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Abstract

An object’s colour, brightness and pattern are all influenced by its surroundings, and a number of

visual phenomena and “illusions” have been discovered that highlight these often dramatic effects.

Explanations for these phenomena range from low-level neural mechanisms to high-level processes

that incorporate contextual information or prior knowledge. Importantly, few of these phenomena

can currently be accounted for when measuring an object’s perceived colour. Here we ask to what

extent colour appearance is predicted by a model based on the principle of coding efficiency. The

model  assumes  that  the  image  is  encoded  by  noisy  spatio-chromatic  filters  at  one  octave

separations, which are either circularly symmetrical or oriented. Each spatial band’s lower threshold

is set by the contrast sensitivity function, and the dynamic range of the band is a fixed multiple of

this threshold, above which the response saturates. Filter outputs are then reweighted to give equal

power in each channel for natural images. We demonstrate that the model fits human behavioural

performance in psychophysics experiments, and also primate retinal ganglion responses. Next we

systematically  test  the  model’s  ability  to  qualitatively  predict  over  35  brightness  and  colour

phenomena,  with  almost  complete  success. This  implies  that  contrary  to  high-level  processing

explanations, much of colour appearance is potentially attributable to simple mechanisms evolved

for efficient coding of natural images, and is a basis for modelling the vision of humans and other

animals.
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Introduction
The colour and lightness of objects cannot be recovered directly from the retinal image of a scene,

but depends upon neural processing by low-level spatial filters and feature detectors along with

long-range and top-down mechanisms that incorporate contextual information and prior knowledge

about  the  visual  world  (Wandell  1995;  Brainard  and  Freeman  1997;  Witzel  et  al.  2011;  Bloj,

Kersten, and Hurlbert 1999). Ideally, image processing achieves lightness and colour constancy –

allowing us  to  see  colour  and  form veridically  –  but  inevitably  it  produces  visual  effects  and

illusions, which give insight into the underlying mechanisms. Thus, the surroundings of an object

affect its lightness or colour in several ways. For example,  assimilation and induction effects shift

appearance  towards  that  of  neighbouring  colours  (White  1979),  whereas  simultaneous  contrast

increases the difference between an object and the surround, and in contrast induction the surround

affects the contrast of a pattern (Chubb, Sperling, and Solomon 1989; Brown and MacLeod 1997).

The crispening effect – where contrasts close to the background level are enhanced – encompasses

all three of these phenomena (Whittle 1992; Kane and Bertalmío 2019). Related effects in colour

vision include the Abney, Bezold–Brücke, Hunt, and Stevens effects, where colours, colourfulness

and contrasts shift with saturation and brightness (Fairchild 2013). 

Neural  mechanisms have been proposed to  account  for  some of  the foregoing phenomena,  for

example Mach Bands can be attributed to lateral inhibition (Ratliff 1965),  brightness induction to

spatial filtering in the primary visual cortex (Blakeslee and McCourt 2004), and colour constancy to

photoreceptor adaptation (Judd 1940; Foster 2011) or to cortical processing (Roe et al. 2012) – but

these accounts are controversial, and some effects are not easily explained  (Brown and MacLeod

1997;  Whittle  1992;  Adelson 2000).  Moreover,  the lack of  a  comprehensive  account  of  colour

appearance limits the accuracy of the models that are typically used in design, industry and research

(Hunt 2005a; Fairchild 2013).

Although photoreceptor adaptation and lateral inhibition do partly account for colour constancy and

simultaneous contrast effects, their primary function is probably better understood as allowing the

visual system to efficiently encode images of natural scenes, which have a large dynamic range and

a high degree of statistical redundancy. Coding efficiency, which allows the brain to make optimal

use of limited neural bandwidth and metabolic energy, is a key principle in early visual processing

(Atick  and  Redlich  1992;  Barlow  1961;  Laughlin  1981;  Ruderman,  Cronin,  and  Chiao  1998;
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Simoncelli  and Olshausen 2001),  and here we ask how a model  based on this  principle  might

account for colour appearance. 

The  optimal  (maximum  entropy)  code  for  natural  images,  as  specified  by  their  spatial

autocorrelation  function  (i.e.  second-order  image  statistics),  approximates  a  Fourier  transform

(Bossomaier and Snyder 1986; Baddeley et al. 1997), which is physiologically unrealistic. Efficient

codes can however be defined for circularly symmetrical Difference of Gaussian (DoG) or oriented

Gabor-function filters, which respectively resemble the receptive fields of retinal ganglion cells and

the simple cells  of mammalian visual cortex  (Daugman 1985; Enroth-Cugell and Robson 1966;

Marĉelja 1980; Simoncelli and Olshausen 2001). In an early study, Laughlin and his co-workers

(Laughlin 1981; Srinivasan et al. 1982) found that the contrast response functions and the centre-

surround receptive fields of fly (Lucilia vicina) large monopolar cell (LMC) neurons - which are

directly post synaptic to the photoreceptors - produce an efficient representation of natural images

for the noise present the insect’s photoreceptor responses. Specifically, synaptic amplification at the

receptor to LMC synapse and lateral inhibition between receptor outputs, give a neural code that

quantitatively accords with the methods of histogram equalization and predictive coding that are

used by data compression algorithms (Srinivasan et al. 1982). The centre-surround receptive fields

of vertebrate retinal ganglion cells are comparable to those of fly monopolar cells  (Tadmor and

Tolhurst 2000), while the simple cells in visual cortex generate an efficient code for natural image

statistics (Field 1987; Simoncelli and Olshausen 2001).

Our  aim  here  is  not  to  simulate  biological  vision  precisely,  but  to  model  efficient  coding  by

physiologically plausible spatial filters. We describe a Spatiochromatic Bandwidth Limited (SBL)

model of early vision, which uses luminance and chromatic spatial filters at octave separations to

cover the detectable range of spatial frequencies (Figures 1-3). Three parameters specify the model,

namely the spatial autocorrelation function (power spectrum) of natural images, noise in the retinal

signal,  and  the  channel  bandwidth  –  or  number  of  distinguishable  response  states  (Figure  1;

(Laughlin  1981)).  The  first  of  these  parameters  is  given  by  image  statistics,  the  second  by

physiological or psychophysical measurements, and the third is estimated from psychophysical data

on the crispening effect (Figure 3a; (Whittle 1992)). As the model predicts colour and lightness in

naturalistic images, and accounts for various visual phenomena and illusions it offers a framework

for understanding neural image processing, and is a starting point for simulating colour appearance

for humans and other species.
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The Model
The SBL model is comparable to other models of early vision that have been proposed to account

for lightness and colour perception. These include MIRAGE (Watt and Morgan 1985), which uses

non-oriented DoG filters, and the oriented difference of gaussians model (Blakeslee and McCourt

2004), which uses orientation-sensitive filters. The model differs from its predecessors in that to

achieve  efficient  coding  of  natural  images  the  gain  and  dynamic  range  (i.e.  contrast  response

function) of neural channels vary with spatial frequency – as specified by the contrast sensitivity

threshold – with gain normalised to natural scene statistics so that on average the output has equal

power in each spatial channel. 

