
Quantifying the phenotypic information in mRNA abundance

Evan Maltz1,2, Roy Wollman1,2,3,*

1.	 Department of Chemistry and Biochemistry, UCLA
2.	 Institute of Quantitative and Computational Bioscience, UCLA 
3.	 Department of Integrative Biology and Physiology, UCLA
*  correspondence author (rwollman@ucla.edu)  

Abstract
Quantifying the dependency between mRNA abundance and downstream cellular phenotypes is a fundamental 
open problem in biology. Advances in multimodal single cell measurement technologies provide an opportunity 
to apply new computational frameworks to dissect the contribution of individual genes and gene combinations to 
a given phenotype. Using an information theory approach, we analyzed multimodal data of the expression of 83 
genes in the Ca2+ signaling network and the dynamic Ca2+ response in the same cell. We found that the overall 
expression levels of these 83 genes explain approximately 60% of Ca2+ signal entropy. The average contribution 
of each single gene was 16%, revealing a large degree of redundancy between genes. Using different heuristics 
we estimated the dependency between the size of a gene set and its information content, revealing that on 
average a set of 53 genes contains 90% of the information about Ca2+ signaling within the cellular transcriptional 
state.  Our results provide the first direct quantification of information content about complex cellular phenotype 
that exists in mRNA abundance measurements. 

Introduction
Cellular phenotypes emerge from many regulated interactions between various components. Rates of 

synthesis and degradation determine the instantaneous abundances of different biological molecules. These 
kinetic rates are themselves a property of regulatory interactions between biomolecules creating multilayered 
feedback networks (El-Samad, 2021). Both the dynamic and instantaneous abundances of biomolecules are key 
determinants of cellular phenotypes, underlying their ability to make different decisions given the same stimulus 
(Purvis & Lahav, 2013; Perkins & Swain, 2009; Cheong et al, 2011). The ability to systematically measure the 
abundance of large sets of different biomolecules such as mRNA and proteins enables the determination of 
regulatory strengths across different nodes of these complex networks. Pioneering work in E. coli based on 
instantaneous single cell measurements of mRNA and protein copy numbers reveal a surprisingly low correlation 
coefficient of r=0.01 ± 0.03 across 129 highly expressed genes (Taniguchi et al, 2010). The lack of correlation 
between mRNA and protein in E. coli might be due to their small size and magnitude of temporal fluctuation 
in mRNA levels. However, more recent advances in multimodal assays in mammalian cells also identified low 
correlations between the abundances of most proteins and corresponding mRNAs (Stoeckius et al, 2017; Gong 
et al, 2017; Schulz et al, 2018; Mair et al, 2020; Darmanis et al, 2016). This low correlation appears to contradict 
intuition that protein and mRNA levels should strongly correspond within cells because of the dependency 
suggested by the central dogma (Liu et al, 2016). An alternative hypothesis is that the majority of regulatory steps 
and phenotypically-relevant information lie in post transcriptional processes. Post-transcriptional regulation can 
modulate both protein activity and abundance via protein interactions, post-translational modifications, RNA 
interactions/structure, and more. Stochastic processes also obscure the importance of molecular composition 
to phenotypic outcomes (Balázsi et al, 2011; Perkins & Swain, 2009; Cheong et al, 2011). Yet, many studies 
have pointed to differences in mRNA levels among clonal cells to explain differences in cellular phenotypes 
(Shaffer et al, 2020; Emert et al, 2021). These observations highlight a need for a better framework to address 
fundamental questions: Does mRNA abundance matter? What fraction of the information about cellular phenotype 
is determined by mRNA abundance, and what fraction is due to post-transcriptional regulation?  

Quantifying the information content in mRNA abundance about cellular phenotypes is technically and 
computationally challenging due to the many layers of complex interactions in cellular networks (Macaulay et al, 
2017). Phenotypic information displayed in clonal cells is controlled by molecular composition, stochastic factors, 
intermediate regulation, and crosstalk (Azeloglu & Iyengar, 2015). Many approaches have been developed to 
disentangle these complex and distributed dependencies. Feature engineering has been one powerful tool to 
reveal interpretable characteristics of signaling dynamics, finding multiple motifs that encode information about 
stimulus dose and type (Adelaja et al, 2021; Zhang et al, 2017; Wong et al, 2019; Hafner et al, 2017; Nelson et 
al, 2004). However, these features do not capture all the information in complex dynamics, which are difficult to 
study and fully recapitulate in mechanistic models (Myers et al, 2021). Another common approach is to perform 
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dimensionality reduction and/or clustering to integrate different modalities (Subramanian et al, 2020; Kinnunen 
et al, 2021). Several studies have clustered groups of genes or cells based on signal patterns to reveal general 
mechanisms of how signaling dynamics affect transcription (Lane et al, 2017; Hafner et al, 2017). However, 
it is still unknown how differences in arbitrary sets of transcripts relate to dynamic signals in the same cells. 
Signaling phenomena may emerge due to differences among many combinations of genes, which may be missed 
when simplified to either individual genes or gene clusters. Single-cell network states are notoriously difficult 
to fully measure, and insights about the relationships between many components requires high dimensional 
and multimodal data from the same cells (Adelaja et al, 2021; Spencer et al, 2009; Azeloglu & Iyengar, 2015; 
Macaulay et al, 2017). Although useful in many contexts, feature engineering, clustering, and dimensionality 
reduction are not guaranteed to capture all useful information. 

