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Abstract 
 
Mapping single-cell sequencing profiles to comprehensive reference datasets represents a 
powerful alternative to unsupervised analysis. Reference datasets, however, are predominantly 
constructed from single-cell RNA-seq data, and cannot be used to annotate datasets that do not 
measure gene expression. Here we introduce ‘bridge integration’, a method to harmonize single-
cell datasets across modalities by leveraging a multi-omic dataset as a molecular bridge. Each 
cell in the multi-omic dataset comprises an element in a ‘dictionary’, which can be used to 
reconstruct unimodal datasets and transform them into a shared space. We demonstrate that our 
procedure can accurately harmonize transcriptomic data with independent single cell 
measurements of chromatin accessibility, histone modifications, DNA methylation, and protein 
levels. Moreover, we demonstrate how dictionary learning can be combined with sketching 
techniques to substantially improve computational scalability, and harmonize 8.6 million human 
immune cell profiles from sequencing and mass cytometry experiments. Our approach aims to 
broaden the utility of single-cell reference datasets and facilitate comparisons across diverse 
molecular modalities. 
 
Availability: Installation instructions, documentations, and vignettes are available at 
http://www.satijalab.org/seurat 
 
Introduction 
 
In the same way that read mapping tools have transformed genome sequence analysis1-3, the 
ability to map new datasets to established references represents an exciting opportunity for the 
field of single-cell genomics. As an alternative to fully unsupervised clustering, supervised 
mapping approaches leverage large and well-curated references to interpret and annotate query 
profiles. This strategy is enabled by the curation and public release of reference datasets, as well 
as the development of new computational tools, including statistical learning4-7 and deep learning-
based approaches8,9 that have been successfully applied towards this goal.  
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While powerful, a significant current limitation of existing approaches is their primary focus on 
single-cell RNA-seq (scRNA-seq) data. Single cell transcriptomics is well-suited for the assembly 
and annotation of reference datasets, particularly as differentially expressed gene markers can 
typically be interpreted to help annotate cell clusters. This has led to the development of high-
quality, carefully curated, and expertly annotated references, particularly from consortia including 
the Human Cell Atlas (HCA)10, Human Biomolecular Atlas Project (HuBMAP11), and the Chan 
Zuckerberg Biohub12. Mapping to these references facilitates data harmonization, standardization 
of cell ontologies and naming schemes, and comparison of scRNA-seq datasets across 
experimental conditions and disease states. 
 
A crucial challenge is to extend reference-mapping to additional molecular modalities, including 
single-cell measurements of chromatin accessibility (e.g. scATAC-seq13,14), DNA methylation 
(scBS-seq15), histone modifications (scCUT&Tag16,17), and protein levels (CyTOF18), each of 
which measures a different  set of features than scRNA-seq. The lack of transcriptome-wide 
measurements creates challenges for unsupervised annotation. Ideally, datasets from different 
modalities could be mapped onto scRNA-seq references, ensuring that established cell labels 
and ontologies would be preserved. We and others have proposed methods to map datasets 
across modalities19-21, but these make strict biological assumptions (for example, that accessible 
chromatin is associated with active transcription) that may not always hold true, particularly when 
analyzing cellular transitions or developmental trajectories22.  
 
Here we introduce ‘bridge integration', which performs integration of single-cell datasets 
measuring different modalities by leveraging a separate dataset where both modalities are 
simultaneously measured as a molecular ‘bridge’. The multi-omic bridge dataset, which can be 
generated by a diverse set of technologies23-32 (Fig. 1a), helps to translate information between 
disparate measurements, resulting in robust integration without requiring any limiting biological 
assumptions. We illustrate the broad applicability of our approach, demonstrating its performance 
across five different molecular modalities, and highlighting specific requirements for the multi-
omic dataset that can help to guide experimental design. 
 
Bridge integration leverages tools from a subfield of representation learning known as ‘dictionary 
learning’, which are commonly used in image analysis33. The goal of dictionary learning is to find 
a representation of the input data as a weighted linear combination of individual basic elements. 
We show that dictionary learning has multiple potential applications for single-cell analysis. Our 
bridge integration procedure is enabled by treating each cell in a multi-omic dataset as elements 
of a dictionary that can be utilized to reconstruct single-modality datasets. Moreover, we 
demonstrate how the development of compact dictionaries via dataset sketching can dramatically 
improve the computational efficiency of large-scale single-cell analysis, and enable rapid 
integration of dozens of datasets spanning millions of cells.  
 
Results 
 
We aimed to develop a flexible and robust integration strategy to integrate data from single-cell 
sequencing experiments where different modalities are measured (‘single-modality datasets’). 
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The fundamental challenge is that different single-modality datasets measure different sets of 
features. For example, scRNA-seq measures the expression level of individual transcripts, while 
scATAC-seq or scBS-seq measure DNA accessibility or methylation levels (Fig. 1a). Previously 
proposed methods from our group and others19-21 attempt to convert one set of features into 
another, for example, taking the gene-body sum of ATAC-seq signal (or the inverse of the DNA 
methylation levels), as a proxy for transcriptional output. While this conversion facilitates 
downstream integration, it assumes a strict and simplistic biological relationship between 
modalities that may not hold true, particularly in developing or transitioning systems. 
 
Utilizing multi-omic dictionaries for bridge integration 
 
We reasoned that an alternative approach would be to leverage a multi-omic dataset as a bridge 
that can help to translate between disparate modalities. To perform this translation, we were 
inspired by the field of dictionary learning, a form of representation learning that is commonly 
utilized in image analysis and also genomics33-36. The goal of dictionary learning is to represent 
input data, a noisy image for example, in terms of individual elements. These elements, such as 
image patches, are called atoms and together comprise a dictionary. Reconstructing an image as 
a weighted linear combination of these atoms is an effective tool for denoising, and represents a 
transformation of the image dataset into a dictionary-defined space. 
 
We find that dictionary learning is a powerful tool for enabling cross-modality bridge integration at 
single-cell resolution. Our key insight is to treat a multi-omic dataset as a dictionary, with each 
individual cell’s multi-omic profile representing an atom. We learn a ‘dictionary representation’ of 
each unimodal dataset based on these atoms. This transformation takes datasets in which 
completely different sets of features were measured and represents them each in a space where 
the defining features represent the same set of atoms (Fig. 1b). Once different modalities can be 
represented using the same set of features, they can be readily aligned in a final step. 
 
