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19 Abstract
20 Arthropod predators are important for ecosystem functioning by providing top-down regulation of insect 

21 herbivores. As predator communities and activity are influenced by biotic and abiotic factors on different 

22 spatial scales, the strength of top-down regulation (‘arthropod predation’) is also likely to vary. 

23 Understanding the combined effects of potential drivers on arthropod predation is urgently needed with 

24 regard to anthropogenic climate and land-use change. In a large-scale study, we recorded arthropod 

25 predation rates using artificial caterpillars on 113 plots of open herbaceous vegetation embedded in 

26 contrasting habitat types (forest, grassland, arable field, settlement) along climate and land-use gradients in 

27 Bavaria, Germany. As potential drivers we included habitat characteristics (habitat type, plant species 

28 richness, local mean temperature and mean relative humidity during artificial caterpillar exposure), 

29 landscape diversity (0.5–3.0-km, six scales), climate (multi-annual mean temperature, ‘MAT’) and 

30 interactive effects of habitat type with other drivers. We observed no substantial differences in arthropod 

31 predation rates between the studied habitat types, related to plant species richness and across the Bavarian-

32 wide climatic gradient, but predation was limited when local mean temperatures were low and tended to 

33 decrease towards higher relative humidity. Arthropod predation rates increased towards more diverse 

34 landscapes at a 2-km scale. Interactive effects of habitat type with local weather conditions, plant species 

35 richness, landscape diversity and MAT were not observed. We conclude that landscape diversity favours 

36 high arthropod predation rates in open herbaceous vegetation independent of the dominant habitat in the 

37 vicinity. This finding may be harnessed to improve top-down control of herbivores, e.g. agricultural pests, 

38 but further research is needed for more specific recommendations on landscape management. The absence 

39 of MAT effects suggests that high predation rates may occur independent of moderate increases of MAT 

40 in the near future.
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41 Introduction
42 Predation and parasitism are frequent causes of mortality to many herbivorous insect species (1) and hence 

43 can exert strong impact on herbivore communities (2,3). Through their impact on herbivores, natural 

44 enemies can also indirectly affect plant damage, vegetation structure and composition, and nutrient cycling 

45 (2–4). This renders natural enemies and their biotic interactions essential to ecosystem functioning. 

46 Important natural enemies for the regulation of herbivorous insects are arthropod predators (5). Predation 

47 intensity can differ between habitat types (6,7), albeit direct comparisons among typical habitat types in 

48 temperate regions (forest, grassland, arable fields and settlements) are lacking. Besides, arthropod activity 

49 is influenced by local weather conditions (8), while plant species richness (9), climate (10) and regional 

50 land use (11) affect arthropod communities, with potential consequences for top-down suppression of 

51 herbivores (12,13). However, the combined effects of these drivers on arthropod predation in different 

52 habitats are largely unknown, albeit urgently needed with regard to anthropogenic climate and land-use 

53 change. 

54 Local habitat characteristics such as habitat type, plant species richness and weather conditions affect 

55 predator richness, activity or both with possible implications on predation rates. With respect to habitat 

56 type, Ferrante et al. (7) observed higher predation rates in forests than in maize fields. This may be related 

57 to on average higher natural enemy richness in natural than agricultural ecosystems (14), which possibly 

58 translates into higher and lower predation rates, respectively (12). Plant species richness was described both 

59 to benefit natural enemies (15) and predation rates (16), which could result from correlation of the latter 

60 (12,14). Besides, higher plant species richness can also lead to higher structural complexity of the 

61 vegetation (9), which may alter predator behaviour with positive effects on predation rates, e.g. reduced 

62 intraguild predation (17). However, knowledge of plant richness effects on natural enemies and their 

63 services originate almost exclusively from plant diversity experiments (e.g. 9,15,16), while complementing 

64 field studies are lacking. Similar applies to weather conditions. Temperature and humidity modify arthropod 

65 activity in terms of catchability by traps (8), but little is known about their effects on predation rates. For 
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66 instance, activity of predatory carabid beetles increases with temperature (8,18), and, depending on species 

67 traits, decreases towards higher relative humidity (8), while too low temperatures can restrict carabid 

68 activity (19). Thus, the richness and activity of predators are affected through habitat characteristics, yet 

69 the consequences for predation rates are much less clear.