Directly quantifying the relationship between many transcripts and a phenotype via an information theoretic 
approach can provide a direct measure of the importance of mRNA abundance. However, three challenges 
prevent the general use of information theory in quantifying information content in RNA abundance. 1) 
Biological feedbacks entangle mRNA abundance and cellular phenotype. Cellular phenotypes that emerge 
over long timescale, e.g. cellular differentiations, have a longer timescale than the lifetime of mRNA molecules 
that potentially determine the emerging phenotypes. In these cases, mRNA abundances themselves change 
dynamically adding additional complexities. 2) Quantification of importance of mRNA abundance requires paired 
measurements of mRNA and the emerging cellular phenotype in question, measurements that are technically 
challenging due to the destructive nature of mRNA quantification methods. 3) The statistical measures needed 
to answer these questions, entropy and mutual information, are notoriously hard to infer.  Below, we discuss 
how these challenges could be addressed to provide direct quantification of the information content in mRNA 
abundance. 

Ca2+ signaling is a useful model system to quantify the dependency between mRNA abundance and emerging 
cellular phenotypes. Ca2+ signaling is a system in which the emerging phenotype is faster than changes in mRNA 
abundance, allowing for timescale separation such that we can assume mRNA abundances are at a quasi-steady 
state. The dynamics of the Ca2+ signaling response to ATP is a well studied model system for environmental 
sensing, featuring one of the most ubiquitous and multifunctional pathways across cell types. An important role 
of Ca2+ signaling is the coordination of responses to changes in extracellular environment. In the physiological 
context of tissues, cell lysis causes an unusual local increase in extracellular ATP, among other molecules. This 
type of damage sensing relies on the purinergic cell surface receptors, P1 and P2, which detect adenosine 
and ATP respectively (Alves et al, 2018).  The P2Y GPCR triggers a downstream signaling cascade via protein 
interactions. Gq-GTP is released from the P2Y receptor where it can then bind to and activate phospholipase C 
(PLCβ). PLCβ cleaves PIP2 into IP3 and DAG, which facilitate signaling by binding to their respective receptors, 
IP3R and DAGR. The IP3R is embedded in the membrane of the endoplasmic reticulum and functions as a gated 
Ca2+ channel that releases Ca2+ into the cytoplasm upon IP3 binding. Cytoplasmic Ca2+ concentrations are kept 
relatively low at 50-100nM and spike up to 1uM during signaling with significant and rapid fluctuations producing 
unique dynamics in every cell (Bagur & Hajnóczky, 2017). Changes in cytoplasmic Ca2+ concentration over time 
(i.e. its signaling dynamics) have many emergent features like oscillations caused by coupling between positive 
and negative feedback loops (Azeloglu & Iyengar, 2015). Studies have shown these dynamics specifically 
propagate relevant environmental and stimulus information (Selimkhanov et al, 2014). While in the cytoplasm, 
Ca2+ regulates many signaling molecules, e.g. kinases and phophatases, through direct binding to Ca2+ binding 
domains such as the EF-hand and through binding to calmodulin isoforms that enables it to activate kinases 
like protein kinase C. These kinases affect many downstream transcriptional and protein-mediated responses 
that ultimately regulate cell behavior. The timescale of Ca2+ dynamics is significantly faster than the timescale 
of gene expression differentiation, allowing us to interpret a symmetric measure of dependency, such as mutual 
information, in a directed manner (Putney, 2012). Overall, the Ca2+ signaling pathway is a complex network with 
regulation at transcriptional and post-transcriptional levels, providing us with a great model system to dissect the 
phenotypic information content in mRNA abundances.

Precise measurements of dynamic single-cell, multimodal data have been collected to address these questions. 
Studies featuring multiomic image-based measurements have mostly focused on fixed cell measurements like 
immunofluorescence, spatial arrangement of cells in tissues, and chromatin structure (Wang et al, 2018; Zhang 
et al, 2021; Liu et al, 2021). Studies that have involved dynamic phenotypes were limited by the low sensitivity 
of scRNAseq (Lane et al. 2017) or had to focus on only a handful of genes (Lee et al. 2014).  Nonetheless, 
methods are being developed to integrate live cell dynamics and reliable RNA quantification of hundreds 
of genes (Foreman & Wollman, 2020; Genshaft et al, 2021). Measuring the transcriptional state of the Ca2+ 
signaling pathway requires the quantification of the abundance of hundreds of genes. Multiplexed Error-Robust 
Fluorescence In Situ Hybridization (MERFISH) has been developed as a high-throughput single-cell method for 
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accurately counting large numbers of transcripts (Moffitt et al, 2016). Because it is performed in situ, MERFISH 
can be combined with other imaging methods to create high dimensional, multimodal data consisting of both 
dynamic and instantaneous measurements. Combining transcriptomic and live-cell data offers unique insights 
into the role of dynamic regulation and sources of phenotypic information. The challenge of collecting high-
dimensional, single cell, paired transcriptomic and signaling dynamics data has been successfully addressed 
in recent work (Foreman & Wollman, 2020). There, we demonstrated a single cell method for collecting paired 
measurements of live Ca2+ signaling dynamics and relevant gene expression using MERFISH. In that work, 
non-transformed epithelial cells that express a Ca2+ biosensor were activated with extracellular ATP, imaged 
for 13 minutes, and fixed for mRNA abundance quantification using MERFISH. Pairing of cells between the 
two modalities of the experiment created a unique dataset of 5128 cells with 314 timepoints of Ca2+ signaling 
dynamics and counts for 83 transcripts. This dataset was the basis for the work described here. 