Our bridge integration is illustrated in Fig. 1b and described fully in the Supplementary Methods, 
and we note a few key points below. First, our procedure makes no assumptions about the 
relationships between modalities, as these are learned automatically from the multi-omic dataset. 
Second, the key advance we present here is a transformation to project datasets profiling different 
modalities to be represented by a shared set of features. Once transformed, the final alignment 
step is compatible with a wide diversity of single-cell integration techniques including Harmony37, 
mnnCorrect38, Seurat19, Scanorama39, or scVI40. In this manuscript, we perform this step with an 
implementation of the mnnCorrect algorithm38.  
 
Lastly, we found that when working with sizable bridge datasets, the large number of atoms (single 
cells in the bridge dataset) created a substantial computational burden. Motivated by a similar 
problem addressed by Laplacian Eigenmaps41, we compute the graph laplacian for the multi-omic 
dataset, and calculate an eigendecomposition, thereby reducing the dimensionality from the 
number of atoms to the number of selected eigenvectors (Supplementary Methods). We then 
utilize these eigenvectors to transform the learned dictionary representations into the same lower-
dimensional space, substantially increasing the efficiency of our bridge integration procedure.  
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Mapping scATAC-seq data onto scRNA-seq references 
 
We first demonstrate our bridge integration strategy by performing cross-modality mapping on 
scATAC-seq and scRNA-seq samples of human bone marrow mononuclear cells (BMMCs). 
These samples consist of cells representing the full spectrum of hematopoietic differentiation, 
including hematopoietic stem cells, multi and oligopotent progenitors, and fully differentiated cells. 
As part of HuBMAP, we have leveraged public datasets to construct a comprehensive scRNA-
seq reference (‘Azimuth reference’; 297,627 cells) of human BMMC, carefully annotating 10 
progenitor and 25 differentiated cell states (Fig. 2a). We aimed to map scATAC-seq ‘query’ 
datasets of human BMMC42 (16,266 whole bone marrow profiles and 9,893 CD34+ enriched 
profiles) to this reference (Fig. 2b). We used a 10x Multiome dataset43 (32,368 cells paired 
snRNA-seq + scATAC-seq) that was publicly released as part of NeurIPS 2021, as a bridge. 
 
Our bridge procedure successfully mapped the scATAC-seq dataset on our Azimuth reference, 
enabling joint visualization and annotation of scATAC-seq and scRNA-seq data (Fig. 2c). 
Reference-mapping also aligned shared cell populations across multiple samples, mitigating 
sample-specific batch effects. Query samples representing CD34+ BMMC fractions mapped 
exclusively to the HSC and progenitor components in the reference dataset, demonstrating that 
bridge integration can robustly handle cases where the query dataset represent a subset of the 
reference, while whole fractions mapped to all 35 cell states (Supplementary Fig. 1a).  
 
Our reference-derived annotations were concordant with the annotations accompanying the 
query dataset produced by the original authors (Supplementary Fig. 1b), but we found that 
bridge integration annotated additional rare and high-resolution subpopulations. For example, our 
annotations separated monocytes into CD14+ and CD16+ fractions, NK cells into CD56bright and 
CD56dim subgroups, and cytotoxic T cells into CD8+ and mucosal associated invariant T (MAIT) 
subpopulations (Fig. 2d,e and Supplementary Fig. 1c,d). While these subdivisions were not 
identified in the unsupervised scATAC-seq analysis, we confirmed these predictions by observing 
differential accessibility at canonical loci (i.e. elevated accessibility at the FCGR3A/CD16 gene 
locus in CD16+ monocytes), after grouping by reference-derived annotations. Similarly, bridge 
integration identified extremely rare groups of innate lymphoid cells (ILC; 0.15%), and recently 
discovered AXL+SIGLEC6+ (ASDC) dendritic cells44,45 (0.10%) (Fig. 2f and Supplementary Fig. 
1e,f). To our knowledge, these cell populations have not been previously identified in scATAC-
seq data. Again, we found that differentially accessible sites, such as an ASDC-specific peak in 
the SIGLEC6 gene (Fig. 2f), fully supported the accuracy of our mapping procedure. 
 
Our reference-mapping procedure not only enables the transfer of discrete annotations, but by 
projecting datasets from multiple modalities into a common space, allows us to explore how 
variation in one corresponds to variation in another. For example, after integration, we applied 
diffusion maps to the harmonized measurements to construct a joint differentiation trajectory 
spanning multiple progenitor states during myeloid differentiation (Fig. 2g). Since this trajectory 
represents both reference and query cells, we can explore how pseudo-temporal variation in 
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chromatin accessibility correlates with gene expression, even though the two modalities were 
measured in separate experiments.  
 
Consistent with previous findings, we identified cases where gene expression changes ‘lagged’ 
behind variation in chromatin accessibility. For example, while myeloperoxidase (MPO) 
expression is expressed in granulocyte-macrophage progenitors (GMP) and is associated with 
myeloid fate commitment46,47, the regulatory region immediately upstream acquired accessibility 
in lymphoid-primed multipotent progenitors (LMPP) (Fig. 2h-j). We utilized a cross-correlation-
based metric to systematically identify 236 ‘lagging’ loci (Supplementary Methods) across this 
trajectory. KEGG pathway enrichment analysis revealed a strong enrichment for genes involved 
in cell cycle and DNA replication (Fig. 2k). These loci were characterized by accessible chromatin 
at the earliest stages of differentiation (hematopoietic stem cells), but there is a delay before the 
associated genes become transcriptionally active (Fig. 2l). The accessible state of these loci in 
the earliest progenitors may represent a form of priming to enable rapid cell-cycle entry once the 
decision to differentiate has been made and represents the type of discovery that can be enabled 
through integrative analysis across modalities.   
 
