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Abstract 

Most whole slide imaging (WSI) systems today rely on the “stop-and-stare” approach, where, at 

each field of view, the scanning stage is brought to a complete stop before the camera snaps a 

picture. This procedure ensures that each image is free of motion blur, which comes at the 

expense of long acquisition times. In order to speed up the acquisition process, especially for 

large scanning areas, such as pathology slides, we developed an acquisition method in which the 

data is acquired continuously while the stage is moving at high speeds. Using generative 

adversarial networks (GANs), we demonstrate this ultra-fast imaging approach, referred to as 

GANscan, which restores sharp images from motion blurred videos. GANscan allows us to 

complete image acquisitions at 30x the throughput of stop-and-stare systems. This method is 

implemented on a Zeiss Axio Observer Z1 microscope in brightfield mode, requires no 

specialized hardware, and accomplishes successful reconstructions at stage speeds of up to 5,000 
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μm/s. We validate the proposed method by imaging H&E stained tissue sections. Our method not 

only retrieves crisp images from fast, continuous scans, but also corrects any defocusing that 

occurs during scanning. Using a consumer GPU, the inference runs at <20ms/ image. 

 

Introduction 

Numerous microscopy applications require large fields of view (FOV), including digital 

pathology 
1
, micro-mirror and biosensor assembly 

2
, and in vivo imaging 

3
. Acquisition time 

demands are a major bottleneck to fixing modest or partially filled FOVs in standard microscopy 

techniques. Improvements in both hardware and computation are thus actively sought to push the 

efficiency of optical measurements beyond traditional boundaries. Accelerating either image 

acquisition or analysis can have drastic benefits in diagnostic assessments and has been shown to 

provide critical advantages in cell detection
4
, disease screening

5
, clinical studies

6
 and 

histopathology
7,8

. 

In standard microscope systems, the objective lens dictates the resolution and field-of-

view (FOV), forcing a trade-off between the two parameters. In commercial whole slide 

scanners, the FOV is extended through lateral scanning and image mosaicking. Most forms of 

microscopy require serial scanning of the sample region, which slows down measurement 

acquisitions and diminishes the temporal resolution.  

There are three classes of strategies used in traditional microscopy for slide-scanning. 

The first technique uses the so called “stop-and-stare" style, which entails sequentially moving 

the sample across a scanning grid, pausing the stage, and exposing the camera for discrete 

recordings. This tactic generates high-quality images as a result of long measurement durations, 
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but is not especially time-efficient
9
. A second technique involves illuminating a moving sample 

with bursts of light that help circumvent the motion blur, which would otherwise compromise the 

image resolution. As a result of the short exposure times with this method, the resulting images 

have a relatively poor signal-to-noise ratio (SNR)
9
. Thus, there is a cost to optimizing image 

clarity or acquisition speed in these approaches. Third, there are line scanning 
10

 and time-delay 

integration (TDI) 
11

 methods, which use 1D sensors, where a camera vertically handles 

continuous signals line by line to reduce read-out time and increase SNR. However, even the 

latest versions of these instruments require specialized imaging equipment and readout 

methods
12,13

. 

Different imaging methods have been proposed to improve the throughput of scanning-

based microscopy techniques, such as multifocal imaging
14

 and coded illumination
9
. 

Computational methods of microscopy imaging
15-19

, such as ptychography, which scans and 

fuses portions of spatial frequencies, can produce large FOVs with resolutions that surpass the 

objective‟s diffraction limit. However, these solutions end up either complicating the microscopy 

system configuration, deteriorating the image quality, or extending the post-processing period. 

Additionally, iterative algorithms that are used in Fourier ptychography to reconstruct an image 

from a sequence of diffraction patterns often suffer from convergence issues
20

.   

The mechanical specifications of the scanning stage, rather than the optical parameters of 

the microscope, generally hinder the throughput performance of WSI systems
21

. The space-

bandwidth product (SBP), which is the dimensionless product of the spatial coverage (FOV) and 

the Fourier coverage (resolution) of a system, can quantify the information across an imaging 

system
22

. Enhancements to the SBP have been the objective of various innovations in imaging 
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techniques 
23-28

, but typically require either specialized hardware or time-consuming post-

processing.  

The advent of accessible deep learning tools in recent years has led to a new host of 

strategies to address lingering microscopy challenges 
27

, including super-resolution imaging 
29

, 

digital labeling of specimens
30-39

, Fourier ptychography microscopy
26

, and single-shot 

autofocusing
40

, among others
41

. These methods, which take advantage of recent breakthroughs in 

deep learning, need no modification to the underlying microscopic gear and produce faster and 

more comprehensive imaging results than traditional image reconstruction and post-processing 

algorithms. Generative adversarial networks (GANs), which comprise two opposing networks 

competing in a zero-sum dynamic, have been especially prominent in image-to-image translation 

tasks, due in large part to their outstanding execution of pixel-to-pixel conversions
31,42

. 