70 At a regional scale, landscape complexity and climatic factors impact predators. In complex landscapes, 

71 both species richness and abundance of generalist enemies are higher, and top-down control of herbivorous 

72 arthropods is commonly increased (11,20,21). Considering landscape diversity as an aspect of landscape 

73 complexity (20), diverse landscapes can provide complementary or supplementary resources to organisms 

74 moving between habitat patches with beneficial effects on their population size (22). Thus, predation rates 

75 may increase towards more diverse landscapes. In addition, climate change, and in particular a warmer 

76 climate, is expected to affect arthropods in many aspects, for instance, in their geographic distribution and 

77 life history traits (10,23). Consequently, this may impact predation rates. Indeed, the efficacy of predators 

78 to suppress herbivores can increase with mean annual temperatures (24) as well as predation rates increase 

79 towards lower altitudes and latitudes (25). Thus, both diverse landscapes and warm climates may favour 

80 higher predation rates.

81 Here we use arthropod attack marks on artificial caterpillars to study the combined effects of local habitat 

82 type, plant species richness, weather, landscape diversity and multi-annual mean temperature on arthropod 

83 predation, and ask whether effects differ among habitat types. This study advances the understanding of 

84 top-down regulation of herbivores and natural pest control services in the context of climate and land use.
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85 Material and Methods
86 Study area and plot selection
87 This study was conducted within the LandKlif project in Bavaria, Germany, which used a novel multi-scale 

88 study design to disentangle the combined effects of climate and land use on biodiversity and ecosystem 

89 functions (26), here on arthropod predation rates. From grid cells (5.8 km x 5.8 km) covering Bavaria 

90 (Germany), 60 grid cells were selected encompassing four replicates of 15 combinations of climate zones 

91 (multi-annual mean temperature) and landscape-scale land-use types (near-natural, agriculture and urban). 

92 In each selected grid cell (‘region’), plots were established in three different habitat types (out of four 

93 possible: forest, grassland, arable field or settlement) typical for the respective region. Plots were installed 

94 as 30 m x 3 m experimental strips on open herbaceous vegetation with at least 50 m distance to larger roads 

95 and other habitat types. Research on predation rates was realised on 147 out of 179 LandKlif plots, yet 

96 complete data sets were acquired for 113 plots (data exclusion criteria, see below).

97 Predation rate assessment
98 Arthropod predation rates were assessed using standardised green artificial caterpillars (diameter 3 mm; 

99 length 20 mm) made from plasticine (Weible Fantasia KNET grün, Weible GmbH & Co. KG, Germany), 

100 as suggested for rapid ecosystem function assessment with large geographic extent (27). Brown pieces of 

101 paper (size 40 x 19 mm; 100 g m-2, hazelnut brown, paper type “Paperado”, Rössler Papier GmbH & Co. 

102 KG, Germany) served as carrier onto which the artificial caterpillars were glued (UHU Alleskleber extra 

103 tropffrei gel, UHU GmbH & Co. KG, Germany); 20 artificial caterpillars were placed on every plot at 

104 ground level below vegetation but above litter to standardize position. The artificial caterpillars were spread 

105 across the 30 m x 3 m experimental strip with at least 1-m spacing between two caterpillars and other 

106 experimental items (e.g. Malaise trap). Bamboo sticks with a red tip were punched through a hole in the 

107 paper carrier to fix and mark the position of each artificial caterpillar. The collection of the caterpillars 

108 started after 48 ± 6 hours (range: 42–54 hours). The presence or absence of arthropod attack marks was 