Robustness and benchmarking analysis 
 
As our strategy relies on the ability for the dictionary to represent and reconstruct individual 
datasets, we explored how the size and composition of the multi-omic dataset affected the 
accuracy of integration. We sequentially downsampled the multi-omic dataset, repeated bridge 
integration, and compared the results with our original findings. Downsampling the bridge 
generally returned results that were concordant with the full analysis, but as expected, could affect 
annotation accuracy for rare cell types which are most sensitive to downsampling (Fig. 3a). We 
found that if a bridge dataset contained at least 50 cells (‘atoms’) representing a given cell type, 
this was sufficient for robust integration. We note that this threshold is not a strict requirement; we 
found that integration can be successful for rare cell types such as ASDC even when fewer than 
ten cells are present in the bridge, but we also observed failure modes in this regime. We note 
that generating bridge datasets consisting of more than 50 cells per subpopulation is quite feasible 
for many multi-omic technologies, and that our findings represent guidelines to assist in 
experimental design when performing multi-omic experiments. 
 
We next compared the performance of bridge integration against two recently proposed methods 
for integrated analysis of multimodal and single-modality datasets. Both multiVI48 and Cobolt49 
utilize variational autoencoders for integration, and while they do not explicitly treat multi-omic 
datasets as a bridge, they aim to integrate datasets across technologies and modalities into a 
shared space. When applied to the previously described datasets, both methods were broadly 
successful in integrating scRNA-seq and scATAC-seq data, but did not identify matches at the 
same level of resolution (for example, neither method successfully matched ASDC in scATAC-
seq data to the ASDC in the Azimuth reference) (Fig. 3b and Supplementary Fig. 2a-c). When 
comparing computational efficiency, bridge integration (0.8 hours, not including 1.2 hours of 
preprocessing time), and Cobolt (3.3 hours) were the most efficient methods, while multiVI 
required more computational resources (15.7 hours). 
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To quantitatively benchmark performance, we split the 10x multi-omic bridge dataset into two 
groups. In one group, we treated the scRNA-seq and scATAC-seq data as if they were from 
separate experiments, representing a benchmark dataset for integration where ground-truth 
correspondences were known. The second group of cells was used as a multi-omic bridge dataset. 
After aligning cells across modalities, we calculated the Jaccard similarity metric between each 
scATAC-seq cell and its matched scRNA-seq counterpart. We found that our bridge integration 
strategy consistently maximized this similarity metric, demonstrating that our procedure most 
effectively matched cells in the same biological state across modalities (Fig. 3c and 
Supplementary Fig. 2d). Consistent with our previous results, we found that the strongest 
improvements were observed when mapping rare cell types including plasma cells and dendritic 
cells (Supplementary Fig. 2d). As our procedure is compatible with multiple integration 
techniques, we compared the performance of bridge integration when using either mnnCorrect38 
or Seurat v319 for the final alignment step, and observed very similar results (Supplementary Fig. 
2d). 
 
As a second quantitative benchmark with ground-truth data, we pursued a similar strategy using 
a recently published Paired-Tag dataset26, where individual histone modification binding profiles 
via scCUT&Tag were simultaneously measured with RNA transcriptomes. Since each Paired-Tag 
experiment was performed with biological replicates, we used one replicate as a multi-omic bridge 
dataset and split the other replicate into separate modalities for benchmarking. We performed 
cross-modality integration between scRNA-seq and scCUT&Tag for active histone marks 
(H3K27ac), repressive histone marks (H3K27me3), and enhancer histone marks (H3K4me1). In 
each case, bridge integration successfully integrated cells across modalities, and returned the 
highest Jaccard similarity between matched scRNA-seq and scCUT&Tag profiles (Fig. 3c and 
Supplementary Fig. 2e-g).  
 
To further demonstrate the flexibility of our approach, we used bridge integration to map and 
annotate a snmC-seq dataset, which measures DNA methylation profiles in single cells from the 
human cortex50. As a reference, we utilized a dataset from the Allen Brain Atlas which defines a 
taxonomy of cell-types in the human cortex, and is accompanied by an expertly curated and multi-
level cell ontology51. Using a snmC2T-seq dataset which simultaneously measures methylation 
and gene expression as a bridge28, we were able to annotate the snmC-seq profiles with high 
confidence (Supplementary Fig. 2h). Even when our reference-derived annotations did not 
augment the resolution to unsupervised clustering of snmC-seq data, they did add substantial 
interpretability (Fig. 3d-f). For example, unsupervised clustering identified multiple populations of 
L6 neurons (labeled as L6-1, L6-2, and L6-3), but RNA-assisted annotation clearly labeled these 
clusters as either ‘Near Projecting’ (NP) or deep neocortical laminar 6b (L6b) excitatory neurons 
(Fig. 3f).  
 
Taken together, these results demonstrate the accuracy, robustness, and flexibility of our bridge 
integration procedure. We demonstrate applications on multiple modalities and data types, as well 
as best-in-class performance via quantitative and ground-truth benchmark comparisons. We 
demonstrate how cross-modality mapping can help interpret and improve the resolution of cell 
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type annotation, including extremely rare cell types whose identification is facilitated by curated 
annotation in a reference dataset. Moreover, projecting datasets into a harmonized space also 
enables exploration of cross-modality relationships. 
 
Utilizing dictionary learning for scalable integration 
 
The recent increase in publicly available single-cell datasets poses a significant challenge for 
integrative analysis. For example, multiple tissues have now been profiled across dozens of 
studies, representing hundreds of individuals and millions of cells. We refer to the challenge of 
harmonizing a broad swath (or the entirety) of publicly available single-cell datasets from a single 
organ as ‘community-wide’ integration. While a rich diversity of analytical methods can harmonize 
datasets of hundreds of thousands of cells, performing unsupervised ‘community-wide’ integration 
remains challenging, even when analyzing a single modality. 
 
We were inspired by previous work on ‘geometric sketching’ which first selects a representative 
subset of cells (a ‘sketch’) across all datasets, integrates them, and then propagates the 
integrated result back to the full dataset52,53. This pioneering approach substantially improves the 
scalability of integration as the heaviest computational steps are focused on subsets of the data. 
However, this approach is dependent on the results of principal components analysis that must 
first be performed on the full dataset. As datasets continue to grow in scale, more sophisticated 
computational infrastructure is required to load full collections of data into memory, and even 
performing dimensional reduction can become a limiting step. We aimed to devise a strategy that 
could integrate large compendiums of datasets, without ever needing to simultaneously analyze 
or perform intensive computation on the full set of cells. 
 