New analytical frameworks have emerged for understanding complex dependencies in multimodal 
measurements with intractable data distributions.  Information theory provides a powerful analytical framework 
for understanding the relationship between system structure and output (Brennan et al, 2012). Shannon’s 
mutual information is a statistical approach for measuring the magnitude of shared, or symmetric, information 
between two random variables. This framework is powerful because it captures nonlinear relationships and 
measures true dependence in absolute terms, though it has been difficult to apply to biochemical systems 
without strict assumptions about the data distribution (Tostevin & ten Wolde, 2010; Uda et al, 2013). However, 
multiomic measurements of single cells often involve different data types that are difficult to relate, that is to 
define a joint probability distribution. In the case of Ca2+ signaling networks, signaling data is sampled from a 
continuous process whereas RNA abundances are discrete. Many paradigms rely on separate analysis of each 
data type, often via dimensionality reduction or clustering, before relationships can be quantified (Fang et al, 
2021; Lee et al, 2020; Welch et al, 2019). While other approaches (e.g. binning or kernel-density estimation) 
exist for defining a joint probability distribution over some data types, they fail to perform well outside of strict 
assumptions about the distributions (e.g. gaussianity) or limited dimensionality; a general, scalable approach is 
necessary to reduce the need for complex and highly specific analytical pipelines that have emerged (Gayoso 
et al, 2021; Zuo & Chen, 2021). Highly flexible neural networks have demonstrated their ability to estimate 
characteristics of these probability distributions to allow a deeper understanding of the statistical and information 
theoretic properties of the data. Deep learning has proven useful for classification of and feature generation from 
ERK and Akt signaling dynamics (Jacques et al, 2021). However, direct interpretation of latent embeddings in 
these neural network outputs is challenging. An alternative use of deep learning methodologies is a universal 
functional approximator where neural networks are used to approximate unknown functions to achieve different 
objective functions. This approach was codified within variational inference and has been proven very useful in 
probability estimates (Blei et al. 2016). For complex data of mixed types where mutual information is analytically 
intractable, optimization of neural network functional approximator could be used to find a lower bound. This 
approach was recently demonstrated under the name Mutual Information Neural Estimator (MINE), which uses 
a deep neural network to learn a function that can encode the data and find a tight lower bound on the mutual 
information (Belghazi et al, 2018). Briefly, MINE is a universal function approximator that searches for a mapping 
function  in a large space of encoder functions parameterized by  such that . Letting 

 represent the joint probability and  represent the product of the marginals, 
the mutual information between  and  is . Using the Donsker-Varadhan 
representation of the KL divergence, the model parameters  are optimal when gradient ascent has maximized 

 which represents a lower bound on the mutual information. MINE is 
highly flexible because it makes almost no assumptions about the structure of the data. MINE searches through 
a large function space for the optimal transformation function to encode the data types assuming there are 
enough samples to constrain the model. The result is a lower-bound estimate of the mutual information between 
paired modalities of almost any dimensionality and complexity.

The recent technological development in multiplexed single cell measurements and machine learning 
approaches for the inference of mutual information could be integrated to provide direct quantification of the 
phenotypic information content of mRNA abundances. Here, we utilize these developments and focus on a 
model with timescale separation between an emerging phenotype and mRNA abundance. We relied on highly 
multiplexed FISH-based quantification of mRNA levels that is more accurate than sequencing based approaches 
and also allows integration with other imaging modalities. Inference of mutual information was done using the Ca2+ 
signaling network as a model; we fit MINE on various subsets of 83 genes and 314 Ca2+ timepoints to quantify 
the contribution of transcript abundance to signaling dynamics. To establish a baseline, we first calculated the 
dependency between individual genes and Ca2+ signals. We then calculated the mutual information between 
gene pairs and Ca2+ signals to account for redundancy. Gene sets of all sizes were then sampled using various 
strategies to measure how information changes with set size. Using PCA, we evaluate how useful phenotypic 
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information accounts for transcript-level variance. Overall, we demonstrate a new information theoretic framework 
for analyzing paired single cell data that provide a quantification of the dependency between sets of mRNAs and 
an emergent cell-scale dynamic phenotype.