In this work, we propose a computational imaging technique, termed GANscan, which 

employs a GAN model to restore the spatial resolution of blurred videos acquired via continuous 

stage scanning at high speeds using a conventional microscopy system. Our method involves 

continuously moving the sample at a stage speed of 5,000 μm/s and an acquisition rate of 30 

frames per second (fps). This acquisition speed is on par with the state-of-the-art TDI technology 

of 1.7-1.9 gigapixels in 100 seconds 
11,13

. However, unlike TDI, our approach is using standard 

optical instrumentation, which lowers the threshold for broad adoption in the field. 

In contrast to other high-throughput imaging endeavors, GANscan adds no complexity to 

the hardware, with single frame restorations that can be computed in a matter of milliseconds. 

The results of this novel technique demonstrate that basic modifications in measurements, 

coupled with artificial intelligence (AI), can provide the framework for any rapid, high-

throughput scanning operation.  
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This paper is structured as follows: first, we present the workflow for continuous imaging 

microscopy in both slow and fast acquisitions. Second, we describe the theory behind blur 

motion artifacts and why deconvolutions are limited in restoring the spatial bandwidth of control 

images. Third, we discuss the imaging procedures and registration of slow-moving samples with 

the motion-smeared ones. Fourth, the parameters of the GANscan network are explained, as well 

as the data processing techniques prior to model training. Lastly, reconstruction performances are 

evaluated using an unseen test set, which is also compared against deconvolutions using standard 

image metrics. 

 

Results 

Workflow 

Figure 1 depicts the workflow of our approach. To demonstrate the benefits of this technique, 

we imaged a large sample of a pathological slide of a ductal carcinoma in situ (DCIS) biopsy, 

covering roughly half a standard microscopy slide area (~30 mm x 15 mm). The slide was 

scanned in a row-major configuration, capturing movies across the slide horizontally (Fig. 1a). 

There were no modifications to the standard commercial brightfield microscope (Axio Observer 

Z1, Zeiss), and the only adjustments in the measurement were the speed of the stage and the 

continuous recording of the camera.  In order to obtain ground truth images for training, the same 

rows were captured at a slow (50 μm/s) stage speed and at the same exposure time of 2 ms. Once 

pairs of sharp and defocused images were assembled through Pearson correlations, a GAN 

network was trained to enable restoring unseen motion blurred micrographs (Fig. 1b). 
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Theory  

At rest, let the image be ( , ).I x y  During the sample translation, the translated image, I , 

has the following time dependence: 

 ( , ; ) ( , )I x y t I x vt y   (1)  

where v  is the stage speed. Considering the camera integration time T, the “blurred” detected 

frame is then: 

 

2

2
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where ( )
t

T
  is the 1D rectangular function of width T. The integration is the sum of the frames 

accumulated during the acquisition time T  (Fig. 2a). 

Using the central-ordinate theorem 
43

: 
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where  is the angular frequency. Since ( , ) [ ( ), ],
x

I x vt y I v t y
v

    the temporal Fourier 

transform reads 
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where   indicates the Fourier transformation.  
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Using the convolution theorem 
44

, Eq. 3 can be rewritten as: 
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   (5) 

In Eq. 5, we recognize a Fourier transform of a product, which yields the following convolution 

operation, 

 ( , ) ( , ) ( )x

v

x x
I x y I y

v vT
 ⓥ , (6) 

where x

v

ⓥ  indicates the convolution operator over the variable x/v, which has dimensions of 

time. This result captures the physical description of the image spatial blurring as the result of a 

temporal convolution operation. Thus, the smeared image is the sharp image convolved along 

the direction of the scan by a rectangular function, which has a width proportional to the 

acquisition time.  For a scanning speed of 5,000v m s and 2T ms , 10vT m . This 

corresponds to a length roughly twenty times the diffraction resolution of our imaging system. 

Deconvolution 

We performed the 1D deconvolution on our acquired images, thus, inverting the effect of 

Eq. 5, and used the results as the standard of comparison for the deep learning results. These 

deconvolutions were evaluated by first establishing the best match through the „convolve‟ filter 

in ImageJ, and then using the same line dimension in MATLAB with the „deconvblind‟ function. 
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This tool deconvolves an image via the maximum likelihood algorithm and a starting estimate of 

the point-spread function (PSF), which in our case is a single row of 47 pixels of value 1.  