We reasoned that dictionary learning could also enable efficient and large-scale integrative 
analysis. We first select a representative sketch of cells (i.e. 5,000 cells) from each dataset, and 
treat these cells as atoms in a dictionary (Fig. 4a, Supplementary Methods). We next learn a 
dictionary representation, representing a weighted linear combination of atoms that can 
reconstruct the full dataset. These steps can occur for each dataset independently, allowing for 
efficient processing. We then perform integration on the atoms from each dataset. This is the only 
step that simultaneously analyzes cells from multiple datasets, but since only the atoms are 
considered, this does not impose scalability challenges. Finally, we apply our previously learned 
dictionary representations to the harmonized atoms from each dataset individually, and 
reconstruct harmonized profiles for the full dataset. We refer to this procedure as ‘atomic sketch 
integration’.  We highlight that for this application, the ‘atoms’ used to reconstruct a dataset 
represent a subset of cells from the dataset itself. Contrastingly, in bridge integration, the atoms 
refer to cells from a different (multi-omic) dataset. 
 
The success of atomic sketch integration rests on identifying a representative subset of cells for 
each dataset. Sketching techniques for single-cell analysis aim to find subsamples that preserve 
the overall geometry of these datasets52-54. These methods do not require a pre-clustering of the 
data, but aim to ensure that the sketched dataset represents both rare and abundant cell states, 
even after downsampling. Here, we perform sketching using a leverage-score sampling based 
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strategy that has been proposed for large-scale information retrieval problems55 and can be 
rapidly and efficiently computed on sparse datasets (Supplementary Methods). We emphasize 
that atomic sketch integration represents a general strategy for improving scalability that can be 
broadly coupled with existing methods. For example, a wide variety of integration techniques - 
including Harmony37, Scanorama39, mnnCorrect38, scVI40, and Seurat19, can be used to integrate 
the atom elements in each dictionary, with our procedure then enabling these results to be 
extended to full datasets. 
 
Community-scale integration for human lung scRNA-seq 
 
To demonstrate the potential of atomic sketch integration to perform ‘community-wide’ analysis, 
we first considered scRNA-seq datasets of the human lung. During the COVID-19 pandemic, 
there has been widespread scRNA-seq data collection from respiratory tissues, particularly by the 
Human Cell Atlas Lung Biological Network56. Leveraging a recently published ‘database’ of 
scRNA-seq studies57, as well as collection of openly released lung and upper airway datasets 
from the Human Cell Atlas, we assembled a group of 19 datasets spanning 1,525,710 total cells. 
We created an atomic dictionary consisting of 5,000 cells from each dataset (95,000 total atoms), 
integrated these cells, and then reconstructed the full datasets. Our atomic sketch integration 
procedure performed all these steps (including preprocessing) in 55 minutes, using a single 
computational core. 
 
Our results exhibit the advantages of community-scale integration compared to individual analysis. 
First, by matching biological states across datasets and technologies, the integrated reference 
can help to standardize cell ontologies and naming schemes (Fig. 4b,c). When observing 
previously assigned annotations derived from each study, we found that matched cell populations 
were often assigned slightly different names (Supplementary Fig. 3a). Unsupervised integration 
at this scale is a valuable tool for identifying these conflicts and can assist in the development of 
authoritative and standardized cell ontologies. 
 
As a second benefit, we found that community-scale integration enabled consistent identification 
of ultra-rare populations, and in particular, a population of Foxi1-expressing ‘pulmonary ionocytes’ 
that were recently discovered in both human and mouse lungs58 (Fig. 4d). While these cells were 
only independently annotated in 6 out of 19 studies, our integrated analysis discovered at least 
one pulmonary ionocyte in 17 out of 19. The identified ionocytes were extremely rare (0.047%), 
but exhibited clear expression of canonical markers (Fig. 4b), highlighting the potential value for 
pooling multiple datasets to characterize these cells. We note that selection of dictionary atoms 
by sketching, or leverage-score sampling is essential for optimal performance (Supplementary 
Fig. 3b,c); repeating the analysis using a set of atoms determined by random downsampling 
successfully integrated abundant cell types, but failed to integrate ionocytes as they were not 
sufficiently represented in the dictionary. 
 
Finally, we found that community-scale integration can substantially improve the identification of 
differentially expressed (DE) cell-type markers. The use of 19 study replicates specifically enables 
us to identify genes that show consistent patterns across laboratories and technologies, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 26, 2022. ; https://doi.org/10.1101/2022.02.24.481684doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.24.481684
http://creativecommons.org/licenses/by-nc-nd/4.0/


representing robust and reproducible markers. We grouped cells by both sample replicate and 
cell type identity, and performed differential expression on the resulting pseudobulk profiles (Fig. 
4e and Supplementary Fig. 4). For example, we identified 116 positive markers for pulmonary 
ionocytes, representing one of the deepest transcriptional characterizations of this cell type. 
These markers included both canonical markers such as the transcription factor FOXI1, but also 
revealed clear ontology enrichments for ATPases (e.g. ATP6V1G3, ATP6V0A4) and chloride 
channels (e.g. CLCNKA, CLCNKB, CFTR), supporting the role of these cells in regulating 
chemical concentrations in the lung (Fig. 4f). One advantage of working with pseudobulk values 
is increased quantification accuracy for lowly expressed genes. Indeed, we repeatedly found that 
top DE markers found using this strategy tended to capture more genes at a lower range of 
average expression values (Fig. 4g). 
 
