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Abstract

Immune surveillance escape is a hallmark of tumorigenesis1. Multiple studies have
characterized the immune escape landscape across several untreated early-stage primary
cancer types2–4. However, whether late-stage treated metastatic tumors present differences
in genetic immune escape (GIE) prevalence and dynamics remains unclear. Here, we
performed a pan-cancer characterization of GIE prevalence across six immune escape
pathways in 6,457 uniformly processed Whole Genome Sequencing (WGS) tumor samples
including 58 cancer types from 1,943 primary untreated patients and 4,514 metastatic
patients. To effectively address the complexity of the Human Leukocyte Antigen (HLA-I)
locus and to characterize its tumor status, we developed LILAC, an open-source integrative
framework. We demonstrate that one in four tumors harbor GIE alterations, with high
mechanistic and frequency variability across cancer types. GIE prevalence is highly
consistent between primary and metastatic tumors for most cancer types with few
exceptions such as prostate and thyroid carcinomas that have increased immune evasion
frequencies in metastatic tumors. Positive selection analysis revealed that GIE alterations
are frequently selected for in tumor evolution and that focal LOH of HLA-I, unlike non-focal
LOH of HLA-I, tends to lose the HLA allele that presents the largest neoepitope repertoire.
We also unraveled tumor genomic features contributing to immune escape incidence,
including DNA repair deficiency, APOBEC activity, tobacco associated mutation load and
viral DNA integration. Finally, there is a strong tendency for mid and high tumor mutation
burden (TMB) tumors to preferentially select LOH of HLA-I for GIE whereas hypermutated
samples favor global immune evasion strategies. Our results indicate that genetic immune
escape is generally a pre-metastatic event during tumor evolution and that tumors adapt
different strategies depending on their neoepitope burden.
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Introduction

Cancer immune escape is the process whereby tumor cells prevent their elimination by the
immune system5. This process is leveraged by tumor cells as a response to the
accumulation of tumor specific alterations, which are susceptible to be presented -in the form
of neoepitopes- by the Major Histocompatibility Complex-I (MHC-I). Despite the significant
advances in predicting which neoantigens are presented as neoepitopes, it is still
challenging to accurately select the neoepitopes capacity to trigger cytotoxic T-cell
responses (i.e., the neoantigens) based on genomics data6.

Tumorigenesis often selects genomic somatic alterations in order to hinder the recognition
and/or elimination by the immune system7, a process hereafter referred to as genetic
immune escape (GIE). Such alterations operate through different mechanisms, including
partial or complete abrogation of neoepitope presentation8 or suppression of pro-apoptotic
signals from the surrounding immune cells9. Therefore, identification of GIE events across
human cancers is key to understanding the interplay between cancer cells and the immune
system as well as to enable effective precision medicine based on immunotherapy.

Prior studies have performed cancer type specific molecular profiling of GIE events and their
phenotypic implications in certain cancer types, including seminal work in non-small cell lung
cancer2,3 (NSCLC) and colorectal carcinoma4, among others10,11. Others have performed an
extensive analysis of LOH HLA-I across thousands of tumor samples12. However, a
pan-cancer analysis of the prevalence and impact of diverse GIE events is currently lacking.
In addition to that, the focus of these studies was to portray GIE in early-stage untreated
primary tumors, whereas the changes induced by exposure to treatment and by the
metastatic bottleneck have not been comprehensively addressed but might be highly
relevant for advanced cancer treatment.

One of the main challenges to perform such analyses lies in the extraordinary diversity of the
HLA locus, consisting in multiple genes and different maternal and paternal make ups. To
date, more than 15,000 different sequences of the HLA-A, HLA-B and HLA-C genes have
been reported13, which significantly hampers the identification of tumor specific somatic
alterations. This prompted the development of tools that specifically identify LOH of HLA
class I alleles (LOH HLA-I)14 or somatic mutations15 from whole exome/genome sequencing
data. These studies revealed the relevance of assessing tumor specific HLA alterations in
tumorigenesis. However, none of these tools provide an integrative characterization of the
HLA-I tumor status, which includes HLA-I typing, allelic imbalance, LOH-HLA-I and somatic
mutation annotation.

In this study we present a pan-cancer landscape of the GIE prevalence in primary
(represented by the PCAWG cohort) and metastatic patients (represented by the Hartwig
cohort). Furthermore, to address the complexity of the HLA-I locus, we developed LILAC, an
open-source integrative framework that characterizes the HLA-I locus, including its tumor
status from WGS data. We applied LILAC and a universal tumor processing pipeline to
establish a comprehensive portrait of GIE events and their positive selection landscape
across six different pathways recurrently associated with an immune evasion phenotype:
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aberration of the HLA-I locus itself, mutations in the antigen presentation machinery, IFN-γ
signaling inactivation, PD-L1 amplification, CD58 inactivation and epigenetic immune escape
(Fig. 1a and Supp. Table 1; methods GIE alterations). We also studied how the TMB and
other genomic and environmental features influences the prevalence of GIE alterations,
providing insights into tumor evolution and its interplay with the immune system.
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Results

Inference of HLA-I tumor status with LILAC

Inference of the correct HLA-I tumor status is fundamental to identify GIE alterations (Fig.
1a), to estimate the neoepitope repertoire and burden and to predict the response to
Immune Checkpoint Inhibitors16,17 (ICI). None of currently available HLA typing tools provides
an integrated characterization of the germline and the tumor HLA-I locus. To bridge this gap,
we developed LILAC, a framework that performs HLA-I typing for the germline of each
patient as well as determining the status of each of those alleles in the tumor including
complete loss of one or more alleles, allele specific somatic mutations and allelic imbalance
using whole genome sequencing data of tumor-normal pairs as input. LILAC is also able to
detect novel HLA-I alleles. Finally, it provides allele-specific and sample level quality control
measurements, which assist in the interpretation of LILAC’s output (Fig. 1b, see methods
LILAC and Supplementary Note 1).

We first assessed LILAC’s HLA-I typing robustness by independently calculating the
germline and tumor HLA-I 2-field calling agreement across 6,874 patients (see methods
LILAC), including 4,775 patients from the Hartwig18 dataset and 2,099 from the PCAWG19

cohort. LILAC showed the highest agreement (98.20% and 86.71% in Hartwig and PCAWG,
respectively) compared to two state-of-the-art HLA typing tools, Polysolver15 and xHLA20

(Fig. 1c and Fig.1d top panels and Supp. Table 2). The Hartwig dataset showed higher
normal-tumor agreement for all tools, possibly due to the higher sequencing coverage and
read quality of this dataset which was generated with more recent sequencing platforms.
The exclusion of samples bearing HLA-I somatic alterations -that may hinder the
comparison- rendered a very high agreement for LILAC across both datasets (99.71% for
Hartwig and 90.61% for PCAWG), which was consistently higher than the two other methods
on the same set of samples (Fig. 1c and Fig. 1d, bottom panels and and Supp. Table 2). In a
three-way comparison, LILAC also displayed the highest overlap with the predictions from
the other tools across both datasets (Supp. Fig. 1a and Supp. Fig. 1b). Next, we evaluated
LILAC HLA-I typing sensitivity in a set of 95 samples -including 10 from tumor biopsies- with
an independent orthogonal and clinically validated HLA-I typing approach by high-to allelic
resolution HLA typing (see methods LILAC experimental validation). LILAC showed a perfect
100% 2-field agreement across the 564 alleles, higher than Polysolver (93.09%) and xHLA
(98.94%) agreements (Fig. 1e. and Supp. Table 2). Moreover, LILAC reported nine somatic
mutations in seven of the tumor biopsies evaluated. All of them (100%) were perfectly
matched by the orthogonal approach (Supp. Table 2), highlighting our framework’s ability to
identify and map somatic variants into HLA alleles in tumor samples.

HLA allele specific tumor copy number (CN) determination is key to identify LOH of HLA-I
genes in tumors, a well-established mechanism of immune evasion12,14, as well as to
determine allelic imbalance events. LILAC annotates allele specific ploidy levels of each
HLA-I allele based on the purity corrected local tumor copy number estimations and the
number of fragments assigned to each allele (see methods LILAC). WGS data provides
adequate resolution to annotate purity-adjusted minor and major allele ploidy in the HLA-I
locus, illustrated by the similar proportion of integer copy number of HLA-I genes compared
to a random set of 1,000 genes (Fig. 1f and Supp. Fig. 1c). Moreover, the three tumor
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samples harboring LOH of HLA-I according to our framework and evaluated by the
orthogonal approach displayed a strong allelic imbalance according to the experimental
validation (Supp. Table 2).

In summary, LILAC shows a highly sensitive and specific HLA-I typing performance and an
excellent ability to map tumor somatic events into the HLA alleles in WGS samples with
sufficient quality and thus forms an excellent basis for neoepitope prediction and studying
immune evasion mechanisms.
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Figure 1. Inference of HLA-I tumor status with LILAC. a) Representation of the six
immune escape pathways considered in this study alongside their associated genes.
Adapted from “MHC Class and II Pathways”, by BioRender.com (2021). b) Left, workflow of
the tumor analytical pipeline including LILAC. Right, tables show an illustrative example of
LILAC’s patient-specific reports. Partially created with BioRender.com. c) HLA-I typing tumor
and germline agreement in Hartwig and d) PCAWG. e) LILAC’s experimental validation. f)
Left, copy number of minor and major alleles of HLA-A, HLA-B and HLA-C in Hartwig. Right,
proportion of samples with integer copy number of HLA-I genes (orange) compared to the
average of 1,000 random genes in Hartwig (gray). The error bar represents the standard
deviation.
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Genetic Immune Escape (GIE) in primary and metastatic tumors

In addition to the HLA-I targeting alterations (i.e., LOH of HLA-I, somatic mutations and
homozygous deletions), other tumor somatic alterations may lead to an immune evasion
phenotype. Therefore, we combined LILAC with the Hartwig analytical comprehensive
cancer WGS pipeline18,21 to annotate GIE events across six pathways strongly associated
with immune escape (Fig. 1a and Supp. Table 1; methods GIE alterations) across 6,457
uniformly processed WGS samples, including 1,943 untreated primary patients from
PCAWG and 4,514 metastatic patients from Hartwig (Fig. 2a, Suppl. Fig. 2a and Suppl.
Table 3; methods Data collection and processing). In total, these patients were classified into
58 cancer types, which included 38 tumor types with sufficiently high representativeness
(i.e., number of patients greater or equal than 15) in the metastatic cohort, 27 in the primary
dataset and 20 cancer types with sufficient representation in both datasets to allow for a
comparison between primary and metastatic tumors (Fig. 2b, Supp. Fig. 2b-c and Supp.
Table 3).

GIE prevalence showed high mechanistic and frequency variability across primary and
metastatic cancer types (Fig. 2c and Fig. 2d top panels; Supp. Table 4). The median
proportion of patients harboring GIE alterations per cancer type was 0.27 for the metastatic
cohort and 0.20 for primary tumors, both showing highly dispersed distributions (±0.15 std.
and ±0.19 std. in metastatic and primary, respectively). In certain cancer types, such as
pancreatic neuroendocrine (PANET, metastatic), small intestinal cancer (SIAD, metastatic)
and kidney chromophobe cancer (KICH, primary) GIE was present in more than 50% of
patient samples (66%, 60% and 74%, respectively) while in others, such as lung
neuroendocrine (LUNET, metastatic) and pilocytic astrocytoma (PIA, primary), GIE was
extremely rare with 4% and none of the patients, respectively. Overall, one in four patients
(26% in metastatic and 24% in primary) presented GIE alterations based on the six
investigated pathways (Fig. 2c and Fig. 2d, bottom panels).

