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Abstract 

Neutrophils are the most abundant leukocytes in human blood and are essential components of innate immunity. 

Until recently, neutrophils were considered homogeneous and transcriptionally inactive cells, but both concepts 

are being challenged. To date, neutrophils have been characterized based on discrete parameters including cell-

surface markers, buoyancy, maturation status, or tissue localization. Single-cell RNA sequencing (scRNA-seq) 

offers an unbiased view of cells along a continuum of transcriptional states. However, the use of scRNA-seq to 

characterize neutrophils has proven technically difficult, explaining in part the paucity of published single-cell 

data on neutrophils. We have found that modifications to the data analysis pipeline, rather than to the existing 

scRNA-seq chemistries, can significantly increase the detection of human neutrophils in scRNA-seq. We have 

then applied a modified pipeline to the study of human peripheral blood neutrophils. Our findings indicate that 

circulating human neutrophils are transcriptionally heterogeneous cells, which can be classified into one of four 

transcriptional clusters that are reproducible among healthy human subjects. We demonstrate that peripheral 

blood neutrophils shift from relatively immature (Nh0) cells, through a transitional phenotype (Nh1), into one of 

two endpoints defined by either relative transcriptional inactivity (Nh2) or high expression of type I interferon-

inducible genes (Nh3). Transitions among states are characterized by the expression of specific transcription 

factors. By simultaneously measuring surface proteins and intracellular transcripts at the single-cell level, we 

show that these transcriptional subsets are independent of the canonical surface proteins that are commonly used 

to define and characterize human neutrophils. These findings provide a new view of human neutrophil 

heterogeneity, with potential implications for the characterization of neutrophils in health and disease. 
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Introduction 

The understanding of heterogeneity and plasticity in hematopoietic cells is changing rapidly. Historically, a 

combination of cell surface markers, transcription factors, and profiles of secreted cytokines has been employed 

to classify cells of similar histologic appearance and ontogeny into discrete groups. The implicit assumption of 

this categorization, that the resulting cell “populations” or “subsets” represent polarized and fixed states, has been 

questioned for the past two decades by an extensive body of evidence. This is exemplified by the recent evidence 

that T cells and macrophages, which have long been classified in terms of subsets, can convert from one state to 

another and display mixed or partial profiles 1–3. This evidence suggests that hematopoietic cells may be best 

understood along a continuum of differentiation and activation states. In this context, single-cell RNA sequencing 

(scRNA-seq) has been an important addition to the set of analytical tools, as cells in different states may express 

different sets of genes and scRNA-seq offers a less biased view of cells along a continuum of transcriptional 

states. Our understanding of the spectrum of cell states at baseline, in response to specific stimuli, and in disease, 

remains limited. The extent to which different transcriptional states correspond to older classifications based on 

a limited number of proteins is also unclear for most cell types. 

Neutrophils are the most abundant leukocytes in human blood and essential components of the innate immune 

system. Until recently, they were thought to be a fairly homogeneous and transcriptionally inactive cell type, but 

both concepts have been convincingly challenged in recent years 4,5. Although human neutrophils have lower 

total RNA content per cell than macrophages 6 and other hematopoietic cell types (Supplemental Table 1), they 

express a broad range of genes in resting conditions 7,8 and their transcriptome is strongly reactive to 

environmental stimuli 9–11. Neutrophils have been characterized based on discrete parameters, including cell-

surface markers, buoyancy, histologic characteristics associated with maturation status, or tissue localization. 

These observations have led to the emergent concept of neutrophil heterogeneity, which has been the subject of 

recent reviews 4,5. In these, it has been proposed that single-cell sequencing technology is a promising avenue for 

a more comprehensive and less biased characterization of neutrophil states. Recent studies in mouse models, with 

a limited number of human samples for comparison, have applied scRNA-seq to the study of circulating and bone 

marrow neutrophils, and have indeed documented the existence of a range of transcriptional states 12,13. Direct 

evidence for distinct transcriptional subsets of human neutrophils has also been provided, by our group and others, 

in scRNA-seq studies of sex differences in the neutrophils of healthy donors 14 and in patients with lung cancer 
15 or COVID-19 16,17. However, given their low per-cell RNA content, scRNA-seq in neutrophils remains 

technically challenging, explaining in part the paucity of scRNA-seq reports describing human neutrophils 

compared to other hematopoietic cell types. To address this, we first evaluated the technical aspects of scRNA-

seq data generation and analysis. We found that a modified pipeline is necessary for proper identification of 
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neutrophils in scRNA-seq data. We then applied such a pipeline to the transcriptional characterization of human 

circulating neutrophils from multiple healthy donors at the single-cell level. 