Results
To investigate the information content of transcript counts and dynamic Ca2+ signals, we first analyzed 

each modality on their own. Ca2+ signals display significant heterogeneity across cells (Fig 1A). Likewise, most 
transcripts had a large range of abundances across cells, though distributions varied depending on the transcript. 
Pairwise correlation coefficients were calculated for 83 genes across 5128 cells (Fig 1B). The magnitude of the 
correlations for all gene pairs were relatively low with an average of r = 0.16 compared to just cell cycle genes at 
r = 0.44. One interpretation of the low correlations and heterogeneous transcript distributions is that transcripts 
contain unique information. To test this hypothesis, we calculated the differential entropy of genes using PCA (Fig 
1C-E). Because each principal component is an independent, weighted sum of the row vectors of the data, we 
can approximate the differential entropy among orthogonal components assuming normality via the central limit 
theorem. Differential entropy across principal components does not measure the information in absolute terms, 
but can describe how the information is distributed relative to the explained variance. We found that 6 principal 
components explain 75% of the variance, but only 15% of the entropy. The contrast between Fig 1C and 1D 
appears contradictory in that few orthogonal components explain most of the variance, yet entropy is steadily 
added across components with no obvious plateau. This analysis shows that simple measures such as explained 
variance that are often used for dimensionality reduction are not necessarily appropriate proxies of information 
content. Accounting for relevant, phenotypic information could help resolve discrepancies between explained 
variance and differential entropy. To estimate the information content in Ca2+ signaling we took advantage of its 
dynamic patterns. Differential entropy of Ca2+ can be estimated using FFT spectral entropy, a scale-invariant 
measure of information (Burg, 1975). The periodogram shows a continuum of signal frequencies with apparently 
low variance (Fig 1F). Information can be calculated using this distribution of frequencies, which we found to be 
4.2 bits. The mutual information between mRNA abundance and Ca2+ signaling is bounded by the distribution 
with the lowest entropy. Thus, 4.2 bits provides a likely upper bound to the true mutual information between 
transcripts and Ca2+ signals.	

Figure 1. Structure of Gene and Ca2+ 
Data. A) Representative examples of Ca2+ 
dynamics of four cells in the dataset. B) A 
histogram of the pairwise gene correlation 
matrix (tri-up) which highlights the relatively 
low correlations. C) Explained variance 
of mRNA transcript counts from PCA. D) 
Differential entropy of transcripts estimated 
by PCA. E) Plot of explained variance (panel 
C) vs differential entropy (panel D) with an 
increasing number of principal components. 
Collectively, panels C-E show that most of 
the entropy comes from components that 
do not explain much of the variance. F) 
Dynamic Ca2+ signal periodogram (cropped 
to show only the lower wavelength, higher 
power frequencies). Ca2+ dynamic signals 
were found to contain a spectral entropy of 
4.2 bits. 

To quantify how useful 
phenotypic information is distributed 
across genes, we estimated mutual 
information between individual 
genes and Ca2+ signals (Fig 2A). 
Most individual genes contain 
significant information about Ca2+ 
signals, an average of 0.7 bits, 
and the most informative genes 
individually account for 57% of the total mutual information between all genes and Ca2+ which is 2.5 +/- 0.4 
bits. Cell cycle-associated genes were well distributed throughout the list, whereas genes coding for Ca2+ and/
or calmodulin-dependent proteins like PPP3CA and CCDC47 were at the top of the list. Interestingly, the sum 
of the information contained in each gene is significantly larger than the total I(G;Ca2+), indicating a high degree 
of redundancy (Fig 2B). The average mutual information between a single gene and Ca2+ signals is 0.7 bits (Fig 
2C); the average gene contains about 27% of the signaling information, but how the information is shared across 
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genes is not immediately clear. We further tested whether informative genes, i.e. gene that have high average 
pairwise mutual information to other genes, are also informative about Ca2+ dynamics (Fig 2D). Overall, genes 
that are more informative about Ca2+ signaling are also more informative about the expression of other genes. 
These genes that are highly informative about Ca2+ and many other transcripts may be interpreted as summary 
genes containing redundant, but distributed information. The second most informative single gene, PPP1CA, 
exemplifies this effect, as it codes for a subunit of PP1 that interacts with >200 regulatory proteins involved in a 
myriad of critical cell processes. Notably, the top two most informative genes, PPP3CA and PPP1CA, are both 
broadly connected phosphatases; kinases and phosphatases were consistently informative and concentrated 
towards the top of the list. However, from this analysis alone it is not clear how many genes contain redundant 
information and to what extent.
Figure 2. Mutual Information Between Individual Genes and Ca2+ Signals. A) I(Gi;Ca2+) sorted from least to greatest. B) The blue line 
shows the cumulative sum of I(Gi;Ca2+) from (A) sorted from greatest to least, and individual genes appear to contain a lot of information 

(56 bits) about Ca2+ signals. The black dashed line shows mutual information between all 83 genes and Ca2+ dynamics estimated to be 
2.5 bits. C) Histogram of (A) showing the mean I(Gi;Ca2+) is 0.7 bits. D) I(Gi;Gj) represents the pairwise mutual information between genes, 
the information that genes have about each other. This plot shows that genes that are more informative about other genes tend to be 
more informative about Ca2+ dynamics.

