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Abstract 26 

T cells play a critical role in the adaptive immune response, recognizing peptide antigens 27 
presented on the cell surface by Major Histocompatibility Complex (MHC) proteins. While 28 
assessing peptides for MHC binding is an important component of probing these interactions, 29 
traditional assays for testing peptides of interest for MHC binding are limited in throughput. 30 
Here we present a yeast display-based platform for assessing the binding of tens of thousands 31 
of user-defined peptides in a high throughput manner. We apply this approach to assess a tiled 32 
library covering the SARS-CoV-2 proteome and four dengue virus serotypes for binding to 33 
human class II MHCs, including HLA-DR401, -DR402, and -DR404. This approach identifies 34 
binders missed by computational prediction, highlighting the potential for systemic 35 
computational errors given even state-of-the-art training data, and underlines design 36 
considerations for epitope identification experiments. This platform serves as a framework for 37 
examining relationships between viral conservation and MHC binding, and can be used to 38 
identify potentially high-interest peptide binders from viral proteins. These results demonstrate 39 
the utility of this approach for determining high-confidence peptide-MHC binding. 40 
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Introduction 42 
Major histocompatibility complex (MHC) proteins play a critical role in adaptive 43 

immunity by presenting peptide fragments on the surface of cells. Peptide-MHCs (pMHCs) are 44 
then surveilled by T cells via their T cell receptors (TCRs), enabling immune cells to sense 45 
dysfunction, such as the presence of pathogen-derived peptides (Chaplin, 2010; Hennecke and 46 
Wiley, 2001). Class II MHC molecules (MHC-II) are expressed primarily on professional antigen 47 
presenting cells, and are recognized by antigen-specific CD4+ T cells that drive the coordination 48 
of innate and adaptive immune responses (Chaplin, 2010; Swain et al., 2012). MHC-II molecules 49 
have an open peptide-binding groove, allowing for display of long peptides, consisting of a 9 50 
amino acid ‘core’ flanked by a variable number of additional residues on each side (Jones et al., 51 
2006).  52 

Generating reliable and rapid data on peptide-MHC binding is beneficial for 53 
understanding the underlying biology of adaptive immunity and for clinical applications, 54 
including for optimized T cell epitopes in vaccine design (Dai et al., 2021; Keskin et al., 2019; Liu 55 
et al., 2020; G. Liu et al., 2021; Moise et al., 2015; Ott et al., 2017; Patronov and Doytchinova, 56 
2013; Rosati et al., 2021). In fact, therapeutics to generate antigen-specific T cell responses 57 
have shown great promise in cancer (Keskin et al., 2019; Ott et al., 2017) and infectious disease 58 
(Gambino et al., 2021). Since understanding peptide-MHC binding is critical for identifying and 59 
engineering T cell epitopes, there have been sustained efforts to produce high-quality 60 
experimental data and predictive algorithms.  61 

Initial experimental methods for determining peptide binding to MHC relied upon the 62 
analysis of synthesized candidate peptides via MHC stability or functional assays, and can 63 
produce high-confidence data, but can be difficult to scale beyond a small number of candidate 64 
peptides (Altmann and Boyton, 2020; Justesen et al., 2009; Mateus et al., 2020; Sidney et al., 65 
2010; Yin and Stern, 2014). More recently, mass spectrometry-based approaches have been 66 
demonstrated for determining the MHC-presented peptide repertoire of cells. These 67 
approaches include monoallelic mass spectrometry, which allows for the unambiguous 68 
assignment of presented peptides to a given MHC allele. However, mass spectrometry-based 69 
approaches are not necessarily quantitative measures of presented peptide affinity or 70 
abundance, although there have been advances in quantitation using internal standards 71 
(Stopfer et al., 2021, 2020). Additionally, the peptides endogenously expressed by a cell can 72 
crowd out exogenously examined peptides of interest, and mass spectrometry approaches 73 
typically require large numbers of input cells (Abelin et al., 2019, 2017; Parker et al., 2021; 74 
Purcell et al., 2019).  75 

A wave of higher throughput approaches have been recently developed for studying 76 
peptide-MHC interactions, including yeast display (Jiang and Boder, 2010; R. Liu et al., 2021; 77 
Rappazzo et al., 2020) and mammalian display-based methods (Obermair et al., 2021). Several 78 
of these approaches circumvent the bottlenecks of synthesizing or identifying peptides by 79 
utilizing DNA-based inputs and outputs (Jiang and Boder, 2010; Obermair et al., 2021; Rappazzo 80 
et al., 2020). These assays rely upon libraries that are often generated via DNA oligonucleotide 81 
synthesis, and use peptide stabilization and surface expression (Jiang and Boder, 2010; R. Liu et 82 
al., 2021; Obermair et al., 2021) or peptide dissociation (Rappazzo et al., 2020) to assess 83 
peptide-MHC binding.    84 
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In addition to experimental advances, computational approaches for peptide-MHC 85 
binding prediction have advanced markedly over the past decade. These developments are due 86 
to algorithmic advances (O’Donnell et al., 2020; Racle et al., 2019; Reynisson et al., 2020; Zeng 87 
and Gifford, 2019) and the availability of large, high-quality training data (Abelin et al., 2019, 88 
2017; Rappazzo et al., 2020; Reynisson et al., 2020). However, despite the improvements in 89 
predicting peptide binding to MHC in a broad sense, the predictive power for individual 90 
peptides often remain imperfect relative to experimental measurements (Rappazzo et al., 2020; 91 
Zhao and Sher, 2018). 92 

Here we present a yeast display approach to directly assess peptide-MHC binding for 93 
large collections of defined peptide antigens to screen whole viral proteomes for MHC-II 94 
binding in high-throughput. We utilize this approach to screen the full proteome of SARS-CoV-2, 95 
a present, global threat to public health, and identify SARS-CoV-2-derived MHC binders missed 96 
by computational prediction. We additionally apply this approach to screen proteomes from 97 
serotypes 1-4 of dengue viruses, in which antibody dependent enhancement results in more 98 
severe disease upon second infection with a different dengue virus serotype (Guzman et al., 99 
2016), and thus represents a potential important application area for T cell-directed 100 
therapeutics. Our approach enables exploration of peptide binding to MHCs in the context of 101 
serotype-specific mutations, identifying homologous, pan-serotype regions of interest that are 102 
capable of MHC binding and thus may represent desirable targets for immune interventions.    103 
 104 
Results 105 
Generation of yeast display libraries for profiling the SARS-CoV-2 proteome 106 

Previous studies have reported the use of yeast-displayed MHC-II for characterizing 107 
peptide-MHC and pMHC-TCR interactions (Birnbaum et al., 2017, 2014; Rappazzo et al., 2020). 108 
We adapted MHC-II yeast display constructs (Rappazzo et al., 2020) to generate a defined 109 
library of peptides that cover the SARS-CoV-2 proteome to assess them for MHC binding. To 110 
compare SARS-CoV-2 with a related coronavirus, we also included peptides from the spike and 111 
nucleocapsid proteins from SARS-CoV. 112 

Each protein was windowed into peptides of 15 amino acids in length, with a step size of 113 
1 to cover every possible 15mer peptide in the protein (Figure 1a). Each peptide was encoded 114 
in DNA and cloned in a pooled format into yeast vectors containing MHC-II proteins. The 115 
generated library was linked to three MHC-II alleles: HLA-DR401 (HLA-DRA1*01:01, HLA-116 
DRB1*04:01), HLA-DR402 (HLA-DRA1*01:01, HLA-DRB1*04:02), and HLA-DR404 (HLA-117 
DRA1*01:01, HLA-DRB1*04:04). Yeast were formatted with a flexible linker connecting the 118 
peptide and MHC, containing a 3C protease site and a Myc epitope tag, which can be used for 119 
selections (Figure 1a) (Rappazzo et al., 2020). The final library contained 11,040 unique 120 
peptides, with 99% of the designed peptides present in each cloned yeast library, as assessed 121 
by next-generation sequencing. 122 

 123 
Strategies for selecting defined libraries 124 

To enrich for peptide binders, iterative selections were performed (Figure 1a): the 125 
library is first incubated with competitor peptide and 3C protease, which cleaves the covalent 126 
linkage between peptide and MHC, followed by the addition of HLA-DM at lower pH. These 127 
conditions allow for the encoded peptide to be displaced from the peptide-binding groove. The 128 
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Myc epitope tag is proximal to the peptide, which can be identified via incubation with an anti-129 
epitope tag antibody followed by enrichment via magnetic bead selection if the yeast-130 
expressed peptide remains bound to the MHC after the peptide exchange reaction.  131 

Three rounds of selection were iteratively performed. Representative enrichment of 132 
yeast expressing Myc-tagged peptides can be seen in Figure 1c (“undoped library”), for the 133 
library displayed by HLA-DR401. Here the pre-selection Myc-positive population starts at 29.3% 134 
and quickly converges, with 65.0% positive in the pre-selection Round 2 population and 74.1% 135 
in the pre-selection Round 3 population.  136 