Results 

A modified analysis pipeline is required for the adequate identification of neutrophils in single-cell RNA-

seq data 

The standard analysis pipeline for single-cell RNA-seq data generated with the 10X Genomics platform and 

Illumina short-read sequencing is implemented in the widely used Cell Ranger software 18. This pipeline involves 

grouping of the sequencing reads by their cell of origin (barcode) and RNA molecule of origin (unique molecular 

identifier, or UMI). This is followed by a cell-calling step, in which individual barcodes are determined to be 

empty (not corresponding to any cell) or to represent a captured cell. The current cell-calling algorithm employed 

by Cell Ranger is based on the EmptyDrops method 19. In the first step, the algorithm sets a threshold based on 

the number of UMIs associated with each barcode and those that pass this threshold are classified as cells. In the 

second step, a set of barcodes with low UMI counts is selected and a background model is generated. The RNA 

profile of each barcode that was not called as a cell in the first step is then compared against the background 

model and those whose profile disagrees with that of the background model are called as cells. The resulting 

barcodes are then output in the form of a filtered matrix of the UMI counts corresponding to each gene, in each 

called cell. The goal of the second step is to identify cells that may have lower RNA content than those identified 

in the first step. 

To test the ability of this method to reliably identify human neutrophils in a mixed-cell population, we first 

generated single-cell RNA-seq data from a red blood cell (RBC)-depleted whole-blood sample and analyzed it 

with the standard Cell Ranger pipeline described above. Of the called cells in the filtered matrix, 27.2% were 

identified as neutrophils by an unbiased algorithm based on reference transcriptomic datasets 20, which was a 

clear underrepresentation of neutrophils in human whole blood (Figure 1A). We then visualized the frequency 

distribution of the number of features per barcode (genes per cell), contrasting the filtered matrix with the 

unfiltered matrix (Figure 1B). From this, it was clear that the filtered matrix excluded many events that were near 

the lower end of the distribution yet formed a peak that is distinct from the null set of events with zero or near-

zero features. We hypothesized that neutrophils, having lower overall transcript abundance than other cell types, 

could be enriched in this excluded cell population. To test this, we modified the analysis pipeline, departing from 

the unfiltered matrix and lowering the threshold of genes per cell based on the observed distribution. With this 

modification, the proportion of cells that were identified as neutrophils rose to 58.7%, which is within the expected 

range of neutrophils in human whole blood (Figure 1C). Correspondingly, the proportions of other nucleated cell 

types (T cells, B cells, NK cells, and monocytes) either fell to, or remained within, their normal ranges in human  
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peripheral blood, indicating a more expected representation of the cell composition of the sample. Overlaying the 

distribution of genes per cell of the events now identified as neutrophils on that of all events in the raw matrix 

indicated that a substantial proportion of the events in the distinct peak we had previously observed, in fact, 

correspond to neutrophils (Figure 1D). To verify the identity of the cells that were rescued by the modified 

analysis pipeline as neutrophils, we utilized the bioinformatic tool NeutGX 14, and a publicly available dataset 

(GEO: GSE112101) of RNA-seq data in nine primary human immune cells 11, to identify genes that are highly 

expressed in neutrophils and specific to neutrophils (FCGR3B) or to myeloid cells (CSF3R, NAMPT). The 

expression of these neutrophil marker genes is high in the cells that were rescued by the modified analysis pipeline 

and classified as neutrophils, confirming their identity (Figure 1E). 

In practice, depending on the requirements of specific experimental settings, human neutrophils are purified by 

different methods. Therefore, we systematically compared the performance of the standard or modified pipelines 

for neutrophil scRNA-seq in cells purified by three common methods. Whole blood from each of seven healthy 

donors was simultaneously processed by three methods prior to cell capture for scRNA-seq: RBC-depleted whole 

blood, granulocytes from density-gradient centrifugation, and immunomagnetically-purified neutrophils. In all 

sample types, the number of neutrophils detected was significantly higher with the modified scRNA-seq pipeline 

than with the standard pipeline (Figure 1F). 

We then asked whether the same principle could be applied to improve the identification of neutrophils in scRNA-

seq experiments with samples from other tissues. To test this, we analyzed a recently published dataset (GEO: 

Figure 1. Pipeline for identification of neutrophils in scRNA-seq data. (A) Distribution of cell types 

identified in RBC-depleted whole-blood in a scRNA-seq analysis performed with the filtered matrix output 

from Cell Ranger (standard pipeline). Data from one capture are shown. (B) Frequency distribution of the 

number of features per barcode (genes per cell) for the dataset shown in (A), comparing data from the filtered 

(red) versus raw (grey) matrices. (C) Distribution of cell types identified in the dataset shown in (A) when 

the analysis is performed with the raw matrix output from Cell Ranger (modified pipeline). (D) Frequency 

distribution of the number of features per barcode (genes per cell) for the dataset shown in (A) and (C), with 

the distribution for cells identified as neutrophils in the analysis of the raw matrix (modified pipeline) 

highlighted in black. (E) Feature plot on the UMAP shown in (C) for 3 genes expected to be highly expressed 

in human neutrophils. (F) Number of neutrophils detected by the standard or modified pipelines in samples 

from the same subjects processed by three methods. Each dot represents one biological replicate (one 

unrelated healthy donor). Statistical testing results are from a paired t-test. (G) Proportion of neutrophils 

identified in a published scRNA-seq dataset of BAL fluid from patients with severe COVID-19 infection, 

comparing the results of the standard pipeline (left) with those of the modified pipeline (right). 
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GSE145926) of bronchoalveolar lavage (BAL) samples in patients with severe COVID-19 21. With the standard 

analysis pipeline, 13.1% of cells were identified as neutrophils, compared to 55.8% of cells with the modified 

pipeline (Figure 1G). 