The most frequent GIE alteration was partial loss of the HLA-I locus (including both LOH of
HLA and homozygous deletions of HLA-I genes and were grouped as LOH of HLA-I for
simplicity), which was present in 801 (18%) of metastatic and 325 (17%) of primary cancer
patients, followed by IFN-γ inactivation (4% in metastatic and 3% in primary) and antigen
presentation pathway (4% in metastatic and 3% in primary). CD58 inactivation was the least
frequent immune escape event present in only 16 metastatic and 9 primary patients (Fig. 2c
and Fig. 2d, bottom panels). The high GIE rates of KICH and PANET were exclusively due to
LOH of HLA-I (Fig. 2e). These LOH events were the result of recurrent chromosome 6
loss22,23 and it is unclear whether LOH HLA-I is the primary driver behind this loss. Other
cohorts, such as diffuse large B-cell lymphoma (DLBCL), colorectal carcinoma (COREAD,
primary) and uterine carcinoma (UCEC, metastatic) displayed a wider range of GIE
mechanisms (Fig. 2f). In summary, GIE prevalence was generally dominated by LOH HLA-I
but most cancer types also leverage other mechanisms of immune evasion with lower
predominance.

We next sought to investigate whether there was a GIE prevalence difference between
primary untreated tumors and late stage metastatic tumors. Comparison by tumor type
across the 20 cancer types with sufficient representation (i.e., at least 15 patients in both the
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primary and metastatic datasets), showed a broad agreement between datasets (Fig. 2g).
Although 10 cancer types showed a certain degree of metastatic enrichment (Log2(odds
ratio) > 0.5; Fig. 2h), only in prostate carcinoma (PRAD) and thyroid cancer (THCA) this
difference was statistically significant (Fisher’s exact test corrected p-value < 0.01). Breaking
down pathway-specific differences revealed that THCA metastatic enrichment is the result of
increased LOH HLA-I incidence, whereas the discrepancies in PRAD are the result of a
widespread enrichment across several pathways (Fig. 2h). In general, LOH HLA-I showed a
non-significant trend towards metastatic enrichment across 7 of the 10 metastatic enriched
cancer types. None of the cancer types showed a significantly higher GIE incidence in
primary tumors. Nevertheless, colorectal carcinoma showed more frequent antigen
presentation pathway alterations in primary tumors (Fig. 2h), likely associated with higher
ratios of hypermutated samples in the PCAWG dataset. In summary, apart from the
aforementioned exceptions, the analyzed primary untreated and metastatic cancer types
show an overall comparable GIE prevalence, suggesting that immune evasion is generally
an early event in tumor evolution that may be further fueled by LOH of HLA-I in later
tumorigenic stages.
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Figure 2. GIE in primary and metastatic tumors. a) Total number of uniformly processed
WGS samples included in the study from the metastatic (Hartwig) and primary (PCAWG.)
datasets. b) Number of cancer type samples from each dataset across cancer types with at
least 15 samples in both datasets. c) top, cancer type specific proportion of metastatic
samples with GIE alterations across the six pathways and the combined group. bottom,
pan-cancer proportion and number of samples with GIE alterations in the metastatic group.
d) analogous for the primary datasets. Box-plots: center line, median; box limits, first and
third quartiles; whiskers, lowest/highest data points at first quartile minus/plus 1.5× IQR. The
label numbers represent the associated immune escape pathway, relative to Figure 1a. e)
and f) Radar plots representing cohort specific proportion of GIE alterations across the six
pathways from Fig. 1a. g) Combined proportion of primary (PCAWG) and metastatic
(Hartwig) samples affected by GIE alterations across 20 cancer types. Size of dots are
proportional to the number of total samples. The color of each dot is proportional to the
log2(odds ratio). Red edge lines represent an adjusted Fisher’s exact test p-value < 0.01. h)
top stacked bars, number and proportion of combined (metastatic and primary) cancer type
samples. main panel, pathway specific comparison alongside its significance. SIAD, small
intestine cancer. CHOL, cholangiocarcinoma. LMS, leiomyosarcoma. SCLC, small cell lung
cancer. SARC, sarcoma various. GIST, gastrointestinal stromal tumor. MESO,
mesothelioma. GINET, gastrointestinal neuroendocrine. LUNET, lung neuroendocrine. PIA,
Pilocityc astrocytoma. KIRC, Kidney papillary carcinoma. OS, osteosarcoma. ODG,
oligodendroglioma. The remaining cancer types acronyms are displayed in panel b).
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Positive selection of HLA-I alterations

We next examined to which extent somatic alterations in HLA-I genes (i.e. HLA-A, HLA-B
and HLA-C) were positively selected during tumorigenesis. Since LILAC enables the
mapping and consequence type annotation of HLA-I somatic point mutations and indels in
HLA alleles, we analyzed their dN/dS ratio24 and mutational profile. Pan-cancer grouped
HLA-I analysis (see methods Positive selection somatic mutations and indels) exhibited a
dN/dS ratio greater than one for nonsense, splice site and truncating variants in both the
metastatic and primary datasets (Fig. 3a), showing that these genes are subject to positive
selection. Furthermore, pan-cancer and gene-specific dN/dS ratios revealed that HLA-A and
HLA-B, but not HLC-C, are positively selected and that they are mostly enriched in
truncating variants (frameshifts and nonsense mutations) and not in non-synonymous
mutations that change individual amino acids (Fig. 3b and Fig. 3c).

In order to unravel the specificity associated with these global signals we next conducted a
gene and cancer type specific analysis of positive selection. We identified positively selected
genes from somatic point mutations and indels by using dNdScv and we developed a
randomization strategy to assess, at different genomic scales, positive selection in LOH
HLA-I, homozygous deletions and copy number amplifications (methods Positive selection
and Supp. Table 5). As expected, HLA-A and HLA-B, but not of HLA-C, were deemed as
drivers by dNdScv (q-value <0.1) across several cancer types including metastatic colorectal
and non-small cell lung cancer, diffuse large B-cell lymphoma as well as the pan-cancer
group in both datasets (Fig. 3e and 3f). Since gene inactivation may also be reached by
homozygous deletions, we queried the observed versus expected frequency of biallelic
HLA-I deletions. We did not observe any biallelic deletion of the entire HLA-I locus (Supp.
Table 4). Moreover, none of the gene and cancer-type specific billalelic deletions reached the
significance threshold (Supp. Table 5), suggesting that homozygous deletions within the
HLA-I might be constrained by purifying selection.

LOH of HLA-I, which is a recurrent genomic event and that had been previously reported as
a driver event in non-small cell lung cancer14, was more frequently observed than expected
across multiple cancer types in both the metastatic and the primary datasets (G-test
goodness of fit q-value < 0.1; Fig. 3e and Fig. 3f). More specifically, certain cohorts such as
pancreatic neuroendocrine (Fig. 3f) or kidney chromophobe (Supp. Fig. 3a) showed
non-focal LOH HLA-I enrichment, which is also compatible with other selective pressures
operating at chromosome 6 scale. Others, such as metastatic cervix carcinoma (Fig. 3g) or
primary diffuse large B-cell lymphoma, showed focal or highly focal (metastatic colorectal
cancer; Fig. 3h) LOH HLA-I patterns, indicative of HLA allele/s loss driven selection.

Finally, somatic point mutations and small indels of HLA-I genes were evenly distributed
along their sequences (Fig. 3i and Supp. Fig. 3b). The main exception was the recurrent
HLA-A Lys210 frameshift mutation, which was found in 8 MSI metastatic tumors and that
overlapped with a homo polymer repeat of CCCCCCC. No enrichment for mutations in
amino-acids involved in the peptide binding was observed. Such uniform distribution was in
agreement with previous observations25 and with the expected profile in tumor suppressor
genes dominated by inactivating variants26. Furthermore, 33 patients with non-synonymous
mutations of HLA-I genes (20% of the total 161 patients with mutations in HLA-I genes)
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displayed the concurrent loss of the alternative allele by LOH, potentially leading to complete
inactivation of the HLA gene. Taken together, our results show that HLA-A and HLA-B
somatic inactivation as well as LOH of HLA-I are frequently selected events across several
cancer types in tumor evolution whereas complete biallelic deletion of HLA-I and
single-amino acid change mutations are rarely exploited by tumors as a mechanism of
immune evasion.
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Figure 3. Positive selection of HLA-I. a) Pan-cancer dN/dS ratios of HLA-I genes in the
metastatic (left) and primary (right) dataset. Vertical lines represent the 5% and 95%
confidence intervals. b) Metastatic pan-cancer and gene-specific dN/dS ratios of HLA-I
genes. Vertical lines represent the 5% and 95% confidence intervals. c) Identical for the
primary dataset. d) Representation of gene and cancer type specific positive selection of
HLA-I in the metastatic and e) primary cohorts. f) Distribution of LOH events along the
autosomes in pancreatic neuroendocrine tumors of the metastatic cohort. X-ticks represent
the chromosomal starting position. g) Distribution of focal LOH events along the autosomes
in cervix cancer tumors of the metastatic cohort. X-ticks represent the chromosomal starting
position. h) Distribution of highly-focal LOH surrounding the HLA-I locus spanning from
chr6:25.1Mb to chr6:49.9Mb in the metastatic colorectal cancer cohort. Each bin represents
100Kbs. Dashed horizontal lines represent the expected means after randomization.
Vertical dashed lines highlight the HLA-I genomic locations. i) Needle plots representing the
pan-cancer distribution of somatic mutations along the HLA-A, HLA-B and HLA-C protein
sequences in the metastatic dataset. Mutations are coloured according to the consequence
type. CDS pos, coding sequence position. Mb, megabase. Kbs, kilobases.
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Focal LOH of HLA-I preferentially targets the allele that presents the
highest neoepitope repertoire

In HLA-I heterozygous cells, LOH of HLA-I substantially reduces the load and diversity of the
non-self peptidome susceptible to be presented by the HLA-I14,12. However, the absolute loss
of potential neoepitopes depends on the specific HLA-I allotypes and the total burden of
somatic alterations. This prompted us to analyze whether LOH of HLA-I tends to involve the
loss of the allele/s with the highest neoepitope ratio (i.e., higher number of predicted
neoepitopes compared to the alternative allele; see Fig. 4a, methods Tumor specific
neoepitopes and Supp. Note 2). We observed a positive association between the neoepitope
ratio and the frequency of the allele with higher neoepitope repertoire to be lost across both
the primary and metastatic datasets (Fig. 4b and Fig. 4e). This trend was significantly
different from a neutral scenario where both alleles are equally likely to be lost independently
of their neoepitope repertoire (Kolmogorov–Smirnov test metastatic p-value=2.47E-5 and
primary p-value=1.26E-7; methods calculation and randomization neoepitope ratio). The
association between neoepitope ratio and the loss frequency became stronger when
selecting for focal and highly focal LOHA HLA-I events (p-value=3.26E-9 and
p-value=1.65E-10 for metastatic and primary respectively). However, it was indistinguishable
from a neutral scenario for non-focal LOH-HLA (p-value=0.24 and p-value=0.11 for
metastatic and primary respectively), showing that non-focal LOH HLA-I does not select for
the allele with the highest neoepitope repertoire and that its high recurrency in certain cancer
types may be associated with other selective forces.
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Figure 4. LOH HLA-I and the neoepitope load. a) Visual depiction of the neoepitope allele
ratio and its significance. b) top panel, number of allele pairs in each neoepitope allele ratio
bucket in metastatic samples harboring LOH of HLA-I. bottom, representation of the mean
observed (black) and randomized (blue) neoepitope allele ratio across 100 bootstraps
(thicker lines). Vertical error bars represent the standard deviation of the neoepitope allele
ratio. Narrow black lines represent the observed neoepitope allele ratio values across the
100 bootstraps. P-values were calculated using the Kolmogorov–Smirnov test. c) and d) are
identical but subsampling for focal and non focal LOH of HLA, respectively. e), f) and g)
equivalent panels for the primary dataset. neo., neoepitope.
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Positive selection of GIE alterations beyond HLA-I