Given the rapid convergence of the library, we performed a second set of selections in 137 
which we doped the defined library into a randomized, null library to enable a greater degree of 138 
enrichment as compared to non-binding peptides. The null library was generated by fully 139 
randomizing ten amino acids in the peptide region of the peptide-MHC-II construct while fixing 140 
three amino acids to encode stop codons. This library provides a baseline population of yeast 141 
which should not express pMHC, and therefore not enrich in our selections. We doped our 142 
defined peptide library into a 500-fold excess of null library, such that each peptide member 143 
was represented at approximately the same frequency (Figure 1b). The null library provides 144 
baseline competition, which true binders must enrich beyond, and increases the stringency of 145 
the enrichment task.  146 

We performed four rounds of selection on the doped library. Because of the excess of 147 
null yeast, the initial pre-selection stain is low (1.6%) compared to the initial undoped library 148 
(Figure 1c). This staining enriched over the first three rounds of selection, reflective of the 149 
stringency of the task and clarity of enrichment. This is in contrast to the initial undoped library, 150 
which began with a much higher pre-selection stain, with a lower fold-change in staining over 151 
rounds of selection. The low frequency of each member in the starting doped library, however, 152 
increases the likelihood of stochastic dropout for any given member. 153 
 154 
Analysis of selection data 155 

After selections, peptide identities were determined through deep sequencing of 156 
enriched yeast populations, providing us with a dataset comprised of positive enrichment over 157 
four rounds of selection from the doped library and both positive and negative enrichment for 158 
three rounds of selection from the undoped library (Supplemental Data). Supplemental Figure 159 
1 shows the correlation between defined library members on HLA-DR401. As expected, the 160 
unselected library correlated poorly with post-selection rounds. Consistent with the observed 161 
staining (Figure 1c), the doped library essentially converged after Round 3. Similarly, the 162 
undoped library appears converged following Round 2.  163 

Next, we established metrics for enrichment for each mode of selection. Given the high 164 
starting frequency of members in the undoped library, we classify enrichment based on fold 165 
change between Round 1 and Round 2, and we define criteria for enriched yeast in the 166 
undoped library as making up a higher fraction of reads following Round 2 compared to Round 167 
1. In contrast, in the doped library, members start at low frequencies, and we define 168 
enrichment based on presence above a threshold in Round 3 of selection, specifically as having 169 
greater than or equal to 10 reads following Round 3. Figure 2b illustrates the correspondence 170 
between enrichment metrics in the doped and undoped library for the library on HLA-DR401. 171 
Of the 11,040 peptides in the library, 2,467 enriched in both the doped and undoped libraries 172 
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displayed by HLA-DR401 (Figure 2a). An additional 1,252 enriched in the doped library only and 173 
797 enriched in the undoped library only.  174 

Because the library is designed with a step size of one, we next utilized overlap between 175 
adjacent peptides to determine high-confidence binders. This analysis allows us to address the 176 
potential that peptide sequences could register shift in such a way that invariant portions of the 177 
linker sequences could inadvertently be incorporated into the peptide-binding groove. To do 178 
this, we develop and implement a smoothing method, examining overlapping peptides for 179 
shared enrichment behavior. Classically, the strongest determinant of peptide affinity for an 180 
MHC is the nine amino acid stretch sitting within the peptide-binding groove (Jones et al., 2006; 181 
Stern, 1994), although proximal peptide flanking residues can also affect binding (Lovitch et al., 182 
2006; O’Brien et al., 2008; Zavala-Ruiz et al., 2004). In our libraries, a given 9mer is present in 183 
seven overlapping 15mer peptides, and we calculate how many of these seven 15mers have 184 
enriched. This calculation is shown schematically in Supplemental Figure 2a with toy sequences 185 
and applied to enrichment data for SARS-CoV-2 nucleocapsid on HLA-DR401 in Supplemental 186 
Figure 2b. Sequences with good 9mer cores should enrich along with neighboring sequences 187 
with the same 9mer sequence. In contrast, sequences which enrich spuriously or due to linker 188 
sequence in the peptide groove or other stochastic factors should have few neighbor sequences 189 
also enriching. Thus, we define a cutoff for high confidence 9mer enrichment of five out of 190 
seven 9mer-containing sequences enriching. This cutoff tolerates some stochastic dropout, 191 
while still disallowing any cores that may solely enrich by register shifting the Gly-Ser linker 192 
residues into the Position 9 pocket, which are favorable for each MHC allele in our study. 193 
(Abelin et al., 2019; Rappazzo et al., 2020; Reynisson et al., 2020). Of the 2,467 peptides which 194 
enriched in both the doped and undoped libraries for HLA-DR401, 1,791 also contain a 9mer 195 
sequence which enriched in five or more peptides of the seven neighboring sequences 196 
containing it (Figure 2a), with 676 peptides enriching in both doped and undoped libraries but 197 
not containing a 9mer core enriched in five or more peptides, and 788 15mers containing a 198 
9mer which enriched in five or more peptides but enriched in zero or one of the doped and 199 
undoped libraries. These full relationships are captured in Venn diagrams in Supplemental 200 
Figure 3 for all three MHC alleles studied here. 201 

 202 
Sequence motifs of enriched peptides are consistent with known binders and highlight 203 
considerations for designing epitope identification experiments 204 
 To examine the 9mer core motifs of enriched peptides, we utilized a position weight 205 
matrix method to infer the peptide register and generated visualizations of the 9mer cores 206 
using Seq2Logo (Thomsen and Nielsen, 2012). Figure 2c shows a sequence logo of the aligned 207 
9mer cores from the 2,467 15mer peptides which enriched on HLA-DR401 in both doped and 208 
undoped libraries. The peptide motif is consistent with previously reported motifs for HLA-209 
DR401 (Abelin et al., 2019; Rappazzo et al., 2020): hydrophobic amino acids are preferred at P1, 210 
acidic residues at P4, polar residues at P6, and small residues at P9. We also observe some 211 
preference for glycine at P8 in the sequence logo, which is potentially an artifact of non-native 212 
registers with linker at P8 and P9.  213 

The other alleles used in the study, HLA-DR402 and HLA-DR404, have polymorphisms in 214 
their peptide binding groove sequences as compared to HLA-DR401, which affect binding 215 
preferences. HLA-DR401 differs from HLA-DR402 at four amino acids and from HLA-DR404 at 216 
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two amino acids, with all polymorphisms located in the beta chain. HLA-DR402 and HLA-DR404 217 
share an amino acid distinct from HLA-DR401 affecting the P1 pocket (Gly86Val), resulting in a 218 
preference for smaller hydrophobic residues (Figure 3a). Three polymorphisms in HLA-DR402 219 
affect P4, P5, and P7 compared to HLA-DR401 (Leu67Ile, Gln70Asp, and Lys71Glu), while HLA-220 
DR404 has only one (Lys71Arg). Sequence logos for HLA-DR402 and HLA-DR404 are consistent 221 
with previously reported motifs and MHC polymorphisms (Supplemental Figure 4). For HLA-222 
DR402, we observe less P4 preference compared to the motif of HLA-DR402 binders enriched 223 
from a randomized yeast display peptide library (Rappazzo et al., 2020), albeit consistent with 224 
mass spectrometry-generated motifs which also showed minimal P4 preference for HLA-DR402 225 
(Abelin et al., 2019).  226 

To explore differences between mass spectrometry, defined libraries, and random 227 
libraries, and to probe the differing strengths of P4 peptide preference observed for HLA-DR402 228 
between these modalities, we examined the compositions of randomized and defined libraries. 229 
We hypothesized that skewed amino acid abundances in nature, which are reflected in the 230 
defined library, could result in an apparent diminished amino acid preference. Indeed, three of 231 
the most preferred P4 residues for binding HLA-DR402, Trp, His, and Met (Rappazzo et al., 232 
2020), are all low abundance in the SARS-CoV-2 proteome (Trp 1.1%, His 1.9%, Met 2.2%). In 233 
comparison, a randomized peptide library for HLA-DR402 (Rappazzo et al., 2020) had a higher 234 
representation of these amino acids (Trp 3.8%, His 2.9%, Met 3.8%). Additionally, the 235 
randomized library had approximately nine thousand-fold more members than the defined 236 
library, providing more instances of all amino acids. The low abundance and 237 
underrepresentation of these amino acids likely underlies the apparent lack of amino acid 238 
consensus at P4 in enriched peptides. Interestingly, Arg and Lys, which have also been reported 239 
as preferred HLA-DR402 P4 residues, are more abundant than Trp, His, and Met in the SARS-240 
CoV-2 proteome (Arg 3.4% and Lys 5.9%; compare to Arg 9.7%, Lys 4.0% in the random library), 241 
but still show less representation at P4 in the defined library enriched peptides compared to 242 
the random library-enriched peptides. These differences in motifs between randomized and 243 
defined libraries highlight the utility of randomized libraries for downstream applications such 244 
as training prediction algorithms. Approaches influenced by amino acid abundance in nature, 245 
such as defined libraries and mass spectrometry approaches, could inadvertently bias against 246 
possible binders because of absence of amino acids in their null distribution, rather than true 247 
binding preference.  248 