The model is implemented as follows (Figures 1,2).  i): The image is filtered with a set of spatial

filters  at  one  octave  separations.  These  filters  are  either  circularly  symmetrical  difference  of

Gaussian (DoG) functions (Enroth-Cugell and Robson 1966) or Gabor functions at four orientations

(Daugman 1985).  The filtering  process  differs  from convolution  in  that  it  applies  a  Michelson

contrast to centre versus surrounds. The three spectral classes of filter correspond to those in human

vision, namely achromatic/luminance with centre and surround receiving the same spectral inputs,

blue – yellow, and red – green with centre and surround receiving opposite spectral inputs. ii): The

lower threshold (α) for the filter is set by the psychophysical contrast sensitivity at the filter’s centre

frequency (based on contrast sensitivity functions, [CFSs],  Mullen 1985; Kim, Mantiuk, and Lee

2013).  α  is  subtracted  from  image  contrasts,  which  is  consistent  with  human  psychophysics

(Kulikowski 1976). The filters’ contrast response function is linear over a limited dynamic range to

an upper threshold (b), which is a fixed multiple, ε, of α.  ε corresponds to the number of contrast

levels that can be encoded (i.e. channel bandwidth or response states;  (Laughlin 1981)); (Figures

1,2). Thus, for ε = 10, the contrast saturation threshold is 10 times the activation threshold for each

filter.   As ε  is  equal  for  all  channels,  high  sensitivity  filters  encode a  smaller  range  of  image

contrasts than low sensitivity filters (Figure 2b). We estimated ε by fitting the model to Whittle’s

(1992) psychophysical measurement of the crispening effect (Figure 3a, 4).  iii) Signal power in

each channel is normalised to that of the filter’s response to a natural scene, thereby whitening the

average spatial frequency power spectrum of the output  (Carandini and Heeger 2012).  iv) Filter

outputs are summed to recover their representation of the original image, which can be compared to

human perception of the image.

For the red-green and blue-yellow chromatic channels, we make the assumption, consistent with

neurophysiology  (Solomon and Lennie 2007; Conway 2001), that the filters are less orientation

selective  than  for  luminance  channels  and  use  only  DoG filters  (but  see  Shapley,  Nunez,  and
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Gordon 2019). The bandwidth of the red-green channel equals that of the luminance DoG signal,

which produces plausible results (Figure 1 and below). However, if the blue-yellow channel has the

same bandwidth (ε), its low contrast sensitivity (Figure 2a) means that it fails to saturate in natural

scenes. We therefore reduced ε to give an equal proportion of saturated pixels in natural images for

red-green and blue-yellow channels.

 An implementation of the SBL model is provided as supplementary material for use with ImageJ, a

free,  open-source  image  processing  platform  (Schneider,  Rasband,  and  Eliceiri  2012) and  the

micaToolbox (Troscianko and Stevens 2015; Berg, Troscianko, et al. 2020).
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Figure 1. Overview of the Spatiochromatic Bandwidth Limited (SBL) model. The model uses a cone-catch image (a,

Appendix), which is filtered by either DoG or Gabor kernels for luminance channels, and DoG kernels for chromatic

channels (b). Contrasts are converted to Michelson contrasts (c. showing luminance DoG outputs), then clipping and

gain processes are applied (d. Figure 2), and the spatial filters are pooled to create the output (e). Output colours are not

scaled to sRGB space.
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Figure 2. Dynamic range clipping and gain adjustment by the SBF model. a) human luminance and chromatic detection

thresholds for sinewave gratings (Kim, Mantiuk, and Lee 2013). b) Clipping adjusts contrasts so that they cannot fall

below the CSF at each spatial frequency (a, SUBTHRESHOLD), or above the saturation threshold (b, SATURATED).
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Subthreshold contrasts are subtracted, and signals at each spatial frequency are multiplied by a gain value - denoted by

arrow length in (c) - so that on average natural images have equal power at each spatial frequency (whitening). The

saturation threshold is calculated from the CSF and channel bandwidth, ε (4 in this example) at each spatial frequency.

High and low spatial frequency channels therefore have low contrast sensitivity, but encode a large range of image

contrasts, whereas intermediate spatial frequencies have high sensitivity and a low dynamic range. To demonstrate the

clipping effects, we show an input image with sinewaves of different spatial frequencies and contrasts (d). (e) shows

bandpass spatial filters and (f) highlights regions that are clipped or preserved. The overlap between neighbouring

octaves  (f)  means  that  where  contrasts  are  saturated  for  one  channel,  they  are  unlikely  to  be  saturated  for  all

neighbouring channels so that contrast differences are detectable even in high contrast scenes. Note that the fine lines in

these illustrative images suffer from moiré effects when viewed on a monitor.

Estimation of the bandwidth,   ε     

Channel  bandwidth  (ε)  is  estimated  by  fitting  the  model  to  human  psychophysical  data  from

Whittle’s (Whittle 1992) investigation of the crispening effect. This study described how perceived

lightness varies with luminance, and how contrast sensitivity depends on contrast and background

luminance, by asking subjects to adjust target luminances to make equal-interval brightness series

(Figures 3a, 4a). We created images simulating the viewing conditions in Whittle’s experiment,

including  the  spatial  arrangement  and  luminance  of  the  grey  patches  that  he  used  to  create

perceptually uniform equal-contrast steps. Raw data (Figure 3a) were extracted from figures using

WebPlotDigitiser  (Rohatgi  2020).  Based  on  least  squares  fitting,  ε  is  15  for  the  circularly

symmetrical version of the SBF model (DoG, R2  = 0.994), and 3.75 for the oriented version of the

model (Gabor, R2  = 0.995). These bandwidths are within the range encoded by single neurones

(Baddeley et al. 1997; Laughlin 1981). Critically, the model recreates the characteristic inflection

point  around  the  background  grey  value.  Lowering  the  bandwidth,  and  thereby  increasing  the

proportion of saturated channels, produces a more extreme crispening effect, which suggests that

crispening is due to saturation rather than to loss of contrast sensitivity with increasing contrast

between targets and the background (Figure 2), which is the usual interpretation of Fechner’s law

(Whittle 1992).