 
Community-scale integration of scRNA-seq and CyTOF 
 
As a final demonstration, we considered a similar problem of community-wide integration for 
circulating human peripheral blood cells, which is one of the most widely profiled systems with 
diverse single-cell technologies. Exploring publicly available studies of either COVID-19 samples 
or healthy controls, we accumulated a collection of 14 studies with scRNA-seq measurements, 
representing a total of 3.46M cells from 639 individuals. Data from 11 of the studies was obtained 
from a recently published collection of standardized single-cell sequencing datasets59. We 
performed unsupervised atomic sketch integration, yielding a harmonized collection in which we 
annotated 30 cell states (Fig. 5a). As a subset of our samples were not depleted for granulocytes, 
our collection includes a distinct population of neutrophils that were absent in our previous 
Azimuth reference of human PBMC. Moreover, we identified specific populations of activated 
granulocytes and B cells that were specific to COVID-19 samples (Supplementary Fig. 5a). 
Consistent with previous reports, monocytes in COVID-19 samples sharply upregulated interferon 
response genes60,61, but were correctly harmonized with healthy monocytes (Fig. 5b and 
Supplementary Fig. 5b). By matching shared cell types across disease states (while still allowing 
for the possibility of disease-specific subpopulations), this collection represents a valuable 
resource for identifying cell-type specific transcriptional changes that reproduce across multiple 
studies. We characterized cell-type specific responses for eight additional cell types, each of 
which exhibited a conserved interferon-driven response alongside the activation of cell type-
specific response genes (Supplementary Fig. 6). 
 
While single-cell sequencing technologies are capable of measuring RNA transcripts and surface 
proteins in thousands of single cells, cytometry-based techniques can measure both extracellular 
and intracellular proteins in millions of cells. As our bridge integration procedure should enable 
the mapping of CyTOF profiles onto scRNA-seq datasets, we obtained a collection of CyTOF 
datasets spanning 119 individuals and 5,170,249 total cells62. We used our previously collected 
CITE-seq dataset of 161,764 PBMC from healthy donors as a multi-omic bridge4. The CyTOF and 
CITE-seq dataset both shared 30 cell surface protein features, while the CyTOF dataset also 
measured 17 unique proteins which included intracellular targets that cannot be measured via 
CITE-seq.  
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Bridge integration annotated each CyTOF dataset with cluster labels derived from our 3.46M cell 
scRNA-seq collection, and allowed us to infer intracellular protein levels for each of these clusters 
(Fig. 5c). Predicted regulatory CD4+ T cells expressed high levels of the transcription factor 
Foxp363, and effector T cells exhibited enriched Klrg1 levels64 (Fig. 5d). We also found that among 
cytotoxic lymphocyte populations, MAIT cells were uniquely depleted for expression of the 
cytotoxic protease Granzyme B, consistent with previous reports65. Each of these patterns 
supports the accuracy of our cross-modality mapping. Finally, we successfully annotated a rare 
populations of innate lymphoid cells (0.024%), which were not independently identified in the 
CyTOF dataset, but correctly exhibited a CD25+CD127+CD161+CD56- immunophenotype4,66 (Fig. 
5d,e). Taken together, we conclude that dictionary learning enhances the scalability of integration, 
as well as the ability to integrate and compare diverse molecular modalities. 
 
  
Discussion 
 
In order to map datasets measuring a diverse set of modalities to scRNA-seq reference datasets, 
we developed bridge integration, an approach for cross-modality alignment that leverages a multi-
omic dataset as a bridge. We characterize specific compositional requirements for the bridge 
dataset, perform quantitative benchmarking analyses with ground-truth datasets, and 
demonstrate the broad applicability of our method to a wide variety of technologies and modalities. 
Finally, we demonstrate how to use atomic sketch integration to extend the scalability of our 
approach to harmonize dozens of datasets spanning millions of cells. 
 
We anticipate that our methods will be valuable to both individual labs but also larger consortia 
that have already invested in constructing and annotating comprehensive scRNA-seq references. 
For example, the Human Cell Atlas, Human Biomolecular Atlas Project, Tabula Sapiens67, and 
Human Cell Landscape68, all have released scRNA-seq references spanning hundreds of 
thousands of cells for multiple human tissues. Similar efforts are present in model organisms as 
well, including the Fly Cell Atlas69, and Plant Cell Atlas projects70. In each case, these efforts 
involve careful, collaborative, and expert-driven cell annotation alongside the curation of reference 
cell ontologies. While repeating this manual effort for each modality is infeasible, bridge 
integration enables the mapping of new modalities without having to modify the reference. As 
additional multi-omic datasets become available, we expect that tools such as Azimuth will begin 
to map additional modalities as well. 
 
We note that the bridge integration is particularly well-suited for experimental designs where multi-
omic technologies can be applied to a subset, rather than all, experimental samples. This is a 
common occurrence, particularly because multi-omic technologies often are associated with 
increased cost, lower throughput, and reduced data quality for each individual measurement type. 
In particular, we note that combinatorial indexing approaches can be readily applied using 
commercial instrumentation to profile a single modality in hundreds of thousands of cells71,72, but 
the same is not true for multi-omic technologies. We propose that the collection of large single-
modality datasets, harmonized via a smaller but representative multi-omic bridge, may represent 
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an efficient and robust strategy to explore cross-modality relationships across millions of cells. 
Our identification of cell cycle ‘priming’ in hematopoietic stem cells represents an example of 
cross-modality insights that can be derived via bridge integration. 
 
We note that future extensions of our work can further broaden the applicability of bridge 
integration or demonstrate its potential in new contexts. For example, performing bridge 
integration on spatially resolved unimodal datasets (e.g. CODEX73), could help to better 
characterize the spatial localization of scRNA-seq defined cell types in large tissue sections. New 
multi-omic technologies that couple high-resolution mass spectrometry imaging to single-cell or 
spatial transcriptomics could serve as a bridge to harmonize lipidomic and metabolic profiles74,75 
with sequencing-based references. In addition, future computational improvements will further 
lower the requirements of the bridge dataset, enabling robust integration with an even smaller 
number of multi-omic cells. 
 
