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Abstract 7

A central function of continuous attractor networks is encoding coordinates and accurately updating 8

their values through path integration. To do so, these networks produce localized bumps of activity 9

that move coherently in response to velocity inputs. In the brain, continuous attractors are believed 10

to underlie grid cells and head direction cells, which maintain periodic representations of position and 11

orientation, respectively. These representations can be achieved with any number of activity bumps, 12

and the consequences of having more or fewer bumps are unclear. We address this knowledge gap by 13

constructing 1D ring attractor networks with different bump numbers and characterizing their responses 14

to three types of noise: fluctuating inputs, spiking noise, and deviations in connectivity away from ideal 15

attractor configurations. Across all three types, networks with more bumps experience less noise-driven 16

deviations in bump motion. This translates to more robust encodings of linear coordinates, like position, 17

assuming that each neuron represents a fixed length no matter the bump number. Alternatively, we 18

consider encoding a circular coordinate, like orientation, such that the network distance between adjacent 19

bumps always maps onto 360 degrees. Under this mapping, bump number does not significantly affect 20

the amount of error in the coordinate readout. Our simulation results are intuitively explained and 21

quantitatively matched by a unified theory for path integration and noise in multi-bump networks. Thus, 22

to suppress the effects of biologically relevant noise, continuous attractor networks can employ more 23

bumps when encoding linear coordinates; this advantage disappears when encoding circular coordinates. 24

Our findings provide motivation for multiple bumps in the mammalian grid network. 25

Introduction 26

Continuous attractor networks (CANs) sustain a set of activity patterns that can be smoothly morphed 27

from one to another along a low-dimensional manifold (Amari, 1977; Ermentrout and Cowan, 1979; Milnor, 28

1985). Network activity is typically localized into attractor bumps, whose positions along the manifold 29

can represent the value of a continuous variable. These positions can be set by external stimuli, and their 30

persistence serves as a memory of the stimulus value. Certain CAN architectures are also capable of a feature 31

called path integration. Instead of receiving the stimulus value directly, the network receives its changes and 32

integrates over them by synchronously moving the attractor bump (Cannon et al., 1983; McNaughton et al., 33

1991; Seung, 1996). Path integration allows systems to estimate an external state based on internally 34

perceived changes, which is useful in the absence of ground truth. 35

Path-integrating CANs have been proposed as a mechanism through which brains encode various physical 36

coordinates. Head direction cells in mammals and compass neurons in insects encode spatial orientation by 37
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Figure 1: Continuous attractor networks with any number of bumps can produce head direction cells and grid cells.
(A) Desired tuning curves of a head direction cell and a 1D grid cell. (B) Orientation and position coordinates whose
changes drive bump motion. (C) One- and two-bump ring attractor networks. Each black neuron produces the desired
tuning curves in A. In the two-bump network, the coupling to coordinate changes is half as strong, and the second
bump is labeled for clarity.

preferentially firing when the animal faces a particular direction relative to landmarks (Fig. 1A, top; Taube 38

et al., 1990; Seelig and Jayaraman, 2015). They achieve this as members of 1D CANs whose attractor 39

manifolds have ring topologies (Skaggs et al., 1995; Zhang, 1996). For the case of compass neurons, a ring 40

structure also exists anatomically, and its demonstration of continuous attractor dynamics is well-established 41

(Seelig and Jayaraman, 2015; Kim et al., 2017; Turner-Evans et al., 2017; Green et al., 2017). Grid cells in 42

mammals encode position by preferentially firing at locations that form a triangular lattice in 2D space (1D 43

analogue in Fig. 1A, bottom; Hafting et al., 2005). They are thought to form a 2D CAN with toroidal 44

topology (McNaughton et al., 2006; Fuhs and Touretzky, 2006; Guanella et al., 2007; Burak and Fiete, 45

2009), and mounting experimental evidence supports this theory (Yoon et al., 2013; Gu et al., 2018; Gardner 46

et al., 2019, 2022). The ability for head direction cells, compass neurons, and grid cells to maintain their 47

tunings in darkness without external cues demonstrates that these CANs can path integrate (Goodridge 48

et al., 1998; Seelig and Jayaraman, 2015; Hafting et al., 2005). 49

CANs also appear in studies of other brain regions and neural populations. Signatures of continuous 50

attractor dynamics have been detected in the prefrontal cortex during spatial working memory tasks (Con- 51

stantinidis and Wang, 2004; Edin et al., 2009; Wimmer et al., 2014). Theorists have further invoked CANs 52

to explain place cells (Tsodyks and Sejnowski, 1995; Samsonovich and McNaughton, 1997), hippocampal 53

view cells (Stringer et al., 2005), eye tracking (Cannon et al., 1983; Seung, 1996), visual orientation tuning 54

(Ben-Yishai et al., 1995; Somers et al., 1995), and perceptual decision making (Brody et al., 2003; Machens 55

et al., 2005). Thus, CANs are a crucial circuit motif throughout the brain, and better understanding their 56

performance would provide meaningful insights into neural computation. 57

One factor that strongly affects the performance of CANs in path integration is biological noise. To 58

accurately represent physical coordinates, attractor bumps must move in precise synchrony with the ani- 59

mal’s trajectory. Hence, the bump velocity must remain proportional to the driving input that represents 60
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coordinate changes (Burak and Fiete, 2009). Different sources of noise produce different types of deviations 61

from this exact relationship, all of which lead to path integration errors. While noisy path-integrating CANs 62

have been previously studied (Zhang, 1996; Stringer et al., 2002; Wu et al., 2008; Burak and Fiete, 2009), 63

these works did not investigate of role of bump number. CANs with different connectivities can produce 64

different numbers of attractor bumps, which are equally spaced throughout the network and perform path 65

integration by moving in unison (Stringer et al., 2004; Fuhs and Touretzky, 2006; Burak and Fiete, 2009). 66

Two networks with different bump numbers have the same representational capability (Fig. 1). They can 67

share the same attractor manifold and produce neurons with identical tuning curves, as long as the coupling 68

strength between bump motion and driving input scales appropriately. The computational advantages of 69

having more or fewer bumps are unknown. 70

Our aim is to elucidate the relationship between bump number and robustness to noise. We first develop 71

a rigorous theoretical framework for studying 1D CANs that path integrate and contain multiple bumps. Our 72

theory predicts the number, shape, and speed of bumps. We then introduce three forms of noise. The first is 73

Gaussian noise added to the total synaptic input, which can represent fluctuations in a broad range of cellular 74

processes occurring at short timescales. The second is Poisson spiking noise. The third is noise in synaptic 75

connectivity strengths; the ability for bumps to respond readily to driving inputs is generally conferred by a 76

precise network architecture. We add Gaussian noise to the ideal connectivity and evaluate path integration 77

in this setting. The first two forms of noise are independent over time and neurons, in contrast to the third. 78

We find that networks with more bumps can better resist all three forms of noise under certain encoding 79

assumptions. These observations are explained by our theoretical framework with simple scaling arguments. 80

The following Results section presents all simulation findings and major theoretical conclusions; complete 81

theoretical derivations are found in the Theoretical model section. 82

Results 83

Bump formation in a ring attractor network 84

We study a 1D ring attractor network that extends the model of Xie et al. (2002) to allow for multiple 85

attractor bumps. It contains two neural populations α ∈ {L,R} at each network position x, with N neurons 86

in each population (Fig. 2A). Each neuron is described by its total synaptic input g that obeys the following 87

dynamics: 88

τ
dgα(x, t)

dt
+ gα(x, t) =

∑
β

∫
dyWβ(x, y)sβ(y, t) +A±α γb(t) + ζα(x, t), (1)

where ±L means − and ±R means +. Aside from spiking simulations, firing rates s are given by 89

sα(x, t) = φ[gα(x, t)], (2)

where φ is a nonlinear activation function. For all simulations in this Results section, we take φ to be the 90

rectified linear unit (ReLU) activation function (Eq. 35). Our theoretical formulas for diffusion coefficients 91

and velocities in this section also assume a ReLU φ. In the Appendix, we consider a logistic φ instead and 92

find that all major conclusions are preserved (Fig. 9), and in the Theoretical methods section, we derive most 93

expressions for general φ. W is the synaptic connectivity and only depends on the presynaptic population 94

β. It obeys a standard continuous attractor architecture based on local inhibition that is strongest at an 95

inhibition distance l. Each population has its synaptic outputs shifted by a small distance ξ � l in opposite 96
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Figure 2: Bump formation in a ring attractor network. (A) Network schematic with populations L and R and locally
inhibitory connectivity W . (B, C) Networks with 200 neurons and 3 bumps. (B) Connectivity weights for a neuron at the
origin. The inhibition distance is l = 29 and the connectivity shift is ξ = 2. (C) Steady-state synaptic inputs. Curves
for both populations lie over each other. With a ReLU activation function, the firing rates follow the solid portions of the
colored lines and are 0 over the dashed portions. The bump distance is λ = 200/3. Thick gray line indicates Eq. 4.
(D, E) Networks with 500 neurons. (D) More bumps and shorter bump distances are produced by smaller inhibition
distances. Points indicate data from 10 replicate simulations. Line indicates Eq. 5. (E) The inhibition distance l = 55
corresponds to the black point in D with λ = 125 and M = 4. These values also minimize the Lyapunov functional
(Eq. 6), which varies smoothly across λ for infinite networks (line) and takes discrete values for finite networks (points).
(F) The scaled bump shape remains invariant across network sizes and bump numbers, accomplished by rescaling
connectivity strengths according to Eq. 7. Curves for different parameters lie over one another.

directions. We use the connectivity profile described in Fig. 2B and Eq. 38 for all simulations, but all 97

theoretical expressions in this Results section are valid for any W . A is the resting input to all neurons. 98

The driving input, or drive, b is proportional to changes in the coordinate encoded by the network; for the 99

physical coordinates in Fig. 1B, it represents the animal’s velocity obtained from self-motion cues. In our 100

results, b is constant in time. It is coupled to the network with strength γ. We will consider various forms 101

of noise ζ. Finally, τ is the neural time constant. 102

With no drive b = 0 and no noise ζ = 0, the network dynamics in Eqs. 1 and 2 can be simplified to 103

τ
dg(x, t)

dt
+ g(x, t) = 2

∫
dyW (x− y)φ[g(y, t)] +A, (3)

where 2W (x − y) =
∑
βWβ(x, y) and the synaptic inputs g are equal between the two populations. This 104

baseline equation evolves towards a periodic steady-state g with approximate form (see also Widloski, 2015) 105

g(x) = a cos
2π(x− x0)

λ
+ d. (4)

Expressions for a and d are given in the Theoretical model section (Eq. 60). The firing rates s(x) = φ[g(x)] 106

exhibit attractor bumps with periodicity λ, a free parameter that we call the bump distance (Fig. 2C). 107

x0 is the arbitrary position of one of the bumps. It parameterizes the attractor manifold with each value 108

corresponding to a different attractor state up to λ. 109

The bump number M = N/λ is determined through λ. It can be predicted by the fastest-growing mode 110
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in a linearized version of the dynamics (Eq. 43; Sorscher et al., 2019; Khona et al., 2022). The mode with 111

wavenumber q and corresponding wavelength 2π/q grows at rate (2W̃ (q)− 1)/τ , where W̃ (q) is the Fourier 112

transform of W (x). Thus, 113

2π

λ
= argmax

q
W̃ (q). (5)

Figure 2D shows that simulations follow the predicted λ and M over various inhibition distances l. Oc- 114

casionally for small l, a different mode with a slightly different wavelength will grow quickly enough to 115

dominate the network. A periodic network enforces an integer bump number, which discretizes the allowable 116

wavelengths and prevents changes in λ and M once they are established. In an aperiodic or infinite system, 117

the wavelength can smoothly vary from an initial value to a preferred length over the course of a simulation 118