Interestingly, the model with ε derived from Whittle’s (1992) crispening data accurately predicts the

responses  of  primate  retinal  ganglion  cells  to  sinewave gratings (Derrington and Lennie  1984)

(Figure 3b). The model fit (R2 = 0.972) is better than the authors’ own function (R2 = 0.952). Both

the psychophysical crispening effect and bottom-up neural responses suggest that at around 4 cpd

the  saturation  threshold  for  the  human  vision  and  macaque  retinal  ganglion  cells  (βϖ=4)  is

approximately 0.2.
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Figure 3. Fitting the SBL model to behavioural and neurophysiological data. a) fit to Whittle’s crispening data (1992,

figure 9, “25/inc-dec/gray” treatment). Model output is scaled to the same 0 – 25 range. The best-fitting bandwidth (ε)

for DoG filters is 15, and for Gabor (oriented) filters is 3.75, both of which result in a good fit to the raw data. The CIE

L* fit specifies lightness in psychophysics and does not account for contrast (Commision Internationale de l’Eclairage

1978). b) Model fit to single ganglion response data from Derrington and Lennie (1989, figure 11b). Fitting used a

single  free  parameter  that  multiplied  the arbitrary  SBL model  output  to  match  neural  firing  responses  (with  zero

intercept) by least-squares regression. The SBL model shows a linear contrast response and saturation point that provide

a  better  fit  than  the  authors’ model.  The  inset  excludes  the  three  highest  contrast  values  to  highlight  the  linear

relationship prior to saturation.

Model Performance

We tested the SBL model’s ability to account for approximately thirty-seven perceptual phenomena

that  could plausibly be explained by low-level  visual  mechanisms  (Adelson 2000;  Shapiro and

Todorovic 2016; Bertalmío et al. 2020), first for the version with oriented luminance filters, and

secondarily for DoG filters (chromatic filters were always non-oriented, see above). Both versions

of the model qualitatively predict almost all effects and, where relevant, their controls (Table 1,

Figure 4 and Appendix). The only exceptions were the DoG (non-oriented) model’s inability to

predict illusory spots and bars in the Hermann grid and Poggendorff illusions, comparatively weak

performance with one control for the Chevreul staircase, and the enhanced assimilation of colour

created by bars in patterned chromatic backgrounds (Monnier and Shevell 2003). Nevertheless, this

performance was achieved with no free parameters (Figures 1-3), and the model can be adjusted to

predict all effects.
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Table 1. Summary of phenomena tested with oriented and non-oriented versions of the SBL model, with the 

parameters, a, b and e fixed as explained in the text. All phenomena were qualitatively explained to some degree. For 

illustrations of specific effects see the supplementary appendix.
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Figure 4. Illustration of dynamic range clipping by the SBL model. (a) for the crispening effect (Whittle 1992). The

three rows of grey levels are identical, with equal step sizes. Against the black background contrasts appear largest for

darker squares, whereas the opposite is true for the white background. The SBL model explains this effect through

saturation; contrasts near the grey level of the local surroundings are preserved (highlighted with circles), while other

contrasts are saturated (blue areas adjacent to the highlighted areas). The graph at the bottom plots differences between

squares in the three rows, showing higher contrasts for dark, middle and light ranges respectively. Illusions such as the
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Chevreul staircase (b) are also explained in part by clipping. The upper staircase appears to be a series of square steps in

grey level. The lower staircase has the same grey levels, but is flipped so that its gradient matches the surround gradient.

The SBL model correctly predicts that the upper staircase is seen as square steps in grey level (solid green line) while

the lower staircase is a series of gradients (dashed grey line). The plot shows pixel values in arbitrary units measured

along each staircase, as highlighted in the output image. The model shows that this effect arises partly because the

matched gradients of the lower staircase causes local subthreshold contrasts, and because contrasts are not balanced on

each side of the step.

Discussion
The  Spatiochromatic  Bandwidth  Limited  model  of  colour  appearance  described  here  at  least

qualitatively predicts the appearance of a wide variety of images that are used to demonstrate colour

and lightness perception (Table 1, Figure 4, Appendix). These include ‘illusions’ that have been

explained  by  high-level  interpretations  of  3D  geometry,  lighting,  atmospherics,  or  mid-level

principles of perceptual organisation  (Adelson 1993; Gilchrist 2014): for example White-Munker,

shadow, Koffka ring and haze illusions. It is therefore parsimonious to suggest that many aspects of

object  appearance  can  be  attributed  to  mechanisms adapted  for  –  or  consistent  with  –  coding

efficiency (Barlow 1961). Other accounts of the same phenomena invoke specialised mechanisms

(e.g. Land and McCann 1971; Blakeslee and McCourt 2004) or top-down effects , which imply that

multiple sources of sensory evidence and prior knowledge are used to infer the most likely cause of

the stimulus (Brown and MacLeod 1997; Gregory 1997; Yuille and Kersten 2006; Adelson 2000).

Neither does the SBL model invoke light adaptation or eye movements, which implies that colour

constancy is largely independent of the adaptation state of the photoreceptors – provided that they

are not saturated. By comparison the models used by standard colour spaces, such as CIE LAB/CIE

CAM implement the von Kries co-efficient rule  (Foster 2011), which assumes  that photoreceptor

responses are adapted to the global mean for a scene, even though chromatic adaptation is affected

by both local and global colour contrasts  (Kraft and Brainard 1999). Retinex (Land and McCann

1971) and Hunt models do normalise receptor signals to their local value  (Hunt 2005a) but the

weightings of  global  and local  factors  are  poorly understood and the underlying mechanism is

unclear  (Kraft and Brainard 1999). Moreover, the adjustments required for colour constancy are

largely complete within about 25ms (Rinner and Gegenfurtner 2000), which is too fast for receptor

adaptation, but consistent with the purely feed-forward character of the SBL model. Figure 5 shows

how the  SBL model  can  account  for  colour  appearance  in  a  naturalistic  image  under  variable

illumination.  More generally, the feed-forward architecture of the SBL model explains why many

other visual phenomena appear without any delay, whereas existing models require feedback loops

for  normalisation  (Land and McCann 1971;  Hunt  2005a;  Blakeslee  and McCourt  2004).  Thus,

Brown  and  MacLeod (Brown  and  MacLeod  1997) comment  that the  distribution  of  surround
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colours affects colour appearance almost immediately, leaving little time for feedback or adaptation.