We emphasize the ability for bridge and atomic sketch integration to identify and characterize rare 
cell populations, including AXL+ SIGLEC6+ dendritic cells and pulmonary ionocytes. Single cell 
transcriptome profiling played an essential role in the initial discovery of these cell types, but a 
deeper understanding of their biological role and function will benefit from multimodal 
characterization. The goal of moving beyond an initial taxonomic classification of cell types 
towards a complete multimodal reference will not be accomplished with a single experiment or 
technology. We envision that computational tools for cross-modality integration will play key 
contributions to the construction of this map. 
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Code Availability: Bridge Integration and Atomic Sketch Integration are implemented as part of 
the Seurat R package. In this work, we also make use of the Signac, and Azimuth packages. All 
are freely available as open-source software: 
 
https://github.com/satijalab/seurat 
https://github.com/timoast/signac 
https://github.com/satijalab/azimuth 
 
 
FIGURE LEGENDS 
 
Figure 1. Integrating across modalities with molecular bridges. (a) Broad schematic of bridge 
integration workflow. Two datasets where different modalities are measured (e.g. scRNA-seq and 
scATAC-seq), can be harmonized via a third dataset where both modalities are simultaneously 
measured (e.g. 10x multiome). We demonstrate bridge integration using a variety of multi-omic 
technologies that can be used as bridges, including 10x multiome, Paired-Tag, snmC2T, and 
CITE-seq, each of which facilitates integration with a different molecular modality. Middle box lists 
alternative multi-omic technologies that can be used to generate bridge datasets. (b) 
Mathematical schematic of each of the steps in the bridge integration procedure. A full description 
is provided in the Supplementary Methods. For clarity, the matrix names illustrated in this 
schematic are the same as the matrix names defined in the Supplementary Methods.   
 
Figure 2. Mapping scATAC-seq data onto scRNA-seq references 
(a) UMAP visualization of scRNA-seq reference dataset of human bone marrow, representing 
297,627 annotated cells. (b) UMAP visualization of an scATAC-seq query dataset from (Granja 
et al, 2019), representing 26,159 profiles spanning five batches, three of which are enriched for 
CD34 expressing cells. (c) After bridge integration, query cells are annotated based on the 
scRNA-seq defined cell ontology, and can be visualized on the same embedding. (d-f) Coverage 
plots showing chromatin accessibility at selected loci, after grouping query cells by their predicted 
annotations. In each case, the predicted cell labels agree with the expected accessibility patterns. 
(g) We constructed a differentiation trajectory and pseudotime ordering of cells undergoing 
myeloid differentiation. The pseudotime ordering encompasses both scRNA-seq and scATAC-
seq cells. (h) Example locus where we observe a ‘lag’ between the gene expression dynamics 
for MPO and the accessibility dynamics for an upstream regulatory region (denoted by a yellow 
box in (i)). (i) chromatin accessibility at the MPO regulatory locus. The highlighted region becomes 
accessible at the multipotent LMPP stage. (j) MPO becomes highly expressed at the RNA level 
at the myeloid-committed GMP stage. (k) KEGG pathway enrichment for 236 genes where we 
identified a lag between accessibility and transcriptional dynamics. (l) Smoothed chromatin 
accessibility levels (red) and lagging expression of associated genes (blue) as a function of 
pseudotime, for 6 cell cycle-associated genes. 
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Figure 3. Robustness and benchmarking analysis for bridge integration 
(a) Per cell-type prediction accuracy of bridge integration, based on the number of cells 
representing each cell type in the multi-omic dataset. Accuracy results were obtained by serially 
downsampling the multi-omic dataset, repeating bridge integration, and comparing resulting query 
annotations with those derived from the full dataset. Boxplots represent the observed range of 
values across 20 cell types. (b) Coverage plots for the SIGLEC6 locus, after performing cross-
modality annotation with bridge integration, multiVI, and Cobolt. Only cells called as ASDC by 
bridge integration exhibit celltype-specific accessibility at this locus. Additional loci shown in 
Supplementary Fig. 2. (c) Ground truth benchmarking analysis. RNA and ATAC profiles from a 
10x multiome dataset were unpaired and integrated. Barplots show the average Jaccard similarity 
between each scATAC-seq cell and its matched scRNA-seq cell. Results are split by individual 
cell types in Supplementary Fig. 2. Results are also shown for Paired-Tag datasets for three 
histone modification profiles. In each case, bridge integration achieves the highest Jaccard 
similarity. (d) scRNA-seq reference of the human motor cortex. (e,f) Mapping of single cell DNA 
methylation profiles of human cortical cells onto the reference using a snmC2T-seq multi-omic 
dataset as a bridge. Cells are colored by the methylation-derived annotations from the original 
study (e), or the scRNA-seq derived labels from bridge integration (f). Reference-derived labels 
at higher levels of granularity are shown in Supplementary Fig. 2. 
 
Figure 4. Utilizing dictionary learning for massively scalable integration 
(a) Schematic of atomic sketch integration procedure. After selecting a representative set of cells 
from each dataset, these cells are integrated and used to reconstruct harmonized profiles for all 
cells. Matrix notation is consistent with the full mathematical description in Supplementary 
Methods. (b, c) UMAP visualization of 1,525,710 scRNA-seq profiles spanning 19 studies from 
the lung and upper airways, which were harmonized using atomic sketch integration in 55 minutes. 
Cells are colored by their study of origin (b) or annotated cell type after integration (c). (d) 
Expression of FOXI1, a transcriptional marker of pulmonary ionocytes, in the integrated dataset. 
(e) Heatmap showing the top transcriptional markers of pulmonary ionocytes that are consistent 
across multiple studies. Pulmonary neuroendocrine cells (PNEC), the most transcriptionally 
similar cell type, are shown for contrast. Each column represents a pseudobulk average of all 
cells from a single cell type and single study. Top transcriptional markers for all cell types are 
shown in Supplementary Fig. 4. (f) GO ontology enrichment terms for ionocyte markers. (g) 
Expression distributions of top transcriptional markers recovered from single-cell differential 
expression analysis (red), or pseudobulk analysis (blue).    
 
Figure 5. ‘Community-scale’ integration of sequencing and cytometry immune datasets 
(a) UMAP visualization of 3,461,171 human PBMC scRNA-seq profiles spanning 14 studies and 
639 individuals after performing atomic sketch integration. (b) Expression of a COVID-19 
response module in CD14 monocytes. Each column represents a pseudobulk average of CD14 
monocytes from one of 506 individuals. Expression of the module is correlated with disease 
severity within the individual, which is indicated by the color scale above the heatmap. Responses 
for additional cell states are shown in Supplementary Fig. 5b. (c) Mapping of 5,170,249 additional 
CyTOF profiles spanning 119 individuals, using a published CITE-seq dataset (Hao et al, 2021) 
as a multi-omic bridge. Each CyTOF profile is annotated with one of the scRNA-seq defined cell 
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types. (d) Cross-modality integration enables the exploration of cell surface and intracellular 
protein markers on cell landscapes defined by scRNA-seq. As an example, intracellular FOXP3 
levels are highly enriched in annotated Treg cells, validating the accuracy of our mapping. 
200,000 cells are shown in each visualization to alleviate overplotting. (e) Heatmap showing the 
expression of 34 protein markers in the CyTOF dataset. Each column represents a pseudobulk 
average, after grouping cells by individual and reference-derived annotation.  
 