Next, we wanted to examine the distribution of peptides among the possible 9mer 249 
registers along each 15 amino acid sequence. Based on our register inference, of the 2,467 250 
enriched peptides from the HLA-DR401 library, 1,610 peptides bound native 9mer cores 251 
without using any linker sequence residues in the 9mer core, which is consistent with 252 
theoretical ratios of possible native and non-native cores for a given 9mer (Supplemental 253 
Data). The peptides with predicted native 9mer cores were approximately equally distributed 254 
between possible registers, with the exception of the N-terminal register, which had one-third 255 
fewer peptides. This register had only a single N-terminal flanking residue (a fixed Ala), which is 256 
likely disfavored.  257 

Because the library was designed with step size of one, many of the 9mer cores will be 258 
repeated among neighboring peptides. Of the 1,610 HLA-DR401 peptides which enriched using 259 
a native 9mer core, there are 563 unique 9mer cores identified through register-inference. 260 
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Table 1 summarizes enrichment for each protein included in the library, highlighting the 261 
number of 15mers which enriched in both the doped and undoped libraries, the number of 262 
unique native 9mer cores, and the number of 15mers containing a 9mer enriched in at least 263 
five of seven overlapping peptides. 264 
 265 
Examining relationships between MHC-specific binding and spike proteins from SARS-CoV-2 and 266 
SARS-CoV 267 
 To further explore relationships between the MHCs studied here and their virally-268 
derived peptide repertoires, we compared the binding of SARS-CoV-2 and SARS-CoV spike 269 
proteins to all three MHC alleles. Sequence alignment of these three MHC alleles is shown in 270 
Figure 3a, with polymorphic regions highlighted on an HLA-DR401 structure (adapted from PDB 271 
1J8H). Interplay between viral conservation and binding are illustrated in Figure 3b, highlighting 272 
conserved regions of the proteome in black and binders to each allele in grey, red, and blue. 273 
Regions are highlighted where sequences enrich in overlapping peptides; that is, for each 9 274 
amino acid stretch along the proteome, we calculated how many of the seven 15mer peptides 275 
enrich in the yeast display assay, and if a 9mer enriched five or more times, it is marked as a hit. 276 
Specific examples of these relationships are probed in Figure 3c, d, and e, where individually 277 
enriched 15mer sequences are represented as horizontal lines above 15mer stretches in the 278 
proteome. Bolded 9mers are identified through register inference as consensus binding cores 279 
for these peptides. Only 15mers which contain the bolded 9mer are included in this 280 
representation. Non-conserved amino acids within this 9mer are highlighted in yellow.  281 

Figure 3c illustrates a region that is not conserved between SARS-CoV-2 and SARS-CoV, 282 
where the SARS-CoV-2 peptides containing the core IYQAGSTPC are enriched for binding to all 283 
three MHCs, but mutations, including at both P1 and P4 to Proline, discourage binding of the 284 
aligned SARS-CoV peptide. Figure 3e illustrates a core that is conserved between SARS-CoV and 285 
SARS-CoV-2, which can bind only to HLA-DR401, but not to HLA-DR402 or HLA-DR404, likely due 286 
to the size of the P1 hydrophobic residue and, for HLA-DR402, the acidic P4 residue. Figure 3d 287 
illustrates relationships between both viral conservation and MHC preference. In Figure 3d, the 288 
SARS-CoV peptides containing the core IKNQCVNFN can bind to all three alleles. However, the 289 
aligned SARS-CoV-2 peptides containing the core VKNKCVNFN do not bind to HLA-DR401, likely 290 
because of the less preferable P1 Valine and basic P4 Lysine, but can bind to HLA-DR402, which 291 
prefers these residues. These peptides can bind to HLA-DR404, although only four of the 292 
adjacent peptides containing this core enrich, which is below the cutoff of five or more, and 293 
since no other adjacent peptides enriched, this would not have been classified as a binder 294 
(reflected in Figure 3b). This marginal, but below-threshold binding is logical, given that the P4 295 
pocket for HLA-DR404 is similar to HLA-DR401, which does not prefer P4 Lysine, but HLA-DR404 296 
has the same P1 binding pocket as HLA-DR402, which both prefer the P1 Valine in the SARS-297 
CoV-2 peptide.  298 
 299 
Identifying peptide binders missed by computational prediction 300 
 Next, we compared our direct experimental assessments with results from 301 
computational MHC binding predictions. Prediction algorithms allow for rapid computational 302 
screening of potential peptide binders (Abelin et al., 2019; Reynisson et al., 2020), although 303 
they can contain systemic biases (Rappazzo et al., 2020). To test the outputs of our direct 304 
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assessment approach and computational prediction algorithms, we assessed binding of several 305 
peptides using a fluorescence polarization competition assay to determine IC50 values, as 306 
described previously (Rappazzo et al., 2020; Yin and Stern, 2014). Yeast-formatted peptides 307 
(Ala+15mer+Gly+Gly+Ser) from SARS-CoV-2 spike protein were run through NetMHCIIpan4.0 308 
for binding to HLA-DR401, with binders defined as having £ 10% Rank (Eluted Ligand mode). 309 
Yeast display binders to HLA-DR401 were defined via the stringent criteria of 1) enriching in 310 
both in doped and undoped selections, and 2) containing a 9mer that enriched in five or more 311 
of the overlapping seven 15mers. 15mers were selected such that they could contain a 312 
maximum overlap of 8 amino acids with other selected peptides, to avoid selecting peptides 313 
with redundant 9mer cores. An length-matched version of the commonly studied Influenza A 314 
HA306-318 peptide (APKYVKQNTLKLATG) known to bind HLA-DR401 (Hennecke and Wiley, 2002; 315 
Rappazzo et al., 2020) was included as a positive control, along with sequences that yeast 316 
display and NetMHCIIpan4.0 both classified as either binders or non-binders. Supplemental 317 
Figure 5 shows a comparison of yeast-enriched and NetMHCpan4.0 predicted binders, with 318 
boxed sequences selected for testing by fluorescence polarization. 319 
 The resulting fluorescence polarization IC50 data from the native 15mer peptides are 320 
shown in Table 2 and Supplemental Figure 6. Peptides which both enriched in yeast display and 321 
were predicted by NetMHCIIpan4.0 to bind (‘Agreed Binders’) all showed IC50 values consistent 322 
with binding, each with IC50 < 2.2 µM. Similarly, peptides which were agreed non-binders 323 
showed no affinity for HLA-DR401, with IC50 > 50 µM.  324 

All 8 ‘Yeast-Enriched Binders’, which enriched in the yeast display assay but were not 325 
predicted to bind via NetMHCIIpan4.0, showed some degree of binding, with IC50 values 326 
distributed from 14 nM (higher affinity than the HA control peptide) to 18 µM (weak, but 327 
measurable, binding). Retrospectively, the weakest two binders appear to be enriching in the 328 
yeast display assay using the peptide linker or have a binding core offset from center. 329 
Interestingly, NetMHCIIpan4.0 predictions on the peptides identified via yeast display proved 330 
highly sensitive to the length or content of the flanking sequences: if we repeat predictions on 331 
only the antigen-derived 15mer sequences without the flanking sequences, NetMHCIIpan4.0 332 
recovers four of its former false negative peptides (Table 3; peptides listed at the top in each 333 
section of the table). We will refer to these four peptides as ‘flank-sensitive centered peptides’, 334 
as they each have the consensus 9mer core centered in the peptide.  335 

To further investigate the relationship with flanking residues, we selected five additional 336 
peptides (‘offset peptides’) matching three criteria; these offset peptides were 1) enriched in 337 
the yeast display assay, 2) share an overlapping core with the four flank-sensitive centered 338 
peptides, but are 3) not predicted by NetMHCIIpan4.0 to be binders (either with or without 339 
invariant flanking sequence added). All five offset peptides have their predicted cores offset by 340 
1-2 amino acids from center, leaving at minimum 1 amino acid on both ends of the 9mer core 341 
for each peptide. All five offset peptides exhibit some binding, with IC50 values below 13 µM. 342 
Each peptide is lower affinity than its overlapping centered counterpart, illustrating effects of 343 
flanking residues on peptide binding, although some over-estimation of these effects in 344 
NetMHCIIpan4.0 predictions are present.  345 

We tested three 'NetMHC-Predicted Binders’, which were predicted to bind by 346 
NetMHCIIpan4.0, but were not enriched (nor did any neighboring sequences within an offset of 347 
4 amino acids) in the yeast display assay (Table 2). Of these, one bound to HLA-DR401 (IC50 475 348 
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nM), while two showed minimal binding with IC50 > 35 µM, which is above the maximum 20 349 
µM concentration tested. All three were predicted by NetMHCIIpan4.0 to bind with or without 350 
the invariant flanking sequences (Eluted ligand mode % Rank: 5.7, 4.1, 8.7 (with flanking 351 
residues) and 2.3, 0.6, 7.0 (without flanking residues), for ELDKYFKNHTSPDVD, 352 
LQSYGFQPTNGVGYQ, and KTQSLLIVNNATNVV, respectively). 353 