Likewise, as suggested by  (Chubb, Sperling, and Solomon 1989), contrast induction is explained

without  requiring  the  feedback  invoked  by  (Nassi,  Lomber,  and  Born  2013).  This  is  because,

according to the SBL model, low contrast surrounds allow all spatial bands to operate within their

dynamic ranges, whereas high contrast surrounds saturate some spatial bands, resulting in under-

estimates of brightness contrast or chromaticity (Figures 3a, 4). The model also reconciles contrast

constancy with a visual system that varies dramatically in contrast sensitivity and contrast gain

across  spatial  frequencies,  allowing  suprathreshold  contrasts  to  have  a  similar  appearance  at

different  distances (Georgeson and Sullivan 1975).  Contrasts  are  predicted to  be most  constant

where they are saturated across multiple spatial frequencies, e.g. where the blue regions in Figure 2f

overlap.  Pooling across spatial scales might explain the Abney effect, which is a shift in hue that

occurs when white light is added to a monochromatic stimulus  (Burns et al.  1984), because the

colour stimulus may be below-threshold at some spatial bands, but above threshold for others, but

we require specific  data to estimate the bandwidth of chromatic channels (equivalent to Whittle’s

(1992) luminance crispening data).  As noted above (Model,  Figures 1, 2a),  we assume that the

bandwidth of the red-green signal equals the luminance DoG signal, but the blue-yellow signal has

reduced the bandwidth, which produces plausible results when processing natural scenes, but future

work should measure the chromatic bandwidth functions and determine whether the SBL model can

account for the Abney effect quantitatively.  Further developments of the chromatic SBL model

should also investigate whether performance could be improved by modelling both single-opponent

and double-opponent pathways. The latter are sensitive to both spatial frequency and orientation,

and has been suggested to play a role in suprathreshold colour appearance  (Shapley, Nunez, and

Gordon 2019). However,  we were able to simulate the same spatial-frequency/saturation effects

with the non-oriented version of the SBL model (Appendix).
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Figure 5. The SBL model can account for colour appearance in complex naturalistic images. (a) shows the input image

(from Purves, Lotto, and Nundy 2002/Wikimedia) where the blue squares on the yellow-tinted side (left) and the yellow

squares on the blue-tinted side (right) are physically the same grey (colours are shown in the squares at the top of the

image). The SBL model (b) correctly predicts that the squares under both tinting regimes appear yellow and blue, rather

than grey. The SBL model also predicts the powerful simultaneous contrast (or shadow) illusion present in this image

whereby; the central tiles on top of the cube appear to be darker than the central tiles on the shaded side of the cube

(colours shown in squares on the far left and for right hand sides).

The Circularly Symmetric Version of the SBL Model and Animal Vision

Whereas the oriented version of the SBL model uses orientation selective achromatic filters and

circularly symmetrical chromatic filters (see above), the circularly symmetrical version uses DoG

filters for all channels. For the visual phenomena that we have tested the oriented version of the

SBL model predicts lightness and colour at least as well as the circularly symmetrical version (table

1). It might therefore seem logical to consider only the former, but visual systems of all animals

probably have circularly symmetrical receptive fields [e.g.  (Srinivasan et al. 1982)], but there is
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limited evidence for orientation selective cells other than in mammalian visual cortex. Also, the

differences between the two versions of the SBL model seem to us to be surprisingly small. For

example, both predict White effects, which might be expected to depend on orientation selective

mechanisms (supplementary appendix; Blakeslee and McCourt 2004; Bertalmío et al. 2020), but

only the oriented model correctly predicts the presence of illusory spots in the Hermann grid, and

elimination of these spots in the wavy grid (Geier et al. 2008). Similarly, the oriented version of the

model  predicts  Koffka  rings  and  the  Chevreul  staircase  (Figure  4b)  more  accurately  than  the

circularly symmetrical version.  The bandwidth,  e, for the non-oriented filter is approximately 15,

which matches  neurophysiological  measurements from primate retinal  ganglion cells  (Figure 3;

Derrington and Lennie 1984). By comparison the bandwidth of the oriented version is estimated to

be about four-fold lower than that of the non-oriented model, which is consistent with the low spike

rates  of  neurons  in  the  primary  visual  cortex  (Baddeley  et  al.  1997).  For  a  given  spike  rate

partitioning the information into multiple channels allows a correspondingly reduced integration

time.

The SBL model is useful for non-human animals because coding efficiency is a universal principle,

and contrast  sensitivity  functions  are  known for  many species  [Figure  2a;  (Caves  and Johnsen

2018)], whereas psychophysical and neurophysiological data on visual mechanisms in non-primates

is limited. Current research into non-human colour appearance typically uses the receptor noise

limited (RNL) model (Vorobyev and Osorio 1998; Renoult, Kelber, and Schaefer 2017), which also

assumes that early vision is constrained by low level noise. Others have sought to control for acuity

and distance dependent effects (Caves and Johnsen 2018; Berg, Troscianko, et al. 2020; Barnett et

al.  2018),  but  surprisingly  few studies  have  utilised  contrast  sensitivity  functions  (Melin  et  al.

2016), and behavioural validation of the models is difficult  (Silvasti,  Valkonen, and Nokelainen

2021;  Berg,  Hollenkamp,  et  al.  2020).  As with human vision,  the SBL model  may reconcile  a

number  of  key  effects.  For  example,  in  a  bird  (blue  tit,  Cyanistes  caeruleus)  chromatic

discrimination  thresholds  depended  on  the  contrast  of  the  surround  (Silvasti,  Valkonen,  and

Nokelainen 2021), which resembles chromatic contrast induction (Brown and MacLeod 1997) and

is  simulated  by  the  SBL model.  Shadow-illusion  effects  have  also  been  demonstrated  in  fish

(Simpson, Marshall, and Cheney 2016). Aside from predicting colour appearance the SBL model

highlights  comparatively  unexplored  trade-offs  in  visual  systems,  with  contrast  sensitivity

potentially linked to  dynamic range and to other factors such as low-light vision and temporal

acuity.  For  example,  birds  have  poor  luminance  contrast  sensitivity,  but  high  temporal  acuity

consistent with a low neural bandwidth in the SBL model (Potier, Mitkus, and Kelber 2018; Ghim

and Hodos 2006; Boström et al. 2016).
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Supplementary Material

Description of the Spatiochromatic Bandwidth Limited model

Model input Requirements:
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 A linear cone-catch image of known angular width. For example, cone-catch images created

by the micaToolbox (Troscianko & Stevens 2015), or sRGB images converted to linear CIE

XYZ channels. Our implementation accepts either sRGB images or cone catch images, and

uses 32-bit images and processing throughout; 8-bits per channel is an insufficient dynamic

range for coding linear natural scenes. The image should be scaled so that its resolution

matches or exceeds the highest spatial frequency being modelled. For example, the DoG

kernel we use has its peak wavelength sensitivity at 5.7 pixels, and the highest SF we model

is 16 cpd, so the image should be scaled so that each degree of angular width has 16 x 5.7

pixels, i.e. 91.2 pixels per degree.

 Contrast sensitivity functions (CSFs) for the luminance and chromatic opponent channels

(red-green and blue-yellow). Our code uses values from Kim et al.  (2013). These values

should  be  scaled  so  that  contrasts  are  Michelson  Contrast  values  -  e.g.

(red-green)/(red+green).  Note that sensitivity is the inverse of the threshold contrast (i.e.

higher sensitivity = lower threshold contrasts, Figure 2a).

 Bandwidth values (ε) for luminance and each chromatic opponent channel (i.e. three values

for human vision). These can be estimated from behavioural data (e.g. crispening effect,

Figure 3a), or from neurophysiological data (Figure 3b). Suitable data are currently lacking

for chromatic channel bandwidth, but we assume the red-green channel bandwidth equals

that  for  the  luminance  channel,  and  the  blue-yellow  channel  has  about  30%  of  this

bandwidth, in order to achieve efficient coding in natural scenes.