To better understand how the superfluous information in Fig 2B is distributed among genes, we calculated the 
Synergy Redundancy Index (SRI) between gene pairs with respect to Ca2+ (Dietterich et al, 2002; Schneidman 
et al, 2003). SRI(Gi,Gj | Ca2+) measures the information overlap between genes by subtracting I(Gi;Ca2+) and 
I(Gj;Ca2+) from I({Gi,Gj};Ca2+). A gene pair with negative SRI means that the sum of the mutual information 
between each gene and Ca2+ was greater than the gene pair, so the genes must contain some of the same 
information (redundant). A positive SRI indicates that there is more information about Ca2+ in the gene pair than 
in the sum of the individual genes (synergistic). An SRI of 0 describes a pair of genes that are independent, 
containing unique and non-overlapping information about Ca2+. Calculating SRI between all gene pairs reveals 
that most pairs are significantly redundant (Fig 3A, B). On average, gene pairs share 0.43 bits which accounts 
for 61% of the phenotypic information contained in the average individual gene. Further, the more informative a 
gene is about Ca2+, the more redundant it is with other genes (Fig 3C). This finding supports that some genes 
aggregate information from many others and the more information a gene has, the more it shares. Consistent 
with findings in Fig 2A, phosphatases and kinases like PPP3CA, PRKCI, PPP2CA, PI4KB, and PPP1CA were 
among the most redundant. Interestingly, some genes are highly synergistic on average.  One such synergistic 
gene is PLCD3, which appears to have no information about Ca2+ on its own, but suddenly becomes informative 
in gene pairs. PLCD3 codes for an isoform of phospholipase C, a critical step in the Ca2+ in the signal transduction 
of extracellular ATP. It is surprising that PLCD3 expression appears to contain little information about Ca2+ 
on its own considering its relevance to stimulus sensing, but this apparent paradox is reconciled by its high 
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synergy. The most synergistic gene on average was ATP2C1, which codes for a calcium-transporting ATPase 
that couples ATP hydrolysis with Ca2+ transport into the Golgi lumen. Genes which are critical for modulating 
Ca2+ concentrations in the cytoplasm represent steps in linear processes, rather than cooperating with many 
other components to achieve their function. Generally, the most synergistic genes were not very informative on 
their own (Fig 2A), but became informative in a group of 2 (Fig 3C). The high degree of synergy suggests that 
these genes provide contextual or conditional information that is absent from most other genes, even genes that 
were independently informative. Although, genes typically function in larger sets beyond pairs, and a thorough 
understanding of transcriptional information requires evaluation of higher order interactions.

Figure 3. Synergy and Redundancy of Gene Pairs With Respect to Ca2+. A) SRI(Gi,Gj|C) sorted by average SRI. B) Histogram of SRI 
showing that most gene pairs are highly redundant with an average score of -0.43 bits. C) The mean rank of all synergistic pairs compared 
to the mutual information between that gene and Ca2+ signals, (spearman r=0.5, P<2e-6), indicating that genes with more information 
about Ca2+ are also more redundant. 

To explore the mutual information between Ca2+ and gene sets of various sizes, we tested various sets 
using gene annotations, a sequential search, and PCA. To quantify set level information at a functional level, we 
summarized pairwise SRIs based on gene annotations (Fig 4A). Calculating the mean SRI for combinations of 
annotations revealed how different functional gene sets contain phenotypic information. Pairs within an annotation 
are more redundant than between annotations with an average difference of ~0.1 bits.The Ca2+/ER annotation 
contains the most redundancies by a large margin, whereas the miscellaneous category “Other” is the most 
synergistic which can be explained by the functional diversity in this group. The Ca2+/ER annotation contains the 
genes most relevant to the stimulus and appear to provide similar information. To understand how phenotypic 
information depends on gene set size, we calculated the mutual information between Ca2+ signals and gene sets 
of all sizes. Because testing all possible sets is prohibitively computationally expensive, we first sampled random 
sets of all possible sizes (4B). Each set size was sampled 4 times. For random sets, 53 genes contained 90% of 
the phenotypic information. To understand the upper and lower bounds on information in each set, we performed 
two directed heuristic searches. The directed searches first picked the most (least) informative gene, and then 
tested every possible addition to the set to add the member that contributed the most (least) information until 
the sets were of maximum size. The upper bound in green shows that the information quickly plateaus as the 
best 12 genes contain 90% of the phenotypic information, and all further additions contribute minimal additional 
information. The lower bound in purple shows the unique information per gene given the set, sorted from least 
to greatest. Because the lower bound always adds the least informative and most redundant genes first, the last 
genes contain the most unique information. PPP3CA is the first gene added to the upper bound and the last 
gene to be added to the lower bound, which means it must have both the most absolute information and the most 
unique information. Interestingly, the growth of information in the least informative set was approximately linear, 
meaning that there is always some unique information in every gene. The slope of the lower bound is 0.03 bits, 
which represents the average unique information per gene. 
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Using the mean mutual information between a gene set and Ca2+, we can also estimate the “redundancy 
explained” of all sets of genes of a given size according to Equation 3 (Fig 4C). We found that sets of only three 
genes explain 66% of the redundancy. Small gene sets contain much more redundant phenotypic information 
than larger gene sets. The point at which this curve begins to level off can be interpreted as a fundamental set 
size above which most phenotypic information lies within the sets. We observe that small gene sets contain most 
of the information on Ca2+ dynamics suggesting that higher order interactions in larger sets are not required to 
capture the full dependency between mRNA abundance and Ca2+ dynamics.