Of the eight ‘Yeast-Enriched Binders’ in Table 2, six contain cysteine residues, which 354 
have been shown to be systematically absent from other datasets, including those from mono-355 
allelic mass spectrometry (Abelin et al., 2019; Barra et al., 2018), yet present in yeast display-356 
derived datasets (Rappazzo et al., 2020). To test for non-specific binding due to cysteine, two 357 
cysteine-containing ‘Agreed Non-Binders’ were also tested and showed no affinity for HLA-358 
DR401, suggesting that cysteine itself is not causing non-specific binding. In the fluorescence 359 
polarization dataset, the highest affinity binder (14 nM) contained cysteine and was missed by 360 
NetMHCIIpan4.0 predictions (Eluted ligand mode % Rank: 71 (with flanking residues) and 28 361 
(without flanking residues)).  362 

The relationship between measured IC50 values and NetMHCIIpan4.0 predicted values 363 
for all 15mer SARS-CoV-2 spike peptides tested is shown in Figure 4 and Supplemental Figure 7.  364 
 365 
Comparing whole dengue serotype proteomes for common MHC-binding peptides 366 
 Defined yeast display libraries can generate data for diverse objectives. Dengue viruses 367 
typically cause most severe disease after a second infection with a serotype different from the 368 
first infection, due to antibody dependent enhancement (Guzman et al., 2016), which makes T 369 
cell-directed therapeutics a potentially attractive means of combatting disease. To profile and 370 
compare MHC binding across serotypes, we generated libraries containing 12,672 dengue-371 
derived peptides, covering the entire proteomes of dengue serotypes 1-4. These libraries were 372 
on HLA-DR401 and HLA-DR402 and had coverage of 98% and 96% of the dengue library 373 
members after construction, respectively.  374 
 Peptides from homologous regions of the four dengue serotypes have different MHC 375 
binding ability, as illustrated in Figure 5a for binding to HLA-DR401. The proteins encoded in the 376 
dengue genome are indicated along the horizontal axis (C: capsid; M: membrane; E: envelope; 377 
NS: nonstructural proteins). Peptides that enriched in the yeast display assay are marked by a 378 
line (serotype 1 in blue, serotype 2 in purple, serotype 3 in red, and serotype 4 in grey). The 379 
proteome is smoothed to 9 amino acid stretches (as in Figure 3b), with a given 9 amino acid 380 
region marked as a hit if five or more of the seven adjacent peptides enrich. For each 9mer, the 381 
maximum number of serotypes with a conserved identical 9mer at that position is indicated at 382 
the top in black.  383 
 These data can reveal relationships between conservation and binding ability. Figure 5b-384 
d shows enrichment data for individual 15mer peptides, with consensus inferred 9mer cores in 385 
bold and non-conserved amino acids in these cores highlighted in yellow, as in Figure 3c-e. 386 
Conserved cores which show binding ability (Figure 5c) may be ideal T cell targets. However, 387 
the permissiveness of the binding groove allows for peptides to bind that have mutations at the 388 
anchors, such as in NS5 (Figure 5d), where P4 Asn and P4 Met both allow binding. Interestingly, 389 
the serotype 3 core (LASNAICSA) only enriched in four peptides, which is below our described 390 
cutoff for high-confidence peptide cores. However, three adjacent peptides enriched and 391 
register-inference for these peptides identifies the non-native, linker-containing version of the 392 
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LASNAICSA core as binding in the MHC-binding groove. This results in an adjacent 9mer being 393 
highlighted as a binder in this region (Figure 5a) because overlapping 15mers enrich in five or 394 
more of the seven adjacent peptides. With this in mind, care must be taken for core 395 
identification in enriched regions and can be aided by coupling enrichment with register-396 
inference of enriched peptides. Further, we can also see relationships between conservation 397 
and binding in non-conserved regions, such as in the envelope protein (Figure 5b) with the 398 
mutations in serotype 3 enabling binding.  399 
 400 
Discussion 401 

CD4+ T cell responses play important roles in infection, autoimmunity, and cancer. By 402 
extension, understanding peptide-MHC binding is critical for identifying and engineering T cell 403 
epitopes. Here we present an approach to directly assess defined libraries of peptides covering 404 
whole pathogen proteomes for binding to MHC-II proteins. We examine alternative modes of 405 
selection and utilize overlapping peptides to determine high-confidence binders. We 406 
demonstrate the utility of this approach by identifying binders that are missed by prediction 407 
algorithms, highlighting a prediction algorithm bias against cysteine-containing peptides and 408 
sensitivity to peptide flanking residues (Table 2 and Table 3). Finally, this approach can be 409 
utilized for different objectives, including comparing binding to multiple MHC alleles (Figure 3) 410 
or comparing peptides from related pathogen sequences for MHC-II binding (Figure 5). Whole 411 
protein- or proteome-scale analysis across related viruses provides insight into relationships 412 
between conserved epitopes and MHC binding (Figure 3b, 5a) and specific examples validate 413 
the consistency with the underlying biophysics of peptide-MHC binding (Figures 3c-e and 5b-d). 414 

This approach for direct assessment shows benefit compared to prediction algorithms 415 
for identifying binders, particularly for finding weak peptide binders. The overlapping peptides 416 
in our library were useful for identifying enriched cores, especially when combined with our 417 
register inference to identify consensus cores shared between these overlapping peptides. 418 
NetMHCIIpan4.0 exhibits a sensitivity to length and register, which may cause users to miss 419 
binders, albeit potentially of lower affinity. Of the overlapping peptides we tested to study this 420 
phenomenon, NetMHCIIpan4.0 correctly ranked the affinities of the overlapping peptides 421 
(Table 3), but missed binders. Supplemental Figure 5 also highlights the sensitivity of 422 
NetMHCIIpan4.0 to flanking sequences, where neighboring peptides with shared cores often 423 
are not predicted to bind, resulting in fewer clusters of peptides in Supplemental Figure 5.  424 

Our work reveals insights on the design of epitope identification experiments, including 425 
the utility of overlapping peptides and considerations for comparing libraries of unbiased and 426 
proteome-derived peptides. Design of defined libraries with sources of redundancy, such as 427 
overlapping peptides, was critical for determining binders with higher degrees of confidence 428 
and allowed us to apply stringent cutoffs for individual peptides. Overlapping peptides allowed 429 
us to account for construct-specific confounding effects, such as the peptides binding using 430 
non-native residues in the linker. Future iterations can change the sequence of the linker, such 431 
as defining favorable P(-1) and P10 anchors to fix the register (Rappazzo et al., 2020), although 432 
these adaptations would likely require MHC-specific knowledge in advance and may need to be 433 
altered for different MHCs. Additionally, the engineered redundancy and multiple modes of 434 
selection result in hyperparameters that can be tuned to meet users’ stringency requirements, 435 
such as defining different thresholds for calling individual 15mer binders or alternative 436 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2022.02.22.480950doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.480950


 11 

integration of overlapping binders. Additionally, our comparison of unbiased and proteome-437 
derived libraries highlights how aggregate motifs may be affected by underlying amino acid 438 
preferences found in protein sequences themselves, which may inadvertently disfavor 439 
sequences that can bind strongly to MHC molecules yet consist of amino acid covariates that 440 
are not as commonly found in proteins.  441 

Further, this approach can be used to study MHC binding between similar viruses, as 442 
done with the dengue proteomes and the spike proteins from SARS-CoV-2 and SARS-CoV, 443 
highlighting regions where mutations disrupt binding as well as regions where binding is 444 
unperturbed. This method can also be rapidly adapted to study future sequences if pathogens 445 
evolve over time. 446 

As experimental approaches and computational approaches continue to co-develop, 447 
they present complementary benefits. Though this platform allows for rapid assessment of 448 
peptide-MHC binding, the speed of computational prediction surpasses experimental 449 
approaches. NetMHCIIpan4.0 prediction and yeast display selections identified sets of non-450 
overlapping misses, highlighting a utility for both. Additionally, all agreed binders and non-451 
binders matched fluorescence polarization results, suggesting a consensus of yeast display 452 
enrichment and algorithmic prediction provide high-confidence results. Approaches such as 453 
yeast display assessment can be used to complement computational approaches, such as for 454 
identifying cysteine-containing peptides which are still under-predicted by algorithms. Similarly, 455 
prediction algorithms can be trained using large, quality datasets to account for biases. In 456 
another application, our platform to assess peptide-MHC binding can be used to design high-457 
throughput assays to test peptide immunogenicity in clinical samples (Klinger et al., 2015; 458 
Snyder et al., 2020). 459 