(Burak and Fiete, 2009; Kang and Balasubramanian, 2019). To determine this preferred λ theoretically, we 119

notice that the nonlinear dynamics in Eq. 3 obey the Lyapunov functional 120

L = −
∫∫

dx dyW (x− y)s(x)s(y) +

∫
dx

∫ s(x)

0

dρ φ−1[ρ]−A
∫

dx s(x). (6)

In the Theoretical model section, we find for ReLU φ that L is minimized when q = 2π/λ maximizes W̃ (q) 121

(Eq. 66). This is the same condition as for the fastest-growing mode in Eq. 5 (Fig. 2E). In other words, 122

the wavelength λ most likely to be established in a periodic network is the preferred bump distance in an 123

aperiodic or infinite system, up to a difference of one fewer or extra bump due to discretization. 124

We now understand how to produce different bump numbers M in networks of different sizes N by 125

adjusting the inhibition distance l. To compare networks across different values of M and N , we scale the 126

connectivity strength W according to 127

Wβ(x, y) ∝ M

N
. (7)

This keeps the total connectivity strength per neuron
∫

dxWβ(x, y) constant over M and N . In doing so, the 128

shape of each attractor bump as a function of scaled network position x/λ remains invariant (Fig. 2F). Thus, 129

Eq. 7 isolates our comparisons across M and N to those variables themselves and removes any influence of 130

bump shape. In the Appendix, we consider the alternative without this scaling and find that many major 131

results are preserved (Fig. 10). 132

Bump dynamics: path integration and diffusion 133

The drive b produces coherent bump motion by creating an imbalance between the two neural populations. 134

A positive b increases input to the R population and decreases input to the L population (Fig. 3A). Because 135

the synaptic outputs of the former are shifted to the right, the bump moves in that direction. Similarly, 136

a negative b produces leftward bump motion. The bump velocity vdrive can be calculated in terms of the 137

baseline firing rates s(x) obtained without drive and noise (see also Xie et al., 2002; Mosheiff and Burak, 138

2019): 139

vdrive = −
γbξ

∫
dx

d2s

dx2

τ

∫
dx

(
ds

dx

)2 . (8)

As a note, these integrals, as well as subsequent ones, do not include the singular points at the edges of 140

attractor bumps. Equation 8 states that bump velocity is proportional to drive b and connectivity shift ξ, 141

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.02.22.481545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481545
http://creativecommons.org/licenses/by/4.0/


300 ms

R
L

A B C

0 1 2 3 4 5
0

10
20
30
40
50

time t [s]

di
sp

la
ce

m
en

t[
ne

ur
on

]

200 neurons, 1 bump
400 neurons, 1 bump
400 neurons, bump 1 of 2
400 neurons, bump 2 of 2
theory

E F

G H

D

0 0.5 1.0 1.5 2.0

0

20

40

60

80

drive b

ve
lo

ci
ty

v
[n

eu
ro

n/
s]

1 2 3 4 5

10
20
30
40
50
60

connectivity shift ξ

ve
lo

ci
ty

v
[n

eu
ro

n/
s]

0 0.5 1.0 1.5 2.0
0

5

10

drive b

di
ffu

si
on

co
ef

f.
D

[ n
eu

ro
n2 / s

]
0 0.5 1.0 1.5 2.0

0

20

40

60

80

drive b

m
ea

n
ve

lo
ci

ty
〈v
〉

[ n
eu

ro
n /

s]

0 0.2 0.4 0.6 0.8 1.0

0
10
20
30
40
50

noise magnitude σ

di
ffu

si
on

co
ef

f.
D

[ n
eu

ro
n2 /s

]

0 0.2 0.4 0.6 0.8 1.0

17

18

19

noise magnitude σ

m
ea

n
ve

lo
ci

ty
〈v
〉

[n
eu

ro
n/

s]

0 100 200

-4
-3
-2
-1

0
1

network position x

sy
na

pt
ic

in
pu

tg

simulation
theory

Figure 3: Dynamics in a ring attractor network. (A–C) Networks with 200 neurons and 3 bumps. (A) Synaptic inputs
for populations L and R under drive b = 2. Snapshots taken at 150 ms intervals demonstrate rightward motion. (B)
Bump velocity is proportional to drive. The connectivity shift is ξ = 2. (C) Bump velocity is largely proportional to
connectivity shift. The drive is b = 0.5. (D–H) Networks with synaptic input noise. (D) Bump displacements for 48
replicate simulations demonstrating diffusion with respect to coherent motion. Networks with 200 neurons and 1 bump.
(E, F) Mean bump velocity is proportional to drive and remains largely independent of network size, bump number,
and noise magnitude. (G, H) Bump diffusion coefficient scales quadratically with noise magnitude, remains largely
independent of drive, and varies with network size and bump number. The noise magnitude is σ = 0.5 in D, E, and G,
and the drive is b = 0.5 in D, F, and H. Values for both bumps in two-bump networks lie over each other. Points indicate
data from 48 replicate simulations and bars indicate bootstrapped standard deviations. Dotted gray lines indicate Eqs. 8
and 10.

which is reflected in our simulations, with some deviation at larger ξ (Fig. 3B, C). The strict proportionality 142

between v and b is crucial because it implies faithful path integration (Burak and Fiete, 2009). If b(t) 143

represents coordinate changes (such as angular or linear velocity in Fig. 1B), then the bump position θ(t) 144

will accurately track the coordinate itself (orientation or position). 145

In contrast to drive, uncorrelated noise ζ produces bump diffusion. To illustrate this effect, we introduce 146

one form of ζ that we call synaptic input noise. Suppose ζ is independently sampled for each neuron at 147

each simulation timestep from a Gaussian distribution with mean 0 and variance σ2. Loosely, it can arise 148

from applying the central limit theorem to the multitude of noisy synaptic and cellular processes occurring 149

at short timescales. Then, 150

〈ζα(x, t)〉 = 0, 〈ζα(x, t)ζβ(y, t′)〉 = σ2∆t δ(t− t′)δαβδ(x− y), (9)

where the timestep ∆t sets the resampling rate of ζ, and angle brackets indicate averaging over an ensemble 151

of replicate simulations. Input noise causes bumps to diffuse away from the coherent driven motion (Fig. 3D). 152
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The mean velocity 〈v〉 remains proportional to drive b, which means that the network still path integrates on 153

average (Fig. 3E). Since 〈v〉 is largely independent of noise magnitude σ, and the bump diffusion coefficient D 154

is largely independent of b, drive and input noise do not significantly interact within the explored parameter 155

range (Fig. 3F, G). D can be calculated in terms of the baseline firing rates (see also Wu et al., 2008; Burak 156

and Fiete, 2012): 157

Dinput =
σ2∆t

4τ2
∫

dx

(
ds

dx

)2 . (10)

The quadratic dependence of D on σ is confirmed by simulation (Fig. 3H). 158

We now turn our attention to bump number M and network size N . The mean bump velocity 〈v〉 is 159

independent of these parameters (Fig. 3E, F), which can be understood theoretically. Bump shapes across 160

M and N are simple rescalings of one another (Fig. 2F), so derivatives of s with respect to x are simply 161

proportional to M (more bumps imply faster changes) and inversely proportional to N (larger networks 162

imply slower changes). Similarly, integrals of expressions containing s over x are simply proportional to N . 163

In summary, 164

ds

dx
∝ M

N
,

d2s

dx2
∝ M2

N2
,

∫
dx ∝ N. (11)

Applying these scalings to Eq. 8, we indeed expect vdrive to be independent of M and N . In contrast, 165

Fig. 3G, H reveals that the diffusion coefficient D varies with these parameters. When a one-bump network 166

is increased in size from 200 to 400 neurons, D increases as well, which implies greater path integration 167

errors. This undesired effect can be counteracted by increasing the bump number from 1 to 2, which lowers 168

D below that of the one-bump network with 200 neurons. These initial results suggest that bump number 169

and network size are important factors in determining a CAN’s resilience to noise. We will explore this idea 170

in greater detail. 171

Mapping network coordinates onto physical coordinates 172

Before further comparing networks with different bump numbers M and sizes N , we should scrutinize the 173

relationship between bump motion and the physical coordinate encoded by the network. After all, the latter 174

is typically more important in biological settings. First, we consider the trivial case in which each neuron 175

represents a fixed physical interval across all M and N ; this is equivalent to using network coordinates 176

without a physical mapping (Fig. 4A). It is suited for encoding linear variables like position that lack 177

intrinsic periodicity, so larger networks can encode wider coordinate ranges. However, with more bumps or 178

fewer neurons, the range over which the network can uniquely encode different coordinates is shortened. We 179

assume that ambiguity among coordinates encoded by each bump can be resolved by additional cues, such as 180

local features, that identify the true value among the possibilities (O’Keefe and Burgess, 2005; Sreenivasan 181

and Fiete, 2011; Stemmler et al., 2015); this process will be examined in detail below. We leave quantities 182

with dimensions of network distance in natural units of neurons. 183

Multi-bump networks are intrinsically periodic, especially those with a ring architecture. A natural way 184

for them to encode a circular coordinate like orientation would be to match network and physical periodicities. 185

For example, the bump distance may always represent 360° across different M and N so that neurons always 186

exhibit unimodal tuning (Fig. 4B). This relationship implies that quantities with dimensions of network 187
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Figure 4: Possible mappings between network coordinates and two types of physical coordinates. (A) In networks
encoding linear coordinates such as position, one neuron always represents a fixed physical interval. This mapping is
trivial and identical to using network coordinates. (B) In networks encoding circular coordinates such as orientation, the
bump distance always represents 360°.

distance should be multiplied by powers of the conversion factor 188

360° ·M
N

, (12)

which converts units of neurons to degrees. 189

For circular mapping, we must also ensure that networks with different bump numbers M and sizes N 190

path integrate consistently with one another. The same drive b should produce the same bump velocity v in 191

units of degree/s. To do so, we rescale the coupling strength γ only under circular mapping: 192

γ ∝ N

M
. (13)

This effectively compensates for the factor of M/N in Eq. 12. To see this explicitly, recall that vdrive does 193

not depend on M and N in units of neuron/s, as shown in Fig. 3E, F and previously explained through 194

scaling arguments. Under circular mapping, vdrive would be multiplied by one power of the conversion factor 195

in Eq. 12. Since its formula contains γ in the numerator (Eq. 8), vdrive receives an additional power of the 196

rescaling factor in Eq. 13. The two factors cancel each other, so vdrive does not depend on M and N under 197

either mapping: 198

vdrive ∝ 1 linear, vdrive ∝ 1 circular. (14)

Thus, a consistent relationship between b and vdrive is preserved in units of both neurons/s and degrees/s. 199

Of course, there are other possible mappings between network and physical coordinates across bump 200

numbers and network sizes, but for the rest of our paper, we will consider these two. To be clear, networks 201

with the same ring architecture are used for both linear and circular mappings. We will see how noise affects 202

encoding quality in either case. 203

More bumps improve robustness to input and spiking noise under linear mapping 204

We now revisit the effect of input noise on bump diffusion, as explored in Fig. 3D–H. We measure how the 205

diffusion coefficient D varies with bump number M and network size N under linear and circular mappings. 206

Under linear mapping, D decreases as a function of M but increases as a function of N (Fig. 5A, B). Thus, 207

more bumps attenuate diffusion produced by input noise, which is especially prominent in large networks. 208
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Figure 5: Bump diffusion due to input and spiking noise. (A, B) Networks with synaptic input noise of magnitude
σ = 0.5 and drive b = 0.5. Dotted gray lines indicate Eq. 10. (A) Diffusion decreases with bump number under linear
mapping and remains largely constant under circular mapping. Networks with 600 neurons. (B) Diffusion increases
with network size under linear mapping and decreases under circular mapping. Networks with 3 bumps. (C, D) Same
as A, B, but for networks with Poisson spiking noise instead of input noise. Dotted gray lines indicate Eq. 20. Points
indicate data from 48 replicate simulations and bars indicate bootstrapped standard deviations.