 Gain functions specify how each spatial frequency should be scaled following the clipping

process. These are calculated by processing a library of images of natural scenes through the

model  with all  gain values  set  to  1 (i.e.  no gain),  and measuring the resulting standard

deviation of each channel. Normalising to these values gives output contrasts with standard

deviations of 1 at each spatial frequency.

The values we used are supplied in the supplementary code.

Image Pre-Processing:

The cone catch image is converted to three channels: luminance, red-green opponency and blue-

yellow opponency.  The  luminance  channel  is  the  average  of  all  cone  catch  values  from each

receptor class, weighted by their cone ratios:

lum=0.629 R+0.314 G+0.0 57 B

Where  R,  G,  and  B  are  the  longwave,  mediumwave  and  shortwave  cone  catch  pixel  values

respectively. Cone ratios here are from Hofer et al. (2005).
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The chromatic signals are calculated as Michelson contrasts:

RedGreen= R −G
R+G

Spatial Filtering

Each  channel  is  convolved  with  either  a  Difference-of-Gaussian  kernel  or  Gabor  kernel.  DoG

kernels  are  orientation-insensitive,  and  are  used  for  luminance  and  chromatic  channels.  Gabor

kernels are orientation sensitive and are optionally used instead of DoG for the luminance channel.

Our implementation uses conventional kernel functions (see code for exact parameters, examples

shown in Figure 1b); for the DoG the surround has a sigma value 1.6 times larger than the centre,

and for the Gabor filter we use 4 orientations (sigma = 2, gamma = 1, frequency = 3). Our spatial

filtering differs from that used previously in that we use Michelson Contrasts. Conventionally, the

spatial filtering procedure uses logged input images and then applies a convolution. The result is

mathematically  identical  to  dividing  the  centre  response  by  the  surround.  While  this  is

computationally  efficient,  the resulting contrasts  are  non-linear  and unbounded (e.g.  values  can

easily go implausibly high), and cannot be reliably matched to the behaviour described in CSFs.

The  chromatic  channels  have  already  had  the  Michelson  contrast  function  applied,  so  the

convolution  is  equivalent  to  simulating  Michelson  contrasts  based  on  red-centre  versus  green-

surround, or yellow-centre versus blue-surround giving contrast values, φ. However, the Michelson

contrast  stage  must  be  applied  to  the  luminance  channel  following spatial  filtering  in  order  to

compare centre and surround (or positive and negative regions in the Gabor kernel), i.e.:

φ=m centre − surround
centre+surround

Our implementation achieves this by calculating both signed and unsigned (absolute) convolutions

for the numerator and denominator respectively. m is a parameter that scales the kernel’s (arbitrary)

amplitude to create contrasts that match the same scale as the contrast sensitivity functions. CSFs

are generally calculated using sinewave gratings, so to calculate m we first create an image with a

sinewave spatial frequency that matches the kernel’s peak sensitivity (5.7 pixels in our case). The

sinewave amplitude is set to a known Michelson contrast of e.g. 0.1, and then is convolved with the

kernel.  m is  then  the  maximum contrast  from the  convolved  image divided  by the  Michelson

contrast of the input sinewave (i.e. 0.1). This simply scales the contrasts, φ, so that they are directly

comparable to the conditions used to measure CSFs.

Clipping

The activation threshold, α, is the inverse of contrast sensitivity, specified by the CSF at each spatial

frequency, ϖ (see Figure 2a for example CSFs):
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α ϖ= 1
ContrastSensitivity ϖ

Any contrasts below the saturation threshold are set to zero, while all other contrasts have the 

saturation threshold subtracted (Kulikowski 1976):

Ifφ<α ϖ and φ>0 , φclipped=0
elseifφ>0 ,φclipped=φ− α ϖ

The sign is preserved for negative contrasts (i.e. the model assumes both centre-on and centre-off 

behaviour, described by positive or negative convolved pixel values respectively). However, in 

natural scenes the luminance DoG convolution results in negative contrasts that are twice as large as

the positive ones (this does not apply to chromatic DoG or Gabor convolutions, where positive 

contrasts match negative contrasts). Following the principles of efficient coding we therefore 

assume that any centre-off channels are tuned to the same dynamic range, and multiply α by 2 i.e.:

Ifφ>−2 α ϖ and φ<0 , φclipped=0
elseifφ<0 , φclipped=φ+2 αϖ

Bandwidth, ε, is assumed to be uniform across all spatial frequencies, and this is used to calculate

the saturation threshold, β, at each spatial frequency:

βϖ=α ϖ ε

The bandwidth can either be estimated by fitting the model to behavioural data (Figure 3a), or based

on the dynamic range of single neurones (Figure 3b). Contrasts greater than the saturation threshold

are  set  to  equal  the  saturation  threshold,  creating  a  hard  upper  threshold.  As  above,  negative

contrasts are doubled for luminance DoG models (but not chromatic or Gabor models):

Ifφ>βϖ , φ clipped=βϖ

elseifφ ←2 βϖ ,φclipped=2 βϖ

This clipping process defines the dynamic range of the model at each spatial frequency. The result is

that  spatial  frequencies  with  high  contrast  sensitivity  also saturate  much faster  with  increasing

contrast,  resulting  in  small  dynamic  range.  Meanwhile  spatial  frequencies  with  low  contrast

sensitivity  have  a  much larger  dynamic  range (Figure  2b).  However,  the  overlap  in  sensitivity

between adjacent spatial frequencies means that almost all contrasts are within the dynamic range of

one or more spatial frequencies (the orange areas in Figure 2f), implying low bandwidths can be

combined with high contrast sensitivity for efficient coding as long as there is a large range in

dynamic ranges, and sufficient overlap in adjacent spatial frequencies. This explains why humans

can perceive contrasts in natural scenes (or on high-definition televisions) over a dynamic range

greater than 10,000:1, while our dynamic range for sinewaves is around 200:1.
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Supplementary Figure 1.  Plot  showing the proportion of  pixels  in  each channel  that  are either  saturated or  sub-

threshold in typical natural scenes. The results are based on 34 images of natural scenes, dashed lines show the median

value, shaded areas show the interquartile range and full range of the data. High contrast sensitivity at intermediate

spatial  frequencies  causes  substantially  more  saturation,  while  the  lower  sensitivity  channels  show  substantial

proportion of subthreshold contrasts.

Gain

Following  clipping,  contrasts  are  multiplied  so  that  each  spatial  frequency  results  in  equal

contribution  to  the  contrasts  in  the  pooled  image.  i.e.  in  natural  scene  statistics  each  spatial

frequency should contain equal contrast/information (Field, 1987), however the clipping process

substantially reduces the average amplitude of contrasts at  intermediate spatial  frequencies.  The

gain step equalises the average contrast amplitudes at each spatial frequency, i.e.:

Φ=
φclipped

σϖ

Where  σϖ  is the standard deviation of all φclipped values in an image of a natural scene filtered at spatial

frequency ϖ, resulting in gain-corrected contrasts, Φ.