Defined yeast display peptide libraries can also be readily applied to identification of T 460 
cell ligands and present an opportunity for identifying unknown ligands from orphan TCRs 461 
known to respond to a proteome of interest (Birnbaum et al., 2014; Gee et al., 2018). Indeed, as 462 
DNA synthesis and sequencing continue to advance, defined peptide libraries expanding 463 
beyond viral proteomes to covering whole bacterial or human proteomes will be possible, and 464 
could present opportunities for investigating autoimmune diseases, which frequently have 465 
strong MHC-II associations (Karnes et al., 2017). Such tools would be rich resources for 466 
identifying both peptide-MHC binders and TCR ligands.  467 
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Methods 468 
Library design and creation 469 

Yeast display libraries were designed to cover all 15mer sequences within a given 470 
proteome, with step size one. Reference proteomes used in creating defined libraries were 471 
accessed from Uniprot, with the following Proteome IDs. SARS-CoV-2: UP000464024, SARS-CoV: 472 
UP000000354, dengue serotype 1: UP000002500, dengue serotype 2: UP000180751, dengue 473 
serotype 3: UP000007200, dengue serotype 4: UP000000275. The dengue proteome is 474 
expressed as a single polypeptide, and peptides were generated from that contiguous stretch. 475 

Each library peptide is encoded in DNA space, with specific codons selected randomly 476 
from possible codons, with probabilities matching yeast codon usage (GenScript Codon Usage 477 
Frequency Table). The DNA-encoded peptide sequences were flanked by invariant sequences 478 
from the yeast construct for handles in amplification and cloning, and the DNA oligonucleotide 479 
sequences were ordered from Twist Bioscience (South San Francisco, CA), with maximum 480 
length of 120 nucleotides. The DNA oligo pool was amplified in low cycle PCR, followed by 481 
amplification with construct DNA using overlap extension PCR. This extended product was 482 
assembled in yeast with linearized pYal vector at a 5:1 insert:vector via electroporation with 483 
electrocompetent RJY100 yeast.  484 

HLA-DR401 and HLA-DR402 libraries were generated using previously described vectors 485 
(Rappazzo et al., 2020) which contain mutations from wild type Metα36Leu, Valα132Met, 486 
Hisβ33Asn, and Aspβ43Glu to enable proper folding without disrupting TCR or peptide contact 487 
residues (Birnbaum et al., 2017). HLA-DR404 was generated using the same stabilizing 488 
mutations. As previously described (Rappazzo et al., 2020), the peptide C-terminus is connected 489 
to the MHC construct via a Gly-Ser linker (Figure 1a), and the N-terminus of the peptide 490 
includes an extra alanine to ensure consistent cleavage between the construct and its signal 491 
peptide.  492 

The previously described null library (Dai et al., 2021) was generated with a peptide 493 
encoded as “NNNTAANNNNNNNNNTAGNNNNNNNNNNNNTGANNNNNN”, where “N” indicates 494 
any nucleotide and encodes ten random amino acids and three stop codons. This library was 495 
similarly generated in yeast using electrocompetent RJY100 yeast. 496 
 497 
Peptide visualizations and predictions 498 

Data visualizations of viral conservation and enrichment were generated using custom 499 
scripts. For each 9mer stretch in a protein of interest, there are seven 15mer sequences that 500 
overlap and contain that 9mer. We calculate how many of these seven 15mers enriched in both 501 
the doped and undoped libraries. If five or more of the seven 15mers enriched, that stretch is 502 
marked as a ‘hit’. To examine conservation between viruses, viral proteins are aligned using 503 
ClustalOmega (Madeira et al., 2019). Aligned 9mer stretches are compared between viruses 504 
and identical stretches are considered conserved. Hits are determined individually for each 505 
virus before merging, such that gaps in sequence alignments do not affect calculations of 506 
enrichment for a given virus. 507 

Representations of 15mer hits (as in Figure 3, Figure 5 and Supplemental Figure 5) were 508 
generated using in-house scripts, such that a 15mer that enriched in both the doped and 509 
undoped library was marked as a horizontal line above the relevant 15mer sequence. Only 510 
15mers containing the bolded 9mer in Figure 3 and Figure 5 were included. 511 
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NetMHCIIpan4.0 webserver was used for computational predictions (Reynisson et al., 512 
2020), where a binder is defined as having a predicted percent rank ≤ 10%, as defined in the 513 
webserver instructions.  514 
 515 
Yeast library selections 516 

Library selections were consistent with previous peptide-MHC-II yeast display 517 
dissociation studies (Dai et al., 2021; Rappazzo et al., 2020). Yeast were washed into pH 7.2 PBS 518 
with 1 µM 3C protease and incubated at room temperature for 45 minutes. Yeast were then 519 
washed into 4 °C acid saline (150mM NaCl, 20mM citric acid, pH5) with 1 µM HLA-DM and 520 
incubated at 4 °C overnight. Each step takes place in the presence of competitor peptide (HLA-521 
DR401: HA306-318 PKYVKQNTLKLAT, 1 µM; HLA-DR402: CD4836-51 FDQKIVEWDSRKSKYF, 5 µM; 522 
HLA-DR404: NKVKSLRILNTRRKL, 5 µM (Vita et al., 2019)). Non-specific binders are removed by 523 
incubating yeast with anti-AlexaFluor647 magnetic beads and flowed over a magnetic Milltenyi 524 
column at 4 °C. A positive selection follows, comprised of incubation with anti-Myc-525 
AlexaFluor647 antibody (1:100 volume:volume) and anti-AlexaFluor647 magnetic beads (1:10 526 
volume:volume) and flowed over a Milltenyi column on a magnet at 4 °C, such that yeast with 527 
bound peptide are retained on the column. These yeast are eluted, grown to confluence in at 528 
30 °C in SDCAA media (pH 5), and sub-cultured in at 20 °C SGCAA media (pH 5) at OD600=1 for 529 
two days. The first round of selections of doped libraries were conducted on 180 million yeast 530 
(SARS-CoV-2 library) or 400 million yeast (dengue library) to ensure at least 20-fold coverage or 531 
peptides. Subsequent rounds of doped library selection, and all rounds of undoped library 532 
selections, were performed on 20-25 million yeast. 533 
 534 
Library sequencing and analysis  535 
 Libraries were deep sequenced to determine their composition after each round of 536 
selection. Plasmid DNA was extracted from ten million yeast from each round of selection using 537 
the Zymoprep Yeast Miniprep Kit (Zymo Research), following manufacturer instructions. 538 
Amplicons were generated through PCR, covering the peptide sequence through the 3C cut site. 539 
A second PCR round was performed to add i5 and i7 sequencing handles and in-line index 540 
barcodes unique to each round of selection. Amplicons were sequenced on an Illumina MiSeq 541 
using paired-end MiSeq v2 300bp kits at the MIT BioMicroCenter.  542 
 Paired-end reads were assembled using PandaSeq (Masella et al., 2012). Peptide 543 
sequences were extracted by identifying correctly encoded flanking regions, and were filtered 544 
to ensure they matched designed members of the library or the randomized null construct 545 
encoding, providing a stringent threshold for contamination and PCR and read errors.  546 

The resulting data are analyzed for convergence, as described in the main text. Once a 547 
library has converged, it is likely that changes in subsequent rounds of selection are due to 548 
stochastic variation rather than improved binding.   549 
 550 
Register inference and sequence logos 551 

The 9mer core of enriched sequences was inferred using an in-house alignment 552 
algorithm. In this approach, we utilize a 9mer position weight matrix (PWM), which we assess 553 
at different offsets along the peptide. We one-hot encode sequences and pad with zeros on the 554 
C-terminus of the peptide; to assess seven native registers and four non-native registers, we 555 
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pad the peptides with four zeros. Three of the non-native registers utilize the linker at the P9 556 
anchor but not the P6 anchor, and the addition of a fourth register captures a minority set of 557 
peptides which utilize Gly-Gly-Ser-Gly of the linker at P6 through P9 in the groove. Register-558 
setting is performed with zero-padded 15mers, rather than 15mers flanked by invariant 559 
flanking residues, because the PWM would otherwise align all sequences to the invariant 560 
region.  561 

At the start, we randomly assign peptides to registers and generate a 9mer PWM. Over 562 
subsequent iterations, peptides are assigned to new registers and the PWM was updated. 563 
Assignments are random but biased, such that clusters corresponding to registers that match 564 
the PWM are favored. Specifically, at each assignment we first take out the sequence under 565 
consideration from the PWM. The PWM then defines an energy value for each register shift of a 566 
given peptide, which is then used to generate a Boltzmann distribution from which we sample 567 
the updated register shift. The stochasticity is decreased over time by raising the inverse 568 
temperature linearly from 0.05 to 1 over 60 iterations, simulating ‘cooling’ (Andreatta et al., 569 
2017). A final deterministic iteration was carried out, where the distribution concentrates 570 
entirely on the optimal register shift.  571 