However, for circular coordinates, D remains largely constant with respect to M and decreases with respect 209

to N (Fig. 5A, B). Increasing the number of bumps provides no benefit. These results can be understood 210

through Eqs. 10, 11, and 12, which predict 211

Dinput ∝
N

M2
linear, Dinput ∝

1

N
circular. (15)

Two powers of the conversion factor in Eq. 12 account for the differences between the two mappings. 212

Next, we investigate networks with spiking noise instead of input noise. To do so, we replace the deter- 213

ministic formula for firing rate in Eq. 2 with 214

sα(x, t) =
cα(x, t)

∆t
. (16)

Here, s is a stochastic, instantaneous firing rate given by the number of spikes c emitted in a simulation 215

timestep divided by the timestep duration ∆t. We take the c’s to be independent Poisson random variables 216

driven by the deterministic firing rate: 217

cα(x, t) ∼ Pois
[
φ[gα(x, t)]∆t

]
. (17)

As fully explained in the Theoretical model section (Eq. 99), we can approximate this spiking process by the 218

rate-based dynamics in Eqs. 1 and 2 with the noise term 219

ζα(x, t) =
∑
β

∫
dyWβ(x, y)

√
φ[gβ(y, t)]

∆t
ηβ(y, t). (18)
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The η’s are independent random variables with zero mean and unit variance: 220

〈ηα(x, t)〉 = 0, 〈ηα(x, t)ηβ(y, t′)〉 = ∆t δ(t− t′)δαβδ(x− y). (19)

As for Eq. 9, the simulation timestep ∆t sets the rate at which η is resampled. This spiking noise produces 221

bump diffusion with coefficient (see also Burak and Fiete, 2012) 222

Dspike =

∫
dx s(x)

(
ds

dx

)2
4τ2

[∫
dx

(
ds

dx

)2]2 . (20)

As before, s is the baseline firing rate configuration without noise and drive. Through the relationships in 223

Eqs. 11 and 12, Dspike scales with M and N in the same way as Dinput does: 224

Dspike ∝
N

M2
linear, Dspike ∝

1

N
circular. (21)

These findings are presented in Fig. 5C, D along with simulation results that confirm our theory. Spiking 225

noise behaves similarly to input noise. Increasing bump number improves robustness to noise under linear 226

mapping but has almost no effect under circular mapping. Bump diffusion in larger networks is exacerbated 227

under linear mapping but suppressed under circular mapping. For both input noise and spiking noise, the 228

conversion factor in Eq. 12 produces the differences between the two mappings. Coupling strength rescaling 229

in Eq. 13 does not play a role because γ does not appear in Eqs. 10 and 20. 230

To evaluate noise robustness a different way, we perform mutual information analysis of networks with 231

input noise. Mutual information describes how knowledge of one random variable can reduce the uncertainty 232

in another, and it serves as a general metric for encoding quality. Here, we calculate the mutual information 233

I between the physical coordinate encoded by the noisy network, represented by the random variable U with 234

discretized sample space U , and the activity of a single neuron at network position x, represented by the 235

random variable S with discretized sample space S (see Simulation methods): 236

I[S;U ] =
∑

s∈S,u∈U
p(s|u)p(u) log

p(s|u)

p(s)
. (22)

We then average I across neurons. Larger mean mutual information implies more precise coordinate encoding 237

and greater robustness to noise. Thus, we expect that networks with less diffusion in Fig. 5A, B should 238

generally contain more information. Note that the joint activities of all the neurons confer much more 239

coordinate information than single-neuron activities do, but since estimating high-dimensional probability 240

distributions over the former is computationally very costly, we use the latter as a metric for network 241

performance. 242

The physical coordinate U is either position or orientation and obeys the mappings described in Fig. 4 243

across bump numbers M and network sizes N . To obtain the probability distributions in Eq. 22 required to 244

calculate I, we initialize multiple replicate simulations at evenly spaced coordinate values u (Fig. 6A). We 245

do not apply an input drive, so the networks should still encode their initialized coordinates at the end of 246

the simulation. However, they contain input noise that degrades their encoding. Collecting the final firing 247

rates s(x) produces p(s|u) for each neuron x. For both position and orientation, we consider narrow and 248
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Figure 6: Mutual information between neural activity and physical coordinates with input noise of magnitude σ = 0.5.
(A) To calculate mutual information, we initialize replicate simulations without input drive at different coordinate values
(thick black lines) and record the final neural activities (thin colored lines). The physical coordinate can be linear or
circular and its range can be narrow or wide; here, we illustrate two possibilities for networks with 600 neurons and
3 bumps. (B, C) Mutual information between physical coordinate and single-neuron activity under narrow coordinate
ranges. (B) Information decreases with bump number for linear coordinates and remains largely constant for circular
coordinates. Networks with 600 neurons. (C) Information decreases with network size for linear coordinates and
increases for circular coordinates. Networks with 3 bumps. (D, E) Mutual information between physical coordinate
and single-neuron activity under wide coordinate ranges. The trends in B, C are preserved for circular coordinates.
They are also preserved for linear coordinates, except for the shaded regions in which the coordinate range exceeds
the bump distance. (F) Coarse local cues are active over different quadrants of the wide coordinate ranges. (G, H)
Mutual information between physical coordinate and the joint activities of a single neuron with the four cues in F under
wide coordinate ranges. The trends in B, C are preserved for both linear and circular coordinates. Points indicate data
from 96 replicate simulations at each coordinate value averaged over neurons and bars indicate bootstrapped standard
errors of the mean.
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wide coordinate ranges to assess network performance in both regimes. 249

We first consider narrow coordinate ranges. For linear coordinates, information increases as a function of 250

M but decreases as a function of N ; for circular coordinates, it does not strongly depend on M and increases 251

as a function of N (Fig. 6B, C). These results exactly corroborate those in Fig. 5A, B obtained for bump 252

diffusion, since we expect information and diffusion to be inversely related. 253

We next consider wide coordinate ranges. Our ring networks can only uniquely represent coordinate 254

ranges up to their bump distances (converted to physical distances by Fig. 4). Beyond these values, two 255

physical coordinates separated by the converted bump distance cannot be distinguished by the network. Our 256

mutual information analysis captures this phenomenon; for linear coordinates, the increase in information 257

with larger M or smaller N as observed in Fig. 6B, C disappears once the converted bump distance drops 258

below the physical range of 200 cm (green shaded regions of Fig. 6D, E). In this regime, the benefits of more 259

bumps and smaller networks toward decreasing diffusion are counteracted by bump ambiguity. In contrast, 260

the circular mapping in Fig. 4 lacks bump ambiguity since the bump distance is always converted to the 261

maximum physical range of 360°, so the same qualitative trends in mutual information are observed for any 262

coordinate range (Fig. 6D, E). 263

For linear coordinates with wide ranges, the advantages of increasing bump number can be restored by 264

coarse local cues. We illustrate this process by introducing four cues, each of which is active over a different 265

quadrant and is otherwise inactive (Fig. 6F). They can be conceptualized as two-state sensory neurons or 266

neural populations that fire in the presence of a local stimulus. By themselves, the cues do not encode 267

precise coordinate values. Mutual information calculated with the joint activity of each neuron with these 268

cues recovers the behavior observed for narrow ranges across all M and N (Fig. 6G, H). Ring attractor 269

neurons provide information beyond the 2 bits conveyed by the cues alone, and for position, this additional 270

information increases with more bumps and fewer neurons without saturating. 271

In summary, our conclusions about robustness to input noise obtained by diffusion analysis are also sup- 272

ported by mutual information analysis. Moreover, the latter explicitly reveals how networks encoding wide, 273

linear coordinate ranges can leverage coarse local cues to address ambiguities and preserve the advantages 274

of multiple bumps. 275

More bumps improve robustness to connectivity noise under linear mapping 276

Another source of noise in biological CANs is inhomogeneity in the connectivity W . Perfect continuous 277

attractor dynamics requires W to be invariant to translations along the network (Skaggs et al., 1995; Zhang, 278

1996; Samsonovich and McNaughton, 1997; Fuhs and Touretzky, 2006; Burak and Fiete, 2009), a concept 279

related to Goldstone’s theorem in physics (Nambu, 1960; Goldstone, 1961). We consider the effect of replacing 280

W → W + V , where V is a noisy connectivity matrix whose entries are independently drawn from a zero- 281

mean Gaussian distribution. V disrupts the symmetries of W . This noise is quenched and does not change 282

over the course of the simulation, in contrast to input and spiking noise which are independently sampled in 283

time. V creates a noise term 284

ζα(x, t) =
∑
β

∫
dy Vαβ(x, y)sβ(y, t). (23)

Equation 23 shows that V produces correlated ζ’s across neurons, which also differs from input and spiking 285

noise. Because of these distinctions, the dominant effect of connectivity noise is not diffusion, but drift. V 286
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Figure 7: Bump trapping due to connectivity noise at low drive. (A–C) Networks with 600 neurons, 1 bump, and
the same realization of connectivity noise of magnitude 0.002. (A) Theoretical values for drift velocity as a function
of bump position using Eq. 24. (B) Bumps drift towards trapped positions over time. The drive is b = 0. Arrows
indicate predictions from vconn(θ) crossing 0 with negative slope in A. Lines indicate simulations with different starting
positions. (C) Bump trajectories with smallest positive and negative drive required to travel through the entire network.
Respectively, b = 0.75 and b = −0.52. The larger of the two in magnitude is the escape drive b0 = 0.75. Note that
positions with low bump speed exhibit large velocities in the opposite direction in A. (D, E) Networks with multiple
realizations of connectivity noise of magnitude 0.002. (D) Escape drive decreases with bump number under linear
mapping and remains largely constant under circular mapping. Networks with 600 neurons. (E) Escape drive increases
with network size under linear mapping and remains largely constant under circular mapping. Networks with 3 bumps.
Points indicate simulation means over 48 realizations and bars indicate standard deviations. Dotted gray lines indicate
Eq. 26 averaged over 96 realizations.

induces bumps to move with velocity vconn(θ), even without drive b: 287

vconn(θ) = −

∑
αβ

∫∫
dx dy Vαβ(x, y)

ds(x− θ)
dx

s(y − θ)

2τ

∫
dx

(
ds

dx

)2 . (24)

The movement is coherent but irregular, as it depends on the bump position θ (Fig. 7A). Itskov et al. (2011) 288

and Seeholzer et al. (2019) refer to vconn(θ) as the drift velocity. 289

Connectivity noise traps bumps at low drive b. We first consider b = 0, so bump motion is governed 290

solely by drift according to dθ/dt = vconn(θ). The bump position θ has stable fixed points wherever vconn(θ) 291

crosses 0 with negative slope (Itskov et al., 2011; Seeholzer et al., 2019). Simulations confirm that bumps 292

drift towards these points (Fig. 7B). The introduction of b adds a constant vdrive that moves the curve in 293

Fig. 7A up for positive b or down for negative b: 294

vtotal(θ) = vdrive + vconn(θ). (25)

If vtotal(θ) still crosses 0, bumps would still be trapped. The absence of bump motion in response to coordinate 295

changes encoded by b would be a catastrophic failure of path integration. To permit bump motion through 296
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Figure 8: Bump speed irregularity due to connectivity noise at high drive. (A) Bump speed as a function of bump
position with connectivity noise of magnitude 0.002 and drive b = 1.5. Network with 600 neurons, 1 bump, and the
same realization of connectivity noise as in Fig. 7A–C. Thick gray lines indicate Eq. 25. (B–E) Networks with multiple
realizations of connectivity noise of magnitude 0.002 and drive b = 1.5. (B) Speed difference between directions
decreases with bump number under linear mapping and remains largely constant under circular mapping. Networks
with 600 neurons. (C) Speed difference increases with network size under linear mapping and remains largely constant
under circular mapping. Networks with 3 bumps. (D, E) Same as B, C, but for speed variability within each direction.
Points indicate simulation means over 48 realizations and bars indicate standard deviations. Dotted gray lines indicate
Eqs. 30 and 31 averaged over 96 realizations.