Post-clipping smoothing

The hard upper and lower clipping thresholds (α and β) produce undesirable artefacts in the pooled image.

We remove these by applying a Gaussian blur to each channel prior to pooling, with sigma values well below

the filter’s spatial frequency (e.g. sigma value below 1 pixel radius, where the kernel’s peak wavelength

sensitivity is 5.7 pixels). This step removes the artefacts, and the smoothing effect is responsible for the

curvature  near  the  saturation threshold shown in Figure  3b,  matching the behaviour  of  primate  ganglia

(Derrington and Lennie, 1984). This stage mirrors the correlated firing of neighbouring retinal ganglion cells

cells where on-centre cells excite neighbouring on-centre cells, and likewise for off-centre cells, while on-

centre and off-centre cells inhibit one-another (Nelson 1995). 

Pooling

Pooling simply sums the contrast at each pixel location across each spatial frequency:
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PooledOutput=∑
ϖmin

ϖ max

Φ

This results in recombined luminance, red-green and blue-yellow chromatic channels. This output is 

designed to match subjective colour appearance, and it is therefore not straightforward to present these 

images on an sRGB display without confounding the very effects it seeks to predict. Nevertheless, we can 

convert back to a space that roughly approximates the cone-catch input:

Routput=
2 Lum

1+ (1 − RedGreen ) /(1+RedGeen )

Goutput=
Routput

(1+RedGreen )/(1− RedGeen )

Bout put=Lum 1+(1− BlueYellow )
1+BlueYellow

− Lum
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Key Predicts effect and relevant controls

Predicts effect, but not controls, or only partially predicts effect

Cannot not predict effect

Phenomenon Description Source DoG (non-oriented) Model Gabor (oriented) Model

Crispening Effect

Grey background

White background As above with white background

Contrast sensitivity

Generated

Contrast constancy

Brightness illusions

White’s bars

White’s offset bars As above with offset surrounds

White’s checkerboard

Generated

Appendix to “A model of colour appearance based on efficient coding of natural images” by Jolyon Troscianko & Daniel Osorio

Phenomenon 
Family

The crispening effect causes perceived contrasts to be greater when the grey levels are nearer those of the background. The effect was modelled by Whittle 
(1992), and subsequent work suggests the dipper effect [Solomon, (2009)] and divisive gain explains the effect [Kane and Bertalmio (2019)]. Here we use 
Whittle’s 1992 data to determine the dynamic range of human luminance vision.

Human subjects adjusted grey targets in 
equal-contrast steps on a grey 
background

Generated 
from Whittle 
(1992) data

DoG fit, DR=15, 
R2=0.994

Gabor fit, 
DR=3.75, 
R2=0.995

Both models 
outperform CIE L 
(R2=0.944)

Generated 
from Whittle 
(1992) data

DoG fit when 
using the above 
DR R2 = 0.946

Gabor fit when 
using the above 
DR, R2 = 0.935

Both models 
outperform CIE L 
(R2=0.746)

The ability of humans and other animals to perceive contrasts is dependent on the spatial frequency of those contrasts. Contrast sensitivity functions describe 
the contrast a of a sinwave that is detectable at different spatial frequencies. A related phenomenon is contrast constancy, where suprathreshold contrasts 
appear to be uniform irrespective of spatial frequency.
Contrast sensitivity 
functions

Sinewaves are generated with specific 
Michelson contrasts to ensure the model 
only permits detectable contrasts.

Removes sub-
threshold 
contrasts, 
matching CSF

Suprathreshold sinewaves of different 
spatial frequencies should have equal 
amplitudes. 

Suprathreshold contrast constancy is enhanced by saturation thresholds 
preventing multiplicative gain effects.

This family of illusions causes grey targets to differ in perceived brightness dependent on the arrangement of (typically high contrast) surrounds. Some of these 
illusions, such as simultaneous contrast and Mach bands have traditionally been attributed to centre-surround antagonism [Eagleman (2001)]. However the 
White illusions create the opposite effect, and have variously been attributed to oriented filtering with normalisation [Bertalmio et al. (2020), Blakeslee et al. 
(2016)], T-junctions [e.g. see Adelson (2000)], Gestalt/grouping/anchoring based mechanisms [Gilchrist (2014)]. A further set of illusions have been attributed 
to 3D surface and lighting based inferences [see Adelson (2000)], or atmospheric-based inferences [see Adelson (2000)].

A grey bar flanked by black appears 
darker than the same grey flanked by 
white

Adapted 
from 
Blakeslee & 
McCourt 
(2004), and 
Bertalmio et 
al. (2020)

A grey square flanked by black squares 
appears darker than the same grey 
flanked by white squares

Simultaneous 
brightness contrast

The central grey bar is a uniform grey 
value, but the gradient in the background 
creates a powerful inverse luminance 
gradient in the bar. This is typically 
explained by centre-surround antagonism.

Both models 
create an inverse 
gradient, though 
the Gabor 
model’s is more 
linear across the 
entire bar length.

Simultaneous 
brightness contrast

A grey square surrounded by black 
appears darker than the same grey 
surrounded by white.

Adapted 
from 
Bertalmio et 
al. (2020)
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Chevreul staircase

Dungeon illusion

Grating induction

Hong-Shevell illusion

Luminance illusion

Poggendorff illusion

Corrugated plaid

Adapted 
from 
Bertalmio et 
al. (2020)

The steps in a sequence of grey levels 
from light to dark appear 
flat/homogeneous on a contrasting 
gradient, but when viewed against a 
matching gradient each step appears to 
have a strong internal gradient.

The internal 
gradients are 
much stronger in 
the lower rather 
than upper 
staircase

The internal 
gradients are 
much stronger in 
the lower rather 
than upper 
staircase

Chevreul staircase 
control

Geier & Hudák (2011) find that the illusion 
persists when a counter-gradient surround 
is placed around the illusion, and suggest 
that traditional centre-surround 
antagonism cannot explain the effect.

Adapted 
from Geier & 
Hudák 
(2011)

As above, though 
the effect is not 
as powerful

As above, though 
the effect is not 
as powerful

Chevreul staircase 
control

As above, however a white surround is 
found to eliminate the internal gradients of 
the staircases.

Still retains fairly 
clear internal 
gradients, 
although they are 
less powerful 
than above

Still retains fairly 
clear internal 
gradients, 
although they are 
less powerful 
than above

A light grid causes a grey rectangle to 
appear lighter than the same grey 
surrounded by a dark grid.

Gilchrist 
(2014)

Illusory checkerboard patterns are created 
in a horizontal grey bar placed over a 
vertical grating.