109 assessed in the field using reference images provided by Low et al. (28). Arthropod attack marks were not 
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110 further differentiated into finer taxonomic level as this is error prone and hence not recommended (28). We 

111 calculated predation rates per plot as the proportion of artificial caterpillars with arthropod attack marks 

112 after 2-d exposure relative to the total number of caterpillars per site. We call the obtained measure 

113 ‘predation rate’, as ground-active arthropods, particularly carabids (Coleoptera: Carabidae), are among the 

114 most frequent attackers of artificial caterpillars at ground-level and as attack marks of parasitoids are rare 

115 (16, Personal observation UF). Arthropod predation rates were assessed in May (starting dates between 10th 

116 and 25th May 2019). 

117 Measures of habitat characteristics
118 Plots were established in different local habitat types (forest, grassland, arable field and settlement). 

119 Through establishing plots in forest glades, extensive grasslands, crop field margins and green areas in 

120 settlements within the different local habitat types, exposure of artificial caterpillars was standardized to 

121 open herbaceous vegetation.

122 Plant species richness per plot was derived between May and July 2019 from plant species records in seven 

123 subplots (10 m2 total sampling area). Further details and a species list are provided in Fricke et al. (29).

124 Local weather conditions during caterpillar exposure were derived from thermologgers (ibutton, type 

125 DS1923). Those were attached north-facing to a wooden pole, at 1.1 m above ground and roughly 0.15 m 

126 below a wooden roof, which prevented direct solar radiation. One thermologger was established per plot. 

127 We extracted mean temperature and mean relative humidity (in the following referred to as ‘local mean 

128 temperature’ and ‘mean relative humidity’) during the study-site specific exposure period of the artificial 

129 caterpillars from hourly measurements of the thermologgers.

130 Measures of regional land use and climate

131 Landscape diversity was calculated as Shannon Index from detailed land-cover maps (combination of 

132 ATKIS 2019, CORINE 2018 and IACS 2019, see (29)) based on six main land-cover types (semi-natural 
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133 habitat, forest, grassland, arable, urban, water). Thus, high landscape diversity indicates more different 

134 land-cover classes, more similar proportions of them or both. Landscape diversity was calculated in radii 

135 around the centre point of the plots at six spatial scales (0.5–3.0 km, in 500-m steps). At 2-km scale, low 

136 landscape diversity equated a dominance of forest or arable land, and the land-cover proportions of semi-

137 natural habitat and water were below 7.5% and 10.2%, respectively. 

138 We retrieved 30-year multi-annual mean temperatures (1981–2010, MAT) per plot based on gridded (1-km 

139 resolution) monthly averaged mean daily air temperatures (30).

140 Data analysis
141 Prior to data analysis, data exclusion criteria were applied to standardize data. We excluded artificial 

142 caterpillars exposed to attack for more than 54 hours (exceeding 48 ± 6 h limit), ‘released’ later than 25th 

143 May, and recovered incomplete with a loss of more than 20% (<16 artificial caterpillars per plot). In total, 

144 we achieved standardized data on 113 plots. Artificial caterpillars from 58 of these plots (51%) were 

145 transported to the lab to double-check the assessments done in the field. Field and lab assessments of 

146 arthropod predation rates were positively correlated (Pearson’s r = 0.79; S1 Fig). In the following, arthropod 

147 predation rates refer to the field observations (113 plots). 

148 Arthropod predation rate data were analysed with binomial generalized mixed effect models to cope with 

149 proportional data (derived from absence-presence data) using the R-package ‘glmmTMB’ (31) with R 

150 version 4.0.3 (32). Region was included as a random term to account for the nested study design and was 

151 retrieved throughout the model selection process (33). Due to zero-inflation (complete absence of attack 

152 from 17% of plots), confirmed using the R-package ‘DHARMa’ (34), we added a zero-inflation term. We 

153 did not account for exposure duration of the artificial caterpillars in the models, since data were standardized 

154 by exposure duration (48 ± 6 h limit) and similar exposure durations of 48.2 ± 1.7 h (mean ± SD) were 

155 realized among plots.
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156 As candidate predictors (fixed effects) of arthropod predation rates, we included habitat type, plant species 

157 richness, local mean temperature and mean relative humidity (during artificial caterpillar exposure), 

158 landscape diversity and MAT. Candidate predictors were z-transformed prior to analysis, while presented 

159 models contain untransformed predictor variables. 