Finally, we calculated the mutual information between transcript principal components and Ca2+ signals to 
compare with differential entropy and understand how useful phenotypic information is distributed (Fig 4D). In 
agreement with Fig 4C, phenotypic information saturates quickly with only 3 principal components accounting 
for 74% of the total mutual information between transcripts and signals. This result starkly contrasts with the 
differential entropy of gene principal components independent of Ca2+ signals which rises slowly and does not 
appear to plateau. By accounting for phenotypic information, far fewer orthogonal components are required to 
preserve the useful information. The difference between these curves indicates that focusing on phenotypic 
information may filter or compress transcriptional information. I(PC;Ca2+) resembles the curve in Fig 1C, though 
still plateaus more quickly. These results confirm that phenotypic information is mostly explainable by a few 
components and higher order interactions do not significantly contribute. 

Figure 4: Mutual Information Between Gene Sets and Ca2+ Signals. A) Mean pairwise SRI from Figure 3 for sets based on 
annotation. MCF 10A differentiation and Ca2+ dependent response are abbreviated. B) Gene sets of various sizes were constructed 
using three different strategies: an upper bound (green) that always adds the most informative gene to the set given the genes 
already included, random strategy (boxes) that samples random sets of genes, and a lower bound (purple) that always adds the least 
informative gene to the set given the genes already included. C) The blue line shows the fraction of redundant information using the 
expected value of I({G0, …, Gn};Ca2+) from Equation 3. D) A y-y plot of gene differential entropy in blue (same as Figure 1D) and the 
mutual information between gene principal components and Ca2+ in orange. Both values are normalized by their respective max values.
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Discussion
The complexity of biological regulation is staggering. While many details about biological networks are 

known, the gaps in our knowledge make some simple questions very challenging to answer. For example, to 
what degree does abundance of one set of molecules matter? Specifically, does the abundance of mRNAs 
matter for the regulation of complex cellular phenotypes such as signaling response to a ligand? Here we provide 
a framework for answering such questions through the combination of paired single cell data and application 
of recent advances at the interface between machine learning and information theory (Belghazi et al, 2018). 
Applying a recently developed framework for mutual information estimation to single cell data of multiplexed 
mRNA levels paired with live cell imaging allowed us to quantify the strength of the causal connection between 
mRNAs and Ca2+ signaling. We found that approximately 60% of Ca2+ signal information exists in transcript 
counts, which is 2.5 (+/- 0.4) bits. Furthermore, the framework we developed provides key information about 
information synergy and redundancy, can be used to quantify the joint information in sets of genes, and reveals 
how overall dependency changes with the size of the set. On average, genes were found to contain 61% 
redundant information with each other, though nearly all genes contained some unique information. Genes 
that appeared to contain little phenotypic information individually were in fact the most synergistic and became 
informative in pairs. The unique information present in gene sets is best visualized in Fig. 4B, which illustrates the 
difference in information among the most, least, and average set. In the best case, only 12 genes contain 90% 
of signal information, which is significantly fewer than an equally informative 53 random genes. While all genes 
contain unique information, some sets are still significantly more informative than others likely due to their role in 
the signaling network. Decomposition by principal components (Fig. 4D) revealed a rapid plateau in phenotypic 
information, starkly contrasting the increasing growth in differential entropy. These results demonstrate the utility 
of information theoretic analysis in quanityfing the phenotypic information of mRNA abundance.  

The framework we propose is very general and can be applied to any two “slices” within a complex 
biological regulatory network. Our numerical experiments (Supplementary Material) demonstrate that with minor 
adaptations for bias removal, MINE can robustly estimate mutual information between two high dimensional 
vectors containing 100+ features. The generalizability of this framework provides a new tool to put weights and 
interpretable numbers on different “arrows” within complex biological regulatory networks. Importantly, such 
“arrows” do not necessarily represent direct mechanistic steps. There are numerous reactions that occur post 
transcriptionally to determine Ca2+ signaling responses. Yet, using MINE we were able to infer the individual 
contribution of each gene in controlling the emergent phenotypes. Furthermore, through the use of pairs of genes 
and estimation of the effect of gene set size, we determined how information between multiple mRNA types is 
integrated. This inference showed that despite the information having to propagate through multiple layers of 
regulation, it still shows significant dependency. Even though correlations between mRNA and protein levels are 
generally low, phenotypically relevant information is still preserved in the transcriptome. Our results supports 
the use of mRNA measurements to infer useful phenotypic characteristics of cell populations. An important 
feature of our analysis is that all inference was done relaying on natural heterogeneity without any experimental 
perturbation to gene expression circumventing compensation and non-linear dependencies that are common 
pitfalls of perturbation analysis (Welf & Danuser 2014).

While the framework we propose is very general, our findings are systems specific and will change depending 
on the set of genes and measured phenotypes. Here we focused on Ca2+ signaling in response to activation 
of GPCR in a clonal population of MCF 10A cells. In previous work, we estimated that a cellular population 
is composed of multiple subtypes (Yao et al, 2016) and have shown that mRNA variability is dominated by 
cell state differences with a minor contribution from transcriptional bursting (Foreman & Wollman, 2020). Our 
current finding that 60% of information in the emerging Ca2+ signaling phenotypes can be attributed to cellular 
transcriptional state largely agrees with these previous findings. It is likely that in other systems, decomposition 
of information content will differ from the 60% transcriptional and 40% post transcriptional measured here. For 
example, broad phenotypes such as cell type classification that often correspond to larger and highly patterned 
transcriptional differences will likely show higher levels of transcriptional dependency. 