 
Supplementary Figure Legends 
 
Supplementary Figure 1: Mapping scATAC-seq data onto scRNA-seq references. Related 
to Figure 2. 
 
(a) UMAP visualization of an scATAC-seq query dataset from (Granja et al, 2019), representing 
26,159 profiles across 5 samples. Same as Fig. 2c, but in the top-left panel, cells are colored by 
sample identity. Remaining panels show cells from the individual batches, including three batches 
(bottom row) that are enriched for CD34+ cells. Cells are colored by their reference-derived 
annotation after bridge integration. Enriched samples overwhelmingly map to progenitor 
populations in the reference map. (b) Same as (a), but cells are colored by their unsupervised 
annotations assigned by the authors of (Granja et al, 2019). The annotations are generally 
concordant, but reference-derived annotations provide additional granularity and help to resolve 
ambiguous cell names, including for CD16+ monocytes, CD56+ NK cells, Innate Lymphoid Cells 
(ILC), and Mucosal Associated Invariant T (MAIT) cells. (c-f) Coverage plots showing chromatin 
accessibility at selected loci, after grouping query cells by their predicted annotations. In each 
case, the predicted cell labels agree with the expected accessibility patterns. 
 
Supplementary Figure 2. Robustness and benchmarking analysis for bridge integration. 
Related to Figure 3. 
 
(a) UMAP visualization of the mapped scATAC-seq dataset in Fig. 2, computed using the multiVI 
and Cobolt, and Bridge integration approaches. In Fig. 2, we visualize the results of bridge 
integration on the scRNA-seq reference-derived UMAP. Here, we compute a new UMAP 
visualization to enable comparison with alternative methods. (b) Since we do not have ground 
truth of cell labels for this dataset, we visualize chromatin accessibility patterns to assess 
annotation accuracy. At the CD8A locus, bridge integration shows the clearest celltype-specific 
accessibility patterns, suggesting that alternative methods blend CD8 and CD4 naïve cell 
populations together during integration. (c) At the RORC locus, all methods correctly infer MAIT-
specific accessibility. (d) Ground-truth benchmarking, where integrated BMMC scRNA-seq and 
scATAC-seq profiles were originally measured in the same cells in a 10x multiome experiment. 
Left panel shows UMAP visualizations computed by all methods, with cells colored by either their 
measurement modality or expert-assigned cell annotation provided with the dataset. Right panel 
shows Jaccard similarities of matched cell profiles, either averaged across all cells, or split by cell 
annotation. We show results for Bridge integration using two alignment strategies for the final step, 
mnnCorrect (mnn), and Seurat v3 (Sv3). (e-g) Same as in (d), but ground-truth datasets originate 
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from the Paired-Tag technology which measured individual histone modifications with cellular 
transcriptomes in the mouse brain. (h) Prediction scores for annotating single cell methylation 
profiles from an scRNA-seq reference via bridge integration. (i-k) Same as Fig. 3d-f, but with a 
higher level of granularity for the scRNA-seq cell annotations.  
 
Supplementary Figure 3. Community-scale integration in the human lung. Related to 
Figure 4. 
 
(a) Confusion matrices for five representative studies, showing the agreement between the 
originally assigned cell annotations (provided with each individual study), with the assigned 
annotation from our ‘community-wide’ integrative analysis of 1,525,710 scRNA-seq profiles. 
Large-scale integrative analyses can help to identify matches between disparate cell naming 
schemes and ontologies. (b) We calculated a ‘leverage score’ (Supplementary Methods) for each 
cell in each dataset, prior to performing any clustering analysis. Cells with high leverage scores 
should originate from rare populations, which is what we observe. Scatter plot shows relationship 
between the abundance of each cell population and the average leverage score all cells. (c) We 
used the leverage scores to sample a 5,000 cell ‘sketch’ from each dataset as atoms. Top barplot 
shows the probability of selecting cells from each population as an atom. For example, despite 
representing less than 0.05% of all cells in the dataset, we selected more than 60% of ionocytes 
as atoms. Bottom plot shows the relative enrichment of each cell population amongst the atoms, 
compared to the full dataset. Plots in (b-c) are shown for one representative dataset 
(tragavlini_2020). 
 
Supplementary Figure 4. Heatmap of reproducible gene expression markers in human lung 
cell states. Related to Figure 4. 
 
Heatmap showing the top transcriptional markers of 39 cell states that are consistent across 
multiple studies. Each column represents a pseudobulk average of all cells from a single cell type 
and single study. The top ten markers are shown for each cell state. 
 
Supplementary Figure 5. Community-scale integration of sequencing and cytometry 
datasets. Related to Figure 5. 
 
(a) UMAP visualization of integrated scRNA-seq profiles from human PBMC. Same as in Fig. 5a, 
but split into cells from healthy controls, or samples associated with mild, moderate, and severe 
COVID. Activated B cells are at sharply reduced frequency in the healthy control samples (which 
were also depleted for granulocytes). Activated granulocytes are observed primarily in moderate 
and severe COVID samples. (b) Same as Fig. 5b, but showing cell type-specific responses that 
correlate with disease severity for eight additional cell states. Each column represents a 
pseudobulk average from one of 506 individuals. Expression of the module is correlated with 
disease severity within the individual, which is indicated by the color scale above the heatmap. 
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Supplementary Figure 6. Heatmap of reproducible gene expression markers in human 
PBMC cell states. Related to Figure 5. 
 