160 To parametrize the zero-inflation term, we considered factors which might explain absence of attack on 

161 plot level, e.g. arthropod activity limited by low temperatures (19). Besides, we visually screened the 

162 candidate predictors for accumulation of absence-of-attack events (predation rate = 0) at the extremes of 

163 the predictor ranges. Local mean temperature was the only candidate predictor in which absence of attack 

164 marks was frequently observed at the lower range on a per plot basis. Therefore, local mean temperature 

165 was included as a single candidate predictor in the zero-inflation term. Additionally, we run a separate 

166 analysis on presence-absence of attack on plot level (data extracted from predation rate data; predation rate 

167 > 0 replaced by 1) to investigate how the probability of attack on plot level was affected through local mean 

168 temperature using binomial generalized linear mixed effect models including region as random term (see 

169 S1 Table).

170 When analysing the data, we first conducted multi-model averaging to identify the most relevant predictors 

171 and spatial scales. Models with all possible predictor combinations were created separately for each spatial 

172 scale (0.5–3.0 km, six scales). Akaike weights were computed using the dredge-function from the ‘MuMin’ 

173 R-package (35). Achieved Akaike weights (wi) were summed per predictor and spatial scale, whereby high 

174 summed Akaike weights (Σwi; range: 0 (low) – 1 (high)) indicate a high relative importance of a predictor, 

175 corresponding to high cumulative probability that a predictor occurs in the best model at the respective 

176 spatial scale (36).

177 In a second step, we analysed potential interactive effects of habitat type with plant species richness, 

178 weather conditions during artificial caterpillar exposure (local mean temperature, mean relative humidity), 

179 landscape diversity and MAT. Therefore, we added single interaction terms (e.g. local habitat type * plant 

180 species richness) to the best model at the most relevant spatial scale derived from multi-model averaging. 
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181 Model selection was done based on Akaike’s information criterion corrected for small sample size (AICc). 

182 Thereby, models with lower AICc were considered better, and models with ∆AICc < 2 were considered 

183 equal and the more parsimonious model was chosen.

184 Pearson correlations between continuous candidate predictor variables were rather low ≤ 0.33 (S2 Table) 

185 with two exceptions. MAT was positively correlated with local mean temperature (Pearson’s r = 0.59) and 

186 negatively correlated with mean relative humidity (Pearson’s r = -0.51). However, all variance inflation 

187 factors (VIF) fell below the commonly applied threshold for collinearity of variance inflation factor ˃10 

188 (30, see S3 Table), unless interactions with the only categorical variable habitat type were included (S4 

189 Table), which commonly inflates VIF; the latter were calculated using the R-package ‘performance’ (37). 

190 Local mean temperature (Kruskal Wallis, P = 0.070), mean relative humidity (Kruskal Wallis, P = 0.219) 

191 and landscape diversity (2-km scale, Kruskal Wallis, P = 0.187) were similar among habitat types whereas 

192 plant species richness was higher in grasslands than arable plots and intermediate in forests and settlements 

193 (Kruskal Wallis, P = 0.022; Bonferroni-corrected Wilcoxon test), and MAT was higher in settlements than 

194 forests and grasslands, and intermediate in arable plots (Kruskal Wallis, P = 0.008; Bonferroni-corrected 

195 Wilcoxon test) (S2 Fig). 
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196 Results
197 Artificial caterpillars encountered arthropod attack on 83% of the plots. At plot level, absence of arthropod 

198 attack occurred mainly at low local temperatures, while attack (predation rates > 0) was observed with 80% 

199 probability when local mean temperatures were above 7°C (Fig 1, S1 Table). On plots with arthropod attack, 

200 on average 26% (mean; ± 19% SD) of the artificial caterpillars were attacked per plot within 2-d exposure; 

201 across all plots, the average predation rate was 21% (mean± 20% SD).