Our approach has several limitations, experimental and computational, that will need to be addressed in 
future work. Experimentally, gene selection, i.e. the expression of which genes are measured, is limited due to 
gene length, specific sequence, and other experimental constraints that are continuously improving. Furthermore, 
the approach could be applied to tissue samples with much higher population diversity where the relationship 
between transcripts and phenotype is more relevant. Computationally, because of stochastic gradient ascent, the 
model’s estimates are somewhat noisy and required multiple replicates. Additionally, we were limited to exploring 
the effect of set sizes with search strategies and only exhaustively examined pairwise dependencies because 
the model was computationally expensive to run. None of the search strategies are guaranteed to find the truly 
most or least informative set because doing so would require a prohibitively time consuming exhaustive search. 
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Despite these limitations, MINE was able to provide an interpretable and scalable quantification of dependency 
between transcript sets and Ca2+ signaling.

Recent advances in single cell technologies are making high-dimensional, multimodal measurements feasible. 
Statistical descriptions of complex phenotypes will become increasingly useful as single cell experiments generate 
more multimodal and multiomic data. Integrating multiple different data types is still a challenge in the field, and 
this work represents a new approach to synthesize statistical descriptions of high-dimensional, multimodal data 
that does not make any assumptions about the underlying functional relationships. This unbiased approach will 
enable a deeper understanding of complex, multidimensional data by quantifying the dependency between any 
single cell phenomena. 

Methods

Data Selection. Data collection is described in previous work (Foreman & Wollman, 2020). Of the 336 genes 
measured, 150 genes were measurably expressed and the top 83 were chosen by the highest magnitude z 
scores from multiple linear regression. 

Preprocessing. Transcript counts from the 83 genes and 314 timepoints of Ca2+ signals were independently 
z-score normalized. Normalization was applied to the entire matrix of all cells for each data type (e.g. 5128x83 
for transcripts) and not to individual columns, preserving relative magnitude across genes and timepoints. 

MINE. Hyperparameters were chosen by fitting analytically tractable data from an additive white gaussian 
noise model of the data across a range of strengths of dependence (SF1). Additional bias correction was 
implemented by fitting , where , , , and  are the fitting parameters 
and  is the number of iterations (SF2). Convergence tests were performed on the real data by comparing the 
residuals of the bias correction fit. The chosen hyperparameters of 600 hidden units and a learning rate = 3e-4 
resulted in the highest yield, i.e. fewest failed fits.

Synergy Redundancy Index (SRI). The Synergy Redundancy Index was developed to evaluate information 
about a stimulus shared among a small population of cells (Dietterich et al, 2002). Equation 1 describes the 
calculation, which involves comparing pairwise and individual mutual information between genes and Ca2+ 
signals. 

First, the mutual information between each unique pair of genes and Ca2+ were estimated, I(Gi,Gj; Ca2+). Then 
I(Gi; Ca2+) was calculated, and Equation 1 was calculated for all genes.

Redundancy Explained. This metric represents the amount of extra information assuming no redundancy 
between elements. Equation 2 uses an expected value multiplied by the number of sets to calculate the non-
redundant information (NRI) as if all individual sets contain unique information: 

    

k = set size, n = total number of genes

From Equation 2, we can calculate the redundancy explained (Equation 3):
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Supplementary Materials

MINE estimates mutual information by calculating the KL Divergence between the marginal distributions 
and the joint distribution. This KL divergence represents the distance between these distributions, which is 
nonnegative such that 0 represents complete independence. MINE uses the Donsker-Varadahn representation 
of the KL Divergence to evaluate a function that maps samples of the data to the set of all real numbers. Gradient 
ascent finds the parameterization of this function which maximizes the mutual information for a tight lower bound. 

To validate MINE’s estimates before applying it to the real data, we evaluated MINE on multivariate gaussian 
distributions with an analytically calculable mutual information between toy genes and toy Ca2+ (I(TG;TC)). The 
“toy” data was created using a standard additive white gaussian noise (AWGN) model with tunable dependency, 
entropy, and dimensionality (SF 1). A multivariate gaussian distribution (5128,16) was defined based on a 
specified covariance structure (SF 1B). The covariance of the distribution is somewhat arbitrary; it is only required 
that the matrix is invertible and tunable over a range of dependencies. The covariance structure is shown as 4 
symmetrical quadrants in the matrix: the off diagonal quadrants are -α and the on-diagonal quadrants are α (SF 
1A). Toy signals were created by applying a tunable amount of noise to the toy genes (SF 1C).

Supplementary Figure 1. Additive 
White Gaussian Noise (AWGN) Toy 
Model. A) Covariance matrix for toy 
data. Quadrant values are determined by 
a hyperparameter α, where off-diagonal 
quadrants are set to -α and on-diagonal 
quadrants are set to α, with variance set 
to 1. B) Toy genes are determined by 
the covariance matrix. C) Toy signals 
are calculated by adding a tunable 
amount of noise to the toy gene matrix: 

.