A related approach was proposed recently online (https://support.10xgenomics.com/single-cell-gene-

expression/software/pipelines/latest/tutorials/neutrophils. Accessed 9 February 2022). It involves bypassing the 

second step of the standard cell-calling algorithm, forcing the Cell Ranger program to call a set number of events 

as cells, and including intronic reads. This is followed by filtering of non-cell events based on the number of 

genes per cell. We performed a side-by-side comparison of this approach with our simpler, modified pipeline, 

and found that both are capable of rescuing neutrophils in single-cell data, and comparable in terms of the specific 

cells and genes identified (Supplemental Figure 1).  

These results indicate that a modified analysis pipeline is required for adequate identification of neutrophils in 

scRNA-seq data, and that the cell-calling threshold along the frequency distribution of genes per cell is the key 

variable that has prevented standard analysis pipelines from identifying neutrophils. 

Human circulating neutrophils consist of distinct and reproducible transcriptional subsets 

Recent observations by our group and others indicate that neutrophils from humans and mice exist in distinct 

transcriptional states 12–14,16,17. Taking advantage of the improved analysis pipeline, we directly evaluated this by 

performing scRNA-seq on highly pure and abundant neutrophil samples from healthy donors. To minimize the 

risk of potential changes in gene expression induced by gradient centrifugation, osmotic lysis of RBCs, or 

positive-selection antibodies, we studied neutrophils purified directly from whole blood by immunomagnetic 

negative selection. Flow cytometry was performed on each sample to document that the cells loaded for capture 

were highly pure, viable, and with no evidence of early apoptosis (Figure 2 A-C and Supplemental Table 2). As 

expected, the modified analysis pipeline identified a high proportion of neutrophils that would have been excluded 

by the standard pipeline (Figure 2D). A total of 72,183 purified circulating human neutrophils were analyzed. 

This analysis revealed four distinct transcriptional clusters (Fig. 2E), which were highly reproducible in samples 

obtained from seven unrelated healthy donors and processed independently (Figure 2F). For clarity of display and 

to facilitate future comparisons of our data with those from other studies in humans or other species, we have 

classified these clusters as Nh0 (neutrophils, human, cluster 0) through Nh3. A table with the complete set of 

marker genes for each cluster is provided in Supplemental Dataset 1. 

Nh0 neutrophils represent approximately 20% of circulating neutrophils (mean: 22.1%, range: 14.4 – 30.1%) and 

are characterized by higher expression of genes that have been found to be characteristic of bone marrow 

neutrophils and are therefore associated with more immature neutrophil states 8,13.  These include the genes 

MMP9, ITGAM, FCN1, CAMP, CYBB, CST3, which encode known or candidate neutrophil granule proteins 8,22. 
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The genes encoding vimentin (VIM), thioredoxin (TXN), and several proteins of the S100 family (S100A6, 

S100A8, S100A9, S100A11, and S100A12) are also differentially expressed in Nh0 cells compared to other 

clusters. Of note, the gene encoding the membrane metalloendopeptidase CD10, which at the protein level is 

associated with more mature neutrophils, is also more highly expressed in Nh0 cells, highlighting the 

complementary information offered by protein- and transcript-level measurements (Figures 3A and 3B). Nh1 

neutrophils represent the majority of circulating neutrophils (mean: 57.1%, range: 40.3 – 71.3%) and appear to 

be in a more mature state, as indicated by higher expression of the genes AIF1, CXCR2, and TXNIP (Figures  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 24, 2022. ; https://doi.org/10.1101/2022.02.22.481522doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481522
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3A and 3B). Compared to other clusters, Nh1 neutrophils have a less distinct pattern of expression: contrary to 

other clusters, none of the top expressed genes in Nh1 are uniquely expressed in that cluster (Figure 3C). Nh2 

neutrophils, which represent approximately 14% of circulating neutrophils (mean: 13.6%, range: 5.8 – 41%), are 

characterized by higher expression of two specific long non-coding RNAs (MALAT1 and NEAT1) and of the gene 

encoding the G-CSF receptor (CSF3R), relative to other clusters (Figure 3B). Finally, Nh3 neutrophils, which 

correspond to approximately 7% of circulating neutrophils (mean: 7.2%, range: 3.8 – 12.6%), represent a very 

distinct cellular state, with substantially higher levels of expression of type I interferon (IFN)-inducible genes 

including HERC5, IFI16, IFIT1, IFIT2, IFITM2, IFITM3, and ISG15 (Figure 3A-D). Given that the marker genes 

for Nh3 neutrophils are primarily protein-coding genes expressed at very low levels in any of the other clusters, 

we tested whether this IFN-regulated gene-high neutrophil phenotype was also detectable at the protein level. We 

performed single-cell Western blotting in purified neutrophils, using antibodies recognizing ISG15 and IFITM3 

(Figure 3E). We found discrete sets of neutrophils that express these proteins at high levels, and the proportion 

of cells in which one or both proteins is detectable is within the percentage range for Nh3 neutrophils calculated 

from the gene expression data (Figure 3E-F). Interestingly, most of the cells that express both of the ISG15 and 

IFITM3 transcripts are from the Nh3 cluster (Figure 3F), indicating the enrichment for IFN-related genes in that 

cluster. 