Adapted 
from 
Bertalmio et 
al. (2020)

Circular variant of White’s bar illusion. The 
grey ring neighbouring white rings 
appears lighter, and the same grey 
neighbouring dark rings appears darker.

From 
Bertalmio et 
al. (2020)

Simultaneous brightness illusion that uses 
a background gradient.

Illusory stripes are created in a grey bar 
placed over a diagonal grating.

Illusory stripes 
don’t span the 
entire height of 
the bar

The perceived brightness of identical grey 
patches on a checkerboard can be altered 
by various 3D and shading manipulations. 
The controls demonstrate how 3D-
inference does not explain the effect 
[Adelson (2000)].

Figures from 
Adelson 
(2000)

Correctly predicts 
the direction and 
approximate 
magnitude of the 
effect. i.e. the 
effect is most 
powerful in the 
lower two 
versions with a 
parallelogram 
(rather than 
square) tile. 
Effect is 31% 
more powerful in 
the middle, and 
34% more 
powerful in the 
lower version 
compared to the 
top.

Same as DoG to 
the left, although 
even more 
powerful. The 
effect is 296% 
more powerful in 
the middle, and 
147% more 
powerful in the 
lower version 
compared to the 
top.
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Haze illusion

Crisscross illusion

Snake illusion

Koffka rings

Benary cross illusion

Wedding cake illusion

Mach bands

Figures from 
Adelson 
(2000)

Dark, high contrast surrounds increase 
perceived brightness of the lower tile. 
Adelson attributes the effect to perceived 
atmospheric differences between the tiles.

Lower tile 11% 
brighter than 
upper tile

Lower tile 21% 
brighter than 
upper tile

A patterned grey target surrounded by a 
light background appears darker than the 
same grey with dark surrounds. Note this 
is the opposite effect of White’s illusions, 
and is similar to simultaneous contrast.

Similar to the crisscross illusion above, 
however a control shows how the effect 
can be negated by removing 
“atmospheric” bands.

Brightness 
illusion in the 
upper version 
with haze layer is 
more powerful 
than the lower 
(control)

Same as DoG 
(left), with an 
even larger 
difference 
between upper 
and lower

An intact grey ring appears uniform when 
viewed against a split light/dark surround. 
However, when the ring is split into two 
halves and separated slightly the two 
sides have a strong brightness difference. 
Offsetting the rings has a similar effect.

The separated 
ring (centre) has 
a contrast 
between left and 
right sides 51% 
higher than the 
intact ring, and 
the offset ring 
(lower) has a 
contrast 8% 
higher than the 
intact ring. A 
lower dynamic 
range can 
eliminate all 
internal contrast 
in the intact ring.

Same as DoG 
(left), separated 
ring is 66% 
higher contrast 
and offset ring is 
13% higher 
contrast than the 
intact ring. 
Likewise, the 
effect is 
enhanced with a 
lower dynamic 
range.

Adelson checker 
shadow illusion

The shadow cast onto the checkerboard 
causes the shaded square to appear 
brighter than a square with the same grey 
level outside of the shadow.

Adelson 
(1995). 
Retrieved 
from 
wikimedia.

Reverse contrast 
illusion

The grey diagonal bar surrounded by 
black bars and white background appears 
brighter, and the opposite is true for an 
inverted example.

Figures from 
Gilchrist 
(2014)

The triangle cutting into the arm of the 
cross appears brighter than the triangle 
that spans between two arms.

Variant of White’s bar illusion with zigzag 
background

Spehar & 
Clifford 
(2017)

Mach bands are the perceived light and 
dark stripes created where a ramp of grey 
meets a flat grey. Mach bands are 
traditionally explained by centre-surround 
antagonism, but other theories have been 
used to explain their presence or absence 
[see Kingdom (2014)].

Generated 
following 
Kingdom 
(2014)

Predicts the 
Mach band effect 
will be most 
powerful when 
the ramp is a 
similar width to 
peak sensitivity 
SF (4cpd)

Similar to DoG 
(left)
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Contrast induction

Generated 
following 
Kingdom 
(2014)

Hilbert-transformed 
Mach band

Various transforms have been shown to 
disrupt the Mach band effect, such as this 
Hilbert transform. These transforms 
generally simply remove the high spatial 
frequency “foot” of the Mach band.

Correctly predicts 
no Mach bands

Correctly predicts 
no Mach bands

Hermann grid and 
wavy grid

The Hermann grid (upper image) causes 
dark spots to appear at the intersections 
between squares. The effect seems to 
depend on straight edges, and a curved 
grid (wavy grid, lower) does not create the 
illusory spots.

Geier et al. 
(2008)

The DoG model 
does not simulate 
the effect. 
Altering the gain 
values enables 
the DoG model 
to simulate the 
effect, but then it 
is also present in 
the control wavy 
grid.

Correctly predicts 
that dark spots 
should appear on 
the straight-
angled grid, but 
not with the wavy 
grid. The curved 
edges prevent 
the Gabor filters 
from bridging the 
gap between 
opposing 
corners.

A target’s internal contrast is influenced by the contrast of its surrounds. The causes are unclear, though are generally thought to depend on local 
normalisation of contrasts.

Textural contrast 
induction

Low contrast surrounds increase 
perceived target contrast, and this effect 
is most pronounced when the spatial 
frequency (SF) of the surround matches 
the target. In these example images the 
target on the left appears to have higher 
internal contrast than the same target on 
the right. The effect is most pronounced in 
the centre version with a matched spatial 
frequency.

Adapted 
from Chubb 
et al. (1989)

Target contrast is 
enhanced on a 
low-contrast 
background, and 
most powerfully 
for SF-matched 
background. 
Target SD is 
enhanced 4%, 
17% and 11% for 
high SF, 
matched SF, and 
low SF 
respectively.

Correctly predicts 
effect more 
powerfully than 
DoG (left). The 
target  SD is 
enhanced 19%, 
24% and 22% for 
high SF, 
matched SF, and 
low SF 
respectively.

Orientation-
dependent contrast 
induction (“tilt 
illusion”)

High contrast surrounds reduce perceived 
target contrast when texture orientations 
match. In the example here the upper 
target has bars aligned with the 
background (in phase). In the centre is the 
same target rotated 90 degrees 
(orientations mismatched), and it appears 
to have a higher contrast. We also include 
a final control where the aligned target is 
out of phase with the surround. This 
target also appears to have higher 
contrast than the in-phase upper target 
(implying the effect is not entirely 
controlled by orientation).

Custom 
figure with 
control, see 
Bertalmio et 
al. (2020) for 
similar effect.

Interestingly the 
DoG model 
(without 
orientation 
sensitivity) is able 
to simulate the 
effect, albeit 
weakly. 
Compared to the 
top, internal SD 
is 6% higher in 
the middle target, 
and 4% higher in 
the lower target.

The oriented 
model is able to 
predict the 
contrast induction 
effect. Compared 
to the top, 
internal SD is 
10% higher in the 
middle target and 
11% higher in the 
lower target.