202 Fig 1. Probability of arthropod attack relative to local mean temperature during artificial caterpillar exposure. 

203 Logistic regression curve and dots indicate absence (0) and presence (1) of arthropod attack on artificial caterpillars at 

204 plot level. 

205 Due to landscape diversity as landscape parameter, models at intermediate scales (1.5, 2.0 or 2.5-km) – 

206 particularly at 2-km scale – were more important for explaining arthropod predation rates than models at 

207 smaller (0.5 km, 1.0 km) or larger scales (3.0 km), as shown by sum of Akaike weights (Σwi, Fig 2A). The 

208 relative importance of candidate predictors for explaining arthropod predation rates revealed a similar 

209 pattern across all spatial scales, with high relative importance of landscape diversity and local mean 

210 temperature as zero-inflation term, intermediate relative importance of mean relative humidity, and low 

211 relative importance of MAT, plant species richness, local mean temperature (as fixed effect) and habitat 

212 type (Figs 2B, 3). Thus, landscape diversity and – as a zero-inflation term – local mean temperature have a 

213 high probability to appear in the best fitting model across spatial scales (Fig 2B), with the most substantial 

214 contribution in models including landscape diversity at the intermediate 2-km scale (Fig 2A, see also S3 

215 Table).

216 Fig 2. Relative importance (sum of Akaike weights) for explaining arthropod predation rates of A) spatial scale 

217 (i.e. models with all possible predictor combinations at one scale relative to the others) and of B) each 

218 candidate predictor per spatial scale. White symbols refer to habitat characteristics (Habitat: habitat type, SpecNum: 

219 plant species richness, Temp or RH: local mean temperature or mean relative humidity during artificial caterpillar 

220 exposure, zi: included as zero-inflation term) and filled blue symbols to regional factors (LandDiv: landscape diversity, 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 21, 2022. ; https://doi.org/10.1101/2022.02.21.481383doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.21.481383
http://creativecommons.org/licenses/by/4.0/


11

221 MAT: multi-annual mean temperature). Landscape diversity is the only landscape parameter (value changes with 

222 spatial scale).

223 Multi-model averaging revealed that, arthropod predation rates were similar among habitat types (Fig 3A; 

224 mean ± SD, forests 0.20 ± 0.20, grasslands 0.22 ± 0.20, arable fields 0.21 ± 0.20, settlements 0.21 ± 0.20), 

225 and across the observed range of plant species richness (Fig 3B) and local mean temperature (Fig 3C), while 

226 higher relative humidity tended to decrease arthropod predation rates (Fig 3D)(S3 Table). Local mean 

227 temperature as zero-inflation term equals a higher probability of arthropod attack at plot level with higher 

228 local mean temperatures (Fig 1). Particularly at 2-km scale (Fig 2A), arthropod predation rates increased 

229 towards diverse landscapes (Fig 3E). Higher maximum predation rates and more frequently high predation 

230 rates were observed in more diverse landscapes than landscapes dominated by a single land cover type (Fig 

231 3E, e.g. compare landscape diversity < 0.69 and ≥ 0.69, landscape diversity value of 0.69 equals an effective 

232 number of two land-cover types). MAT did not substantially affect arthropod predation rates (Fig 3F). We 

233 observed no interaction effects of any predictor on arthropod predation rates depending on habitat type (S4 

234 Table).

235 Fig 3. Relationship between arthropod predation rates and candidate predictors: A) Habitat type (For: forest, Gra: 

236 grassland, Ara: arable field, Set: Settlement), B) plant species richness, C+D) local mean temperature and mean 