We compared the distribution of the number of genes detected in cells from each cluster and found that Nh2 

neutrophils have a substantially lower number of genes per cell (Figure 3G). We then asked whether this 

difference was the result of a true biological difference between the cells in that cluster or an artifact of the 

clustering algorithm, whereby cells with lower read counts were classified as a distinct group. To test the latter 

hypothesis, we performed a down sampling analysis, in which we re-ran the entire analysis pipeline, but reducing 

the input reads in one of the samples by 50%. If the Nh2 cluster was in fact simply the result of cells with lower 

read counts being clustered together, then we would expect the down sampling of input reads to result in a higher 

proportion of Nh2 neutrophils. We found no change in the proportion of Nh2 neutrophils after down sampling, in 

Figure 2. Circulating human neutrophils consist of distinct transcriptional subsets. (A-C) Flow cytometry 

documentation of human neutrophil purity and viability. A representative sample is shown for each panel. Purity 

was defined as the proportion of CD66b+CD16+ events among CD45+ events, as shown in (A). Viability was 

assessed by uptake of an amine-binding dye, as shown in (B). Evidence of early apoptosis was assessed by 

annexin-V staining, as shown in (C). Results for each sample are in Supplemental Table 2. (D) Frequency 

distribution of the number of features per barcode (genes/cell) in the purified neutrophils dataset, comparing 

data from the filtered (purple) and raw (black) matrices. (E) Two-dimensional projection (UMAP) of 72,183 

purified circulating human neutrophils showing clusters Nh0 - Nh3. (F) Bar graph showing the cluster 

proportion of the neutrophils from each of seven healthy controls (HC1 – HC7). 
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the reduced sample or overall (Supplemental Figure 2), indicating that this cluster is unlikely to represent a 

clustering artifact driven by cells with lower read counts and instead more likely represents a distinct cluster of 

neutrophils with higher expression of specific genes (Figure 3B) but lower overall transcriptional output. 

As with other hematopoietic cell types, neutrophils have been studied and classified almost exclusively in terms 

of discrete cell-surface markers measurable by flow cytometry or immunohistochemistry. To test whether the 

observed transcriptional subsets correlate to surface expression of one or more of the canonical proteins that have 

been used to characterize and group neutrophils, we performed Cellular Indexing of Transcriptomes and Epitopes 

by Sequencing (CITE-seq), with a custom panel of oligonucleotide-conjugated antibodies targeting CD10, 

CD11b, CD11c, CD14, CD15, CD16, CD24, CD33, CD35, CD45, CD66b, CD107a, CD184, and HLA-DR. This 

method allows simultaneous measurement of surface protein abundance and transcriptome characterization at the 

single-cell level 23. We found that the surface expression level of each of these proteins was similar among Nh0  
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– Nh3 neutrophils (Figure 3H and Supplemental Figure 3), indicating that these four transcriptional subsets offer 

a view of circulating human neutrophil heterogeneity that is independent of the canonical surface proteins that 

are commonly used to define and characterize these cells. 

Nh2 and Nh3 cells are endpoints in the transcriptional trajectory of human neutrophils 

An important advantage of scRNA-seq is that it offers an opportunity to study cells along a range of transcriptional 

states, including those that fall between theoretically more stable endpoint states. This has, in turn, offered the 

possibility of ordering single-cell states along pseudotemporal trajectories (pseudotime), which indicate how far 

a given cell has moved along a continuum of biological progress. We employed the R package Monocle 3 24 to 

construct a single-cell trajectory of circulating human neutrophils, with the immature (Nh0) neutrophils as the 

root. From this, it is evident that the Nh2 and Nh3 clusters represent distinct endpoints in the transcriptional 

trajectory of circulating neutrophils, while the Nh1 cluster represents an intermediate state (Figure 4A). We then 

looked for genes that vary between clusters of circulating neutrophils and grouped these into modules that have a 

similar pattern of expression. This identified five modules of co-expressed genes (Figure 4B), which we mapped 

back to the trajectory map. Module 1 genes are most highly expressed in the immature (Nh0) neutrophil cluster, 

module 3 genes in the NEAT1/MALAT1 (Nh2) neutrophil cluster, and module 5 genes in the IFN (Nh3) 

neutrophil cluster. The genes in modules 2 and 4 are more highly expressed in the transitional (Nh1) neutrophil 

cluster, but they represent distinct regions along the trajectory: module 2 genes appear to characterize a  

Figure 3. Neutrophil transcriptional subsets vary by type and number of genes expressed. (A) Heatmap 

of the top marker genes from each cluster. Each row represents one gene and each column represents one cell. 