the entire network, the drive must be strong enough to eliminate all zero-crossings. Figure 7C shows bump 297

motion at this drive for both directions of motion. The positive b is just large enough for the bump to pass 298

through the region with the most negative vconn(θ) in Fig. 7A; likewise for negative b and positive vconn(θ). 299

We call the larger absolute value of these two drives the escape drive b0. Simulations show that b0 decreases 300

with bump number M and increases with network size N under linear mapping (Fig. 7D, E). A smaller b0 301

implies weaker trapping, so smaller networks with more bumps are more resilient against this phenomenon. 302

Under circular mapping, however, b0 demonstrates no significant dependence on M or N . We can predict 303

b0 by inverting the relationship in Eq. 8 between b and v: 304

b0 = −
max
θ
|vconn(θ)| · τ

∫
dx

(
ds

dx

)2
γξ

∫
dx

d2s

dx2

. (26)

This theoretical result agrees well with values obtained by simulation (Fig. 7D, E). In the Theoretical model 305

section, we present a heuristic argument (Eq. 124) that leads to the observed scaling of escape drive on M 306

and N : 307

b0 ∝
N

M
linear, b0 ∝ 1 circular. (27)

At high drive |b| > b0, attractor bumps are no longer trapped by the drift velocity vconn(θ). Instead, the 308

drift term produces irregularities in the total velocity vtotal(θ) (Fig. 8A). They can be decomposed into two 309

components: irregularities between directions of motion and irregularities within each direction. Both imply 310

errors in path integration because v and b are not strictly proportional. To quantify these components, we 311
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call |v+(θ)| and |v−(θ)| the observed bump speeds under positive and negative b. We define speed difference 312

as the unsigned difference between mean speeds in either direction, normalized by the overall mean speed: 313

speed difference =
2
∣∣∣mean

θ
|v+(θ)| −mean

θ
|v−(θ)|

∣∣∣
mean
θ
|v+(θ)|+ mean

θ
|v−(θ)|

. (28)

We then define speed variability as the standard deviation of speeds within each direction, averaged over 314

both directions and normalized by the overall mean speed: 315

speed variability =
std
θ
|v+(θ)|+ std

θ
|v−(θ)|

mean
θ
|v+(θ)|+ mean

θ
|v−(θ)|

. (29)

Speed difference and speed variability follow the same trends under changes in bump number M and network 316

size N (Fig. 8B–E). Under linear mapping, they decrease with M and increase with N . Under circular 317

mapping, they do not significantly depend on M and N . These are also the same trends exhibited by 318

the escape drive b0 (Fig. 7D, E). In terms of theoretical quantities, the formulas for speed difference and 319

variability become 320

speed difference =
2
∣∣∣mean

θ
vconn(θ)

∣∣∣
|vdrive|

(30)

and 321

speed variability =
std
θ
vconn(θ)

|vdrive|
. (31)

These expressions match the observed values well (Fig. 8B–E). In the Theoretical methods section, we 322

calculate the observed dependence of speed difference (Eq. 113) and variability (Eq. 120) on M and N : 323

speed difference and variability ∝ N

M
linear, speed difference and variability ∝ 1 circular. (32)

For all results related to connectivity noise, the coupling strength rescaling in Eq. 13 produces the differences 324

between the two mappings via the γ in Eq. 8. The conversion factor in Eq. 12 does not play a role because 325

escape drive, speed difference, and speed variability do not have dimensions of network distance. 326

To summarize, CANs with imperfect connectivity benefit from more attractor bumps when encoding 327

linear coordinates. This advantage is present at all driving inputs and may be more crucial for larger 328

networks. On the other hand, connectivity noise has largely the same consequences for networks of all bump 329

numbers and sizes when encoding circular coordinates. 330

Discussion 331

We demonstrated how CANs capable of path integration respond to three types of noise. Additive synaptic 332

input noise and Poisson spiking noise cause bumps to diffuse away from the coherent motion responsible for 333

path integration (Figs. 3 and 5). This diffusion is accompanied by a decrease in mutual information between 334

neural activity and encoded coordinate (Fig. 6). Connectivity noise produces a drift velocity field that also 335

impairs path integration by trapping bumps at low drive and perturbing bump motion at high drive (Figs. 7 336

and 8). 337
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For all three types of noise, CANs with more attractor bumps exhibit less deviation in bump motion in 338

network units. This is observed across network parameters (Figs. 9 and 10 in the Appendix). Thus, CANs can 339

more robustly encode linear variables whose mapping inherits network units and does not rescale with bump 340

number (Fig. 4A). If grid cell networks were to encode spatial position in this manner, then multiple attractor 341

bumps would be preferred over a single bump. Gu et al. (2018) report experimental evidence supporting 342

multi-bump grid networks obtained by calcium imaging of mouse medial entorhinal cortex. Our work implies 343

that the evolution of such networks may have been partially encouraged by biological noise. Additional 344

bumps introduce greater ambiguity among positions encoded by each bump, but this can be resolved by 345

a rough estimate of position from additional cues, such as local landmarks (O’Keefe and Burgess, 2005; 346

Krupic et al., 2014; Bush and Burgess, 2014; Hardcastle et al., 2015), another grid module with different 347

periodicity (O’Keefe and Burgess, 2005; McNaughton et al., 2006; Stensola et al., 2012; Stemmler et al., 348

2015; Kang and Balasubramanian, 2019; Khona et al., 2022), or a Bayesian prior based on recent memory 349

(Sreenivasan and Fiete, 2011). In this way, grid modules with finer resolution and more attractor bumps 350

could maintain a precise egocentric encoding of position, while coarser modules and occasional allocentric 351

cues would identify the true position out of the few possibilities represented. We explicitly explored one 352

realization of this concept and observed how cues enable networks to improve their information content by 353

increasing bump number, despite a concomitant increase in bump ambiguity (Fig. 6F–H). 354

In contrast, CANs encoding circular variables may rescale under different bump numbers to match pe- 355

riodicities (Fig. 4B), which eliminates any influence of bump number on encoding accuracy for all three 356

types of noise. If head direction networks were to encode orientation in this manner, then they would face 357

less selective pressure to evolve beyond the single-bump configuration observed in Drosophila (Seelig and 358

Jayaraman, 2015). Moreover, without the assumption of bump shape invariance accomplished by Eq. 7, 359

robustness to all three types of noise decreases with bump number, which actively favors single-bump ori- 360

entation networks (Fig. 10 in the Appendix). Further experimental characterization of bump number in 361

biological CANs, perhaps through techniques proposed by Widloski et al. (2018), would test the degree to 362

which the brain can leverage the theoretical advantages identified in this work. 363

Under linear mapping, larger CANs exhibit more errors in path integration from all three types of noise. 364

The immediate biological implication is that larger brains face a dramatic degradation of CAN performance, 365

accentuating the importance of suppressing error with multi-bump networks. However, this simple rule 366

that one neuron always represents a fixed physical interval does not need to be followed. Furthermore, 367

larger animals may tolerate greater absolute errors in path integration because they interact with their 368

environments over larger scales. Nevertheless, our results highlight the importance of considering network 369

size when studying the performance of noisy CANs. Under circular mapping, bump diffusion decreases with 370

network size for input and spiking noise, and the magnitude of errors due to connectivity noise is independent 371

of network size. This implies that head direction networks can benefit from incorporating more neurons; 372

the observed interactions between such networks across different mammalian brain regions may act in this 373

manner to suppress noise (Taube, 2007). 374

The computational advantages of periodic over nonperiodic encodings has been extensively studied in 375

the context of grid cells (Fiete et al., 2008; Sreenivasan and Fiete, 2011; Mathis et al., 2012; Wei et al., 376

2012; Almeida et al., 2015; Wei et al., 2015; Stemmler et al., 2015). Our results extend these findings by 377

demonstrating that some kinds of periodic encodings can perform better than others. Our results also con- 378

tribute to a rich literature on noisy CANs. Previous studies have investigated additive input noise (Compte 379

et al., 2000; Wu et al., 2008; Burak and Fiete, 2012; Kilpatrick and Ermentrout, 2013; Seeholzer et al., 2019), 380
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multiplicative input noise (Krishnan et al., 2018), spiking noise (Burak and Fiete, 2009, 2012; Wei et al., 381

2012; Almeida et al., 2015; Bouchacourt and Buschman, 2019; Seeholzer et al., 2019), and quenched noise 382

due to connectivity or input inhomogeneities (Zhang, 1996; Itskov et al., 2011; Kilpatrick and Ermentrout, 383

2013; Seeholzer et al., 2019; Can and Krishnamurthy, 2021). Among these works, the relationship between 384

bump number and noise has only been considered in the context of multiple-item working memory, in which 385

each network can be loaded with various numbers of bumps (Wei et al., 2012; Almeida et al., 2015; Krishnan 386

et al., 2018; Bouchacourt and Buschman, 2019). Interestingly, they find that robustness to noise decreases 387

with bump number, which is opposite to our results (cf. Almeida et al., 2015, who report no dependence 388

between bump number and encoding accuracy under certain conditions). It appears that CANs designed 389

for path integration with fixed bump number and CANs designed for multiple-item working memory with 390

variable bump number differ crucially in their responses to noise. Further lines of investigation that compare 391

these two classes would greatly contribute to our general understanding of CANs. 392

Beyond our concrete results on CAN performance, our work offers a comprehensive theoretical framework 393

for studying path-integrating CANs. We derive a formula for the multi-bump attractor state and a Lyapunov 394

functional that governs its formation. We calculate all key dynamical quantities such as velocities and 395

diffusion coefficients in terms of firing rates. Our formulas yield scaling relationships that facilitate an 396

intuitive understanding for their dependence on bump number and network size. Much of our theoretical 397

development does not assume a specific connectivity matrix or nonlinear activation function, which allows 398

our results to have wide significance. For example, we expect them to hold for path-integrating networks 399

that contain excitatory synapses. Other theories have been developed for bump shape (Wu et al., 2002; Xie 400

et al., 2002; Itskov et al., 2011; Kilpatrick and Ermentrout, 2013; Widloski, 2015; Krishnan et al., 2018), 401

path integration velocity (Xie et al., 2002; Mosheiff and Burak, 2019), diffusion coefficients (Wu et al., 2008; 402

Burak and Fiete, 2012; Kilpatrick and Ermentrout, 2013; Krishnan et al., 2018; Seeholzer et al., 2019), and 403

drift velocity (Zhang, 1996; Itskov et al., 2011; Seeholzer et al., 2019). Our work unifies these studies through 404

a simple framework that features path integration, multiple bumps, and a noise term that can represent a 405

wide range of sources. It can be easily extended to include other components of theoretical or biological 406

significance, such as slowly-varying inputs (Tsodyks and Sejnowski, 1995; Fung et al., 2010; Kilpatrick and 407

Ermentrout, 2013), synaptic plasticity (Stringer et al., 2002; Renart et al., 2003), neural oscillations (Thurley 408

et al., 2008; Navratilova et al., 2012; Kang and DeWeese, 2019), and higher-dimensional attractor manifolds 409

(Ermentrout and Cowan, 1979; Samsonovich and McNaughton, 1997). 410

Theoretical model 411

Architecture 412

We investigate CAN dynamics through a 1D ring attractor network. This class of network has been analyzed 413

in previous theoretical works, and at various points, our calculations will parallel those in Xie et al. (2002); 414

Itskov et al. (2011); Burak and Fiete (2012); Kilpatrick and Ermentrout (2013); Widloski (2015); Seeholzer 415

et al. (2019); Mosheiff and Burak (2019). 416

There are two neurons at each position i = 0, . . . , N−1 with population indexed by α ∈ {L,R} (Fig. 1A). 417