Chromatic contrast 
induction

High chromatic-contrast surrounds reduce 
perceived chromaticity. The high and low-
contrast surrounds have the same 
luminance, red-green, and blue-yellow 
background averages. The targets appear 
to be more colourful (higher chromaticity) 
in the lower image.

Adapted 
from Brown 
& MacLeod 
(1997)

Chromaticity 
(average 
Euclidean 
distance from 
each target’s 
colour to the 
background 
average) is 19% 
higher on the low 
contrast 
background.

Chromatic 
channels use 
DoG, so only 
luminance varies 
(same 19% 
chromatic 
induction effect 
as left). The 
model also 
predicts 
chromatic grating 
induction in the 
high contrast 
surround.

Colour constancy 
and chromatic 
adaptation

Colour constancy causes surfaces to appear to have the same colour under different lighting colours, generally attributed to chromatic adaptation. The 
mechanism by which this occurs is poorly understood, and models of whole scene averages, local surround averages and local maxima do not explain the 
effects fully [Kraft & Brainard (1999)].

Lotto, Purves & 
Nundy cube

The cube is rendered with different 
simulated lighting conditions; yellow-tinted 
and blue-tinted. Colour-constancy causes 
grey tiles to appear blue in the yellow-
tinted example, and yellow in the blue-
tinted example.

Purves et al. 
(2002)

Models colour constancy effects (i.e. grey in the left becomes blue, grey on the 
right becomes yellow). Also models brightness induction effect.

Simulated chromatic 
adaptation of natural 
scene, here the linear 
red channel is 
multiplied by 5

Chromatic adaptation lets us (and other 
animals) estimate the colour of an object 
even as the colour of the illuminant shifts. 
So, for example, as illuminant colour 
alters with weather and time of day, 
objects appear to stay the same colour. 
The capacity for maintaining colour 
constancy through chromatic adaptation is 
limited at some point by saturation levels.

Generated 
example

Chromatic 
modelling only 
uses DoG, 
however in this 
case we use the 
Gabor model for 
luminance.

The model is largely robust against 
even comparatively extreme 
differences in a scene’s simulated 
illumination colour. Nevertheless, the 
model will start to show differences 
when the colours become so extreme 
that they saturate some spatial 
frequencies more. e.g. here the lower 
image has more blue-yellow 
saturation. Another interesting feature 
of the model is that it does not result in 
scene normalisation – this green 
scene of a woodland is predicted to be 
green by the model (not average grey)
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Neutral image

Colour Assimilation

David Novick

Generated

Colour Illusions

Chromatic adaptation lets us (and other 
animals) estimate the colour of an object 
even as the colour of the illuminant shifts. 
So, for example, as illuminant colour 
alters with weather and time of day, 
objects appear to stay the same colour. 
The capacity for maintaining colour 
constancy through chromatic adaptation is 
limited at some point by saturation levels.

Generated 
example

Chromatic 
modelling only 
uses DoG, 
however in this 
case we use the 
Gabor model for 
luminance.

The model is largely robust against 
even comparatively extreme 
differences in a scene’s simulated 
illumination colour. Nevertheless, the 
model will start to show differences 
when the colours become so extreme 
that they saturate some spatial 
frequencies more. e.g. here the lower 
image has more blue-yellow 
saturation. Another interesting feature 
of the model is that it does not result in 
scene normalisation – this green 
scene of a woodland is predicted to be 
green by the model (not average grey)

Red channel 
multiplied by 1.5

Blue channel 
multiplied by 3

Blue channel 
multiplied by 10

Chromatic 
simultaneous 
contrast

Simultaneous contrast causes a target’s colour to shift in the opposite direction as its surrounds. This was one of the first visual illusions 
to have been described 1000 years ago by Ibn al-Haytham [Sabra (1989)], who noted that green paint surrounded by blue appeared red-
tinted, while the same paint surrounded by yellow appeared green-tinted.

Chromatic 
simultaneous 
contrast

This example from Fairchild (2013) shows 
a blue-yellow grating. The red squares 
(upper image) all have the same colour, 
and the blue squares (lower image) all 
have the same colour. Simultaneous 
contrast causes the upper left red to shift 
to blue/purple, and the upper right red to 
shift to yellow/orange. Likewise the lower 
left blue shifts to darker blue and the 
lower right shifts to pale green.

Fairchild 
(2013)

Also known as the von Bezold spreading effect, this causes a colour to blend with the colour of its surrounds under certain circumstances. This is the opposite 
of simultaneous contrast, and early research established the conditions that cause each situation. See Kingdom (2017) for a review.

Spreading example 
with 3D spheres

This illusion developed by David Novick 
places beige spheres behind a colour 
grating (all these spheres are the same 
colour). Spreading causes dramatic colour 
shifts in the spheres depending on the 
colour of grating in front of them, making 
them appear red, green or blue.

Subtractive colour 
circles illusion

This illusion places a cyan and magenta 
circle above a blue-white grating. The 
third circle is white, however simultaneous 
contrast makes it appear yellow. 
Spreading combines with the 
simultaneous contrast to make the 
intersection between cyan and white 
appear green.

Monnier & Shevell 
illusion

Colour assimilation is found to be more 
powerful (i.e. colour blending with its 
surrounds more powerfully) with a striped 
surround than with a solid surround. In 
this example the orange ring is identical in 
all five upper instances, however the 
spreading effect is more powerful for the 
ring surrounded by stripes, than the rings 
surrounded by the same solid colours.

Adapted 
from Monnier 
& Shevell 
(2004)

Both models 
demonstrate 
powerful 
spreading 
effects, however 
they predict it 
should be more 
powerful with a 
solid surround.

When adjusting 
the model to give 
higher spatial 
frequencies a 
higher gain, this 
effect can be 
modelled 
correctly.

A number of the brightness illusions above are also powerful in a chromatic context (though not all). Interesting exceptions include illusory spots such as the 
Hermann grid (which our model suggests requires orientation-sensitive filters.
Chromatic Chevreul 
staircase

The concentric circles on the left appear 
to have internal gradients, but they are 
actually uniform flat colours. The black 
line surrounding the circles on the right 
eliminates the effect.

Adapted 
from Shapley 
et al. (2019)

The model is 
able to simulate 
the gradients in 
the staircase, 
and the control 
does show flat 
steps (although 
the effect 
reduces toward 
the centre)

The output figure 
here shows the 
RG signal, 
processed with a 
bandwidth of 5

Patterns increase 
perceived saturation

Shapley et al. (2019) show that a checker 
pattern (left) is perceived to have a higher 
saturation than the same colour averaged 
over a larger area (right), even though 
both have the same average cone 
stimulation.

We simulated Shapley et al.’s (2019) data by multiplying 
the input image’s RG signal by different values (graph’s 
x-axis). The output RG signal for the checker pattern 
increases more than the area-averaged RG value (y-
axis).
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