237 relative humidity during artificial caterpillar exposure, E) landscape diversity at 2-km scale and F) multi-annual mean 

238 temperature (MAT). Light grey dots present values per plot; overlapping dots appear darker. In A) circles indicate 

239 outliers. In B-F) solid lines indicate model predictions of the best model derived through multimodel averaging.
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240 Discussion
241 In this study, we assessed drivers of arthropod predation in open herbaceous vegetation in typical habitat 

242 types of the temperate region. Arthropod predation rates in different habitat types were similar and 

243 responded similarly to both local and regional drivers. Towards diverse landscapes, particularly at 2-km 

244 scale, arthropod predation rates increased, whereas they tended to decrease towards higher mean relative 

245 humidity and were frequently absent from plots with low local mean temperatures. Plant species richness 

246 and MAT did not substantially affect arthropod predation rates. 

247 The observed average arthropod predation rate of 21% (in 2 days) in May was in the same order of 

248 magnitude as reported in other studies on artificial caterpillars at ground-level in temperate regions, when 

249 assuming that arthropod predation rates scale linearly with exposure time (see 38) and tend to increase from 

250 spring towards summer (6,16). In open herbaceous vegetation, Hertzog et al. (16) obtained average 

251 arthropod predation rates of 15% (per day) in May, and Meyer et al. (38) determined arthropod attack marks 

252 on 51% of the recovered artificial caterpillars (after 3 days) in summer.

253 Among local habitat types (forest, grassland, arable field, settlement) arthropod predation rates were not 

254 substantially different and high arthropod predation rates were observed in all habitat types. However, large 

255 variation in predation rates among plots of the same habitat type may result from largely different natural 

256 enemy communities due to a selective permeability of habitat edges. This permeability depends both on 

257 characteristics of the habitat edge – e.g. of natural or anthropogenic origin (39) – and on the behaviour of a 

258 predator – e.g. habitat and trophic specialist or generalist (40,41). Thus, large variation in spill-over from 

259 adjoining habitat into open herbaceous vegetation possibly masked differential effects of local habitat types 

260 on arthropod predation rates. This assumption of variation in spill-over from adjoining habitat is supported 

261 by the significant impact of landscape diversity on local predation rates.

262 Towards higher landscape diversity (particularly at 2-km scale), arthropod predation rates increased. Thus, 

263 in more diverse landscapes natural enemy communities were likely denser (40, p. 218), richer in the number 

264 of species (12) or more frequently included effective predators (12,13). However, among plots in diverse 
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265 landscapes we also observed large variability in predation rates, which may have several reasons. First, 

266 natural enemies may respond variably to diverse landscapes depending on i) the presence, proportion and 

267 combination of certain land-cover types – which may differ in their supply of complementing or 

268 supplementing resources (22,41) –, ii) the permeability of boundaries between land-cover types – but also 

269 at finer scales – (40,41), and therefore iii) the configuration of land-cover types (42). Second, changes in 

270 natural enemy communities likely mediate landscape-diversity effects on predation rates, but it is not yet 

271 fully understood which changes landscape diversity elicits in natural enemy communities (see 40, p. 218), 

272 and how and under which conditions this links to altered predation functions (12,13,43). Thus, landscape 

273 diversity promotes predation rates, but variability in predation rates in diverse landscapes – and elucidated 

274 potential sources of this – point out future research directions to derive more specific recommendations for 

275 landscape management aiming to promote top-down regulation of herbivores and potentially also of 

276 agricultural pests.

277 The absence of habitat type effects but increasing predation rates towards higher landscape diversity does 

278 not mean that directly adjoining habitat type is less important to arthropod predation than general landscape 

279 diversity, yet it suggests that the landscape composition of the intermediate surrounding (i.e. 2-km radius) 

280 impacts natural enemy communities in a way that can alter predation rates independent of the dominant 

281 habitat in the vicinity. Thus, our results provide first evidence that landscape diversity favours high 

282 predation services (in open herbaceous vegetation) across typical habitat types in the temperate region.