For convenient calculation, we unwrap the ring and connect copies end-to-end, forming a linear network with 418

continuous positions x ∈ (−∞,∞). Unless otherwise specified, integrals are performed over the entire range. 419

To map back onto the finite-sized ring network, we enforce our results to have a periodicity λ that divides 420

N . For example, λ = N corresponds to a single-bump configuration. Integrals would then be performed 421

over [0, N), with positions outside this range corresponding to their equivalents within this range. 422
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The network obeys the following dynamics for synaptic inputs g: 423

τ
dgα(x, t)

dt
+ gα(x, t) =

∑
β

∫
dyWβ(x, y)sβ(y, t) +A±α γb(t) + ζα(x, t), (33)

where ±L means − and ±R means +, and the opposite for ∓α. τ is the neural time constant, W is the 424

synaptic connectivity, and A is the resting input. The nonlinear activation function φ converts synaptic 425

inputs to firing rates: 426

sα(x, t) = φ[gα(x, t)]. (34)

Most of our results will apply to general φ, but we also consider a ReLU activation function specifically: 427

φ[g] =

{
g g > 0

0 g ≤ 0.
(35)

In this section, we will explicitly mention when we specifically consider the ReLU case, and we will always 428

simplify the function away. Thus, if an expression contains the symbol φ, then it applies to general φ. In 429

the Results section, formulas and scalings for Dinput, Dspike, vdrive, and vconn(θ), as well as all simulation 430

results invoke Eq. 35. We will use this form in the Bump shape g subsection b is the driving input, γ is its 431

coupling strength, and ζ is the noise, which can take different forms. γb and ζ are small compared to the 432

rest of the right-hand side of Eq. 33. For notational convenience, we will often suppress dependence on t. 433

Wβ(x, y) obeys a standard continuous attractor architecture based on a symmetric and translation in- 434

variant W : 435

Wβ(x, y) = W (x− y ∓β ξ) where W (−x) = W (x). (36)

Each population β deviates from W by a small shift ξ � N in synaptic outputs. Thus, the following 436

approximation holds: 437∑
β

Wβ(x, y) ≈ 2W (x− y). (37)

We will consider the specific form of W (Fig. 1B):

W (x) =

w ·
cosπx/l − 1

2
|x| < 2l

0 |x| ≥ 2l
=

w ·
cos kx− 1

2
|x| < 2π/k

0 |x| ≥ 2π/k,
(38)

where k = π/l. We will explicitly mention when we specifically consider this form; in fact, we only do so 438

for Eqs. 46, 47, 59, and 60, as well as for our simulation results in the Results section. Otherwise, each 439

expression applies to general W . 440

Baseline configuration without drive and noise 441

Linearized dynamics and bump distance λ 442

First, we consider the case of no drive b = 0 and no noise ζ = 0. The dynamical equation Eq. 33 becomes 443

τ
dgα(x)

dt
+ gα(x) =

∑
β

∫
dyWβ(x, y)φ[gβ(y)] +A. (39)

Since the right-hand side no longer depends on α, g must be the same for both populations, and we can use 444

Eq. 37 to obtain 445

τ
dg(x)

dt
+ g(x) = 2

∫
dyW (x− y)φ[g(y)] +A. (40)

We analyze these dynamics using the Fourier transform F . Our chosen convention, applied to the function
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h, is

h̃(q) = F [h](q) =

∫
dx e−iqxh(x)

h(x) = F−1[h̃](x) =

∫
dq

2π
eiqxh̃(q). (41)

Fourier modes h̃(q) represent sinusoids with wavenumber q and corresponding wavelength 2π/q. Applying 446

this transform to Eq. 40, we obtain 447

τ
dg̃(q)

dt
+ g̃(q) = 2W̃ (q)F

[
φ[g]

]
(q) + 2πAδ(q). (42)

In this subsection, we consider the case of small deviations, such that g(x) ≈ g0 and φ[g(x)] ≈ φ[g0] + 448

φ′[g0](g(x)− g0). Then, Eq. 42 becomes 449

τ
dg̃(q)

dt
+ g̃(q) = 2φ′[g0]W̃ (q)g̃(q) + 2πA0δ(q), (43)

where A0 = A+ 2W̃ (0)(φ[g0]− φ′[g0]g0). The solution to this linearized equation for q 6= 0 is 450

g̃(q, t) = g̃(q, 0)er(q)t. (44)

Each mode grows exponentially with rate 451

r(q) =
2φ′[g0]W̃ (q)− 1

τ
, (45)

so the fastest-growing component of g is the one that maximizes W̃ (q), as stated in Eq. 5 of the Results 452

section. The wavelength 2π/q of that component predicts the bump distance λ. 453

For the specific W in Eq. 38, its Fourier transform is 454

W̃ (q) = −w
k2 sin 2πq

k

k2q − q3
, (46)

so 455

λ =
2π

argmin
q

k2 sin 2πq
k

k2q − q3

=
2l

argmin
ψ

sin 2πψ

ψ − ψ3

≈ 2.28l. (47)

λ is proportional to l, as also noted by Fuhs and Touretzky (2006); Burak and Fiete (2009); Kang and 456

Balasubramanian (2019); Khona et al. (2022). 457

Bump shape g 458

We call the steady-state synaptic inputs g without drive and noise the baseline configuration. To calculate 459

its shape, we must account for the nonlinearity of the activation function φ and return to Eq. 42. We invoke 460

our particular form of φ in Eq. 35 to calculate F
[
φ[g]

]
(q). g must be periodic, and its periodicity is the 461

bump distance λ with wavenumber κ = 2π/λ. Without loss of generality, we take g to have a bump centered 462

at 0. Since W is symmetric, g is an even function. We define z as the position where g crosses 0: 463

g(z) = 0. (48)
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If g is approximately sinusoidal, then g(x) > 0 wherever nλ− z < x < nλ+ z for any integer n. The ReLU 464

activation function in Eq. 35 implies 465

φ[g(x)] = g(x)Φ(x) where Φ(x) =
∞∑

n=−∞
Θ[x− nλ+ z]Θ[−(x− nλ− z)]. (49)

Θ is the Heaviside step function. The Fourier transform for Φ is

Φ̃(q) = 2
sin qz

q

∞∑
n=−∞

e−2πinq/κ = 2
sin qz

q

∞∑
n=−∞

δ

(
n− q

κ

)
= 2κ

sin qz

q

∞∑
n=−∞

δ(q − nκ), (50)

where the second equality comes from the Fourier series for a Dirac comb. Therefore, 466

F
[
φ[g]

]
(q) =

1

2π

∫
dq′ Φ̃(q − q′)g̃(q′) =

1

π

∞∑
n=−∞

sinnκz

n
g̃(q − nκ), (51)

so Eq. 42 becomes 467

τ
dg̃(q)

dt
+ g̃(q) =

2

π
W̃ (q)

∞∑
n=−∞

sinnκz

n
g̃(q − nκ) + 2πAδ(q). (52)

This equation describes the full dynamics of g with a ReLU activation function. It contains couplings between 468

all modes q that are multiples of the wavenumber κ, which corresponds to the bump distance. 469

To find the baseline g, we set dg̃/dt = 0. We also simplify g̃(q) by only considering the lowest modes
that couple to each other: q = 0,±κ. Due to symmetry, W̃ (−q) = W̃ (q) and g̃(−q) = g̃(q). Eq. 52 gives

g̃(0) =
2

π
W̃ (0)

[
κz g̃(0) + 2 sin(κz) g̃(κ)

]
+ 2πAδ(0)

g̃(κ) =
2

π
W̃ (κ)

[
sin(κz) g̃(0) +

(
κz +

sin 2κz

2

)
g̃(κ)

]
. (53)

Now we need to impose Eq. 48: g(z) = 0. To do so, we note that g̃(0) and g̃(κ) are both proportional to 470

δ(0) according to Eq. 53. That means g̃(q) has the form 471

g̃(q) = G0δ(q) +Gδ(q − κ) +Gδ(q + κ), (54)

where G0 and G are the Fourier modes with delta functions separated. This implies 472

g(x) =
G0

2π
+
G

π
cosκx, (55)

and g(z) = 0 implies 473

G0 = −2 cos(κz)G. (56)

Substituting Eqs. 54 and 56 into Eq. 53, we obtain

G

π
= − πA

2W̃ (0)
(
sinκz − κz cosκz

)
+ π cosκz

κz − cosκz sinκz =
π

2W̃ (κ)
. (57)

We can solve the second equation of Eq. 57 for κz and then substitute it into the first equation to obtain G. 474

This then gives us g(x), which becomes through Eqs. 55 and 56 475

g(x) =
G

π
(cosκx− cosκz). (58)
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In particular, let’s use the W defined by Eq. 38 with Fourier transform Eq. 46. Then, 476

W̃ (0) = −2πw

k
and W̃ (κ) = −w

κ

k2

k2 − κ2
sin

2πκ

k
. (59)

Thus,

g(x) =
G

π
(cosκx− cosκz)

κz − cosκz sinκz = −π
/[

2w

κ

k2

k2 − κ2
sin

2πκ

k

]
G

π
= A

/[
4w

k

(
sinκz − κz cosκz

)
− cosκz

]
. (60)

This provides expressions for a and d in Eq. 4 of the Results section, where a = G/π and d = −(G/π) cosκz. 477

Lyapunov functional and bump distance λ 478

The dynamical equation in Eq. 40 admits a Lyapunov functional. In analogy to the continuous Hopfield 479

model (Hopfield, 1984), we can define a Lyapunov functional in terms of s(x) = φ[g(x)]: 480

L = −
∫∫

dx dyW (x− y)s(x)s(y) +

∫
dx

∫ s(x)

0

dρ φ−1[ρ]−A
∫

dx s(x). (61)

The nonlinearity φ must be invertible in the range (0, s) for any possible firing rate s. For L to be bounded 481

from below for a network of any size N , we need 482

1. W (x) to be negative definite, and 483

2.
∫ s
0

dρ φ−1[ρ]−As to be bounded from below for any possible firing rate s. 484

We can check that these hold for our particular functions. Equation 38 immediately shows that the first 485

condition is met. Equation 35 states that φ−1[ρ] = ρ when ρ > 0, so
∫ s
0

dρ φ−1[ρ] − As = 1
2s

2 − As, which 486

satisfies the second condition. 487

Now we take the time derivative and use Eq. 40:

dL

dt
= −

∫
dx

{
2

∫
dyW (x− y)s(y)− φ−1[s(x)] +A

}
ds(x)

dt

= −τ
∫

dx
dg(x)

dt

ds(x)

dt

= −τ
∫

dxφ′[g(x)]

(
dg(x)

dt

)2
. (62)

As long as φ is a monotonically nondecreasing function, dL/dt ≤ 0. Thus, L is a Lyapunov functional. 488

Now we seek to simplify Eq. 61. Suppose we are very close to a steady-state solution, so dg/dt ≈ 0. We
substitute Eq. 40 into Eq. 61 to obtain

L = −1

2

∫
dx
[
g(x)−A

]
s(x) +

∫
dx

∫ s(x)

0

dρ φ−1[ρ]−A
∫

dx s(x)

= −1

2

∫
dx g(x)s(x) +

∫
dx

∫ s(x)

0

dρ φ−1[ρ]− A

2

∫
dx s(x). (63)

Now we invoke our ReLU φ from Eq. 35 to obtain 489

L = −1

2

∫
dx
[
g(x)− s(x)

]
s(x)− A

2

∫
dx s(x) = −A

2

∫
dx s(x). (64)

21

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 27, 2022. ; https://doi.org/10.1101/2022.02.22.481545doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.22.481545
http://creativecommons.org/licenses/by/4.0/


The last equality was obtained by noticing that for any x, either s(x) = 0 or g(x) − s(x) = 0 with our φ. 490