The cells corresponding to each cluster are grouped, as indicated by the colored bars. The top marker genes 

were defined by their adjusted p-value and log2 (fold-difference) on differential expression analysis 

(expression in a cluster versus expression in all other clusters). Genes with adjusted p-value = 0 and log2FD 

≥ 0.5 in any cluster are shown. (B) Dot plot of the top 3 marker genes for each neutrophil cluster, showing the 

average expression level and the percent of cells expressing the gene in each cluster. (C) Venn diagram 

displaying the intersection of the top genes in each cluster by absolute expression. (D) Violin plot showing the 

score per cluster for a panel of IFN-related genes, as described in 27. (E) Single-cell Western blot on 3,300 

neutrophils, with antibodies against the proteins ISG15 and IFITM3. (F) Neutrophil single cell RNA 

expression of the same targets as in (F) – ISG15 and IFITM3. (G) Violin plot of the number of genes per cell 

in each cluster (left) and distribution of the number of genes per cell on the UMAP projection (right). (H) 

Ridge plots showing the distribution of CD10, CD15, and CD66b surface protein expression among cells in 

each transcriptional cluster. Surface expression and RNA-seq were measured simultaneously, by CITE-seq. 

Data for 11 additional neutrophil surface markers are shown in Supplemental Figure 2. 
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Figure 4. Nh2 and Nh3 cells are endpoints in the transcriptional trajectory of circulating human 

neutrophils. (A) Trajectory analysis showing the learned graph on the UMAP space with the pseudotime 

ordering by color. (B) Heatmap showing unsupervised classification of genes that vary across clusters of 

circulating neutrophils into five clusters of co-expressed genes. (C) Correspondence between the five modules 

of co-expressed genes and the four transcriptional clusters of circulating human neutrophils. (D) Venn diagram 

of transcription factors associated with cis-regulatory elements most likely to regulate the co-expressed genes 

in each module. Gene lists from the modules were used as input in binding analysis for regulation of 

transcription. The overlap across modules for the top-ranking transcription factors (Irwin-Hall p-value < 0.01) 

is shown. (E) Transcription factor gene expression changes along the transcriptional trajectory of circulating 

human neutrophils. Three patterns are shown: transcription factors expressed along the Nh0-Nh1-Nh3 

trajectory, but not in Nh2 cells (left); transcription factors expressed in the transition from Nh1 to Nh3 cells 

(middle), and transcription factors expressed in the transition from Nh1 to Nh2 cells(right). 
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transitional state between Nh0 and Nh2 neutrophils, whereas module 4 genes characterize a transitional state 

between Nh0 and Nh3 neutrophils (Figure 4C). 

Modules of co-expressed genes offer an opportunity to infer common transcriptional regulatory elements, without 

the assumptions and potential biases inherent to inference based on known functions or on genomic localization 

with respect to other genes or to DNA sequence motifs. To infer candidate transcription factors that regulate the 

sets of co-expressed genes in each neutrophil module, we employed binding analysis for regulation of 

transcription (BART), a method that relies on experimental evidence of protein-DNA interactions for over 400 

known transcription factors across a variety of cell types 25. We then selected the transcription factors associated 

with cis-regulatory elements most likely to regulate the co-expressed genes from each module (Irwin-Hall p-value 

< 0.01) and compared these across modules. The modules corresponding to Nh2 and Nh3 neutrophils have the 

highest number of predicted transcription factors uniquely associated with them (Fig. 4D). The transcription 

factors at the intersections of neutrophil modules are also informative, as the expression of genes encoding 

specific transcription factors varies along the transition from one neutrophil cluster to another. For example, the 

genes encoding the transcription factors FLI1, MAX, SPI1, and YY1 are expressed along the trajectory from the 

immature (Nh0) to the IFN (Nh3) states, but not in the MALAT1/NEAT1 (Nh2) neutrophil cluster (Fig. 4E, left). 

Similarly, the transition from the intermediate (Nh1) cluster to the IFN (Nh3) cluster, is marked by increased 

expression of genes involved in NFkB signaling (Fig. 4E, center). In contrast, the transition from the intermediate 

(Nh1) cluster to the NEAT1/MALAT1 (Nh2) cluster is characterized by increased expression of the genes 

encoding the transcriptional repressor FOXP1 and the methylcytosine dioxygenases TET2 and TET3. 

Our results support a model in which Nh2 and Nh3 cells represent endpoints in the transcriptional trajectory of 

circulating human neutrophils. Distinct sets of transcription factors, at least some of which are regulated at the 

level of transcription, orchestrate the transition from a less mature state (Nh0 cells) to one endpoint state or the 

other, via an intermediate state (Nh1 cells) that corresponds to the majority of circulating neutrophils. 

Discussion 

Our findings indicate that circulating human neutrophils are transcriptionally heterogeneous cells, which can be 

classified based on their transcriptional state into one of four clusters (Nh0-Nh3) that are highly reproducible 

among healthy human subjects. We demonstrate that neutrophils transition transcriptionally from relatively 

immature (Nh0) cells, through an intermediate phenotype (Nh1), into one of two endpoints defined by either 

relative transcriptional inactivity (Nh2) or higher expression of IFN-induced genes (Nh3). More broadly, our 

findings demonstrate the feasibility of applying scRNA-seq to the study of human neutrophils obtained by 

different methods, by means of a modified analysis pipeline that significantly improves the identification of 

neutrophils in scRNA-seq datasets. 
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Recent studies have applied scRNA-seq to the study of murine neutrophil development in states of health or 

experimental infection 12,13, and have found clear evidence of neutrophil transcriptional heterogeneity. One of 

these studies also analyzed CD33+ cells sorted from whole blood from a human donor 12, while the other analyzed 

a publicly available scRNA-seq dataset generated from human bone marrow neutrophils as part of the Human 