Evaluating MINE on the toy data, we found that the model occasionally produces a non-converging, biased 
mutual information estimate that increases linearly with training (SF 2A). To quantify and remove this bias, we 
fit MINE’s output to a statistical model: , where , , , and  are the 
fitting parameters and  is the number of iterations. Finding the optimal  factors out the linear bias  and 
produces a converging and accurate estimate of the analytically determined I(TG;TC) (SF 2B). The mean over 
the three replicates yields a final slope of 5.8e-6, showing reliable, asymptotic convergence to the true mutual 
information value. Applying this solution allowed rigorous definition of a convergence criterion that adaptively 
determines when training can conclude (SF 2C). This criterion uses moving averages to determine convergence, 
and expectedly results in higher residuals for fits with fewer iterations (SF 2D). Stricter convergence thresholds 
can fail to converge because of noise in the output; 1.4 was chosen as the final threshold due to its high yield, 
fast convergence, and low mean residual (SF 2E). In addition to the low residuals, we also found a pearson 
correlation of 0.97 across a range of I(TG;TC) (SF 2F). These results support the use of our bias-corrected MINE 
with the chosen hyperparameters.
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Supplementary Figure 2. Fitting 
Model on Toy Data. A) Blue points 
are the raw output from MINE. 
The model occasionally failed to 
converge at the analytical I(TG;TC) 
value, as shown. Bias correction 
fit using BFGS optimization is 
shown in red. B) Blue points show 
the bias correction estimate of the 
true I(TG;TC) during training from 
3 replicates. The dotted black line 
shows the true, analytical I(TG;TC) 
value. C) An adaptive convergence 
criterion based on the difference 
between moving averages was 
used to decrease training time. 
Higher convergence thresholds, 
i.e. larger differences between 
moving averages, result in fewer 
iterations. D) Faster convergence 
expectedly results in poorer fits with 
higher residuals on average. E) If 
the convergence threshold is too 
stringent, the optimization algorithm 
may be unable to find a suitable fit 
for bias correction. The yield was 
calculated over many toy datasets 
with a range of parameter values. 
F) Toy models with a large range of 
analytical mutual information values 
were fit using bias-corrected MINE, 
pearson r = 0.97.

	 We then applied bias-corrected MINE to the full data. We found that the bias correction works well 
on the real data and eventually converges on a single value (SF 3A). To verify that the results are not limited 
by sample size, we performed a jackknife correction (SF 3B). The jackknife extrapolation to infinite sample 
size yielded a result well within the error bars of the estimate at the full sample size. This result indicates that 
sample size is not limiting.

Supplementary 
Figure 3. Bias-
Corrected MINE 
on Real Data. A) 
Full data was fit 
using bias-correction 
and the estimate of 
I(G;Ca2+) is shown in 
blue. The dotted black 
line is the mean of 
several samples. B) 
Jackknife of the data 
with 7 sample sizes 
ranging from 3369 to 
5128 (all cells). The 
intercept shown is 
the extrapolation at 
infinite sample size, 
which is well within 
the estimate of 2.5 ± 
0.4 bits.
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To estimate the upper bound on the MI, we used FFT spectral entropy. This calculation begins by creating 
an FFT periodogram (Fig 1D). The Shannon entropy of the resulting distribution of power spectral densities 
represents the spectral entropy. To verify that spectral entropy produces an invariant measurement of 
entropy unlike other differential entropy metrics, we first applied various transformations to the signals. These 
transformations did not change the final entropy, whereas smoothing by convolution did degrade the entropy, 
as expected (SF 4A). Furthermore, we applied linear interpolations to change the dimensionality and found 
that most of the entropy comes from low frequencies which are well preserved even with dramatic reduction 
in timepoints (SF 4B). Increasing the dimensionality by interpolation did not change the entropy estimate. 
Therefore, we conclude that spectral entropy is a robust, invariant measure of signal information.

Supplementary Figure 4: FFT Spectral Entropy Robustness. A) FFT spectral entropy is robust to translations and rescaling; unlike 
other measures of differential entropy, it does not depend on the scale of the data. Smoothing the data by convolution expectedly results 
in a loss of information due to 
removal of high frequencies. 
B) The dotted black line shows 
the true dimensionality and the 
blue line shows spectral entropy 
as a function of dimensionality. 
FFT spectral entropy is robust 
to interpolations that change 
the dimensionality of the data 
that do not affect the distribution 
of frequencies. Expectedly, 
reducing dimensionality results 
in a loss of high frequency 
information, though most of the 
information is at relatively low or 
mid frequencies.

To estimate the amount of extra information assuming no redundancy between elements, we calculated the 

NRI as a function of gene set size. For I(Gi;Ca2+), the NRI is simply defined as  because each gene 
occurs only once. This equation can be generalized to gene sets of any size by dividing I({G0, …, Gn};Ca2+) by 
the number of times a gene appears in a particular set. Replacing the sum with an expected value multiplied by 
the number of sets is also useful to avoid having to calculate the value of each element. Equation 2 defines the 
generalization and is used to calculate the redundancy explained in Equation 3, which represents the fraction 
of redundant information at a given gene set size. 
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