Therefore, the stable solution that minimizes L is the one that maximizes the total firing rate. 491

We can apply our sinusoidal g in Eq. 58 to perform the integral: 492

L = −NAG
2π2

(sinκz − κz cosκz), (65)

where N is the network size. So L depends on G and the quantity κz, which we will rewrite as ψ. We now 493

simplify Eq. 65 using Eq. 57: 494

L = −
NA2

(
sinψ − ψ cosψ

)
4W̃ (0)

(
sinψ − ψ cosψ

)
− 2π cosψ

= − NA2

4W̃ (0) + 2π
ψ−tanψ

. (66)

Note that 1/(tanψ − ψ) is a monotonically increasing function of ψ in the range [0, π], so to minimize L, 495

we need to minimize ψ. Meanwhile, Eq. 57 now reads ψ− cosψ sinψ = π/2W̃ (κ). The left-hand side is also 496

a monotonically increasing function of ψ in the range [0, π], so to minimize ψ, we need to maximize W̃ (κ). 497

Thus, the Lyapunov stable wavelength λ = 2π/κ is the one that maximizes W̃ (κ). This is the same mode 498

that grows the fastest for the linearized dynamics in Eq. 45. 499

Bump motion under drive and noise 500

Dynamics along the attractor manifold 501

Now that we have determined the baseline configuration g, including the bump shape and bump distance, 502

we investigate its motion under drive b and noise ζ. We introduce θ to label the position of the configuration. 503

It can be defined as the center of mass or the point of maximum activity of one of the bumps. We expand 504

the full time-dependent configuration with respect to the baseline configuration located at θ: 505

gα(x, t) = g(x− θ) + δgα(x, t). (67)

g(x− θ) solves Eq. 40 with dg/dt = 0; to facilitate calculations below, we will write the baseline equation in 506

this form: 507

g(x− θ) =
∑
β

∫
dyWβ(x, y)φ[g(y − θ)] +A. (68)

Substituting Eq. 67 into Eq. 33 and invoking Eq. 68, we obtain the following linearized dynamics for δg: 508

τ
dδgα(x, t)

dt
+ δgα(x, t) =

∑
β

∫
dyWβ(x, y)φ′[g(y − θ)]δgβ(y, t)±α γb(t) + ζα(x, t). (69)

We can rewrite this as 509

τ
dδgα(x, t)

dt
=
∑
β

∫
dy Kαβ(x, y; θ)δgβ(y, t)±α γb(t) + ζα(x, t), (70)

where 510

Kαβ(x, y; θ) = Wβ(x, y)φ′[g(y − θ)]− δαβδ(x− y). (71)

We will often suppress the argument of derivatives of g. If we consider a configuration located at θ, dg/dx 511

implies dg(x− θ)/dx. We make the argument explicit when necessary. 512

If we differentiate Eq. 68 by θ, we obtain

dg

dx
=
∑
β

∫
dyWβ(x, y)φ′[g(y − θ)]dg

dy

0 =
∑
β

∫
dy Kαβ(x, y; θ)

dg

dy
, (72)
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which indicates that dg/dx is a right eigenvector of K with eigenvalue 0. To be explicit about this, we 513

recover the discrete case by converting continuous functions to vectors and matrices: 514

gi = g(i− θ), ∆gi =
dg(x− θ)

dx

∣∣∣∣
x=i

, Kαβij = Kαβ(i, j; θ). (73)

If we concatenate matrices and vectors across populations as 515

J =

(
KLL KLR

KRL KRR

)
, e =

(
∆g
∆g

)
, (74)

e is the right null eigenvector of J: 0 =
∑
j Jijej . 516

Since K is not symmetric, its left and right eigenvectors may be different. To find the left null eigenvector,
we again differentiate Eq. 68 with respect to θ, but this time interchanging variables x and y:

dg

dy
=
∑
β

∫
dxWβ(y, x)φ′[g(x− θ)] dg

dx

≈ 2

∫
dxW (x− y)φ′[g(x− θ)] dg

dx
. (75)

The second equality is obtained from Eqs. 36 and 37. Replacing the position y by y ±β ξ, where ξ is the 517

connectivity shift, we get 518

dg(y − θ ±β ξ)
dy

≈ 2

∫
dxW (x− y ∓β ξ)φ′[g(x− θ)]dg(x− θ)

dx
, (76)

where we have made the arguments of g explicit. Let’s define shifted versions of the baseline g for each 519

population α: 520

ḡα(x) = g(x±α ξ). (77)

Since ξ is small, 521∑
α

ḡα(x) ≈ 2g(x). (78)

Applying these expressions to Eq. 76 and recalling Eq. 36,

dḡβ
dy
≈ 2

∫
dxWβ(x, y)φ′[g(x− θ)] dg

dx

≈
∑
α

∫
dxWβ(x, y)φ′[g(x− θ)]dḡα

dx
. (79)

Finally, we multiply both sides of the equation by φ′[g(y − θ)] to obtain

φ′[g(y − θ)]dḡβ
dy
≈
∑
α

∫
dxWβ(x, y)φ′[g(y − θ)]φ′[g(x− θ)]dḡα

dx

0 =
∑
α

∫
dxKαβ(x, y; θ)φ′[g(x− θ)]dḡα

dx
. (80)

Thus φ′[g(x− θ)] dḡα/dx is the left null eigenvector for Kαβ . Again, to be explicit, the discrete equivalent is 522

J =

(
KLL KLR

KRL KRR

)
, f =

(
φ′[g]�∆ḡL

φ′[g]�∆ḡR

)
, (81)

where � represents element-wise (Hadamard) multiplication. Then, f is the left null eigenvector of J: 523

0 =
∑
i Jijfi. 524

We now revisit Eq. 67 and assume that g changes such that the bumps slowly move along the attractor
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manifold:

gα(x, t) ≈ g(x− θ(t)),
dδgα(x, t)

dt
=

dgα(x, t)

dt
≈ −dg(x− θ(t))

dx

dθ

dt
. (82)

Again for simplicity, we will often suppress arguments of derivatives of g and dependence on t. We return 525

to Eq. 70, project it along the left null eigenvector, and apply Eq. 82 to obtain 526

− τ dθ

dt

∑
α

∫
dxφ′[g(x− θ)]dḡα

dx

dg

dx
= γb

∑
α

∫
dx (±α1) · φ′[g(x− θ)]dḡα

dx
+
∑
α

∫
dxφ′[g(x− θ)]dḡα

dx
ζα(x).

(83)
The velocity of bump motion is given by dθ/dt. It is 527

dθ

dt
≈ −

γb
∑
α

∫
dx (±α1) · φ′[g(x− θ)]dḡα(x− θ)

dx

2τ

∫
dxφ′[g(x− θ)]

(
dg(x− θ)

dx

)2 −

∑
α

∫
dxφ′[g(x− θ)]dḡα(x− θ)

dx
ζα(x)

2τ

∫
dxφ′[g(x− θ)]

(
dg(x− θ)

dx

)2 , (84)

where we have made the arguments of g explicit. This equation encapsulates all aspects of bump motion for 528

our theoretical model. It includes dependence on both drive b and noise ζ, the latter of which is kept in a 529

general form. We will proceed by considering specific cases of this equation. 530

Path integration velocity vdrive due to driving input b 531

The noiseless case of Eq. 84 with ζα(x) = 0 yields the bump velocity due to drive b, which is responsible for 532

path integration: 533

vdrive = −
γb

∫
dxφ′[g(x− θ)]

(
dḡR
dx
− dḡL

dx

)
2τ

∫
dxφ′[g(x− θ)]

(
dg

dx

)2 . (85)

Note that this expression is independent of the position θ. We can explicitly remove θ by shifting the dummy
variable x→ x+ θ:

vdrive = −
γb

∫
dxφ′[g(x)]

(
dg(x+ ξ)

dx
− dg(x− ξ)

dx

)
2τ

∫
dxφ′[g(x)]

(
dg(x)

dx

)2

≈ −
γbξ

∫
dxφ′[g(x)]

d2g

dx2

τ

∫
dxφ′[g(x)]

(
dg

dx

)2 . (86)

Now let’s consider the specific ReLU activation function φ. Equation 35 implies 534

φ′[g] =

{
0 g ≤ 0

1 g > 0,
so φ′[g]2 = φ′[g] and φ′[g] · φ[g] = φ[g]. (87)

These identities, along with the definition for s (Eq. 34), give 535

φ′[g(x)]
d2g

dx2
=

d2s

dx2
, φ′[g(x)]

(
dg

dx

)2
=

(
ds

dx

)2
, φ[g(x)]

(
dg

dx

)2
= s(x)

(
ds

dx

)2
. (88)
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Applying the first two equalities to Eq. 86 produces Eq. 8 of the Results section. 536

Now we reintroduce noise ζ and assume it is independent across neurons and timesteps, with mean 〈ζ〉. 537

If we average Eq. 84 over ζ, the numerator of the second term becomes 538∑
α

∫
dxφ′[g(x− θ)]dḡα(x− θ)

dx
〈ζ〉 = 0. (89)

The integral vanishes because g is even and
∑
α dḡα/dx is odd. Thus, 539〈

dθ

dt

〉
= vdrive, (90)

demonstrating that networks with independent noise still path integrate on average. 540

Diffusion Dinput due to input noise 541

Independent noise ζ produces diffusion, a type of deviation in bump motion away from the average trajectory. 542

It is quantified by the diffusion coefficient D: 543〈[
θ(t)− 〈θ(t)〉

]2〉
= 2Dt. (91)

In terms of derivatives of θ, 544

〈[
θ(t)− 〈θ(t)〉

]2〉
=

∫ t

0

∫ t

0

dt′ dt′′

〈(
dθ

dt′
−
〈

dθ

dt′

〉)(
dθ

dt′′
−
〈

dθ

dt′′

〉)〉
. (92)

Equations 84 and 90 imply 545

dθ

dt
−
〈

dθ

dt

〉
= −

∑
α

∫
dxφ′[g(x− θ)]dḡα

dx
ζα(x)

2τ

∫
dxφ′[g(x− θ)]

(
dg

dx

)2 . (93)

We then shift the dummy variable x→ x+ θ(t) and reintroduce explicit dependence on t to obtain

〈[
θ(t)− 〈θ(t)〉

]2〉
=

∫ t

0

∫ t

0

dt′ dt′′

∑
αβ

∫∫
dx dy φ′[g(x)]φ′[g(y)]

dḡα
dx

dḡβ
dy

〈
ζα
(
x+ θ(t′), t′

)
ζβ
(
y + θ(t′′), t′′

)〉
4τ2

[∫
dxφ′[g(x)]

(
dg

dx

)2]2 .