Alterations in other pathways beyond the HLA-I locus may also lead to immune surveillance
escape. Hence, we explored signals of positive selection across 18 genes associated with
five immune escape pathways (pathways 2-6 in Fig. 1a). Grouped pan-cancer analysis of
the dN/dS ratio in these pathways (covering a total of sixteen genes, excluding those whose
oncogenic mechanism is based on copy number amplification, see methods Positive
selection somatic mutations and indels) revealed a greater than one ratio for nonsense,
splice site and truncating variants in both the metastatic and primary datasets (Fig. 5a),
which was indicative of positive selection. We next performed a gene and cancer type
specific positive selection of genes involved in antigen presentation machinery, IFN-γ
pathway, PD-L1, CD58 and epigenetic immune escape (methods positive selection and
Supp. Table 5). We found at least two genes with signals of positive selection involved in the
antigen presentation pathway: B2M and CALR. B2M was considered as significantly
mutated (dNdScv q-value<0.1) in colorectal, kidney clear carcinoma, non-small cell lung
cancer and diffuse large B-cell lymphoma and the two pan-cancer groups (Fig. 5b and Fig.
5c). Focal B2M loss was significantly recurrent in ovarian cancer, skin melanoma and diffuse
large B-cell lymphoma as well as the pan-cancer metastatic cohort (G-test goodness of fit
q-value<0.1; Fig. 5d). Similarly, CALR was targeted by focal recurrent biallelic loss in primary
skin melanoma. Higher than expected frequency of focal biallelic deletions of several IFN-γ
pathway genes, including JAK1, JAK2 and IRF2 was also observed. CD58 harbored higher
than expected number of non-synonymous mutations and homozygous deletions in diffuse
large B-cell lymphoma and in the pan-cancer metastatic group. Finally, the chromatin
modifier SETDB1 harbored highly-focal copy number amplifications in multiple cancer types,
such as metastatic non-small cell lung cancer (Fig. 5e) and primary breast cancer, among
others. In summary, immune escape alterations disrupting several immune related
pathways, other than the HLA-I, are recurrently exploited by tumors to hamper the
presentation and recognition of non-self antigens.
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Figure 5. Positive selection of systemic HLA-I alterations. a) Pan-cancer dN/dS ratios of
non HLA-I genes in the metastatic (left) and primary (right) datasets. Vertical lines represent
the 5% and 95% confidence intervals. b) Representation of gene and cancer type specific
positive selection of GIE systemic genes in the metastatic and c) primary cohorts. The
pathway number attributed to each gene is displayed next to the gene name (relative to Fig.
1a). d) Distribution of highly-focal biallelic deletions surrounding the B2M gene, spanning
from chr15:40.0Mb to chr15:49.9Mb in the pan-cancer metastatic cohort. e) Distribution of
highly-focal copy number amplification surrounding the SETDB1 gene, spanning from
chr1:145.0Mb to chr1:164.9Mb in the metastatic non-small cell lung cancer (NSCLC) cohort.
Each bin represents 100Kbs. Dashed horizontal lines represent the expected mean after
randomization. Vertical dashed lines highlight the gene genomic location. Mb, megabase.
Kbs, kilobases.
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GIE association with cancer genomic features

We next explored whether, aside from cancer type intrinsic differences, there were other
cancer genomic features linked to an increase or decrease in GIE prevalence. We
performed a cancer type specific univariate logistic regression to screen the association of
95 genomic features, such as the mutation burden per mutation type, DNA repair deficiency
status or the presence of HLA-I supertypes; across 32 cancer types (see methods tumor
genomic features and GIE risk and Supp. Table 6). Overall, 46 genomic features showed a
statistically significant association with GIE in at least one cancer type (Fig. 6a). As
expected, TMB and patient’s neoepitope load, defined as the collection of the HLA-I
germline allele specific neoepitopes, were strongly associated with GIE events across
multiple cancer types (logistic regression corrected p-value<0.05 and Log2(Odds Ratio)>0.0;
Fig. 6a and Supp. Fig. 4a-c). Interestingly, clonal TMB and clonal neoepitope load showed a
strong positive association whereas neither subclonal TMB or subclonal neoepitope load
were predictive of GIE in any of the cancer types (Fig. 6a-c), highlighting the relevance of
mutation cellularity in triggering immune responses. Gene fusions and structural variants
may also be the source of non-self antigens. In fact, in our dataset, these features and fusion
derived neoepitopes were significantly associated with GIE in diffuse large B-cell lymphoma,
breast, ovarian and non-small cell lung cancer (Fig. 6a and Supp. Fig. 4a), which
emphasizes the usefulness of considering non-canonical sources of neoepitopes beyond
small non-synonymous variants in coding regions.

Exposure to certain endogenous and exogenous mutational processes have been correlated
with increased immunogenicity27 and response to ICI28,29. We therefore performed a cancer
type specific and molecular age controlled logistic regression of mutational processes
exposure to assess their association with GIE risk (see methods mutational signatures).
DNA repair deficiency mutational signatures, including Mismatch Repair Deficiency (MMRd,
SBS6, SBS16, SBS44, ID1, ID2, ID denovo1 and DBS denovo3), Base Excision Repair
deficiency (BERd, SBS36 see Supp. Fig. 4d) and Homologous Recombination deficiency
(HRd, SBS3 and ID6) were broadly associated with increased GIE incidence (logistic
regression corrected p-value<0.05 and Log2(Odds Ratio)>0.0; Fig. 6a and Supp. Fig. 4a).
Sample specific HRd and MMRd binary classification provided consistent results (Fisher’s
exact test adjusted p-value<0.05). Remarkably, exposure to the APOBEC family of cytidine
deaminases (SBS2 and SBS13) was strongly associated with GIE in multiple cancer types,
including breast and urothelial cancer (Fig. 6d), among others. Exposure to several
exogenous mutational processes also exhibited a significant association with increased GIE
risk. Concretely, tobacco exposure (SBS4, SBS92 and ID3; Fig. 6e) in non-small cell lung
cancer (NSCLC), UV light mutation burden (SBS7a, SBS7b, DBS1 and ID13; Supp. Fig 6d)
in skin melanoma and platinum treatment mutation load (SBS31-SBS35-like and DBS5) in
ovarian (Supp. Fig 6e) and NSCLC were significantly linked to an increased incidence of GIE
events. Lastly, other mutational signatures resulted in a significant association (Fig 6a.),
although their etiology and role in immune evasion is less apparent.

Other tumor genomic features were also correlated with GIE. More specifically, in colorectal
cancers, which also include some anal cancer patients, HPV viral integration was positively
associated with GIE, suggesting that GIE provides a selective advantage in tumor cells
harbouring viral DNA (Fig. 6a and Supp. Fig. 4a). Most of HPV+ colorectum samples are
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likely anal cancer classified as colorectum due to variation in how detailed primary tumor
classes were registered in the studies in which the metastatic samples were collected.
Similarly, we also found a negative association between whole genome duplication (WGD)
and GIE, likely explained by diploid karyotype of hypermutated and microsatellite unstable
tumors, often harboring systemic immune escape alterations30. Finally, high-immune
infiltration as determined by several RNA-Seq-based deconvolution measurements for those
samples for which such data was available (see methods of immune infiltration
deconvolution) was significantly linked with higher GIE incidence in colorectal carcinoma
(Fig. 6a, Fig. 6f and Supp. Fig. 4a), which was in agreement with previous reports4. Finally,
other factors, such as the HLA-I supertype, the germline HLA-I divergence or exposure to
previous treatments failed to attain significant association with GIE. All the screened
molecular features alongside their cancer type specific significance coefficients are available
at Supp. Table 6.

In conclusion, the presence of GIE is strongly associated with certain tumor genomic
features, including high TMB, exposure to certain endogenous and exogenous mutagenic
mutational processes or the presence of viral DNA, and can not be solely explained by
cancer type intrinsic differences.

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.23.481444doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?wm0m3B
https://www.zotero.org/google-docs/?cBbkZ9
https://doi.org/10.1101/2022.02.23.481444
http://creativecommons.org/licenses/by-nc-nd/4.0/


a
b

c

In
cr

e
a
se

d
 a

ss
o
ci

a
ti

o
n
 w

it
h

 G
IE

n
o
 G

IE

Breast cancer (SBS-APOBEC) Urothelial cancer (SBS-APOBEC)

n
o
 G

IE

G
IE

d

Significant assotiation (q-value < 0.05)

Increased association with GIE

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Log2(odds ratio)

Significant assotiation (q-value < 0.05)

U
ro

th
e
lia

l 
ca

n
ce

r

B
re

a
st

 c
a
n
ce

r

C
e
rv

ix
 c

a
rc

in
o
m

a

C
h
o
la

n
g
io

ca
rc

in
o
m

a

C
o
lo

re
ct

u
m

 c
a
rc

in
o
m

a

D
if
fu

se
 l
a
rg

e
 B

-c
e
ll 

ly
m

p
h
o
m

a

E
so

p
h
a
g
u
s 

ca
n
ce

r

G
lio

b
la

st
o
m

a
 m

u
lt

if
o
rm

e

G
a
st

ro
in

te
st

in
a
l 
n
e
u
ro

e
n
d
o
cr

in
e

G
a
st

ro
in

te
st

in
a
l 
st

ro
m

a
l 
tu

m
o
r

U
p
p
e
r 

re
sp

ir
a
to

ry
 t

ra
ct

 c
a
n
ce

r

K
id

n
e
y
 c

h
ro

m
o
p
h
o
b
e
 c

a
n
ce

r

K
id

n
e
y
 c

le
a
r 

ce
ll 

ca
rc

in
o
m

a

K
id

n
e
y
 p

a
p
ila

ry
 c

a
rc

in
o
m

a

H
e
p
a
to

ce
llu

la
r 

ca
rc

in
o
m

a

Le
io

m
y
o
sa

rc
o
m

a

Li
p
o
sa

rc
o
m

a

M
e
d
u
llo

b
la

st
o
m

a

N
o
n
 s

m
a
ll 

ce
ll 

lu
n
g
 c

a
n
ce

r

O
st

e
o
sa

rc
o
m

a

O
v
a
ri

a
n
 c

a
n
ce

r

P
a
n
cr

e
a
s 

ca
rc

in
o
m

a

P
a
n
cr

e
a
s 

n
e
u
ro

e
n
d
o
cr

in
e

P
ro

st
a
te

 c
a
rc

in
o
m

a

S
a
rc

o
m

a
 v

a
ri

o
u
s

S
m

a
ll 

ce
ll 

lu
n
g
 c

a
n
ce

r

S
a
liv

a
ry

 g
la

n
d
 c

a
n
ce

r

S
m

a
ll 

in
te

st
in

e
 c

a
n
ce

r

S
ki

n
 m

e
la

n
o
m

a

S
to

m
a
ch

 c
a
n
ce

r

T
h
y
ro

id
 c

a
n
ce

r

U
te

ru
s 

ca
rc

in
o
m

a

APOBEC (SBS2+SBS13 -like)

APOBEC (SBS13-like)

APOBEC (SBS2-like)

Polymerase slippage (ID1-like)

Polymerase slipagge (ID2-like)

BERd (SBS36-like)

HRd (ID6-like)

HRd (SBS3-like)

Unclear (SBS12-like)

Suspected MMRd (ID denovo1)

MMRd (SBS15-like)

MMRd (SBS44-like)

MMRd (SBS6-like)

NHEJ and TOP2A (ID8-like)

ROS_5FU (SBS17a+SBS17b-like)

ROS (SBS18)

Suspected MMRd (DBS denovo3)

Tobacco (ID3-like)

Tobacco (SBS4-like)