A sample frame of the biopsy and its convolution with the line of the blur width are 

shown in Figs.2 b-c, and deconvolving again produces the original frame but with compromised 

high spatial frequencies (Fig.2d). The artifacts of lines along both edges of the image are a result 

of the filter brushing against the boundaries of the image. The deconvolution operation succeeds 

at shrinking features horizontally to restore their true width. However, the image still suffers 

from poor overall resolution, due in part to the higher spatial frequencies being permanently lost 

through the convolving effect of imaging a rapidly moving sample. This shortcoming is our 

principal motivation of employing deep learning techniques to predict the standard spatial 

bandwidth.  

 

Image pair registration 

In order to prepare pairs of blurred and sharp images for training, consecutive sharp 

images in the fast videos were matched to their motion-smeared counterparts by evaluating the 

maximum Pearson correlations in a set of slightly shifted clear images (Figs. 3, S1). The “ground 

truth” images were captured at a stage speed of 50 μm/s, which, at the acquisition time of 2 ms 

results in a blur size of 0.1 μm, i.e., below the diffraction limit of our system. As a result, there 

are approximately 100 frames in the sharp videos for each image in the 5,000 μm/s, motioned 

blurred videos, as shown in Figure 3a.  

Evaluating the Pearson correlation between the input (smudged) frame and a series of 

potential ground truth frames produces values ranging from 0.4 to 0.76. The frame associated 
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with the highest Pearson correlation value was selected as the ground truth. It should be noted 

that the rapidly captured images expose the camera to a larger field of view than the slowly-

captured ones by the length of the blur, which is 10 μm for a scanning speed of 5,000 m/s. This 

difference is delineated in Figure 3b.  

 

Generative adversarial network (GAN) 

Once the registered pairs were assembled, they were cropped and resized to dimensions 

of 256x256x3 (3 RGB color channels) for faster computation, with 1,050 images earmarked for 

training and 50 reserved for testing.  The architecture of the model consists of a generator U-net 

with eight encoding and decoding layers, and a four downchannel discriminator, all displayed in 

Figure S3. As shown in Figure 4, the network input is the motion-blurred image and the control 

is the slowly scanned, sharp image. Since the slide was scanned in a row-major style, the margin 

of additional field of view is always on the same side, which is likely to help the network to undo 

the motion distortion. The GAN model was trained for over 200 epochs (Fig. 4c) until the loss 

function plateaued. Our results indicate that running the model on the training set produces 

nearly perfect restorations (Fig. 4d). The spatial power spectrum of the input image (Fig 4e) 

clearly shows a smaller range of higher spatial frequencies than that of the restored image (Fig 

4f). Interestingly, the power spectrum of the input image has higher spatial frequencies along the 

vertical axis as a result of the smearing produced along the x-axis, whereas the power spectrum 

of the restored image is broader and more isotropic.  

 

Performance testing 
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Once the training was complete, the model was tested on 50 unseen images. A sample of 

these are displayed in Figure 5. The network does an effective job at restoring the high spatial 

frequencies of epithelial and stromal (fibrous) areas, as compared to the line deconvolutions (Fig. 

S2a). Since the cellular and fibrous areas are recovered with such high fidelity, the diagnostic 

information in the tissue images is maintained in full. In terms of numerical assessments, the test 

sets achieved an average structural similarity index measure (SSIM) of 0.82 and a mean peak 

signal-to-noise-ratio (PSNR) of 27 when calculated against their controls. For the same dataset, 

the deconvolution results gave inferior results of SSIM and PSRN of 0.71 and 26, respectively.  

Large mosaics of the motioned blurred images were also reconstructed (Fig. 6) by 

concatenating the images horizontally and vertically in their respective scanning order, 

producing a 7 x 15 stitch of roughly 3 mm x 1.5 mm in size. The difference in clarity is much 

less apparent with such a large FOV, but at a closer look it is evident there is significant 

improvement in the overall distinction of features. Stitches for 4,000 μm/s were also made for 

comparison (Fig. S4). 

 

Discussion  

We presented a high-throughput imaging approach, GANscan, which employs 

continuous motion deblurring using labelled GAN reconstruction. Through both theoretical and 

experimental analysis, we have demonstrated the applicability of our method to brightfield 

microscopy on tissue slides. Our results indicate that GAN models provide, in combination with 

greater stage speeds, up to 30x faster acquisition rates than in conventional microscopy. This 

throughput is superior or on par with the state-of-the-art rapid scanning techniques, which in turn 
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use nonstandard hardware. GANscan requires no specialized equipment and generates restored 

images with successfully removed motion blur. Of course, should a camera with a higher frame 

rate be used, the stage speed can be scaled up proportionally. Further, our proposed deep learning 

deblurring method produces high-quality reconstructions which restores the high frequency 

portions of the tissue, as opposed to deconvolution operations.  