(94)

One class of independent ζ is Gaussian noise added to the total synaptic input, which represents neural 546

fluctuations at short timescales. We assume it is independent across neurons and timesteps with zero mean 547

and fixed variance σ2: 548

〈ζα(x, t)〉 = 0, 〈ζα(x, t)ζβ(y, t′)〉 = σ2∆t δ(t− t′)δαβδ(x− y). (95)

∆t is the simulation timestep, which defines the rate at which the random noise variable is resampled.
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Equation 94 then becomes, with the help of Eq. 78,

〈[
θ(t)− 〈θ(t)〉

]2〉
=

∫ t

0

dt′
σ2∆t

∑
α

∫
dxφ′[g(x)]2

(
dḡα
dx

)2

4τ2

[∫
dxφ′[g(x)]

(
dg

dx

)2]2

≈
σ2∆t

∫
dxφ′[g(x)]2

(
dg

dx

)2
2τ2

[∫
dxφ′[g(x)]

(
dg

dx

)2]2 · t. (96)

Reconciling this with the definition of the diffusion coefficient D in Eq. 91 yields 549

Dinput =

σ2∆t

∫
dxφ′[g(x)]2

(
dg

dx

)2
4τ2

[∫
dxφ′[g(x)]

(
dg

dx

)2]2 . (97)

Applying Eq. 88 for a ReLU φ gives Eq. 10 of the Results section. 550

Diffusion Dspike due to spiking noise 551

Instead of input noise, we consider independent noise arising from spiking neurons. In this case, the stochastic 552

firing rate s is no longer the deterministic expression in Eq. 34. Instead, 553

sα(x, t) =
cα(x, t)

∆t
, (98)

where c is the number of spikes emitted in a simulation timestep of length ∆t. We model each cα(x, t) as an 554

independent Poisson-like random variable driven by the deterministic firing rate φ[gα(x, t)] with Fano factor 555

F . It has mean φ[gα(x, t)]∆t and variance Fφ[gα(x, t)]∆t. Therefore, 556

sα(x, t) = φ[gα(x, t)] +

√
Fφ[gα(x, t)]

∆t
ηα(x, t), (99)

where each ηα(x, t) is an independent random variable with zero mean and unit variance: 557

〈ηα(x, t)〉 = 0, 〈ηα(x, t)ηβ(y, t′)〉 = ∆t δ(t− t′)δαβδ(x− y). (100)

As in Eq. 95, the simulation timestep ∆t defines the rate at which η is resampled. By substituting Eq. 99 558

into Eq. 33, we see that spiking neurons can be described by deterministic firing rate dynamics with the 559

stochastic noise term 560

ζα(x, t) =
∑
β

∫
dyWβ(x, y)

√
Fφ[gβ(y, t)]

∆t
ηβ(y, t). (101)
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Now we calculate the diffusion coefficient produced by this noise. Equation 93 becomes

dθ

dt
−
〈

dθ

dt

〉
= −

∑
αβ

∫∫
dx dyWβ(x, y)φ′[g(x− θ)]dḡα

dx

√
Fφ[g(y − θ)]

∆t
ηβ(y)

2τ

∫
dxφ′[g(x− θ)]

(
dg

dx

)2

= −

∑
β

∫
dy

dḡβ
dy

√
Fφ[g(y − θ)]

∆t
ηβ(y)

2τ

∫
dxφ′[g(x− θ)]

(
dg

dx

)2 . (102)

We used Eq. 79 to obtain the second equality. We then proceed as for input noise to calculate

〈[
θ(t)− 〈θ(t)〉

]2〉
=

∫ t

0

∫ t

0

dt′ dt′′

F

∆t

∑
αβ

∫∫
dx dy

√
φ[g(x)]φ[g(y)]

dḡα
dx

dḡβ
dy

〈
ηα
(
x+ θ(t′), t′

)
ηβ
(
y + θ(t′′), t′′

)〉
4τ2

[∫
dxφ′[g(x)]

(
dg

dx

)2]2 ,

(103)

which yields the diffusion coefficient 561

Dspike =

F

∫
dxφ[g(x)]

(
dg

dx

)2
4τ2

[∫
dxφ′[g(x)]

(
dg

dx

)2]2 . (104)

After applying Eq. 88 for a ReLU φ and setting F = 1 for Poisson spiking, we obtain Eq. 20 of the Results 562

section. 563

Drift velocity vconn(θ) due to quenched connectivity noise 564

Suppose that we perturb the symmetric, translation-invariant W by a small component V representing 565

deviations away from an ideal attractor architecture: 566

Wβ(x, y)→Wβ(x, y) + Vαβ(x, y). (105)

By Eq. 33, this produces the noise term 567

ζα(x, t) =
∑
β

∫
dy Vαβ(x, y)φ[gβ(y, t)]. (106)

In contrast to input and spiking noise, this noise is correlated across neurons and time, so it cannot be 568

averaged away as in Eqs. 89 and 90. Substituting Eq. 106 into Eq. 84, we obtain 569

dθ

dt
= vdrive + vconn(θ), (107)
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where the drift velocity is 570

vconn(θ) = −

∑
αβ

∫∫
dx dy Vαβ(x, y)φ′[g(x− θ)]dg(x− θ)

dx
φ[g(y − θ)]

2τ

∫
dxφ′[g(x− θ)]

(
dg(x− θ)

dx

)2 . (108)

We have made the dependence on bump position θ explicit to illustrate how it influences vconn(θ). After 571

applying Eq. 88 for a ReLU φ, we obtain Eq. 24 of the Results section. 572

We now make scaling arguments for speed difference (Eq. 30), speed variability (Eq. 31), and escape 573

drive b0 (Eq. 26). To do so, we impose a ReLU φ and return to discrete variables to be explicit: 574

vconn;θ = −

∑
αβ

∑
ij

Vαβij ·∆si−θ · sj−θ

2τ
∑
i

(∆si−θ)
2

. (109)

We need to understand how the numerator scales with M and N . It is a weighted sum of 4N2 independent 575

Gaussian random variables Vαβij and is thus a Gaussian random variable itself. It has zero mean, but its 576

variance is proportional to N2 ·M2/N2. The N2 comes from the number of terms in the sum and the M2/N2
577

comes from the scaling of ds/dx (Eq. 11). In combination with the scaling of the denominator, we conclude 578

that vconn;θ is a Gaussian random variable with 579

E[vconn;θ] = 0, Var[vconn;θ] ∝
N2

M2
. (110)

Equation 109 implies that vconn;θ is correlated over θ. The weights for the sum over Vαβij are the firing 580

rates and their derivatives for a bump centered at θ. If θ is slightly changed, almost the same entries of V 581

will be summed over with similar weights. The amount of correlation across θ is determined by the degree of 582

overlap in weights, and therefore, by the width and number of bumps. Let’s consider the effects of changing 583

N and M on the covariance matrix Cov[vconn;θ, vconn;θ′ ]. A larger N increases the bump width and the 584

correlation length proportionally, so values of the main diagonal decay proportionally more slowly into the 585

off diagonals. A larger M redistributes values among the diagonals by decreasing the bump width and adding 586

more bumps, but it does not change the total amount of correlation. Thus, 587∑
θ,θ′

Cov[vconn;θ, vconn;θ′ ] ∝ N2 ·Var[vconn;θ]. (111)

This allows us to evaluate 588

Var
[
mean
θ

vconn;θ

]
= Var

[
1

N

∑
θ

vconn;θ

]
=

1

N2

∑
θ,θ′

Cov[vconn;θ, vconn;θ′ ] ∝
N2

M2
. (112)

As a sum of zero-mean Gaussian random variables, meanθ vconn;θ is also a zero-mean Gaussian random 589

variable. That means |meanθ vconn;θ| follows a folded normal distribution, which obeys 590

E

[∣∣∣mean
θ

vconn;θ

∣∣∣] =

√
2

π
Var
[
mean
θ

vconn;θ

]
∝ N

M
. (113)

Combining this with Eqs. 12 and 14 produces the scalings for speed difference in Eq. 32. 591

We now study speed variability, which involves the expression 592

std
θ
vconn;θ =

√
1

N

∑
θ

v2conn;θ. (114)
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Since each vconn;θ is Gaussian, the sum of their squares follows a generalized chi-square distribution. Its 593

mean is the trace of the covariance matrix Cov[vconn;θ, vconn;θ′ ], which is equal to N times the variance. 594

Thus, by Eq. 110, 595

E

[
1

N

∑
θ

v2conn;θ

]
=

1

N
·N ·Var[vconn;θ] ∝

N2

M2
. (115)

We are interested in the square root of the random variable on the left-hand side, and we anticipate its 596

expected value to scale as the square root of the right-hand side. We can make this argument precise. 597

Suppose H is a random variable with a probability distribution function p(h) that scales with a power of 598

the parameter B. We can write 599

p(h) = Bn P (Bmh) (116)

for exponents n and m, where the rescaled probability distribution function P does not scale with B. 600

Conservation of total probability implies 601

Bn
∫

dhP (Bmh) = BnB−m
∫

dh′ P (h′) = 1. (117)

Thus, m = n. Next, suppose we know that E[H] ∝ Bo: 602

E[H] = Bn
∫

dhhP (Bnh) = B−n
∫

dh′ h′ P (h′) ∝ Bo. (118)

Thus, n = −o. We can now conclude that E[
√
H] ∝

√
E[H]: 603

E[
√
H] = B−o

∫
dh
√
hP (B−oh) = Bo/2

∫
dh′
√
h′ P (h′) ∝ Bo/2. (119)

Applying this result to Eq. 115, we obtain 604

E
[
std
θ
vconn;θ

]
= E

[√
1

N

∑
θ

v2conn;θ

]
∝

√√√√E

[
1

N

∑
θ

v2conn;θ

]
∝ N

M
. (120)

Combining this with Eqs. 12 and 14 produces the scalings for speed variability in Eq. 32. 605

The escape drive b0 involves the expression maxθ |vconn;θ|. Extreme value statistics for correlated random 606

variables is generally poorly understood. We follow Majumdar et al. (2020) and provide a heuristic argument 607

for its scaling. We can partition vconn;θ across θ into groups that are largely independent from one another 608

based on its correlation structure. As discussed above, vconn;θ is a weighted sum of independent Gaussian 609

random variables Vαβij (Eq. 109). The weights are products between the firing rates sj−θ and their derivatives 610

∆si−θ for a configuration centered at position θ. If we choose two θ’s such that bumps do not overlap, the 611

corresponding vconn;θ’s will sum over different Vαβij ’s and will be independent. Thus, λ/z roughly sets the 612

number of independent components, where λ is the bump distance and z is the bump width. This ratio does 613

not change with M or N in our networks (Fig. 2F), so the maximum function does not change the scaling 614

of |vconn;θ|: 615

max
θ
|vconn;θ| ∝ |vconn;θ|. (121)

The scaling of E[|vconn;θ|] can be determined from Var[vconn;θ] through arguments similar to those made in 616

Eqs. 116, 117, 118, and 119. Suppose we know that Var[H] ∝ Bo and E[H] = 0. Then, 617

Var[H] = Bn
∫

dhh2 P (Bnh) = B−2n
∫

dh′ (h′)2 P (h′) ∝ Bo. (122)

Thus, n = −o/2. We can now conclude that E[|H|] ∝
√

Var[H]: 618

E[|H|] = B−o/2
∫

dh |h|P (B−o/2h) = Bo/2
∫

dh′ |h′|P (h′) ∝ Bo/2. (123)
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Applying this result to Eq. 121, we obtain 619

E
[
max
θ
|vconn;θ|

]
∝ E

[
|vconn;θ|

]
∝
√

Var
[
vconn;θ

]
∝ N

M
. (124)

Combining this with Eqs. 12, 13, and 26 produces the scalings for the escape drive b0 in Eq. 27. 620

Simulation methods 621

Dynamics and parameter values 622

To simulate the dynamics Eq. 33, we discretize the network by replacing neural position x with index i and 623

propagate forward in time with the simple Euler method: 624

τ
gαi(t+ ∆t)− gαi(x, t)

∆t
+ gαi(x, t) =

∑
βj

Wβijsβj(t) +A±α γb(t) + ζαi(t). (125)

We use τ = 10 ms. We use ∆t = 0.5 ms and A = 1 for all simulations except those with spiking neurons. In 625

the latter case, we use finer timesteps ∆t = 0.1 ms and set A = 0.1 ms−1. Synaptic inputs g and resting inputs 626

A can be dimensionless for rate-based simulations, but they must have units of rate for spiking simulations. 627

We use γ = 0.1 for rate-based simulations and γ = 0.01 ms−1 for spiking simulations. In all cases, we run 628

the simulation for 1000 timesteps before recording any data to form the bumps. To achieve the relationship 629

in Eq. 13 for circular mapping, we rescale γ with network size N and bump number M : 630

γ → γ · N
600
· 3

M
. (126)

The connectivity W takes the form in Eq. 38. Unless otherwise specified, we use shift ξ = 2. To produce 631

M bumps in a network of size N , we turn to Eq. 47 and set l = 0.44N/M . We use w = 8M/N ≈ 3.5/l. 632