UV light (DBS1-like)

UV light (ID13-like)

UV light (SBS7a-like)

UV light (SBS7b-like)

Tobacco (SBS92-like)

Platinum (DBS5-like)

M
u
ta

ti
o
n
/S

V
 b

u
rd

e
n

P
re

d
ic

te
d
 n

e
o
e
p
it

o
p
e

b
u
rd

e
n

M
u
ta

ti
o
n
a
l 
p
ro

ce
ss

e
s 

e
x
p
o
su

re
Im

m
u
n

e
in
fi
lt

ra
ti

o
n

Tumor Mutation Burden (TMB)

Clonal TMB

Subclonal TMB

SNVs

Indels

Double Substitutions (DBs)

Gene fusions

Number of SVs

Number of neoepitopes

Clonal neoepitopes

Subclonal neoepitopes

Mutation based neoepitopes

Fusion based neoepitopes

Immune infiltration (ifn-gamma)

Immune infiltration (infiltration_davoli)

Immune infiltration (t_cell_grasso)

Homologous Recombination Deficiency (HRd)

Mismatch Repair Deficicency (MMRd)

DNA viral insertion

WGD

Platinum (SBS31 and SBS35-like)

U
ro

th
e
lia

l 
ca

n
ce

r

B
re

a
st

 c
a
n
ce

r

C
e
rv

ix
 c

a
rc

in
o
m

a

C
h
o
la

n
g
io

ca
rc

in
o
m

a

C
o
lo

re
ct

u
m

 c
a
rc

in
o
m

a

D
if
fu

se
 l
a
rg

e
 B

-c
e
ll 

ly
m

p
h
o
m

a

E
so

p
h
a
g
u
s 

ca
n
ce

r

G
lio

b
la

st
o
m

a
 m

u
lt

if
o
rm

e

G
a
st

ro
in

te
st

in
a
l 
n
e
u
ro

e
n
d
o
cr

in
e

G
a
st

ro
in

te
st

in
a
l 
st

ro
m

a
l 
tu

m
o
r

U
p
p
e
r 

re
sp

ir
a
to

ry
 t

ra
ct

 c
a
n
ce

r

K
id

n
e
y
 c

h
ro

m
o
p
h
o
b
e
 c

a
n
ce

r

K
id

n
e
y
 c

le
a
r 

ce
ll 

ca
rc

in
o
m

a

K
id

n
e
y
 p

a
p
ila

ry
 c

a
rc

in
o
m

a

H
e
p
a
to

ce
llu

la
r 

ca
rc

in
o
m

a

Le
io

m
y
o
sa

rc
o
m

a

Li
p
o
sa

rc
o
m

a

M
e
d
u
llo

b
la

st
o
m

a

N
o
n
 s

m
a
ll 

ce
ll 

lu
n
g
 c

a
n
ce

r

O
st

e
o
sa

rc
o
m

a

O
v
a
ri

a
n
 c

a
n
ce

r

P
a
n
cr

e
a
s 

ca
rc

in
o
m

a

P
a
n
cr

e
a
s 

n
e
u
ro

e
n
d
o
cr

in
e

P
ro

st
a
te

 c
a
rc

in
o
m

a

S
a
rc

o
m

a
 v

a
ri

o
u
s

S
m

a
ll 

ce
ll 

lu
n
g
 c

a
n
ce

r

S
a
liv

a
ry

 g
la

n
d
 c

a
n
ce

r

S
m

a
ll 

in
te

st
in

e
 c

a
n
ce

r

S
ki

n
 m

e
la

n
o
m

a

S
to

m
a
ch

 c
a
n
ce

r

T
h
y
ro

id
 c

a
n
ce

r

U
te

ru
s 

ca
rc

in
o
m

a

10

100

1,000

10,000

100,000

A
P
O

B
E
C

 m
u

ta
ti

o
n
s

p = 6.826e-05

10

100

1,000

10,000

100,000

1,000,000

A
P
O

B
E
C

 m
u

ta
ti

o
n
s

p = 1.487e-04

G
IE

f

n
o
 G

IE

G
IE

2

1

0

1

2

3

4

5

6

Im
m

u
n

e
 i
n
fi
lt

ra
ti

o
n
 (

D
a
v
o
li 

e
t 

a
l.
)

p = 1.052e-03

Colorectum cancer
(Immune Infiltration)

2

4

8

16

32

64

128

256

512

1,024

2,048

4,096

8,192

16,384

ID
3

 i
n
d
e
ls

p = 7.324e-09
NSCLC (ID3-Tobacco)

e

Figure 6

n
o
 G

IE

G
IE

Mean value: 0.72
ci95: (1.6,-0.2)

TMB Clonal TMB Subclonal TMB

0.83
(2.5,-0.4)

0.07
(1.1,-0.7)

4

2

0

2

4

6

Lo
g
2

 (
o
d
d
s_

ra
ti

o
)

4

2

0

2

4

6

4

2

0

2

4

6

0

2

4

6

8

Lo
g

2
 (

o
d

d
s_

ra
ti

o
)

0.71
(1.9,-0.0)

0

2

4

6

8 0.44
(1.4,-0.3)

0

2

4

6

8 0.16
(0.5,-0.4)

In
cr

e
a
se

d
 a

ss
o
ci

a
ti

o
n
 w

it
h

 G
IE

Total predicted
neoepitopes

Clonal
neoepitopes

Subclonal
neoepitopes

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.23.481444doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.23.481444
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6. GIE association with cancer genomic features. a) Heatmap displaying the
association of 46 genomic features with GIE frequency across 32 cancer types. Features
displayed have, at least, one significant cancer type association with GIE alterations.
Significant associations are highlighted by a red border line. Dot colors are coloured
according to the log2(odds ratio). b) from left to the right, dotplot representations of the TMB,
clonal TMB and subclonal TMB log2(odds ratio) across the 32 cancer types. Black square
represents the average values. The error bar represents the 95% and 5% confidence
intervals (ci95). Horizontal lines represent a neutral scenario with log2(odds ratio) equal to 0.
c) analogous representation for predicted neoepitopes, clonal neoepitopes and subclonal
neoepitopes, respectively. d) Comparison of the APOBEC mutational exposure between
samples bearing GIE alterations (GIE) and wild-type (no GIE) in breast cancer (left) and
urothelial cancer (right). e) Similar comparison for Tobacco COSMIC ID3-like indels load in
non-small cell lung cancer (NSCLC). f) Comparison of immune infiltration estimates38

between samples bearing GIE alterations (GIE) and wild-type (no GIE) in colorectal cancer.
Box-plots: center line, median; box limits, first and third quartiles; whiskers, lowest/highest
data points at first quartile minus/plus 1.5× IQR. P-values are calculated using a two-sided
Mann–Whitney U test.
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Tumors tailor their immune evasion strategy depending on the TMB

An increase in mutation load leads to the generation of neoepitopes susceptible to be
recognized as neoantigens by the T-Cell receptors (TCRs) of surrounding T-cells.
Consequently, an increase in TMB may require immune escape alterations to prevent
clearance by the immune system (see above). We examined the frequency of GIE
alterations in tumors across 20 evenly distributed TMB buckets (see methods GIE and TMB
dependence). We found that GIE frequency steadily increased with increasing TMB (Fig.
7a). Interestingly, in the bucket grouping samples with ~10-13 muts/Mb, a threshold
frequently used as response to ICI, we observed an average GIE frequency of 0.32 ±0.03
std. Similarly, in the group of samples between 26-36 muts/Mb, mostly including
hypermutated tumors, the average frequency was 0.49 ±0.1 std., while beyond ~95 muts/Mb
(considered ultra-hypermutated tumors31) we identified GIE alterations in more than 70% of
samples (>0.72 ±0.06 std.). Moreover, using the burden of predicted neoepitopes based on
the germline HLA-I profile as baseline revealed a near-uniformly increasing distribution
across the neoepitope buckets, which becomes sharper after the 17th bucket (i.e., number
of neoepitopes greater than 1,410 and lower than 1,937, see Fig. 7b).

GIE involves a diverse collection of immune escape pathways, which encompasses HLA-I
targeted and systemic tumor specific alterations. We then analyzed the relationship between
the tumor mutation burden and the presence of specific GIE alterations across the six
immune escape pathways included in this study (see Fig. 1a). Overall, the observed
frequency distributions across these pathways were remarkably different (Supp. Fig. 5a). In
fact, different types of HLA-I alterations showed a distinctive frequency distribution along the
TMB buckets. Non-focal LOH of HLA-I were primarily present in low-TMB tumors, supporting
the rationale that it is likely a passenger event. Conversely, focal LOH of HLA-I showed a
clear enrichment for mid and high TMB tumors peaking around ~10 muts/Mb (i.e., 9.85
muts/Mb bucket with average frequency of 0.19 ±0.03 std.) and displaying an inverted
U-shaped distribution. Finally, mutations in HLA-I genes were more frequent in hypermutated
and ultra-hypermutated tumors (i.e., from the ~26-36 muts/Mb bucket onwards). Similarly,
alterations in the antigen presentation machinery and in the IFN-γ pathway (pathways
number 2 and 3, respectively) were predominantly found in high and very high TMB tumors,
becoming the dominant GIE mechanism in hypermutated tumors (Supp. Fig 5a). The
remaining pathways (CD58, PD-L1 and epigenetic remodeling by SETDB1) did not show
any clear TMB preference, likely due the lower prevalence of these alterations in our
dataset. Taken together, our results reveal a non-overlapping pattern where non-focal LOH
of HLA is primarily observed in low TMB tumors, focal LOH of HLA in mid-high TMB tumors
and other GIE alterations (mainly driven by the inactivation of the antigen presentation
machinery and the IFN-γ pathways as well as loss-of-function mutations in HLA-I)
dominating in hypermutated patient samples (Fig. 7c).

Using the number of predicted neoepitopes (derived from point mutations, indels and gene
fusions) instead of TMB as baseline revealed consistent distributions (Supp. Fig. 5b and Fig.
7d). While focal LOH of HLA-I was the most frequent GIE mechanism in tumor samples with
~200-2,600 predicted neoepitopes (corresponding to 2-133 estimated neoantigens6,32) the
other GIE alterations group became the most frequent GIE event after the 2,662
neoepitopes bucket (26-133 neoantigens). In conclusion, tumors select their GIE mechanism
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depending on the neoepitope burden, where mid-high TMB tumors primarily leverage LOH
of HLA-I and hypermutated tumors tend to rely on systemic immune evasion as the preferred
GIE mechanism.
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Figure 7. Immune evasion mechanism and TMB. a) Top panel, number of total (white bars
with a black contouring line) and GIE-present (gray bars with gray contouring line) samples
across the TMB buckets. bottom panel, representation of GIE frequency across twenty
evenly distributed TMB buckets. Gray dots represent the average GIE frequency across
1,000 bootstraps. Error bars and the gray shade represent ± standard deviation. b) Using
predicted neoepitopes as baseline buckets. Bottom labels, number of estimated neoantigens
as a relative percentage (1% and 5%) of the number of predicted neoepitopes in the bucket.
c) and d) related to a) and b) respectively, but splitting by type of GIE alterations. Inner
boxes highlight the bucket where non-LOH HLA-I frequency (red) surpasses focal LOH
HLA-I (green). Muts/Mb, mutations per megabase.
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Discussion

A hallmark of tumorigenesis is the capacity of cancer cells to evade immune system
surveillance1. To decipher the landscape of genetic immune escape alterations, we have
analyzed their prevalence and impact across six major pathways in thousands of uniformly
processed primary and metastatic tumors from 58 cancer types. We addressed the
complexity of identifying tumor-specific HLA-I alterations by developing LILAC, a tool that
performs a robust characterization of the HLA-I locus in tumor samples. In fact, LILAC
showed a near-perfect HLA typing performance on WGS data, highlighting its potential for
use in routine diagnostics.