283 Local weather conditions during artificial caterpillar exposure shaped arthropod predation. In our study, 

284 higher local mean temperatures made it more likely to observe predation (predation rates > 0), but did not 

285 substantially increase predation rates. This seems to be in contrast to observations from pitfall trap catches, 

286 where numbers of many ground-active arthropod species in the catches increased with temperature (44), 

287 which similarly could have increased the likelihood of encounter with an artificial caterpillar. However, as 

288 we did not study predation rates as time-series but on different plots, natural enemy communities possibly 

289 differed between plots and entailed arthropod species with different temperature preferences (19) and 
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290 sensitivities (see 44), which can explain the absence of a clear temperature relationship in our study. 

291 Furthermore, local mean temperatures measured 1-m above ground possibly reflected the conditions 

292 experienced by a predator differently depending on the effects of vegetation structure on microclimate and 

293 the daily activity pattern. Thus, local weather conditions may influence predation rates but this effect might 

294 be masked in our study, possibly through differences in natural enemy communities among plots and a 

295 discrepancy between the measured and experienced temperature by ground-active arthropods. However, 

296 we more frequently observed the absence of attack (predation rates = 0) at low local mean temperatures. 

297 Accordingly, temperature thresholds may apply more broadly to arthropod predation, at least in spring. 

298 Both, because emergence after overwintering is temperature-dependent (45) and temperature thresholds of 

299 relevant predators may not have been reached in colder areas of our study region or not long enough for 

300 relevant predators to move onto the plots, and – maybe even more importantly– because initiation of daily 

301 activity seems to depend on certain temperatures (19, p. 13). Thus far only few studies, which quantified 

302 predation, have reported on local weather conditions (46). Our results provide further evidence that local 

303 temperature impacts predation and thus should be considered when interpreting predation functions.

304 MAT did not substantially affect arthropod predation rates. This may have several reasons. First, natural 

305 enemy communities were not substantially altered through long-term temperature along the observed MAT 

306 gradient, or second, different natural enemy communities can provide similar predation rates. Although we 

307 cannot test the first reason, studies reporting on increased predation rates towards lower latitudes and 

308 altitude (25) or towards higher mean annual temperatures (24) were conducted at a global scale. Thus, 

309 various factors may obscure a (weak) climate effect in studies covering a fraction of the global temperature 

310 range, such as our study. Indeed, we observed large variation in predation rates among plots of similar 

311 MAT, which may suggest that other factors impact natural enemy communities more strongly than MAT. 

312 However, even if natural enemy communities change along the MAT gradient, this may not have led to 

313 differences in predation rates. This is supported by the observation that several independent studies using 

314 artificial caterpillars in temperate regions reported predation rates in the same order of magnitude (see 
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315 above) – which likely encompasses large differences in natural enemy communities –, but also by the 

316 marked relevance of key predators for predation functions, e.g. compared to natural enemy richness (12). 

317 Key predators can be, for instance, particular voracious predator species (47) and predators with specific 

318 feeding traits matching the ‘vulnerability trait’ of the prey (48). Thus, high predation rates across the 

319 covered MAT gradient illustrate the potential to increase predation rates (e.g. through landscape 

320 management) independent of a potential moderate increase of MAT in the near future.

321 Plant species richness did not substantially affect arthropod predation rates in our study, whereas Barnes et 

322 al. (15) reported increasing top-down control and Hertzog et al. (16) increasing invertebrate predation rates 

323 towards higher plant species richness. However, these positive effects of plant species richness on predation 

324 rates were reported from grassland experiments (15,16), whereas we report from a multi-scale field 

325 experiment. This likely included much more variation in natural enemy communities and also considerable 

326 differences in plant species pools between plots. Thus, plant species richness may indirectly affect 

327 arthropod predation rates depending on the natural enemy community composition and the plant species 

328 pool, but our data suggests that this is not a ubiquitous or dominant pattern.

