Abstract
We created resources to facilitate research on the role of human brain microstructure in the development of mental health disorders, based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N=2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI, and we provide automated quality control (QC) scores for every scan, as part of the data release. To scale QC to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers a resource for transdiagnostic research in brain connectivity and pediatric mental health and serves as a novel tool for automated QC of large datasets.
Competing Interest Statement
The authors have declared no competing interest.