Combining LILAC with a universal pipeline to identify somatic alterations provided a patient
level annotation of GIE events. On average, one in four patients bore GIE events, primarily
as a result of LOH of HLA-I and displaying a highly variable prevalence across cancer types.
Despite the high frequency of LOH of HLA-I, biallelic deletion of both HLA alleles was an
extremely unusual event, suggesting the importance of expressing a minimal amount of
HLA-I molecules to avoid immune-alerter signals33.

Remarkably, our results also showed that the frequency of genetic immune escape
alterations in metastatic patients are comparable to their primary counterparts across most
of the cancer types, suggesting that early stages of tumorigenesis have already acquired the
capacity to escape from immune system recognition.

We also observed that immune escape alterations are positively selected during tumor
evolution. Loss-of-function mutations in HLA-A and HLA-B were recurring across several
cancer types, which is in agreement with the tumor suppressor role of these genes.
Nevertheless, HLA-C did not show a significant enrichment in inactivating variants which
may imply that its expression is needed to avoid NK-mediated immunity34 and that the
neoepitope repertoire of this gene is generally lower compared to HLA-A and HLA-B. LOH of
HLA I was observed more frequently than expected across multiple cancer types. Moreover,
focal LOH of HLA-I events primarily targeted the HLA allele with the highest neoepitope
repertoire whereas non-focal LOH of HLA-I did not. While we can not rule out the possibility
that the loss of several HLA-I alleles provides an accessory fitness gain, non-focal LOH of
HLA-I does not seem to be the primary target of these large-scale events. We also observed
that genes involved in pathways such as the antigen presentation machinery or the IFN-γ
signaling were also recurrently mutated in multiple cancer types, indicating that tumors
harness multiple molecular pathways to circumvent the selective pressure imposed by the
immune system.

Our results showed that both tumor type and patient-specific features contribute to the
presence and diversity of GIE alterations. Several factors such as the amount of small and
structural somatic variants (TMB), exposure to certain mutational processes or HPV DNA
integration are significantly associated with an increased GIE prevalence, revealing the
potential role of these features in raising the visibility to the immune system. While the
association with an increased immunogenicity of certain genomic features such as the total
TMB or the global neoepitope load is evident, others such as the presence of particular
mutational processes require further studies. Moreover, patient specific integration of
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immunogenic features alongside GIE alterations could potentially improve current
biomarkers of response to immunotherapy treatment.

Finally, we observed that tumors leveraged different GIE strategies according to the total
TMB and the global neoepitope load. While LOH of HLA-I was the most frequent mechanism
in mid and high TMB tumors, loss of certain HLA-I alleles was apparently not sufficient to
cope with the elevated neoepitope load of hypermutated and ultra-hypermutated tumors,
where a systemic GIE mechanism, such as antigen presentation abrogation or IFN-γ
inactivation, is therefore needed.

This study considered a collection of highly-confident and well characterized genetic immune
escape alterations across six well characterized immune related pathways. However, there
are likely other potential sources of genetic immune evasion, which include not only
alternative molecular pathways such as the HLA-II35 and the killer immunoglobulin-like
receptor33 (KIR); but also other types of alterations such as germline variants36. Additionally,
recent studies have shown the role of epigenetic modifications in modulating tumor
immunogenicity2,37. Hence, the combination of somatic and germline alterations with other
-omics such as epigenomics, proteomics, single-cell RNA sequencing or TCR-Seq will
provide a more thorough picture of the interplay between tumor (epi)genomic alterations and
the immune system.

In conclusion, our study provided a comprehensive landscape of immune escape alterations
across primary and metastatic tumors. Our results suggest that the diversity and frequency
of immune escape mechanisms are highly shaped by the cancer type and by certain tumor
genomic features and that the metastatic bottleneck does not generally introduce significant
changes in this landscape. Further studies will be needed to disclose how these findings
should be harnessed in therapeutic interventions.
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Methods

Data collection and processing

Hartwig metastatic cohort

The Hartwig Medical Foundation sequences and characterizes the genomic landscape for a
large number of metastatic patients across the Netherlands. A detailed description of the
consortium and the whole patient cohort has been described in detail in Priestley et al18. In
this study, the Hartwig cohort included 4,784 metastatic tumor samples from 4,468 patients.

The Hartwig patient samples have been processed using the Hartwig analytical pipeline5
(https://github.com/hartwigmedical/pipeline5) implemented in Platinum
(https://github.com/hartwigmedical/platinum). Briefly, Platinum is an open-source pipeline
designed for analyzing WGS tumor data. It enables a comprehensive characterization of
tumor WGS samples (e.g., somatic point mutations and indels, structural variants, copy
number changes, etc.) in one single run. See variant calling section for further information.

Hartwig samples that failed to provide a successful pipeline output, potential non-tumor
samples, with purity lower than 0.2, with TMB <50 SNVs/indels, lacking sufficient informed
consent for this study or without enough read coverage to perform 4 digit HLA typing (see
below, LILAC section) were discarded. Similarly, for patients with multiple biopsies we
selected the tumor sample with the most recent biopsy date, and if this information did not
exist we selected the sample with the highest tumor purity. However, some Hartwig patients
had biopsies from different primary tumor locations. In these cases, we kept at least one
sample from each primary tumor location, and when there were multiple samples from the
same primary tumor location, we applied the aforementioned biopsy date and tumor purity
filtering criteria. A total number of 4,514 Hartwig samples were whitelisted and used in this
study (Supp. Fig. 2a and Supp. Table 3).

Pre-processed RNA-seq data by ISOFOX
(https://github.com/hartwigmedical/hmftools/tree/master/isofox) was available for 1,864
Hartwig samples and was consequently used in the immune infiltration deconvolution
analysis.
Patient clinical data was obtained from the Hartwig database. Cancer types labels were
harmonized to maximize the number of samples with comparable tumor types with the
PCAWG dataset (see Supp. Table 3) .

PCAWG primary cohort

The PCAWG cohort consisted of 2,835 patient tumors, and access for raw sequencing data
for the PCAWG-US was approved by National Institutes of Health (NIH) for the dataset
General Research Use in The Cancer Genome Atlas (TCGA) and downloaded via dbGAP
download portal. Raw sequencing access to the non-US PCAWG samples was granted via
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the Data Access Compliance Office (DACO). A detailed description of the consortium and
the whole patient cohort has been described in ref19.

The samples were fully processed using the same cancer analytical pipeline applied to the
Hartwig cohort. This enabled a harmonized analysis and eliminated the potential biases
introduced by applying different methodological approaches. Samples that failed to provide a
successful pipeline output, with a tumor purity below 0.2, potential non-tumor samples,
blacklisted by the PCAWG original publication19 or without enough read coverage to perform
2-field HLA typing were discarded. Similarly, for patients with multiple samples, we selected
the first according to the aliquout_id alphabetical order. A total number of 1,943 were
whitelisted and used in this study (Supp. Fig. 2a and Supp. Table 3).

Pre-processed gene level expression data was downloaded for 1,118 samples from the
ICGC portal
(https://dcc.icgc.org/releases/PCAWG/transcriptome/gene_expression/tophat_star_fpkm_uq.
v2_aliquot_gl.tsv.gz). ENSEMBL identifiers were mapped to HUGO symbols. 949 of these
samples belonged to biopsies selected for this study and were therefore used for the RNA
analyses in PCAWG samples.

The most recent clinical data was downloaded from the PCAWG release page
(https://dcc.icgc.org/releases/PCAWG/) on August 2021. Cancer types labels were
harmonized to maximize the number of samples with comparable tumor types with the
Hartwig dataset (see Supp. Table 3).

Variant calling

As mentioned above, the Hartwig and PCAWG samples have been uniformly processed
using the Hartwig analytical pipeline5 (https://github.com/hartwigmedical/pipeline5)
implemented in Platinum (https://github.com/hartwigmedical/platinum). Briefly, sequencing
reads were mapped to GRCh37 using BWA (v0.7.17). GATK (v3.8.0) Haplotype Caller was
used for calling germline variants in the reference sample. SAGE
(https://github.com/hartwigmedical/hmftools/tree/master/sage, v2.2) was used to call somatic
single and multi nucleotide variants as well as indels. GRIDSS39 (v2.9.3) was used to call
simple and complex structural variants. PURPLE
(https://github.com/hartwigmedical/hmftools/tree/master/purple) combines B-allele frequency
(BAF) from AMBER (https://github.com/hartwigmedical/hmftools/tree/master/amber, v3.3),
read depth ratios from COBALT
(https://github.com/hartwigmedical/hmftools/tree/master/cobalt, v1.7), and structural variants
from GRIDSS to estimate copy number profiles, variant allele frequency (VAF) and variant
clonality. LINX (https://github.com/hartwigmedical/hmftools/tree/master/linx) interprets
structural variants (to identify simple and complex structural events) from PURPLE, and also
detects gene fusions, viral DNA integrations, and homozygously disrupted genes.
Importantly, we ensured that mutation (simple and complex) filtering and annotation tools
were run with the same versioning for PCAWG and the Hartwig cohorts. For PURPLE we
relied on v2.53 whereas for LINX we used v1.16.
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LILAC

Overview

LILAC is a WGS framework to determine the HLA class I types for the germline of each
patient as well as determining the status of each of those alleles in the tumor including
complete loss of one or more alleles, allele specific somatic mutations and allelic imbalance.

LILAC provides several conceptual and practical improvements over the numerous available
tools for HLA-I typing: i) increased accuracy for WGS samples with coverage between
30-100X, particularly remarkable for rare alleles, ii) integrated analysis of paired
tumor-normal sample data to call allele-specific copy number and assignment of somatic
variants to specific alleles, iii) detection of novel germline variants and/or alleles (including
indels) via analysis of unmatched fragments iv) full report of quality control metrics and
number of fragments assigned to each HLA-I allele and, finally, v) identification of HLA-Y
presence (a pseudogene with high similarity to HLA-A present in up to 20% of the population
but is not present in the reference genome).

LILAC relies on the somatic point mutations and copy number estimations to estimate the
tumor HLA-I status. Lastly, LILAC supports GRCH37, hg19 and hg38 (with no alt) reference
genomes (Fig. 1b and Supp. Note 1). LILAC is avaliable at
https://github.com/hartwigmedical/hmftools/tree/master/lilac.

Algorithm

The starting point for the LILAC algorithm is the complete set of possible 4 digit alleles and
all the fragments aligned to HLA-A, HLA-B and HLA-C. LILAC algorithm begins with
collecting all fragments which are not duplicates and have:

● At least one read with an alignment overlapping a coding base of HLA-A, HLA-B or
HLA-C; and

● all alignments within 1000 bases of a HLA coding region; and
● a mapping quality of at least 1

The algorithm then has 2 main phases to determine the germline alleles: an ‘elimination’
phase which aims to remove allele candidates that are clearly not present and an ‘evidence’
phase where LILAC considers all possible sets of 6 alleles amongst the remaining
candidates and chooses the solution that best explains the fragments observed.
After the germline alleles are determined, LILAC determines the tumor copy number and any
somatic mutations in each allele. Note that if more than 300 bases of the HLA-A,HLA-B and
HLA-C coding regions have less than 10 coverage, then LILAC will fail with errors and will
not try to fit the sample.