After register inference, sequence logo visualizations of the 9mer cores were generated 572 
using Seq2Logo-2.0 with default settings, except using background frequencies from the SARS-573 
CoV-2 proteome and SARS-CoV spike and nucleocapsid proteins (Thomsen and Nielsen, 2012). 574 
For registers with the C-terminus utilizing the C-terminal linker, the relevant linker sequence 575 
was added to achieve a full 9mer sequence for visualizing the full 9mer core. For HLA-DR401, 576 
distribution among registers, starting from N-terminally to C-terminally aligned in the peptide, 577 
is: 161, 237, 227, 238, 231, 279, 237, 266, 271, 202, 118. 578 
 579 
Recombinant protein expression  580 

HLA-DM and HLA-DR401 were expressed recombinantly in High Five insect cells (Thermo 581 
Fisher) using a baculovirus expression system, as previously described (Birnbaum et al., 2014; 582 
Rappazzo et al., 2020). Ectodomain sequences of each chain were formatted with a C-terminal 583 
poly-histidine purification tag and cloned into pAcGP67a vectors. Each vector was individually 584 
transfected into SF9 insect cells (Thermo Fisher) with BestBac 2.0 linearized baculovirus DNA 585 
(Expression Systems; Davis, CA) and Cellfectin II Reagent (Thermo Fisher), and propagated to 586 
high titer. Viruses were co-titrated for optimal expression to maximize balanced MHC 587 
heterodimer formation, co-transduced into Hi5 cells, and grown for 48-72 hours at 27 °C. The 588 
secreted protein was purified from pre-conditioned media supernatant with Ni-NTA resin and 589 
purified via size exclusion chromatography with a S200 increase column on an AKTA PURE FPLC 590 
(GE Healthcare). To improve protein yields, the HLA-DRB1*04:01 chain was expressed with a 591 
CLIP87-101 peptide (PVSKMRMATPLLMQA) connected to the N-terminus of the MHC chain via a 592 
flexible, 3C protease-cleavable linker.  593 
 594 
Fluorescence polarization experiments for peptide IC50 determination  595 
 Peptide IC50 values were determined following a protocol modified from Yin & Stern (Yin 596 
and Stern, 2014), as in Rappazzo et al (Rappazzo et al., 2020).  In the assay, recombinantly 597 
expressed HLA-DR401 is incubated with fluorescently labelled modified HA306-318 (APRFV{Lys(5,6 598 
FAM)}QNTLRLATG) peptide and a titration series for each unlabeled competitor peptide is 599 
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added (1.28 nM – 20 uM). A change in polarization value resulting from displacement of 600 
fluorescent peptide from the binding groove is used to determine IC50 values.  601 

Relative binding at each concentration is calculated as (FPsample – FPfree)/(FPno_comp – 602 
FPfree). Here, FPfree is the polarization value for the fluorescent peptide alone with no added 603 
MHC, FPno_comp is polarization value for MHC with no competitor peptide added, and FPsample is 604 
the polarization value with both MHC and competitor peptide added. Relative binding curves 605 
were then generated and fit in Prism 9.3 to the equation y = 1/(1+[pep]/IC50), where [pep] is the 606 
concentration of un-labelled competitor peptide, in order to determine the concentration of 607 
half-maximal inhibition, the IC50 value.  608 

Each assay was performed at 200 uL, with 100 nM recombinant MHC, 25 nM fluorescent 609 
peptide, and competitor peptide (GenScript). This mixture co-incubates in pH 5 binding buffer 610 
at 37 °C for 72 hours in black flat bottom 96-well plates. Competitor peptide concentrations 611 
ranged from 1.28 nM to 20 µM, as a five-fold dilution series. Three replicates are performed for 612 
each peptide concentration. Fluorescent peptide-only, no competitor peptide, and binding 613 
buffer controls were also included. Our MHC was expressed with a linked CLIP peptide, so prior 614 
to co-incubation, the peptide linker is cleaved by addition of 3C protease at 1:10 molar ratio at 615 
room temperature for one hour; the residual cleaved 100 nM CLIP peptide is not expected to 616 
alter peptide binding measurements. 617 

Measurements were taken on a Molecular Devices SpectraMax M5 instrument. G-value 618 
was 1.1 for each plate, as calculated per manufacturer instructions for each plate based on 619 
fluorescent peptide-only wells minus buffer blank wells, with 35 mP reference for 5,6FAM 620 
(Fluorescein setting). Measurements were made with 470 nm excitation and 520 nm emission, 621 
10 flashes per read, and default PMT gain high.  622 
 623 
Data Availability 624 
All deep sequencing data are deposited on the Sequence Read Archive (SRA), with accession 625 
codes PRJNA806475 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA806475] and 626 
PRJNA708266 [https://www.ncbi.nlm.nih.gov/bioproject/PRJNA708266] 627 
 628 
Code Availability 629 
Scripts used for data processing and visualization are publicly available at 630 
https://github.com/birnbaumlab/Huisman-et-al-2022. 631 
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Figures 640 

 641 
Figure 1. Overview of library and selections. a) The defined library contains pathogen 642 
proteome peptides (length 15, sliding window 1). Poor binding peptides are displaced with 643 
addition of protease, competitor peptide, and HLA-DM. b) Schematic of doped and undoped 644 
libraries: in the doped selection strategy, the library is added to a library of null, non-expressing 645 
constructs. c) Representative flow plots showing enrichment of MHC-expressing yeast over 646 
rounds of selection for the library containing SARS-CoV-2 and SARS-CoV peptides on HLA-647 
DR401.  648 
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 649 
Figure 2. Output of selections and analysis of selection data. a) Overview of filtering peptides 650 
and correspondence between selection strategies for SARS-CoV and SARS-CoV-2 library on HLA-651 
DR401. Peptides are filtered for enrichment in both doped and undoped libraries. Further, the 652 
relationship between these peptides and peptides which contain a 9mer that is enriched in five 653 
or more of the seven peptides containing it is shown. b) Relationships between enrichment in 654 
doped and undoped libraries. Absolute counts following Round 3 of selection of the doped 655 
library are plotted against the log2 fold change between read fraction for peptides in Round 2 656 
and Round 1. Data are shown for the library on HLA-DR401. c) Sequence logo of 2,467 peptides 657 
that enriched in both doped and undoped selected libraries for HLA-DR401. Registers are 658 
inferred with a position weight matrix-based alignment method. Logos were generated with 659 
Seq2Logo-2.0.  660 
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 661 
Figure 3. Comparing HLA-DR401, HLA-DR402, and HLA-DR404 for binding to related Spike 662 
proteins from SARS-CoV-2 and SARS-CoV. a) Sequence alignment showing sequence 663 
differences in HLA-DR402 and HLA-DR404 compared to HLA-DR401 and highlighted on HLA-664 
DR401 structure (PDB 1J8H). Colors are: red for amino acids shared between HLA-DR401 and 665 
HLA-DR404, green for amino acids shared between HLA-DR402 and HLA-DR404, and yellow for 666 
amino acids different in all 3 alleles. Affected peptide positions (P1, P4, P5, P7) are colored in 667 
blue and labeled on the structure. b) Conservation and enrichment of 9mer peptides from 668 
SARS-CoV-2 and SARS-CoV Spike proteins. Conserved 9mers are indicated in black. If a 9mer 669 
along the proteome enriched in 5 or more of the adjacent peptides containing it, its enrichment 670 
is indicated with a vertical line with color for allele (HLA-DR401: blue; HLA-DR402: red; HLA-671 
DR404: grey) and opacity for virus (SARS-CoV-2: dark; SARS-CoV: light). b-e) Zoomed regions 672 
show enrichment of individual 15mer peptides. Only peptides containing the bolded 9mer 673 
sequence are shown. Amino acids in the bolded 9mer that are not conserved between SARS-674 
CoV-2 and SARS-CoV are highlighted in yellow.  675 
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 676 
Figure 4. Comparing measured IC50 values and computational prediction. Relationship 677 
between measured IC50 values and NetMHCIIpan4.0 predicted ranks in Eluted Ligand mode (EL) 678 
on invariant-flanked sequences. Data points are colored by label, and IC50 values ≥50 µM are set 679 
to 50 µM.  680 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2022.02.22.480950doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.480950


 20 

 681 
Figure 5. Conservation and enrichment of dengue virus serotypes 1-4. a) Conservation and 682 
enrichment of 9mer peptides along four aligned dengue serotypes. All stretches of 9 amino 683 
acids are compared across the four serotypes and conservation is indicated with a black vertical 684 
line (i.e. 2, 3, or 4 of 4 serotypes conserved). 9mers which enriched on HLA-DR401 are also 685 
indicated, colored by virus serotype. b-d) Zoomed regions, showing enrichment for individual 686 
15mer peptides to HLA-DR401. Only peptides which contain the bolded 9mer sequence are 687 
shown. Amino acids in the bolded 9mer that are not conserved between serotypes are 688 
highlighted in yellow. Insets show regions which are differently conserved and enriched: b) non-689 
conserved sequences with peptides from one serotype enriched; c) conserved sequences 690 
enriched across all serotypes; d) non-conserved sequences which are enriched.  691 
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 692 
Table 1. Summary of enriched peptides for each source protein, including: the number of 693 
unique 15mers which each enriched in both of the doped and undoped libraries; the number of 694 
unique 9mer cores identified by register-inference in these enriched 15mers (native cores only, 695 
so linker-containing inferred cores excluded); and the number of unique enriched 15mers that 696 
contain 9mer sequences enriched in five or more of overlapping neighbors.   697 
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 698 
Table 2. Peptides selected for fluorescence polarization (FP) experiments for binding to HLA-699 
DR401. NetMHCIIpan4.0 predictions for HLA-DR401 binding are performed on 15mers plus 700 
invariant flanking residues (N-terminal Ala, C-terminal Gly-Gly-Ser) and percent rank values 701 
generated using Eluted Ligand mode. Fluorescence polarization is performed on native 15mer 702 
peptides without invariant flanking residues.  703 
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 704 