Cell Atlas 13, suggesting that human neutrophils also exhibit distinct patterns of transcriptional heterogeneity. Our 

group and others have also provided recent evidence for transcriptional subsets of human neutrophils in scRNA-

seq studies of sex differences in neutrophils obtained from healthy donors 14 and in patients with lung cancer 15 

or COVID-19 16,17. However, due to their lower RNA content relative to other cell types, scRNA-seq with human 

neutrophils remains technically challenging and not well standardized, and it is common in human scRNA-seq 

studies for neutrophils to be missing or drastically under-represented with respect to their expected proportions 
17,21,26,27. One possibility is that nucleases or proteases in neutrophil granules could interfere with the standard cell 

capture, cell lysis, or library preparation steps in scRNA-seq. However, after testing several modifications to the 

standard 10X chemistry, we did not find a clear benefit to the addition of nuclease or protease inhibitors. Another 

possibility is that the standard cell-calling algorithms that are routinely used by most labs are not optimal for the 

differentiation of neutrophils from the background distribution of empty capture beads, thus excluding most 

neutrophils from downstream analyses. We found this to be the most likely source of neutrophil 

underrepresentation and describe an alternative approach to data analysis that departs from the raw matrix of 

UMIs associated with each barcode and considers the observed frequency distribution of features per barcode 

(genes per cell). This simple modification to the analysis pipeline significantly increases the inclusion of cells 

that, based on their transcriptional profile, clearly represent neutrophils. 

We applied the modified analysis pipeline to the study of human neutrophils enriched by immunomagnetic 

negative selection to very high levels of purity and viability and without evidence of early apoptosis. We analyzed 

72,183 cells and found that circulating human neutrophils can be consistently clustered into four distinct 

transcriptional states, which we have classified as Nh0 – Nh3. The global pattern of gene expression in Nh0 cells 

is similar to what has been described in bone marrow neutrophils,8,13 with higher relative expression of various 

granule proteins and of several members of the S100 family. Trajectory analysis indicates that circulating 

neutrophils develop from this relatively immature state into a transitional cluster, Nh1, which is transcriptionally 

the least distinct cluster and accounts for a majority of the captured cells (~ 60%). From this cluster, the 

developmental trajectory diverges towards one of two endpoint states: the Nh2 and Nh3 phenotypes. Nh2 cells 

are characterized by higher relative expression of specific non-coding (NEAT1, MALAT1) or coding (CSF3R) 

RNAs, but have a lower overall transcriptional output than other neutrophils. Accordingly, they also have higher 

expression of genes encoding active regulatory elements that are associated with epigenetic modulation of 

transcription in neutrophil development, including TET2 and NELFA 28. Additionally, the gene encoding the 

transcription factor SPI1 (PU.1) which is a central factor in myeloid development 29, is highly expressed in all 
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clusters except Nh2. This endpoint, therefore, likely represents the mature and transcriptionally quiescent state 

that has been classically associated with all circulating neutrophils. The IFN-gene-expressing Nh3 cluster is 

transcriptionally quite distinct from the Nh2 state. Nh3 cells express more genes, they have increased expression 

of IFN-inducible genes that are not significantly expressed by any other neutrophil cluster and, based on our 

results, their expression of key regulatory transcription factors is also distinct. The transition from Nh1 to Nh3 is 

associated with increased expression of genes in the NFkB family of transcription factors, which are known to 

play a role in the regulation of neutrophil activation, apoptosis, and NADPH oxidase activity 30–32. The existence 

of a subset of circulating neutrophils that expresses increased levels of IFN-inducible genes is now a well-

validated finding in mouse and human 12–17, and we had previously shown that there are gender differences in the 

expression of the genes in this cluster 14.  Our single-cell Western blot results indicate that this cluster is also 

likely to be detectable at the protein level. It is still unknown whether these cells represent neutrophils that have 

encountered a specific stimulus in vivo or if they are epigenetically committed from a precursor state. In either 

case, the fact that the proportion of this cluster is relatively stable among healthy donors suggests that they 

represent a steady state rather than an incidental finding related to a recent exposure. More studies in humans will 

be necessary, but data from E. coli-challenged mice suggest that the equivalent cluster of IFN-high neutrophils 

might have different bone marrow precursors than other neutrophils 12. 

The limitations of this work can be considered in two categories. First, there are limitations related to the current 

state of scRNA-seq technology and data analysis methods. As with all available scRNA-seq technologies, we rely 

on a very shallow sampling of the transcriptome of any given cell (50,000 reads per cell in our case, but in many 

studies half of that or less). Data analysis methods in scRNA-seq also rely on linear (principal components 

analysis) and non-linear (UMAP or t-SNE) reductions from a high-dimensional ambient space into two-

dimensional representations, with inevitable loss of potentially important relations between cells. The choice of 

clustering algorithms and parameters can also drastically affect the results, which highlights the need for 

standardized methods and clear reporting. Second, there are limitations related to the scope of our experiments. 