Supp. Note 1 presents full details of LILAC’s algorithm and its implementation.
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Germline-tumor agreement comparison

We assessed LILAC’s robustness to perform HLA-I typing compared to two state-of-the art
tools: Polysolver15 (v4, reference genome hg19, ethnicity Unknown, insertCalc 0 and
includeFreq 0) and xHLA20 (with default parameters). We first retrieved GRCh37 aligned
reads including the MHC-I locus (chr6:29,854,528-32,726,735) for the PCAWG and Hartwig
germline and tumor samples. For each of these three tools, we first independently run the
HLA-I typing for the germline and for the tumor across all available samples (see above,
Hartwig and PCAWG cohort), and then we annotated whether there was a perfect
agreement between them based on the inferred 2-field HLA-I haplotypes. Samples that
failed to provide an output by any of the three methods were not included in the comparison.
A total of 4,774 Hartwig and 2,099 successfully provided germline and tumor HLA
haplotypes and were used in this analysis. Moreover, to reduce potential effects of tumor
specific alterations on the HLA-I genes, we performed a similar comparison but limited to
samples without HLA-I alterations (i.e. somatic mutations or LOH HLA events) according to
LILAC.

Crosswise tools HLA-I haplotype comparison

We also assessed LILAC’s agreement with two widely used tools for HLA typing: Polysolver
(v4, reference genome hg19, ethnicity Unknown, insertCalc 0 and includeFreq 0) and xHLA
(with default parameters). For each of these tools we first ran the germline HLA typing and
we then performed the comparison based on the four digit HLA-I type annotation. Samples
that failed to provide an output by any of the three methods were not included in the
comparison. A total of 4,774 Hartwig and 2,099 successfully provided germline and tumor
HLA haplotypes and were used in this analysis. We only considered that two, or three
respectively, tools have an agreement if the four digit HLA-I alleles perfectly match among
them.

Copy number estimation of HLA-I compared to other genes

We aimed to evaluate whether the polymorphic nature of the HLA-I locus could have a
negative impact on the tumor copy number estimation and subsequent annotation of HLA-I
individual alleles. A proxy for incorrect tumor copy number estimation is the difficulty to
assign an integer copy number. Therefore, we compared the proportion of samples with
HLA-I genes with a purity adjusted integer copy number (i.e., estimated minor and major
allele copy number <= 0.3 or >= 0.7) compared to other 1,000 randomly selected genes
across the human exome. We performed this comparison across the two cohorts used in this
study. Only samples with sufficient quality according to LILAC were used in this comparison.

Experimental validation by high-to allelic resolution HLA typing
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We selected 96 Hartwig samples (10 from the tumor and 86 from the germline) to assess
LILAC’s agreement with an orthogonal approach based on high-to allelic resolution HLA
typing (see below). The selection of samples were prioritized based on the following criteria:
i) sample availability, ii) disagreement of LILAC with either xHLA or Polysolver, iii)
challenging cases due to presence of rare alleles and iv) tumor samples bearing either
somatic mutations or LOH of HLA-I. One germline sample failed to provide output with
sufficient quality and was therefore not included in the final comparison (see Supp. Table 2).

HLA genes were amplified with the NGSgo® MX11-3 (GenDx) amplification strategy and
libraries were prepared using the NGSgo® Library Full Kit (GenDx); both according to
manufacturer's instructions. Libraries were sequenced on the MiSeq (Illumina) and the
generated .fastq files were analyzed using the HLA typing analysis software NGSengine®
(GenDx), 2.24.0, using the IMGT3.44 reference database. All data was reviewed by two
independent reviewers and all exon heterozygous positions deviating from standard patterns
were inspected and interpreted manually.

Tumor-normal paired mode in Hartwig and PCAWG

All pre-selected PCAWG and Hartwig samples (see above and Supp. Fig. 2a) were then
processed by LILAC using the tumor-normal pair mode, which relied on the germline and
tumor raw HLA-I files, the somatic mutation calls by SAGE
(https://github.com/hartwigmedical/hmftools/tree/master/sage) and the copy number
estimations by PURPLE (https://github.com/hartwigmedical/hmftools/blob/master/purple/)
(both outputs were available as part of the Platinum Hartwig pipeline5 output).

All the pre-selected Hartwig samples but one (4,514 samples out of 4,515) were successfully
processed by LILAC whereas 1,943 out of 2,359 PCWAG samples successfully achieved
LILAC’s quality control criteria. The main failure reason of PCAWG samples was insufficient
coverage to perform a four digit HLA-I typing, and therefore they can not be further
considered in this study.

As a result of the pipeline we obtained 2-field HLA-I class types for all successful samples
alongside annotation of somatic mutations and the copy number estimations mapping for
each allele.

GIE alterations

Definition

We searched in the literature for somatic genomic alterations that are robustly and
recurrently associated with immune evasion. We stratified the reported alterations into six
major pathways (Fig. 1a and Supp. Table 1):
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1. The HLA-I. Somatic alterations in the HLA-A, HLA-B and HLA-C genes have been
extensively reported as a mechanism for immune evasion across several cancer
types11,12,14,25. We considered LOH HLA, homozygous deletions and somatic
non-synonymous mutations on these genes as immune evasion alterations. We
defined LOH for HLA-A, HLA-B and HLA-C as those cases with a minor allele ploidy
below 0.3 and a major allele ploidy greater than 0.7 according to LILAC annotation.
We also relied on LILAC mapping of somatic mutations into HLA-A, HLA-B and
HLA-C alleles to report samples with non-synonymous alterations. Finally, we also
used LILAC allele specific tumor copy number estimations to annotate samples with
homozygous deletions of HLA-A/B/C genes. A gene was homozygously deleted in a
sample if the estimated minimum tumor copy number of the gene was lower than 0.5.

2. The antigen presentation pathway. Several studies have reported the
immunomodulatory effect of somatic inactivation of genes involved in the antigen
presentation machinery (see Supp. Table 1 for gene-specific references). The most
recurrent alteration is B2M inactivation, but there are other genes involved in antigen
presentation and antigen presentation activation, whose inactivation has been linked
to increased immune evasion, including CALR, TAP1, TAP2, TAPBP, NLRC5, CIITA
and RFX5. We defined inactivation events as mono-allelic and bi-allelic clonal loss of
function mutations (frameshift variant, stop gained, stop lost, splice acceptor variant,
splice donor variant, splice region variant and start lost), bi-allelic clonal
non-synonymous mutations not included in the former group (e.g. missense
mutations) and homozygous deletions. A gene was homozygously deleted in a
sample if the estimated minimum tumor copy number of the gene was lower than 0.5.

3. The IFN-γ pathway. IFN-γ is a cytokine with known pro-apoptotic and immune
booster capacities. Hence, it has been reported that tumors frequently leverage
somatic alterations targeting IFN-γ receptors and downstream effectors to evade
immune system surveillance (see Supp. Table 1 for gene-specific references). More
specifically, we considered inactivation events (see above for specifics of which type
of alterations are included) in JAK1, JAK2, IRF2, IFNGR1, IFNGR2, APLNR and
STAT1 have been probed to have the ability to provide an immune evasion
phenotype.

4. The PD-L1 receptor. The PD-L1 receptor, encoded by the CD274 gene, plays a
major role in suppressing the adaptive immune system. It has been reported how
overexpression of PD-L1 in tumor cells leads to impaired recruitment of immune
effectors40. We therefore considered CD274 copy number amplification as a genetic
mechanism of immune evasion. We defined a CD274 copy number amplification
event as samples with CD274 minimum tumor copy number greater than 3 times the
average sample ploidy.

5. The CD58 receptor. The CD58 receptor plays an essential role in T-Cell recognition
and stimulation. It has been extensively reported that CD58 alterations in B-cell
lymphomas lead to immune evasion41. Moreover, a recent study identified CD58 loss
as one the major effectors of impaired T-Cell recognition42. Consequently, we
considered inactivation events (see above) in CD58 as alterations able to provide an
immune escape phenotype.

6. Epigenetic driven immune escape. It has been recently reported how SETDB1
amplification leads to epigenetic silencing of tumor intrinsic immunogenicity43.
SETDB1 amplification was recurrently found across several cancer types and
therefore was considered in this study as a mechanism of immune evasion. We
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defined a SETDB1 copy number amplification event as samples with SETDB1
minimum tumor copy number greater than 3 times the mean sample ploidy.

A summary table with all the 21 considered genes, their associated pathway, references and
their type of somatic alterations is presented in Supp. Table 1.

Primary and metastatic prevalence

The prevalence of a pathway alteration for a particular cohort was calculated as the number
of samples with, at least, one alteration in the pathway divided by the total number of cohort
samples. The presence of a genetic immune alteration in a given sample was annotated if
there was, at least, one pathway with an alteration in that sample.

For the primary versus metastatic comparison, we performed a tumor-type specific Fisher’s
exact test comparing pathway-specific and global escaped status prevalence across the two
cohorts. P-values were adjusted with a multiple-testing correction using the
Benjamini–Hochberg procedure (alpha=0.05).

Positive selection

Somatic point mutations and indels

Positive selection analysis based on somatic point mutation and small indels was performed
using dNdScv using the hg19 reference genome. The analysis was performed in a cohort
specific, cancer type and pan-cancer manner across the two datasets. The analysis was
restricted to datasets with sufficient representativeness (i.e., number of samples >=15).
Global dN/dS ratios of the HLA-I (HLA-A, HLA-B and HLA-C) and the 16 non-HLA-I genes
potentially targeted by mutations (i.e., excluding SETDB1 and CDC274 because their
immune escape phenotype is associated with copy number gain, see Suppl. Table 1) were
calculated in a pan-cancer manner using the gene_list attribute of the dndscv function.

Copy number variants

We devised a statistical test to assess positive selection in loss of heterozygosity (LOH),
homozygous deletions (HD) and copy number amplifications (AMP) events. LOH, was
defined as those genomic regions where the minor allele ploidy of this gene was below 0.3
and the major allele ploidy greater than 0.7. HD was defined as those regions with estimated
minimum copy number below 0.5. Similarly, AMP were defined as those genomic regions
with the minimum tumor copy number greater than 3 times the mean sample ploidy.

For a particular type of event overlapping with a gene, this test compares the number of
observed samples bearing the alteration to the expected after whole genome randomization.
More specifically, these are the followed steps:
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1. Let us first denote E as the type of query alteration (i.e., LOH, HD or AMP), S as the
a group of samples (usually samples from the same cancer type and same dataset)
and Gs as the genomic scale (i.e., nonfocal for segment lengths greater than 75%
chromosome arm, focal for segments shorter than 75% of the chromosome arm and
highly-focal for segments shorter than 3 Megabases).

2. For every sample Si in {S1,S2...ST} we first gather the number and length of observed
(Oi) segments targeted by E within that Gs. Only E events overlapping to autosomes
are considered in this study. Samples that do not harbor any event of type E within
that Gs are ignored.

3. Next, for every sample Si we performed 10 independent randomizations (Ri1,
Ri2...Ri10) of the Oi events, by randomly shuffling these events E along the autosomes.
For that we used the shuffle function from pybedtools44 with the following parameters
(genome="hg19", noOverlapping=True, excl=”sexual_chomosomes'',
allowBeyondChromEnd=False). In certain samples, with an extremely high segment
load (Oi > 10,000) or with mean ploidy of ~1 (i.e., monoploid genome), the
noOverlapping flag was set to False because the randomization would not converge.

4. We then binned the autosomes into 28,824 bins of 100 Kbs and counted for each bin
kj {k1...k28842} the total number of observed events OTj as the the sum of observed
events O1k...OTK overlapping with that bin across all S samples.

5. Similarly, for each Ri-th (R1...R10) randomization and each bin kj {k1...k28842}, we
counted the total number of simulated events as the sum of events -in that i-th
randomization and overlapping with that bin across all samples in S.

6. We then performed a bin-specific comparison of the OTk with the average number of
simulated events RTK across the 10 simulations and performed a statistical test of
significance using a G-test goodness-of-fit. Since chromosome starting bins were
highly depleted in the simulated group (RTK), we also computed the global simulated
average across all bins kj {k1...k28842}, and used this as the expected number of events
for the statistical significance assessment.