 705 
Table 3. Effects of peptide flanking sequences on NetMHCIIpan4.0 predictions for HLA-DR401 706 
binding and measured fluorescence polarization (FP) values for overlapping peptides. Yeast 707 
display-enriched peptides that are predicted to bind by NetMHCIIpan4.0 when without flanking 708 
residues, plus offset variants of these peptides, which are not predicted to bind, with or 709 
without flanking sequence. Yeast display register-inferred consensus cores are highlighted in 710 
green. NetMHCIIpan4.0 percent rank values are generated using Eluted Ligand mode.   711 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2022.02.22.480950doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.480950


 24 

References 712 

Abelin JG, Harjanto D, Malloy M, Suri P, Colson T, Goulding SP, Creech AL, Serrano LR, Nasir G, 713 
Nasrullah Y, McGann CD, Velez D, Ting YS, Poran A, Rothenberg DA, Chhangawala S, 714 
Rubinsteyn A, Hammerbacher J, Gaynor RB, Fritsch EF, Greshock J, Oslund RC, 715 
Barthelme D, Addona TA, Arieta CM, Rooney MS. 2019. Defining HLA-II ligand processing 716 
and binding rules with mass spectrometry enhances cancer Epitope prediction. 717 
Immunity 51:766-779.e17. 718 

Abelin JG, Keskin DB, Sarkizova S, Hartigan CR, Zhang W, Sidney J, Stevens J, Lane W, Zhang GL, 719 
Eisenhaure TM, Clauser KR, Hacohen N, Rooney MS, Carr SA, Wu CJ. 2017. Mass 720 
spectrometry profiling of HLA-associated peptidomes in mono-allelic cells enables more 721 
accurate Epitope prediction. Immunity 46:315–326. 722 

Altmann DM, Boyton RJ. 2020. SARS-CoV-2 T cell immunity: Specificity, function, durability, and 723 
role in protection. Sci Immunol 5:eabd6160. 724 

Andreatta M, Alvarez B, Nielsen M. 2017. GibbsCluster: unsupervised clustering and alignment 725 
of peptide sequences. Nucleic Acids Res 45:W458–W463. 726 

Barra C, Alvarez B, Paul S, Sette A, Peters B, Andreatta M, Buus S, Nielsen M. 2018. Footprints of 727 
antigen processing boost MHC class II natural ligand predictions. Genome Med 10:84. 728 

Birnbaum ME, Mendoza J, Bethune M, Baltimore D, Garcia KC. 2017. Ligand discovery for t cell 729 
receptors. US20170192011A1. 730 

Birnbaum ME, Mendoza JL, Sethi DK, Dong S, Glanville J, Dobbins J, Ozkan E, Davis MM, 731 
Wucherpfennig KW, Garcia KC. 2014. Deconstructing the peptide-MHC specificity of T 732 
cell recognition. Cell 157:1073–1087. 733 

Chaplin DD. 2010. Overview of the immune response. J Allergy Clin Immunol 125:S3-23. 734 
Dai Z, Huisman BD, Zeng H, Carter B, Jain S, Birnbaum ME, Gifford DK. 2021. Machine learning 735 

optimization of peptides for presentation by class II MHCs. Bioinformatics. 736 
doi:10.1093/bioinformatics/btab131 737 

Gambino F Jr, Tai W, Voronin D, Zhang Y, Zhang X, Shi J, Wang X, Wang N, Du L, Qiao L. 2021. A 738 
vaccine inducing solely cytotoxic T lymphocytes fully prevents Zika virus infection and 739 
fetal damage. Cell Rep 35:109107. 740 

Gee MH, Han A, Lofgren SM, Beausang JF, Mendoza JL, Birnbaum ME, Bethune MT, Fischer S, 741 
Yang X, Gomez-Eerland R, Bingham DB, Sibener LV, Fernandes RA, Velasco A, Baltimore 742 
D, Schumacher TN, Khatri P, Quake SR, Davis MM, Garcia KC. 2018. Antigen 743 
identification for orphan T cell receptors expressed on tumor-infiltrating lymphocytes. 744 
Cell 172:549-563.e16. 745 

Guzman MG, Gubler DJ, Izquierdo A, Martinez E, Halstead SB. 2016. Dengue infection. Nat Rev 746 
Dis Primers 2:16055. 747 

Hennecke J, Wiley DC. 2002. Structure of a complex of the human alpha/beta T cell receptor 748 
(TCR) HA1.7, influenza hemagglutinin peptide, and major histocompatibility complex 749 
class II molecule, HLA-DR4 (DRA*0101 and DRB1*0401): insight into TCR cross-750 
restriction and alloreactivity. J Exp Med 195:571–581. 751 

Hennecke J, Wiley DC. 2001. T cell receptor-MHC interactions up close. Cell 104:1–4. 752 
Jiang W, Boder ET. 2010. High-throughput engineering and analysis of peptide binding to class II 753 

MHC. Proc Natl Acad Sci U S A 107:13258–13263. 754 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2022.02.22.480950doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.480950


 25 

Jones EY, Fugger L, Strominger JL, Siebold C. 2006. MHC class II proteins and disease: a 755 
structural perspective. Nat Rev Immunol 6:271–282. 756 

Justesen S, Harndahl M, Lamberth K, Nielsen L-LB, Buus S. 2009. Functional recombinant MHC 757 
class II molecules and high-throughput peptide-binding assays. Immunome Res 5:2. 758 

Karnes JH, Bastarache L, Shaffer CM, Gaudieri S, Xu Y, Glazer AM, Mosley JD, Zhao S, 759 
Raychaudhuri S, Mallal S, Ye Z, Mayer JG, Brilliant MH, Hebbring SJ, Roden DM, Phillips 760 
EJ, Denny JC. 2017. Phenome-wide scanning identifies multiple diseases and disease 761 
severity phenotypes associated with HLA variants. Sci Transl Med 9. 762 
doi:10.1126/scitranslmed.aai8708 763 

Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, Oliveira G, Giobbie-Hurder A, Felt 764 
K, Gjini E, Shukla SA, Hu Z, Li L, Le PM, Allesøe RL, Richman AR, Kowalczyk MS, 765 
Abdelrahman S, Geduldig JE, Charbonneau S, Pelton K, Iorgulescu JB, Elagina L, Zhang W, 766 
Olive O, McCluskey C, Olsen LR, Stevens J, Lane WJ, Salazar AM, Daley H, Wen PY, 767 
Chiocca EA, Harden M, Lennon NJ, Gabriel S, Getz G, Lander ES, Regev A, Ritz J, Neuberg 768 
D, Rodig SJ, Ligon KL, Suvà ML, Wucherpfennig KW, Hacohen N, Fritsch EF, Livak KJ, Ott 769 
PA, Wu CJ, Reardon DA. 2019. Neoantigen vaccine generates intratumoral T cell 770 
responses in phase Ib glioblastoma trial. Nature 565:234–239. 771 

Klinger M, Pepin F, Wilkins J, Asbury T, Wittkop T, Zheng J, Moorhead M, Faham M. 2015. 772 
Multiplex Identification of Antigen-Specific T Cell Receptors Using a Combination of 773 
Immune Assays and Immune Receptor Sequencing. PLoS One 10:e0141561. 774 

Liu G, Carter B, Bricken T, Jain S, Viard M, Carrington M, Gifford DK. 2020. Computationally 775 
optimized SARS-CoV-2 MHC class I and II vaccine formulations predicted to target 776 
human haplotype distributions. Cell Syst 11:131-144.e6. 777 

Liu G, Carter B, Gifford DK. 2021. Predicted cellular immunity population coverage gaps for 778 
SARS-CoV-2 subunit vaccines and their augmentation by compact peptide sets. Cell Syst 779 
12:102-107.e4. 780 

Liu R, Jiang W, Mellins ED. 2021. Yeast display of MHC-II enables rapid identification of peptide 781 
ligands from protein antigens (RIPPA). Cell Mol Immunol 18:1847–1860. 782 

Lovitch SB, Pu Z, Unanue ER. 2006. Amino-terminal flanking residues determine the 783 
conformation of a peptide-class II MHC complex. J Immunol 176:2958–2968. 784 

Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, 785 
Finn RD, Lopez R. 2019. The EMBL-EBI search and sequence analysis tools APIs in 2019. 786 
Nucleic Acids Res 47:W636–W641. 787 

Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD. 2012. PANDAseq: paired-end 788 
assembler for illumina sequences. BMC Bioinformatics 13:31. 789 

Mateus J, Grifoni A, Tarke A, Sidney J, Ramirez SI, Dan JM, Burger ZC, Rawlings SA, Smith DM, 790 
Phillips E, Mallal S, Lammers M, Rubiro P, Quiambao L, Sutherland A, Yu ED, da Silva 791 
Antunes R, Greenbaum J, Frazier A, Markmann AJ, Premkumar L, de Silva A, Peters B, 792 
Crotty S, Sette A, Weiskopf D. 2020. Selective and cross-reactive SARS-CoV-2 T cell 793 
epitopes in unexposed humans. Science 370:89–94. 794 

Moise L, Gutierrez A, Kibria F, Martin R, Tassone R, Liu R, Terry F, Martin B, De Groot AS. 2015. 795 
iVAX: An integrated toolkit for the selection and optimization of antigens and the design 796 
of epitope-driven vaccines. Hum Vaccin Immunother 11:2312–2321. 797 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2022.02.22.480950doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.480950


 26 

Obermair FJ, Renoux F, Heer S, Lee C, Cereghetti N, Maestri G, Haldner Y, Wuigk R, Iosefson O, 798 
Patel P, Triebel K, Kopf M, Swain J, Kisielow J. 2021. High resolution profiling of MHC-II 799 
peptide presentation capacity, by Mammalian Epitope Display, reveals SARS-CoV-2 800 
targets for CD4 T cells and mechanisms of immune-escape. bioRxiv. 801 
doi:10.1101/2021.03.02.433522 802 

O’Brien C, Flower DR, Feighery C. 2008. Peptide length significantly influences in vitro affinity 803 
for MHC class II molecules. Immunome Res 4:6. 804 

O’Donnell TJ, Rubinsteyn A, Laserson U. 2020. MHCflurry 2.0: Improved pan-allele prediction of 805 
MHC class I-presented peptides by incorporating antigen processing. Cell Syst 11:42-806 
48.e7. 807 

Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, Zhang W, Luoma A, Giobbie-Hurder A, 808 
Peter L, Chen C, Olive O, Carter TA, Li S, Lieb DJ, Eisenhaure T, Gjini E, Stevens J, Lane 809 
WJ, Javeri I, Nellaiappan K, Salazar AM, Daley H, Seaman M, Buchbinder EI, Yoon CH, 810 
Harden M, Lennon N, Gabriel S, Rodig SJ, Barouch DH, Aster JC, Getz G, Wucherpfennig 811 
K, Neuberg D, Ritz J, Lander ES, Fritsch EF, Hacohen N, Wu CJ. 2017. An immunogenic 812 
personal neoantigen vaccine for patients with melanoma. Nature 547:217–221. 813 

Parker R, Partridge T, Wormald C, Kawahara R, Stalls V, Aggelakopoulou M, Parker J, Powell 814 
Doherty R, Ariosa Morejon Y, Lee E, Saunders K, Haynes BF, Acharya P, Thaysen-815 
Andersen M, Borrow P, Ternette N. 2021. Mapping the SARS-CoV-2 spike glycoprotein-816 
derived peptidome presented by HLA class II on dendritic cells. Cell Rep 35:109179. 817 

Patronov A, Doytchinova I. 2013. T-cell epitope vaccine design by immunoinformatics. Open 818 
Biol 3:120139. 819 

Purcell AW, Ramarathinam SH, Ternette N. 2019. Mass spectrometry-based identification of 820 
MHC-bound peptides for immunopeptidomics. Nat Protoc 14:1687–1707. 821 

Racle J, Michaux J, Rockinger GA, Arnaud M, Bobisse S, Chong C, Guillaume P, Coukos G, Harari 822 
A, Jandus C, Bassani-Sternberg M, Gfeller D. 2019. Robust prediction of HLA class II 823 
epitopes by deep motif deconvolution of immunopeptidomes. Nat Biotechnol 37:1283–824 
1286. 825 

Rappazzo CG, Huisman BD, Birnbaum ME. 2020. Repertoire-scale determination of class II MHC 826 
peptide binding via yeast display improves antigen prediction. Nat Commun 11:4414. 827 

Reynisson B, Alvarez B, Paul S, Peters B, Nielsen M. 2020. NetMHCpan-4.1 and NetMHCIIpan-828 
4.0: improved predictions of MHC antigen presentation by concurrent motif 829 
deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res 830 
48:W449–W454. 831 

Rosati E, Pogorelyy MV, Minervina AA, Scheffold A, Franke A, Bacher P, Thomas PG. 2021. 832 
Characterization of SARS-CoV-2 public CD4+ αβ T cell clonotypes through reverse 833 
epitope discovery. bioRxivorg. doi:10.1101/2021.11.19.469229 834 

Sidney J, Steen A, Moore C, Ngo S, Chung J, Peters B, Sette A. 2010. Divergent motifs but 835 
overlapping binding repertoires of six HLA-DQ molecules frequently expressed in the 836 
worldwide human population. J Immunol 185:4189–4198. 837 

Snyder TM, Gittelman RM, Klinger M, May DH, Osborne EJ, Taniguchi R, Zahid HJ, Kaplan IM, 838 
Dines JN, Noakes MT, Pandya R, Chen X, Elasady S, Svejnoha E, Ebert P, Pesesky MW, De 839 
Almeida P, O’Donnell H, DeGottardi Q, Keitany G, Lu J, Vong A, Elyanow R, Fields P, 840 
Greissl J, Baldo L, Semprini S, Cerchione C, Nicolini F, Mazza M, Delmonte OM, Dobbs K, 841 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2022.02.22.480950doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.480950


 27 

Laguna-Goya R, Carreño-Tarragona G, Barrio S, Imberti L, Sottini A, Quiros-Roldan E, 842 
Rossi C, Biondi A, Bettini LR, D’Angio M, Bonfanti P, Tompkins MF, Alba C, Dalgard C, 843 
Sambri V, Martinelli G, Goldman JD, Heath JR, Su HC, Notarangelo LD, Paz-Artal E, 844 
Martinez-Lopez J, Carlson JM, Robins HS. 2020. Magnitude and dynamics of the T-cell 845 
response to SARS-CoV-2 infection at both individual and population levels. medRxiv. 846 
doi:10.1101/2020.07.31.20165647 847 

Stern LJ. 1994. Crystal structure of the human class II MHC protein HLA- DR1 complexed with an 848 
influenza virus peptide. Nature 368:215–221. 849 

Stopfer LE, Gajadhar AS, Patel B, Gallien S, Frederick DT, Boland GM, Sullivan RJ, White FM. 850 
2021. Absolute quantification of tumor antigens using embedded MHC-I isotopologue 851 
calibrants. Proc Natl Acad Sci U S A 118:e2111173118. 852 

Stopfer LE, Mesfin JM, Joughin BA, Lauffenburger DA, White FM. 2020. Multiplexed relative and 853 
absolute quantitative immunopeptidomics reveals MHC I repertoire alterations induced 854 
by CDK4/6 inhibition. Nat Commun 11:2760. 855 

Swain SL, McKinstry KK, Strutt TM. 2012. Expanding roles for CD4+ T cells in immunity to viruses. 856 
Nat Rev Immunol 12:136–148. 857 

Thomsen MCF, Nielsen M. 2012. Seq2Logo: a method for construction and visualization of 858 
amino acid binding motifs and sequence profiles including sequence weighting, pseudo 859 
counts and two-sided representation of amino acid enrichment and depletion. Nucleic 860 
Acids Res 40:W281-7. 861 

Vita R, Mahajan S, Overton JA, Dhanda SK, Martini S, Cantrell JR, Wheeler DK, Sette A, Peters B. 862 
2019. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res 47:D339–863 
D343. 864 

Yin L, Stern LJ. 2014. Measurement of peptide binding to MHC class II molecules by 865 
fluorescence polarization. Curr Protoc Immunol 106:5.10.1-5.10.12. 866 

Zavala-Ruiz Z, Strug I, Anderson MW, Gorski J, Stern LJ. 2004. A polymorphic pocket at the P10 867 
position contributes to peptide binding specificity in class II MHC proteins. Chem Biol 868 
11:1395–1402. 869 

Zeng H, Gifford DK. 2019. Quantification of uncertainty in peptide-MHC binding prediction 870 
improves high-affinity peptide selection for therapeutic design. Cell Syst 9:159-166.e3. 871 

Zhao W, Sher X. 2018. Systematically benchmarking peptide-MHC binding predictors: From 872 
synthetic to naturally processed epitopes. PLoS Comput Biol 14:e1006457. 873 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted March 11, 2022. ; https://doi.org/10.1101/2022.02.22.480950doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.480950