Such a methodology will not only provide a drastic benefit in the clinical setting for 

pathologists, but at the research level as well, including cell cultures of large dimensions. Future 

work should address achieving similar results with different microscope modalities, such as 

fluorescence and quantitative phase imaging.  

 

Material and methods  

Image acquisition  

Images were acquired with a commercial brightfield microscope (Axio Observer Z1, 

Zeiss) and a Point grey color camera, using a Zeiss EC Plan-Neofluar 40x/0.45 NA objective. 

The sample is a ductal carcinoma in situ (DCIS) breast tissue biopsy. The stage speed and 

coordinates were precisely manipulated using the Zeiss MTB (MicroToolBox) software, and the 

camera settings, such as shutter time (2 ms), frame rate (30 pfs), and gain (8 dB), were selected 

using the Grasshopper GRAS- 2054C software. For stitching images, a vertical step size of 200 

µm was used, and horizontal videos were acquired for 1 minute at the slow speed of 50 µm/s to 

ensure the correspondence of 15 horizontally adjacent frames in the video captured at 5000 µm/s. 

The video of each row at the accelerated stage speed was 0.6 seconds.  After the image 

acquisition, off-line processing involved image registration of blurry and sharp images through 
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MATLAB with Pearson correlation estimates. For the 5,000 µm/s datasets, we extracted 

256x256 crops from paired images to create a training volume of 1050 image pairs.  

We performed deconvolutions on each input test image and compared them with 

GANscan results, as shown in Figure S1. The mean SSIM of the GANscan images is 0.82, while 

the deconvolved images had an SSIM of 0.73, when compared to the same control images. 

PSNR values were also calculated with GANscan outperforming deconvolutions 27 to 26. All 

analysis was performed in MATLAB. 

Machine learning  

The conversion of motion blurred micrographs to sharp images was accomplished using 

the conditional generative adversarial network (GAN) pix2pix (Fig. S3) 
45

. 1050 blurry and sharp 

brightfield RGB image pairs were passed through the network. Original dimensions of the 

micrographs were 600x800x3 pixels. These were cropped and resized to 256x256x3 pixels 

before being trained on. The learning rate of the generator‟s optimizer was 0.0002 and the 

minibatch size was set to 1. In this network, a generator (G) is trained to produce outputs that 

cannot be distinguished from ground truth images by a trained adversarial discriminator, D, 

which is designed to perform as well as possible at detecting the generator‟s incorrect data 
45

. 

The GAN loss is one where G works to minimize the value while an adversarial D attempts to 

maximize it: 

, ,( , ) [log ( , )] [log(1 ( , ( , ))]cGAN x z x zL G D E D x y E D x G x z       (1) 

Where 
,x zE  is the anticipated value of all real and fake instances, x is the image, and z is the 

generated random noise. An L1 loss is then combined with this to generate the discriminator‟s 

total loss function.  
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In order to confirm the accuracy of the translated images, we tested the model on 50 

unseen images. Training was performed over 200 epochs, with datasets that were augmented 

beforehand through rotations and mirroring. Overall, the training took 7 hours, and the inference 

required less than 20 ms per image (256x256 pixels). 
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Figure 1.  a Scanning stage of the AXIO observer Zeiss microscope with an example slide showing the row-major continuous 

scanning direction. b Motion blurred reconstruction scheme using a slow-moving stage as the control for GAN training. 
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Figure 2. a A few frames from a video taken with a stage speed of 50 μm/s, with time labels indicating a slow forward 

movement. b Middle image of the sharp sequence a used as ground truth. c The convolution of b with the blur function. d The 

deconvolution of c with the blur function. Scale bar 25 µm. 
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Figure 3. a Registration of images through maximum Pearson coefficient between sharp frames at 50 μm/s and b the blurry one 

at 10,000 μm/s. The scanning measurement is compared with each sharp contender (green dashed lines) and the resulting 

coefficient score is listed above each image. The best match is delineated in red, indicating the sharp image bearing the overall 

highest resemblance to the streaked measurement. The dashed rectangle at left edge of b outlines the extra margin of features 

contained in a blurry image (10 μm). 
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Figure 4. a Training example of the blurry input, b and control, c with the loss plot. d The generated result for a training instance. 

e The power spectra of the input and f of the result with a circle outlining the diffraction spot.  Scale bar in a, b, and d 25 µm. 
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Figure 5. a-f Test set conversion of 5000 µm/s with control of 50 µm/s. Scale bar 25 µm. 

 

 

Figure 6. a Stitch of the motion blurred images, b as well as the reconstructed GANscan, showing a large area of a breast biopsy, 

with respective zoom-ins. Scale bar 25 µm. 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 24, 2022. ; https://doi.org/10.1101/2022.02.22.481502doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481502