7. The p-values were adjusted with a multiple-testing correction using the
Benjamini–Hochberg procedure (alpha=0.05).

8. For each gene, overlapping with one or with multiple kj bins, we used the miminimal
adjusted p-value significance of the bin(s) overlapping with the genomic location of
the specific gene coding sequence. Therefore, by definition, two genes sharing the
same bins would have similar q-value. We used ENSEMBLv88 to perform the
annotation of gene exonic regions to hg19 genomic coordinates.

We observed that LINE insertions near the HLA-I locus (LINE activation site at
chr6:29,920,000) in some esophageal cancer samples had an incorrect copy number
estimation due to multiple insertions originating from almost the same site in the same
sample. Consequently, these samples were not considered in the HLA-I homozygous
deletions analysis.

The source code of the randomization test will be available upon publication in a
peer-reviewed journal.
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Distribution of mutations in HLA-I genes

LILAC mapped the HLA-A, HLA-B and HLA-C somatic mutations into the inferred HLA-I
alleles (see LILAC section). LILAC provides the consequence type and coding sequence
position of HLA-I alterations, which was used to display the distribution of mutations across
the HLA-I coding sequence sequence. The 34 amino acids involved in peptide presentation
were gathered from our neoepitope prioritization pipeline (see below). Pfam HLA-A, HLA-B
and HLA-C domains were manually downloaded from the Pfam45 website.
We used the geneci() function of dNdScv to estimate the pan-cancer dN/dS ratios, which
include confidence intervals, of the HLA-I genes.

Tumor specific neoepitopes

Neoepitope prioritization pipeline

Overview

The goal of this pipeline (named as Neo) is to provide a reliable collection of neoepitopes
derived from tumor specific alterations. These alterations consider point mutations (i.e.,
missense variants and stop loss variants), small indels (i.e., in-frame indels and frameshift)
and gene fusions (in-frame and out-of-frame fusions). The neoepitope pipeline works in 2
main steps to form a comprehensive set of neopeptide and neoepitope predictions from our
DNA pipeline output:

● Determination of all novel peptides (i.e., neopeptides) from all point mutations, small
indels and gene fusions.

● Calculation of allele specific presentation scores using a novel binding affinity
prediction algorithm.

Although we annotate with expression information from RNA (when available), the
neoepitope predictions are currently based solely on mutations found in the DNA. Hence we
specifically ignore RNA events such as circular RNA, RNA editing, endogenous retroviruses
and alternative splicing as we are unable to determine if these are tumor specific and hence
will make neoepitopes. High confidence fusions detected in RNA but not found in DNA are
also currently ignored. We also acknowledge that we miss protein level events including
non-canonical reading frames, post translational amino acid modifications & proteasomal
peptide splicing.

Identification of neopeptides

We searched for potential neoepitopes for point mutations and structural variants that meet
the following criteria:

1. We included somatic point mutations and indels with coding effects (i.e., missense,
frameshift, in-frame or stop loss) and a SAGE filter == ”PASS”.

2. We considered in-frame and out-of-frame gene fusions. See Supp. Note 2 for further
details about the filtering of fusions.
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Subject to the criteria above, all transcripts (or combination of transcripts in the case of
fusions) are considered as candidate neoepitopes. Where 2 transcripts (or transcript
combinations) lead to either the same amino acid sequence or the amino acid sequence of
one transcript forms a subset of another, the transcripts are merged to form a single
neoepitope. For each unique neoepitope, our pipeline outputs the amino acid (AA) sequence
string broken up into ‘upstream’, ‘novel’ and ‘downstream’ segments.

Neo further annotates each of the candidate neoepitopes with TPM and direct RNA fragment
support for the novel amino acid sequence. TPM per transcript is sourced from Isofox
(https://github.com/hartwigmedical/hmftools/tree/master/isofox) if RNA-Seq is available or if
not available is estimated as the median of the cancer type (or full cohort where cancer type
is not known). Neo also reanalyses the RNA BAM to count the RNA depth at the location of
the variant that caused the neoepitope and the direct RNA fragment support for the
neoepitope (defined as matching precisely the 1st novel AA and 5 bases either side). See
Supp. Note 2 for further information about identification candidate neoepitopes from the
tumor analytical pipeline.

Calculation of allele specific binding affinity and presentation scores

Using the identified neoepitopes, we determine all candidate peptide and allele pairs (pHLA)
combinations that may be presented by the cell. For each candidate neoepitope, we
consider all peptides between 8 and 12 length which either overlap the novel amino acid
sequence or overlap both the upstream and downstream amino acid sequence.

For each pHLA we estimated a presentation likelihood based on a newly developed Position
Weighted Matrix (PWM) algorithm that considers both the binding affinity and the processing
likelihood for each pHLA pair. Supp. Note 2 describes in detail all the steps and validation of
our newly developed pipeline.

Each pHLA score was then ranked compared to a random set of 100,000 peptides derived
from the human canonical proteome to derive a presentation likelihood rank for each pHLA.

Expression adjusted presentation likelihood algorithm

Multiple studies have shown the importance of including RNA expression in the prioritization
of neoepitopes. The pHLA presentation scores were further adjusted by the inclusion of the
normalized RNA expression of the mutated transcript/s (including the 5’ and 3’ transcripts in
gene fusions). When RNA expression was not available, we used the average expression
across the patient cancer type or the pan-cancer when the cancer type is unknown. For
further details about the logic, validation and how we estimated the RNA expression of each
pHLA see Supp. Note 2. We then calculated the expression-adjusted likelihood rank
(ExpLikelihoodRank) for each pHLA using the expression adjusted likelihood compared to
the same randomly selected peptides.
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Finally, we defined the collection of neoepitopes as those pHLA with a LikelihoodRank <
0.02 and ExpLikelihoodRank < 0.02 (i.e., within the 2% percentile of all peptides). Hence, the
total neoepitope load of a patient tumor sample is the sum of all pHLA neoepitopes with
LikelihoodRank < 0.02 and  ExpLikelihoodRank < 0.02.

Neoepitope clonality

Each predicted neoepitope (see above) derived from point mutations and small indels was
matched with the source variant estimated clonality from PURPLE. We defined clonal
mutations as those with a subclonal score lower than 0.85. Gene fusions were not
considered in this analysis.

Calculation and randomization of neoepitope ratio

We wanted to evaluate whether LOH HLA-I tends to select the HLA-I allele with highest
neoepitope repertoire. Let us first introduce the neoepitope allele ratio (nr). Given an HLA-I

gene, G, we defined nr as: , where GA1/2 is the number of predicted neoepitopes of
𝐺𝐴1

𝐺𝐴1+ 𝐺𝐴2

allele 1 and allele 2, respectively. For each patient tumor sample, the assignment of allele
number (i.e., allele 1 or allele 2) was randomly performed. Next we followed the next steps:

1. For each patient sample with LOH HLA-I we calculated the nr across the HLA-I
genes targeted by the LOH. Homozygous HLA cases were not considered, as they nr
is by definition 0.5.

2. We then grouped the nr into 8 buckets: [0.0-0.35), [0.35, 0.4), [0.4, 0.45), [0.45, 0.5).
[0.5, 0.55), [0.55, 0.6), [0.6, 0.65) and [0.65, 1.0]. Consequently, each bucket
included N allele pairs with a nr within the bound limits.

3. Next, we performed 100 bootstraps by randomly subsampling 75% of the total
number of available allele pairs.

4. For each bootstrap iteration i-th (i 1..100) and each bucket we estimated the∈
frequency of allele 1 loss (FA1_loss) as the number of cases with allele 1 loss compared
to the total number of cases in that bucket. Similarly, we computed the expected
frequency (FA1exp) by randomly assigning LOH events to the allele1.

5. We then computed the bucket-specific average and standard deviation of FA1loss and
FA1exp values across the 100 bootstraps.

6. Finally, we performed a Kolmogorov–Smirnov test to compare the observed
distribution to the expected given random distribution of LOH events.

This test was applied to LOH HLA-I, focal LOH HLA-I and non-focal LOH HLA-I events
across the metastatic (Hartwig) and primary (PCAWG) datasets.
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Tumor genomic features and GIE risk

We aimed at identifying cancer type genomics features associated with an increased GIE
risk. Hence, we performed a cancer type aggregation of the two datasets (i.e., metastatic
and primary) to increase statistical power of the analysis. We then computed 95 genomic
features and evaluated its association with GIE across 32 cancer types with sufficient
representativeness (i.e., total number of samples >=15).

Tumor mutation burden, neoepitope load and SV load

For each cancer type, we used a univariate logistic regression to quantify the association of
21 TMB-related measurements (see Supp. Table 6 for full list of evaluated features) and the
presence/absence of a GIE event. Independent variables were z-scored. The Logit() function
(with default parameters) from the statsmodels v.0.13.1 library was used to perform the
logistic regression. This function provides the odds ratio with confidence intervals alongside
the p-value of significance. The p-values were adjusted with a multiple-testing correction
using the Benjamini–Hochberg procedure (alpha=0.05).

The clonality of each variant was defined using the PURPLE subclonal likelihood estimation.
More specifically, a variant was considered as clonal if the estimated subclonal likelihood
was lower than 0.85.

The global neoepitope load of each patient’s sample was calculated as the sum of the
predicted neoepitopes (i.e., allele specific neoepitope repertoire, see methods Tumor
specific neoepitopes) across the germline HLA-A alleles inferred by LILAC. The subset of
neoepitopes (i.e., fusion derived, mutation derived, clonal and subclonal) was computed by
matching the source alteration -and their clonality- of each predicted neoepitope. Therefore,
a mutation (or gene fusion) may be the source for multiple neoepitopes.

Mutational signatures

The number of somatic mutations falling into the 96 single nucleotide substitution (SBS), 78
double base substitutions (DBS) and 83 indel (ID) contexts (as described in the COSMIC
catalog46 https://cancer.sanger.ac.uk/signatures/) was determined using the R package
mutSigExtractor (https://github.com/UMCUGenetics/mutSigExtractor, v1.23).

SigProfilerExtractor (v1.1.1) was then used (with default settings) to extract up to 21, 8 and
10 de novo mutational signatures for SBS, DBS and indels (respectively). This was
performed separately for each of the 22 tissue types which had at least 30 patients in the
entire dataset (aggregating primary and metastatic samples, see Supp. Table 3). Tissue
types with less than 30 patients as well as metastatic patients with unknown primary location
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type were combined into an additional ‘Other’ group, resulting in a total of 23 tissue types for
signature extraction. In order to select the optimum rank (i.e. the eventual number of
signatures) for each tissue type and mutation type, we manually inspected the average
stability and mean sample cosine similarity plots output by SigProfilerExtractor. As a result,
there were 484 de novo signature profiles extracted across the 23 tissue type groups (see
Supp. Table 3 and Supp. Table 6). Least squares fitting was then performed (using the
fitToSignatures() function from mutSigExtractor) to determine the per-sample contributions to
each tissue type specific de novo signature.
The extracted de novo mutational signatures with high cosine similarity (>=0.85) to any
reference COSMIC mutational signatures with known cancer type associations46 were
labeled accordingly (number of labeled de novo signatures = 271 matched to 57 COSMIC
references).

For the collection of remaining non-labeled de novo signature profiles (number of unlabeled
de novo signatures =213) of each mutation type, we reasoned that there could be one or
more signatures that are highly similar to those found in the set of signatures of other tissue
types (and thus likely representing the same underlying mutational process) and that have
not been yet matched to a COSMIC reference. We therefore performed clustering to group
likely equivalent signatures and to label them as such. Specifically, we followed the next
steps:

1. We calculated the pairwise cosine distance between each of the de novo signature
mutational profiles.

2. We performed hierarchical clustering and used the base R function cutree() to
group signature profiles over the range of all possible cluster sizes (min no. clusters =
2; max no. of clusters = number of signature profiles for the respective mutation
type).