We focus on a single scRNA-seq chemistry (10X Genomics) which, although highly prevalent, is not the only 

one available. The extent to which our modified analysis pipeline can be extrapolated or adapted to other 

chemistries remains to be determined. Our study is also limited to circulating human neutrophils, which are of 

obvious biological importance but represent a minority of total neutrophils. Finally, the transcriptional subsets we 

describe appear to be offering a view of neutrophil heterogeneity that is independent of the very limited one 

afforded so far by a small set of cell-surface markers. There is, at this time, no reliable way to sort neutrophils 

based on transcriptional signatures while preserving viability. Therefore, experimental characterization of 

possible functional differences among the transcriptional subsets we have described is an important future goal. 
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Based on our results, we propose that human circulating neutrophils are transcriptionally dynamic cells that 

develop from a less mature state into one of two distinct transcriptional phenotypes that cannot be defined by 

common surface markers. We also propose that a modified analysis pipeline is necessary for proper representation 

of neutrophils in scRNA-seq studies. We hope that these findings will pave the way for better representation of 

neutrophils in scRNA-seq studies, to a better understanding of neutrophil heterogeneity, and to additional studies 

exploring the behavior of these transcriptional neutrophil subsets over time (circadian variation or variation over 

the human lifespan), in response to environmental or pharmacological stimuli, or under different pathologic 

conditions. 

Methods 

Cell purification 

Human venous peripheral blood samples from healthy donors were obtained from the Department of Transfusion 

Medicine at the National Institutes of Health Clinical Center. For neutrophil purification, whole blood samples 

were collected in vacutainer glass blood collection tubes with acid citrate dextrose (ACD). Neutrophils were 

isolated with the EasySep Direct Human Neutrophil Isolation Kit (STEMCELL Technologies; cat. no. 19666). 

For granulocyte purification, whole blood was collected in heparinized tubes. Granulocytes were isolated by 

dextran sedimentation of RBC pellets as previously described 33. Briefly, cells were first layered on a 

Ficoll/Hypaque gradient (GE Healthcare; cat. no. 17144003). The granulocyte/RBC fraction was then enriched 

by dextran sedimentation followed by RBC lysis using hypotonic solution. Granulocytes were then washed with 

phosphate-buffered saline (PBS). For white blood cell purification, whole blood samples were collected in 

heparinized tubes. White blood cells were isolated with the Erythroclear Red Blood Cell Depletion Reagent Kit 

(STEMCELL Technologies; cat. no. 01738). 

Documentation of cell purity and viability 

Flow cytometry was used to assess the purity and viability of purified neutrophils. The cells were stained with a 

panel of monoclonal antibodies containing: ECD CD16 clone 3G8 (Beckman Coulter; cat.no. A33098), BV711 

CD45 clone HI30 (BD Biosciences; cat.no. 564357) and FITC CD66b clone G10F5 (Biolegend; cat.no. 305104). 

The LIVE/DEAD Fixable Dead Cell Stain Kit with aqua fluorescent reactive dye (ThermoFisher Scientific; 

cat.no. L34957) was used to assess cell viability. PE Annexin V (BioLegend; cat.no. 640908) was used to assess 

early apoptosis activity. UltraComp eBeads Compensation Beads (ThermoFisher Scientific; cat.no. 01-2222-42) 

were used to perform spectral compensation. Data was collected by a BD Biosiences FACSCelesta flow 

cytometer, and later analyzed with Flowjo software (v10). The purity of neutrophils was specifically defined by 

cell-lineage markers, as the proportion of CD66b+CD16+ events among CD45+ events. 
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Single-cell RNA-seq 

From each cell purification sample, approximately 50,000 cells were centrifuged at 300g for 5 minutes at 4°C and 

washed twice with PBS with 0.02% bovine serum albumin (BSA). To obtain single-cell gel beads-in-emulsion 

(GEMs), we resuspended cells at a concentration of 1000 cells/µL and added 1µl of RNase Inhibitor (Invitrogen, 

Cat. N.10777-019) before loading the mix on a Chromium Comptroller Instrument (10x Genomics). Single-cell 

cDNAs and libraries were prepared with a Chromium Single Cell 3′ Library & Gel Bead Kit v3.1 (10x Genomics; 

cat. no. 1000121). Briefly, GEM-RT incubation was performed in a C1000 Touch Thermal cycler with 96-Deep 

Well Reaction Module (Bio-Rad; cat. no. 1851197): 53°C for 45 min, 85°C for 5 min, held at 4°C.  Single-strand 

cDNAs were purified with DynaBeads MyOne Silane Beads (Thermo Fisher Scientific; cat. no. 37002D) and 

amplified with the C1000 Touch Thermal cycler with 96-Deep Well Reaction Module: 98°C for 3 min; 13 cycles 

of 98°C for 15 sec, 63°C for 20 s, and 72°C for 1 min; 72°C for 1 min; held at 4°C. Amplified cDNA products 

were cleaned with 0.6X DynaBeads MyOne Silane Beads (Thermo Fisher Scientific; cat. no. 37002D). Quality 

and quantity of the cDNAs were assessed on a 4200 Tape Station (Agilent Technologies) with High Sensitivity 

D5000 DNA Screen Tape (Agilent; cat. no. 5067-5592). The final material was amplified as follows: 98°C for 

45 sec; 16 cycles of 98°C for 20 sec, 54°C for 30 sec, 72°C for 20 sec; 72°C for 1 min; held at 4°C. Libraries 

were diluted to the same molarity and pooled for sequencing on a NextSeq500 (Illumina) or NovaSeq6000 

(Illumina) sequencers. Sequencing read lengths were 28bp for read 1, 8bp for the i7 index, and 91 bp for read 2. 