For the case of 2l > N/2, which corresponds to a one-bump network, the tails of the cosine function extend 633

beyond the network size. Instead of truncating them, we wrap them around the ring: 634

W (x)→W (x) +W (x−N) +W (x+N). (127)

This procedure, along with the scaling of w with N and M , accomplishes Eq. 7 and keeps the total connec- 635

tivity strength per neuron
∑
iWi constant across all N and M , where Wi is the discrete form of W (x). 636

To generate the Poisson-like spike counts cαi(t) in Eq. 98, we rescale Poisson random variables: 637

cαi(t) = F · Cαi(t), Cαi(t) ∼ Pois
[
φ[gαi(t)]∆t/F

]
. (128)

These counts will be multiples of the Fano factor F . To produce a cαi(t) whose domain is the natural 638

numbers, one can follow Burak and Fiete (2009), who take multiple samples of Cαi(t) during each timestep. 639

To obtain theoretical values in Figs. 3, 5, 7, and 8, we need to substitute the baseline inputs gi into the 640

appropriate equations. We use noiseless and driveless simulations to generate gi instead of using Eq. 4. 641

Bump position 642

We track the position θ of each bump using the firing rate summed across both populations Si(t) = 643∑
α φ[gαi(t)]. We first estimate the positions of all the bumps by partitioning the network into segments 644

of length bN/Mc. If N/M is not an integer, we skip one neuron between some segments to have them 645

distributed as evenly as possible throughout the network. We sum Si(t) across all the segments and find the 646

position i0 with maximum value. We perform a circular shift of the original Si(t) such that i0 is shifted to 647

the middle of the first segment bN/2Mc. The purpose of this process is to approximately center each bump 648

within a segment so that Si(t) drops to 0 before reaching segment boundaries. We then calculate the center 649

of mass of Si(t) within each segment. After reversing the circular shift, these centers of masses are taken to 650

be the bump positions. 651
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As an alternative, we can obtain a bump position between 0 and N/M by simply computing the circular 652

mean of Si(t) with periodicity N/M . However, this method does not track the position of each bump, so we 653

do not use it. 654

Path integration velocity and diffusion 655

To obtain our results in Figs. 3 and 5, we run each simulation for T = 5 s. To extract the bump velocity v 656

produced by a constant drive b, we calculate the mean displacement Θ as a function of time offset u: 657

Θ(u) =
∆t

T − u
∑
t

[
θ(t+ u)− θ(t)

]
. (129)

θ is the bump position. This equation averages over fiducial starting times t, which ranges from 0 to T−u−∆t 658

in increments of ∆t. We vary u between 0 and T/2 in increments of ∆t; the maximum is T/2 to ensure 659

enough t’s for accurate averaging. We then fit Θ(u) to a line through the origin to obtain the velocity: 660

Θ(u) ≈ vu. (130)

We calculate the diffusion coefficient D based on an ensemble of replicate simulations. In this section, 661

angle brackets will indicate averaging over this ensemble. Following the definition of D in Eq. 92, we calculate 662

each bump’s position relative to the mean motion of the ensemble: 663

ω(t) = θ(t)− 〈θ(t)〉 (131)

We compute squared displacements and then average over fiducial starting times to obtain a mean squared 664

displacement for each bump as a function of time offset u: 665

Ω(u) =
∆t

T − u
∑
t

[
ω(t+ u)− ω(t)

]2
. (132)

t and u span the same time ranges as they did for Θ. We average Ω(u) over the ensemble and fit it to a line 666

through the origin to obtain the diffusion coefficient: 667〈
Ω(u)

〉
≈ 2Du. (133)

For simulations with M bumps, we arbitrarily assign identity numbers 1, . . . ,M to bumps in each simu- 668

lation. We perform ensemble averaging over bumps with the same identity numbers; that is, we only average 669

over one bump per simulation. This way, we obtain separate values for each bump in Fig. 3E–H; neverthe- 670

less, these values lie on top of each other. In Fig. 3B, C, each point represents v averaged across bumps. 671

To calculate the mean velocity 〈v〉 in Fig. 3E, F, we fit 〈Θ(u)〉 to a line through the origin. To estimate 672

standard deviations for Fig. 3E–H and Fig. 5, we create 48 bootstrapped ensembles, each of which contains 673

48 replicate simulations sampled with replacement from the original ensemble. We calculate 〈v〉 or D for 674

each bootstrapped ensemble and record the resulting standard deviation. In Fig. 5, each point represents D 675

and its estimated standard deviation averaged across bumps. 676

Trapping and position-dependent velocity 677

For simulations with connectivity noise, we determine the escape drive b0 (Fig. 7), the smallest drive that 678

allows the bumps to travel through the entire network, by a binary search over b. We perform 8 rounds 679

of search between the limits 0 and 1.28 and another 8 rounds between 0 and −1.28 to obtain b0 within an 680

accuracy of 0.01. In each round, we run a simulation with the test b and see whether the bumps travel 681

through the network or get trapped. Traveling through the network means that every position (rounded to 682

the nearest integer) has been visited by a bump, and trapping means that the motion of at least one bump 683

slows below a threshold for a length of time. 684

To obtain the position-dependent bump velocity v(θ) produced by connectivity noise when |b| > b0, 685

we run a simulation until the bumps have traveled through the network. At each timestep, we record the 686
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positions of the bumps (binned to the nearest integer) and their instantaneous velocities with respect to the 687

previous timestep. We smooth the velocities in time with a Gaussian kernel of width 10 ms, which is the 688

neural time constant τ . We calculate the mean and standard deviation of these smoothed velocities for each 689

position bin. 690

Mutual information 691

For simulations with input noise, we explore the mutual information between encoded coordinate and single- 692

neuron activity (Fig. 6). To do so, we must generate data from which we can calculate p(s|u) in Eq. 22, 693

for coordinate u ∈ U and activity s ∈ S. We have chosen one set of conditions for performing this analysis, 694

which we detail below. 695

We first choose to represent either a linear or circular coordinate, which we take to be position or 696

orientation, respectively. We then choose to represent a narrow or wide coordinate range umax, which is 20 cm 697

or 200 cm for position and 36° or 360° for orientation. We divide the range into 20 equally spaced coordinates 698

such that U = {umax/20, . . . , umax}. We convert these coordinates to network positions according to the 699

mappings in Fig. 4. For each coordinate value u, we initialize 96 replicate simulations at the corresponding 700

network position by applying additional synaptic input to the desired bump positions during bump formation. 701

We run the simulations for 5 s, record the final firing rates, and bin them using 6 equally spaced bins from 0 702

to the 99th percentile across all neurons. All rates above the 99th percentile are also added to the 6th bin. 703

These bins define the discrete S, and normalizing the bin counts produces p(s|u). We marginalize over u to 704

obtain p(s), and p(u) is uniform. We can then use Eq. 22 to calculate the mutual information. 705

The 4 local cues in Fig. 6F–H correspond to 4 activity states Scue separate from the 6 activity bins of 706

the CAN neurons, Sneuron. The joint sample space of a single neuron with cues is thus S = Sneuron × Scue 707

with 6× 4 = 24 total states. We bin neural activity across these more numerous states, using the coordinate 708

value u to determine the cue state value, to again calculate p(s|u) and then the mutual information. 709

We choose to calculate mutual information with single-neuron activities binned into 6 discrete states due 710

to computational tractability. A better indication of encoding quality for the entire network would involve 711

using the joint activity of multiple neurons. However, assuming the same binning process, that would 712

involve estimating probability distributions over 6n states for n neurons, which would require exponentially 713

more replicate simulations per coordinate value than the 96 we use. Alternatively, one could reduce the 714

dimensionality of the network activity by projecting it onto various attractor configurations, as done by 715

Roudi and Treves (2008). 716

Appendix 717

In this Appendix, we revisit many major results for input, spiking, and connectivity noise, but for either a 718

different activation function φ (Fig. 9) or for connectivity strengths W that do not scale with bump number 719

and network size (Fig. 10). To calculate theoretical predictions for each set of results, we need to substitute 720

the baseline synaptic inputs g into the appropriate equations. They are obtained by running simulations 721

without noise and drive. Notably, the theory still demonstrates close agreement with simulation results 722

under these new conditions. 723

In Fig. 9, we use a logistic sigmoid activation function φ to convert synaptic inputs g to firing rates s: 724

φ[g] =
1

1 + e−g
. (134)

All results with this φ are qualitatively identical to those obtained with a ReLU φ in the Results section. To 725

calculate theoretical values, we can no longer use equations from the Results, which are simplified for a ReLU 726

φ. To calculate Dinput, Dspike, vdrive, and vconn(θ), we use Eqs. 97, 104, 86, and 108 from the Theoretical 727

methods section instead. 728

In the Results section, we assumed that the connectivity strengths W obey Eq. 7 to maintain the same 729

scaled bump shape across bump numbers M and network sizes N . In addition to the theoretical advantages 730

of obtaining simple scaling relationships, this choice can be loosely biologically motivated. Consider the 731

tuning curves of grid cells, which are thought to function as CANs. Their scaled shapes are roughly similar 732
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Figure 9: Main results repeated for networks with a logistic activation function. (A) The scaled bump shape remains
invariant across network sizes and bump numbers, accomplished by rescaling connectivity strengths according to Eq. 7.
Curves for different parameters lie over one another. (B, C) Networks with synaptic input noise. Bump diffusion follows
the same qualitative behavior as in Fig. 5A, B. (D, E) Networks with Poisson spiking noise. Bump diffusion follows the
same qualitative behavior as in Fig. 5C, D. (F–I) Networks with connectivity noise. (F, G) Escape drive follows the same
qualitative behavior as in Fig. 7D, E. (F, G) Bump speed variability follows the same qualitative behavior as in Fig. 8D, E.
The activation function φ takes the form in Eq. 134. In F–I, we use connectivity noise of magnitude 0.003. In H, I, we
use drive b = 2.5. The rest of the parameters are identical in value to those used in the main text.

across modules (Stensola et al., 2012), which may differ in bump number (Gu et al., 2018; Kang and 733

Balasubramanian, 2019; Khona et al., 2022), and across mammalian taxa from rodents to primates (Killian 734

et al., 2012; Jacobs et al., 2013), whose brains certainly differ in neuron number. This crude observation 735

supports the choice to maintain a fixed scaled bump shape across M and N . Nonetheless, in Fig. 10, we do 736

not assume Eq. 7 and bump shape invariance. Instead, we fix w = 0.04 in Eq. 38, which fixes the maximum 737

synaptic strength across all networks. This change produces qualitative differences only for circular mapping. 738

Here, under circular mapping, networks with fewer bumps are more robust to all three forms of noise, and 739

larger networks are more robust to connectivity noise. For the corresponding simulations in the Results 740

section, no major dependence on bump number was observed. 741
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Figure 10: Main results repeated for networks without rescaling of connectivity strengths according to Eq. 7. (A)
The scaled bump shape no longer remains invariant across network sizes and bump numbers. (B, C) Networks with
synaptic input noise. Bump diffusion follows the same qualitative behavior as in Fig. 5A, B, except that here it slightly
increases with bump number under circular mapping. (D, E) Networks with Poisson spiking noise. Bump diffusion
follows the same qualitative behavior as in Fig. 5C, D, except that here it slightly increases with bump number under
circular mapping. (F–I) Networks with connectivity noise. (F, G) Escape drive follows the same qualitative behavior as in
Fig. 7D, E under linear mapping. It slightly increases with bump number and decreases with network size under circular
mapping. (H, I) Bump speed variability follows the same qualitative behavior as in Fig. 8D, E under linear mapping. It
slightly increases with bump number and decreases with network size under circular mapping. The connectivity W still
takes the form in Eq. 38, except that here we fix w = 0.04 across all bump numbers and network sizes. In H, I, we use
drive b = 1.0. The rest of the parameters are identical in value to those used in the main text.
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