3. We next calculated the silhouette score at each cluster size to determine the
optimum number of clusters.

4. Finally, we grouped the signature profiles according to the optimum number of
clusters.  This yielded in total 47 de novo signature clusters (see Supp. Table 6).

For certain de novo signature clusters we were able to manually assign the potential etiology
by relying on the average similarity to the COSMIC reference mutational signatures. For
instance, SBS_denovo_clust_1 represented a collection of de novo signatures highly similar
to the reference SBS2 and SBS13 from COSMIC, linked to APOBEC mutagenesis. In many
cases the mutational signatures displayed an aggregation of both mutational spectra
(SBS+SBS13) preventing the reference annotation in the first step of our pipeline. Similarly,
DBS_denovo_clust_5 represented a collection of de novo signatures similar to the DBS5 of
COSMIC, which had been linked to platinum treatment exposure. These de novo mutational
signatures presented the characteristic CT>[AA or AC] peak of DBS5 COSMIC signature in
combination with residual contribution from other DBS channels. Finally, we assigned MMR
deficiency as the etiology for several clusters (e.g.., ID_denovo_clust_1, see Supp. Table 6)
as these clusters were enriched in MMR deficient samples.

Next, for each cancer type, we used a logistic regression to quantify the association between
the number of somatic point mutations, indels or double base substitutions (DBS) attributed
to a certain mutational signature and the presence/absence of a GIE event. We only
considered mutational signatures with known/suspected etiology or with high similarity to a
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reference COSMIC signature (cosine similarity >=0.85) as well as high incidence in a
particular cancer type (i.e., at least 20 samples with a mutational signature exposure greater
or equal than 100 mutations). 49 mutational signatures fulfilled these filters in at least one
cancer type. Moreover, to diminish associations that could be mainly attributed to an
elevated molecular age, we also included the exposure to aeing mutational signature(s) as
an independent variable (SBS1 + SBS5 cumulative exposure as a proxy for molecular age).
Independent variables were z-scored. The Logit() function (with default parameters) from the
statsmodels library was used to perform the logistic regression. This function provides the
odds ratio with confidence intervals alongside the p-value of significance for both dependent
variables. The p-values were adjusted with a multiple-testing correction using the
Benjamini–Hochberg procedure (alpha=0.05).

MMR and HR deficiency

We also tested whether Mismatch repair deficiency (MMRd) and Homologous repair
deficiency (HRd) were predictive of GIE. The Hartwig analytical pipeline provides the MMRd
status of each processed tumor sample (i.e., microsatellite stable or microsatellite unstable).
Analogously, the CHORD47 software was used to evaluate HRd in tumor samples. Fisher's
exact test was used to evaluate the significance. A minimum of 5 DNA repair-deficient tumor
samples were required to assess the significance. P-values were adjusted with a
multiple-testing correction using the Benjamini–Hochberg procedure (alpha=0.05).

DNA viral insertion and Whole Genome duplication

The presence of viral DNA and whole genome duplication (WGD) is provided by the Hartwig
analytical pipeline. A Fisher's exact test was used to evaluate the significance. A minimum of
10 tumor samples harboring viral DNA insertions were required to assess the significance.
P-values were adjusted with a multiple-testing correction using the Benjamini–Hochberg
procedure (alpha=0.05).

Immune infiltration deconvolution

For samples with available tumor RNA-Seq data we performed an immune infiltration
deconvolution based on the normalized TPM and RPKM values in Hartwig and PCAWG,
respectively. More specifically, we implemented 6 different markers of immune infiltration: the
natural killer cells (NK) quantification by Patrick Danaher et al.48, the global immune
infiltration, CD8+ T-cells and CD4+ T-cells implemented by Teresa Davoli et al.38, the T-cell
infiltration used by Catherine Grasso et al.4 and the preliminary IFN-γ profile reported by
Mark Ayers et al49.

Next, we used univariate logistic regression to quantify the association of these
measurements with GIE prevalence. Independent variables were z-scored. The Logit()
function (with default parameters) from the statsmodels library was used to perform the
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logistic regression. This function provides the odds ratio with confidence intervals alongside
the p-value of significance for both dependent variables. The p-values were adjusted with a
multiple-testing correction using the Benjamini–Hochberg procedure (alpha=0.05).

HLA-I supertypes

We performed a cancer-type specific Fisher’s exact test to assess enrichment of HLA-I
supertypes with the GIE frequency. Only HLA-I supertypes present in at least 50 patients
were evaluated. HLA-I supertypes were gathered from ref.50 and manually curated. P-values
were adjusted with a multiple-testing correction using the Benjamini–Hochberg procedure
(alpha=0.05).

HLA-I divergence

We calculate the germline average and cumulative HLA-I divergence51 as the mean and sum
of LILAC’s HLA-I alleles pairwise divergence. Both measurements were independently
regressed against the GIE prevalence in a cancer type specific manner. Following the same
methodology used with other features, a logistic regression was used to evaluate the
significance of the association.

Pre-biopsy treatment exposure

We also tested whether exposure to pre-biopsy treatment had a predictive value for GIE
prevalence. For this analysis, we only relied on metastatic pre-treated samples with available
pre-treatment information (N=2,272). Two treatment groups were tested: chemotherapy and
immunotherapy because of the commonness across cancer types. A minimum of 20 treated
samples were required to carry out the association between a treatment and GIE in a
particular tumor type. Fisher's exact test was used to evaluate the significance. P-values
were adjusted with a multiple-testing correction using the Benjamini–Hochberg procedure
(alpha=0.05).

GIE and TMB dependence

We aggregated the two datasets, metastatic and primary, to increase the robustness of this
analysis. We then defined 20 evenly arranged buckets of the log10(TMB) scale, starting from
the 1th percentile and ending in the 99th percentile values. Next, each sample with a
log10(TMB) equal to Stmb, was allocated to the i-th (i 1..20) bucket such as log10(TMB)i-1 <∈
Stmb <= log10(TMB)i. Samples with a Stmb greater than the last bucket threshold (i.e.,
log10(TMB)20) were allocated into the last bucket. The number of mutations of each bucket
was displayed as the number of mutations per megabase (Muts/Mb) by dividing the total
number of mutations by 3,000 (i.e., approximated number of human genome megabases).
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Finally, the GIE frequency (GIEfreq) of the i-th bucket was defined as the number of GIE
samples in the i-th bucket compared to the total number of available samples in that bucket.

In order to enable the calculation of the uniformity in GIE frequency among samples in the
sample bucket, we performed N (N=1,000) bootstraps of the 50% of samples allocated to
each bucket. We then calculated the average and standard deviation of the GIEfreq across
the bootstraps.

A similar approach was conducted to analyze the relationship between the predicted
neoepitope load and GIE frequency. The number of neoantigens of each bucket was
estimated as the 1%32 and the 5%6 of the total predicted neoepitopes assigned to that bucket
threshold.
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Data availability

The Hartwig dataset used in this study are freely available for academic use from the
Hartwig Medical Foundation through standardized procedures and request forms that can be
found at https://www.hartwigmedicalfoundation.nl/en/applying-for-data/. This includes raw
sequencing data (BAM files and unmapped reads) as well as the processed data through the
latest version of the Hartwig tumor processing pipeline.

To access to the PCAWG dataset processed by the Hartwig Medical Foundation analytical
pipeline researchers will need to apply to the TCGA data access committee via dbGaP
(https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?page=login) for the TCGA portion of the dataset,
and to the ICGC data access compliance office (http://icgc.org/daco) for the ICGC portion of
the dataset.

Raw sequencing data of the high-resolution HLA typing performed by GenDx will be made
available upon acceptance in a peer-reviewed journal.

Code availability

The Hartwig analytical processing pipeline is available at
(https://github.com/hartwigmedical/pipeline5) and implemented in Platinum
(https://github.com/hartwigmedical/platinum). LILAC’s source code is available at
(https://github.com/hartwigmedical/hmftools/tree/master/lilac). The source code of the
neoepitope prioritization pipeline and the code used to prepare the figures will be made
public upon acceptance in a peer-reviewed journal.
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Supplementary Figure legends

Supplementary Figure 1. LILAC validación. Venn diagrams representing the overlap of
germline samples with perfect 2-field HLA-I allotype match in a) Hartwig and b) PCAWG. c)
Left, copy number of minor and major alleles of HLA-A, HLA-B and HLA-C in PCAWG. Right,
proportion of samples with integer copy number of HLA-I genes (orange) compared to the
average of 1,000 random genes in PCAWG (gray). The error bar represents the standard
deviation.

Supplementary Figure 2. GIE in primary and metastatic tumors. a) Workflow of the
processing pipeline used in this study in Hartwig (left) and PCAWG (right). Each rectangle
represents a processing step. The resulting number of selected samples are displayed at the
bottom. b) number of metastatic (Hartwig) samples across cancer types that lack sufficient
representation in the primary (PCAWG) dataset. c) analogous representation for primary
(PCAWG) samples. Vertical dashed lines (N>= 15 samples) represent the threshold of
samples to consider a cohort as sufficiently populated.

Supplementary Figure 3. Positive selection of HLA-I. a) Distribution of non-focal LOH
events along the autosomes in the primary kidney chromophobe cancer cohort. X-ticks
represent the chromosomal starting position. Dashed horizontal lines represent the expected
mean after randomization. Vertical dashed lines highlight the HLA-I genomic location. b)
Needle plots representing the pan-cancer distribution of somatic mutations along the HLA-A,
HLA-B and HLA-C protein sequences in the primary dataset. Mutations are coloured
according to the consequence type. CDS pos, coding sequence position.

Supplementary Figure 4. GIE association with cancer genomic features. a) Heatmap
displaying the association of 95 genomic features with GIE frequency across 32 cancer
types. Significant associations are highlighted by a red border line. Dot colors are coloured
according to the Log2(odds ratio). b) Comparison of the TMB (left) and predicted neoepitope
load (right) between samples bearing GIE alterations in DLBCL and c) NSCLC. d)
Comparison of the UV-light attributed DBS between samples bearing GIE alterations and
wild-type (non-GIE) in skin melanoma samples. e) Similar comparison for DBS attributed to
platinum treatment in ovarian cancer. Box-plots: center line, median; box limits, first and third
quartiles; whiskers, lowest/highest data points at first quartile minus/plus 1.5× IQR. M.W.W,
Mann–Whitney U test p-value. DBS, double base substitutions.

Supplementary Figure 5. Immune evasion mechanism and TMB. a) Top panel, bar plots
representing the number of mutated samples per TMB bucket split by GIE pathway and
mechanism. Bottom panel, representation of pathway-specific GIE frequency across twenty
evenly distributed TMB buckets. Dots represent the average GIE frequency across 1,000
bootstraps. Error bars and the shades represent ± standard deviation. The annotated
numbers are associated with the identifier of the immune escape pathway, relative to Figure
1a. b) Using predicted neoepitopes as baseline buckets. Bottom labels, number of estimated
neoantigens as a relative percentage (1% and 5%) of the number of predicted neoepitopes
in the bucket. Muts/Mb, mutations per megabase.
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Supplementary Tables

Supplementary Table 1. Pathways and genes involved in genetic immune escape.

Supplementary Table 2. HLA-I typing of Hartwig and PCAWG patients and orthogonal
validation of LILAC.

Supplementary Table 3. Datasets metadata and cancer type representation.

Supplementary Table 4. Sample specific GIE annotation and cohort-wise GIE
frequency.

Supplementary Table 5. Positive selection in HLA-I and non HLA-I genes.

Supplementary Table 6. Genomics features and GIE association.

Supplementary Notes

Supplementary Note 1. LILAC.

Supplementary Note 2. Neoepitope prioritization pipeline (Neo).
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