standard general linear model for combinatorial mutation analysis of multi-gene systems.  565 

 566 

 567 

 568 

METHODS 569 
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 570 

Data sets 571 

 572 

Biological data sets used in this study are the same data sets used in Figs. 6A and 6B in Tsuda et al. 573 

(2009). Each data set consists of bacterial counts (log10(colony forming units/cm2)) for 16 exhaustively 574 

combinatorial genotypes for a 4-gene system, with or without treatment, with replication. Since the raw 575 

bacterial count data were not published previously, they are provided as Supplemental Dataset 1. 576 

 577 

 578 

Random simulation with three models 579 

 580 

The simulation was performed with a 7-gene system. The phenotype values for 27 = 128 genotypes were 581 

randomly sampled from a uniform distribution ranging from 1 to 10. The 128 phenotype values were 582 

solved for the coefficients (gene effects and interactions) in each of the additive, NR, and averaging 583 

models. To solve the 128 equations per model, the 7-gene system matrix equivalent of the 3-gene 584 

system matrix in Fig. 2 was used (the matrices are provided in an R workspace file in Supplemental 585 

Dataset 2). This procedure was repeated 10,000 times for each model, and the distributions of each 586 

coefficient (except the intercept) across the repeats are shown by a box-and-whiskers in Fig. 4. 587 

 588 

 589 

Fitting averaging models to the data 590 

 591 

A linear mixed-effect model (the lme function in the nlme R package [18]) was used. This was because (i) 592 

each data set has factors regarding the experimental design, which were included as random effects in 593 

the model and (ii) the numbers of replicates were not the same across the genotype x treatment 594 

combinations. First, a linear mixed-effect model with the genotype x treatment interactions was fit to 595 

each of the data sets for “AvrRpt2-ETI”, “AvrRpm1-ETI”, “flg22-PTI”, and “elf18-PTI”. The formula for the 596 

fixed effects was “~ genotype/treatment -1”. The random effects for the data sets were “~ 597 

1|replicate/flat/pot”. The interaction coefficients of the linear mixed-effect model were used 598 

to test whether each gene is significant. For example, to test the significance of the J gene, the estimate 599 

differences, JEPS – EPS, JEP – EP, JPS – PS, JES – ES, JE – E, JP – P, JS – S, and J – jeps were subjected to t-600 

tests using the associated standard errors calculated from the variance/covariance matrix and the 601 

residual degree of freedom. If none of the p-values from the t-tests were smaller than 0.05, the gene 602 

was designated insignificant and omitted from the following averaging model analysis. To avoid overly 603 

stringent tests, multiple tests correction was not used for selection of significant genes. Only the J gene 604 

in “elf18-PTI” was found insignificant. In this case, the data were bundled by ignoring the J gene. For 605 

example, the JEPS data were considered as part of the EPS data. 606 

 607 

Second, the averaging model using the significant genes was fit. The 4-gene system equivalent matrix of 608 

the 3-gene system matrix in Fig. 2c or the 3-gene system matrix was used (the matrices are provided in 609 

an R workspace file in Supplemental Dataset 2). The rows were replicated according to the genotypes of 610 

the observations (the design matrix for the averaging model coefficients, denoted as “m.”). Using the 611 
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design matrix m., the fixed effects were, “~ m. -1 + genotype” and the random effects were, “~ 612 

1|replicate/flat/pot” in the lme function. The averaging model coefficient estimates, their 613 

standard errors, and the p-values were extracted from the coefficient table of the lme model. The 614 

estimates, the standard errors, and the residual degree of freedom of the lme model were used to 615 

calculate the 95% confidence intervals. The p-values were subjected to the Holm multiple tests 616 

correction. The R script used to generate Fig. 7 from the raw bacterial count data sets is provided as 617 

Supplemental Dataset 3. 618 

 619 

 620 
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 684 

 685 

FIGURE LEGENDS 686 

 687 

Fig. 1. A simple network behavior can be well described by the wild-type allele effects of a multi-gene 688 

system but not by the mutant allele effects. (a) A mechanistic model of a network containing 3 nodes 689 

that can be mutationally manipulated (a 3-gene system). The network consists of 6 nodes, among which 690 

nA, nB, and nC are mutationally manipulable and nX, nY, and nZ are not. The output of each node is 691 

given either as a value or an equation. The output of nZ is the quantitative phenotype of the system. (b) 692 

The phenotype values of all 8 combinatorial genotypes. (c) The values for the mutant allele effects and 693 

interactions. (d) The values for the wild-type allele effects and interactions. 694 

 695 

Fig. 2. Matrices for the linear equations to obtain model coefficients from the genotype values in a 3-696 

gene system for (a) additive, (b) NR, and (c) averaging models. The rows are genotypes and the columns 697 

are model variables. “:” and “;” indicate the additive and averaging interactions, respectively. 698 

 699 
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Fig. 3. Non-linearity in a system violates the distributive law. (a) a 3-gene system, in which signals from 700 

nA and nB feed into nC. The output of nC is defined as 𝑓1(nA + nB). (b) When 𝑓1(𝑥) =
10