329 Our results provide insights into herbivore regulation through arthropod predators, but are limited by the 

330 method of artificial caterpillars as sentinel prey. Common predators on artificial caterpillars at ground-level 

331 are chewing insects, especially carabids (6). Properties of the artificial caterpillars such as length (49) and 

332 colour (50) act as a filter – with yet unknown specificity – on the interacting predators. Furthermore, 

333 predation rates on artificial caterpillars do not directly translate into successful predation attempts as the 

334 complexity of predator-prey interactions is reduced by e.g. prey mobility (51) and defensive traits such as 

335 cuticular toughness (48). However, predation rates on artificial caterpillars are widely recognised for their 

336 standardisable estimate (27,52) and can provide unique insights into drivers of predation functions through 

337 generalist predators, which are otherwise impossible to obtain. 

338 Conclusion
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339 We conclude that landscape diversity favours high arthropod predation rates in open herbaceous vegetation 

340 across typical habitat types in the temperate region, while adjoining habitat type and plant species richness 

341 are of minor importance when studying a large spatial extent with possibly vastly different natural enemy 

342 communities. However, more research is needed on the underlying mechanisms of the landscape diversity 

343 effect to deduce more specific management options for improved top-down control of herbivores and for 

344 enhanced natural pest control in agricultural ecosystems. Besides, local weather conditions impact 

345 predation, e.g. low local mean temperatures can limit predation, and hence should be considered when 

346 interpreting predation rates. With respect to MAT, arthropod predation rates did not substantially change 

347 and high rates were observed across the covered climatic gradient, which highlights the potential to increase 

348 predation rates (e.g. through landscape management) independent of potential moderate temperature 

349 increases in the near future.
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482 Supporting information
483 S1 Table. Model output on the probability of arthropod attack on plot level (presence-absence of attack from a 

484 plot, binomial generalized linear mixed model) including local mean temperature during artificial caterpillar exposure as 

485 predictor compared to an empty model (null, null model). Bold font highlights the best model based on ∆AICc < 2 and 

486 parsimony.

487 S2 Table. Predictor variable details and Pearson’s correlation coefficients included in multimodel averaging on 

488 arthropod predation rate models based on 113 study sites. Significant correlations based on α = 0.05 are indicated as 

489 following: P < 0.05*, P < 0.01**, P < 0.001***.

490 S3 Table. Model output of arthropod predation rate models (zero-inflated binomial generalized linear mixed model) 

491 with different parametrization (best: best model based on ∆AICc < 2 and parsimony; ΔAICc < 4; full: model containing 

492 all candidate predictors; null: null model with or without temperature as zero-inflation term) at the best spatial scale 

493 identified by multimodel averaging (2-km scale). Best model is highlighted in bold font.

494 S4 Table. Model output of arthropod predation rate models including interactive effects with habitat type (zero-

495 inflated binomial generalized linear mixed model) at the best spatial scales identified by multimodel averaging (2-km 

496 scale). Interaction terms are added to the original best model and to null models containing only temperature during 

497 exposure as zero-inflation term. Asterisks between candidate predictors indicate that both main effects and their 

498 interaction term is included. Best model parametrization is derived based on ∆AICc < 2 and parsimony. Best models 

499 are highlighted in bold font.

500 S1 Fig. Pearson correlation between arthropod predation rates assessed in the field and in the lab. Dots indicate 

501 values per plot; overlapping dots appear darker. The dashed grey line presents a hypothetically perfect correlation (r = 

502 1) and the solid black line, the observed correlation based on α = 0.05, P < 0.001***.

503 S2 Fig. Relationship between habitat type and other candidate predictors of arthropod predation rates. Dots 

504 indicate values per plot; overlapping dots appear darker. Asterisks highlight significance levels of P < 0.05* and P < 

505 0.01**. Letters indicate significant differences between habitat types based on Bonferroni-corrected pairwise 

506 comparisons using Wilcoxon rank sum test.
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