Protease and RNase activity are known to be highly active in neutrophils 34. It should be noted, however, that the 

addition of a protease inhibitor (Thermo Fisher Scientific, cat. no. A32963) or an RNase Inhibitor (Ambion, cat. 

no. AM2682), individually or in combination, to the standard 10X protocol for cell capture and library 

preparation, did not increase the final cDNA concentration at the end of the library construction phase of the 

protocol. 

CITE-seq 

TotalSeq-B oligonucleotide-conjugated antibodies (Biolegend), compatible with the 10X Genomics 3’ scRNA-

seq chemistry, were used according to the manufacturer’s protocol. The panel for common markers of circulating 

neutrophils included antibodies targeting CD45, CD14, CD33, CD11c, CD10, CD16, CD107a, HLA-DR, CD11b, 

CD66b, CD35, CD24, CD184, and CD15. 

Processing and analysis of single-cell RNA-seq data 

Illumina run folders were demultiplexed and converted to FASTQ format with Cell Ranger mkfastq version 4.0.0 

and Illumina bcl2fastq version 2.20.  Reads were further counted and analyzed with Cell Ranger count version 

4.0.0 and the refdata-gex-GRCh38-2020-A reference, to generate raw and filtered matrix files. 
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Matrix files were imported into the R package Seurat version 4.0.1 35 for downstream processing. From the raw 

matrices, cells with a gene number between 100-2500 and a mitochondrial gene proportion < 0.1 were selected 

for downstream analysis. The matrices were then normalized by the LogNormalize method. The 

FindVariableFeatures() function was used to select the top 2,000 variable genes, with the vst selection method. 

Scaling was performed by the function ScaleData() regressing out the mitochondrial gene content. Principal 

component analysis (PCA) and clustering were then performed on the scaled data. UMAP (version 0.2.7.0) was 

utilized for visualization and SingleR (version 1.4.1) was used for cell identification. 

After neutrophils were identified in the dataset corresponding to each sample, they were integrated. First, 

contaminants were removed if they had gene expression values >1 for three marker genes specific to RBCs 

(HBA2), T cells (CD3G), and cells with a predominance of ribosomal RNA (RPS8). Second, genes that were 

shared among all datasets were identified for downstream integration. Anchors were identified with the 

FindIntegrationAnchors() function, and these anchors were used to integrate the neutrophils together with the 

function IntegrateData(). Finally, UMAP was performed on the top 8 principal components from the integrated 

data, and the resolution was set to 0.2 for visualization of the four clusters identified. 

To examine the effect of sequencing depth on clustering and other downstream analyses, selected single samples 

were down sampled by 50%. Typical single-cell Illumina runs consisted of two lanes of a flow cell sequencing 

the same pooled libraries.  50% down sampling was accomplished by analyzing the data from a single lane. 

To study neutrophil cell-state trajectories, we used the analysis toolkit Monocle3, which is implemented as an R 

package (version 0.2.3.0) 24. A principal graph was learned on the UMAP projection of the cells with the 

learn_graph() function. To generate a pseudotime axis, the cells were then ordered with the order_cells() function. 

To identify genes that vary between groups of cells in UMAP space, we used the graph_test() function; this 

function employs the spatial autocorrelation analysis statistic Moran’s I, which has been shown to be effective 

for identifying genes that vary in scRNA-seq datasets 36. The genes found to be variable were then grouped into 

modules with the function find_gene_modules(), which employs the Louvain method for community detection 
37, to identify clusters of genes with a similar pattern of expression. To infer which transcriptional regulators are 

active in the cells, the module gene lists were used as input for the Binding Analysis for Regulation of 

Transcription (BART) pipeline 25. Transcription factors associated with cis-regulatory elements most likely to 

regulate the input gene lists (Irwin-Hall p-value <0.01) were used for further analysis with the Ghent University 

Bioinformatics and Evolutionary Genomics custom Venn diagram tool 

(http://bioinformatics.psb.ugent.be/webtools/Venn/). 

Single Cell Western Bloting 
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Purified neutrophils were loaded on the scWest chip (ProteinSimple), allowed to settle for 20 min, and treated 

according to manufacturer’s instructions. Briefly, the chip was placed in the Milo instrument (ProteinSimple) for 

15 s lysis, 45 s separation, and 4 min UV exposure. The chip was then probed using antibodies against the proteins 

ISG15 (Cell Signaling, cat 2758) and GAPDH (Cell Signaling, cat 5174), labeled with Alexa 488/Alexa 594, and 

scanned in an array scanner (Molecular Devices). Chips were then stripped and reprobed with antibodies against 

IFITM3 (Cell Signaling, cat 59212) and rescanned. Analysis of the images was done in Scout software 

(ProteinSimple), where GAPDH was used as loading control cell marker and data presented as % of total cells 

positive for ISG15 and/or IFITM3. A total of 3300 neutrophils were used from 2 different donors. 
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