1+
7

𝑥

 , the input-701 

output relationships at nC are shown. If the input is nA, the output is expressed as A:C in the additive 702 

model. This plot clearly shows that (A + B):C ≠ A:C + B:C (Y-axis values in orange and green, respectively), 703 

a violation of the distributive law. (the y-axis values in orange and green) 704 

 705 

Fig. 4. Distributions of the gene effects and interaction values when the phenotype values were 706 

randomly sampled from a uniform distribution with (a) additive, (b) NR, and (c) averaging models. Each 707 

order of interactions is color-coded separately, and the color coding is shown in the bottom of (a). Note 708 

that the scales in the y-axes are very different in (a) compared to (b) and (c). 709 

 710 

Fig. 5. The coefficient estimates for the contribution to immunity using the data from Tsuda et al. in (a) 711 

additive, (b) NR, and (c) averaging models. The 95% confidence interval is shown as a horizontal bar, 712 

with the mean as a point. Different levels of model reduction (omitting higher order interactions from 713 

the model) are color-coded according to the color code in (a). Different shades of gray background are 714 

used to show different orders of interactions. “:” and “;” indicate additive and averaging interactions, 715 

respectively. 716 

 717 

Fig. 6. Interpretations of interactions in (a-c) additive and (d-f) averaging models. (a, d) Two-gene 718 

interactions when both 1-gene effects A and B are positive. Two different cases (cases 1 and 2) of the AB 719 

phenotype values are used. (b, e) Two-gene interactions when 1-gene effects have opposite signs. (c, f) 720 

Three-gene interactions. “:” and “;” indicate additive and averaging interactions, respectively. 721 

 722 

Fig. 7. The coefficient estimates for the contribution to immunity from averaging model analysis of the 723 

data in Tsuda et al. (a) AvrRpt2-ETI, (b) AvrRpm1-ETI, (c) flg22-PTI, and (d) elf18-PTI. The 95% confidence 724 

interval is shown as a horizontal bar, with the mean as a point. The Holm-corrected p-values are shown 725 

in the left part of each plot: red, p < 0.05; blue, p ≥ 0.05. The dataset used for AvrRpt2-ETI in Fig. 7a is 726 

the same as that in used in Fig. 5, and Fig. 7a is the same as the full model (black lines) in Fig. 5c. “:” and 727 

“;” indicate additive and averaging interactions, respectively. 728 

  729 

 730 

 731 

SUPPLEMENTAL DATASETS 732 

Supplemental Dataset 1. A .zip file containing four bacterial count data files (tab-delimited text) for 733 

“AvrRpt2_ETI”, “AvrRpm1_ETI”, “flg22_PTI”, and “elf18_PTI”. Each has columns of genotype, treatment, 734 

replicate, flat, pot, and colony. The colony column has log10-transformed colony counts (colony forming 735 

unit/cm2). Although the data were originally reported in [2], these raw data were not published. 736 

 737 
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Supplemental Dataset 2. A .RData file (R workspace file) containing a list object, “ave.model.mats”, 738 

which contains the matrices for the averaging model for 2- to 7-gene systems (equivalents of matrix in 739 

Fig. 2c for different order gene systems). 740 

 741 

Supplemental Dataset 3. An R script file (.r file), which is used to generate Fig. 7 from the data sets in 742 

Supplemental Dataset 1. It includes algorithms for selecting significant genes for the analysis and the 743 

averaging model. In the script, the object of a 3-gene or 4-gene matrix included in Supplemental Dataset 744 

2 is called “rec.mx”, which is generated by a function, “make.rec.mx”. 745 
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Fig. 2

Intercept A B C A;B A;C B;C A;B;C

triple.mut 1 0 0 0 0 0 0 0

A 1 1 0 0 0 0 0 0

B 1 0 1 0 0 0 0 0

C 1 0 0 1 0 0 0 0

AB 1 1/2 1/2 0 1 0 0 0

AC 1 1/2 0 1/2 0 1 0 0

BC 1 0 1/2 1/2 0 0 1 0

ABC 1 1/3 1/3 1/3 1/3 1/3 1/3 1

Intercept A B C A:B A:C B:C A;B;C

triple.mut 1 0 0 0 0 0 0 0

A 1 1 0 0 0 0 0 0

B 1 0 1 0 0 0 0 0

C 1 0 0 1 0 0 0 0

AB 1 1 1 0 1 0 0 0

AC 1 1 0 1 0 1 0 0

BC 1 0 1 1 0 0 1 0

ABC 1 1 1 1 1/3 1/3 1/3 1

Intercept A B C A:B A:C B:C A:B:C

triple.mut 1 0 0 0 0 0 0 0

A 1 1 0 0 0 0 0 0

B 1 0 1 0 0 0 0 0

C 1 0 0 1 0 0 0 0

AB 1 1 1 0 1 0 0 0

AC 1 1 0 1 0 1 0 0

BC 1 0 1 1 0 0 1 0

ABC 1 1 1 1 1 1 1 1

a Additive model

b    NR model

c    Averaging model
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