Heatmap showing the top transcriptional markers of 30 cell states that are consistent across 
multiple studies. Each column represents a pseudobulk average of all cells from a single cell type 
and single study. The top ten markers are shown for each cell state. 
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Figure 1. Integrating across modalities with molecular bridges.v (a) Broad schematic of bridge integration workflow. Two datasets 
where different modalities are measured (e.g. scRNA-seq and scATAC-seq), can be harmonized via a third dataset where both modali-
ties are simultaneously measured (e.g. 10x multiome). We demonstrate bridge integration using a variety of multi-omic technologies that 
can be used as bridges, including 10x multiome, Paired-Tag, snmC2T, and CITE-seq, each of which facilitates integration with a different 
molecular modality. Middle box lists alternative multi-omic technologies that can be used to generate bridge datasets. (b) Mathematical 
schematic of each of the steps in the bridge integration procedure. A full description is provided in the Supplementary Methods. For clari-
ty, the matrix names illustrated in this schematic are the same as the matrix names defined in the Supplementary Methods.  
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Figure 2. Mapping scATAC-seq data onto scRNA-seq references. (a) UMAP visualization of scRNA-seq reference dataset 
of human bone marrow, representing 297,627 annotated cells. (b) UMAP visualization of an scATAC-seq query dataset from 
(Granja et al, 2019), representing 26,159 profiles spanning five batches, three of which are enriched for CD34 expressing cells. 
(c) After bridge integration, query cells are annotated based on the scRNA-seq defined cell ontology, and can be visualized on 
the same embedding. (d-f) Coverage plots showing chromatin accessibility at selected loci, after grouping query cells by their 
predicted annotations. In each case, the predicted cell labels agree with the expected accessibility patterns. (g) We constructed 
a differentiation trajectory and pseudotime ordering of cells undergoing myeloid differentiation. The pseudotime ordering encom-
passes both scRNA-seq and scATAC-seq cells. (h) Example locus where we observe a ‘lag’ between the gene expression 
dynamics for MPO and the accessibility dynamics for an upstream regulatory region (denoted by a yellow box in (i)). (i) chromatin 
accessibility at the MPO regulatory locus. The highlighted region becomes accessible at the multipotent LMPP stage. (j) MPO 
becomes highly expressed at the RNA level at the myeloid-committed GMP stage. (k) KEGG pathway enrichment for 236 genes 
where we identified a lag between accessibility and transcriptional dynamics. (l) Smoothed chromatin accessibility levels (red) 
and lagging expression of associated genes (blue) as a function of pseudotime, for 6 cell cycle-associated genes.
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Figure 3. Robustness and benchmarking analysis for bridge integration. (a) Per cell-type prediction accuracy of bridge integration, based on 
the number of cells representing each cell type in the multi-omic dataset. Accuracy results were obtained by serially downsampling the multi-omic 
dataset, repeating bridge integration, and comparing resulting query annotations with those derived from the full dataset. Boxplots represent the 
observed range of values across 20 cell types. (b) Coverage plots for the SIGLEC6 locus, after performing cross-modality annotation with bridge 
integration, multiVI, and Cobolt. Only cells called as ASDC by bridge integration exhibit celltype-specific accessibility at this locus. Additional loci 
shown in Supplementary Fig. 2. (c) Ground truth benchmarking analysis. RNA and ATAC profiles from a 10x multiome dataset were unpaired and 
integrated. Barplots show the average Jaccard similarity between each scATAC-seq cell and its matched scRNA-seq cell. Results are split by indi-
vidual cell types in Supplementary Fig. 2. Results are also shown for Paired-Tag datasets for three histone modification profiles. In each case, bridge 
integration achieves the highest Jaccard similarity. (d) scRNA-seq reference of the human motor cortex. (e,f) Mapping of single cell DNA methylation 
profiles of human cortical cells onto the reference using a snmC2T-seq multi-omic dataset as a bridge. Cells are colored by the methylation-derived 
annotations from the original study (e), or the scRNA-seq derived labels from bridge integration (f). Reference-derived labels at higher levels of gran-
ularity are shown in Supplementary Fig. 2.
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Figure 4. Utilizing dictionary learning for massively scalable integration. (a) Schematic of atomic sketch integration procedure. 
After selecting a representative set of cells from each dataset, these cells are integrated and used to reconstruct harmonized profiles 
for all cells. Matrix notation is consistent with the full mathematical description in Supplementary Methods. (b, c) UMAP visualization 
of 1,525,710 scRNA-seq profiles spanning 19 studies from the lung and upper airways, which were harmonized using atomic sketch 
integration in 55 minutes. Cells are colored by their study of origin (b) or annotated cell type after integration (c). (d) Expression of 
FOXI1, a transcriptional marker of pulmonary ionocytes, in the integrated dataset. (e) Heatmap showing the top transcriptional mark-
ers of pulmonary ionocytes that are consistent across multiple studies. Pulmonary neuroendocrine cells (PNEC), the most transcrip-
tionally similar cell type, are shown for contrast. Each column represents a pseudobulk average of all cells from a single cell type and 
single study. Top transcriptional markers for all cell types are shown in Supplementary Fig. 4. (f) GO ontology enrichment terms for ion-
ocyte markers. (g) Expression distributions of top transcriptional markers recovered from single-cell differential expression analysis 
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Figure 5. ‘Community-scale’ integration of sequencing and cytometry immune datasets. (a) UMAP visualization of 3,461,171 
human PBMC scRNA-seq profiles spanning 14 studies and 639 individuals after performing atomic sketch integration. (b) Expression 
of a COVID-19 response module in CD14 monocytes. Each column represents a pseudobulk average of CD14 monocytes from one of 
506 individuals. Expression of the module is correlated with disease severity within the individual, which is indicated by the color scale 
above the heatmap. Responses for additional cell states are shown in Supplementary Fig. 5b. (c) Mapping of 5,170,249 additional 
CyTOF profiles spanning 119 individuals, using a published CITE-seq dataset (Hao et al, 2021) as a multi-omic bridge. Each CyTOF 
profile is annotated with one of the scRNA-seq defined cell types. (d) Cross-modality integration enables the exploration of cell surface 
and intracellular protein markers on cell landscapes defined by scRNA-seq. As an example, intracellular FOXP3 levels are highly 
enriched in annotated Treg cells, validating the accuracy of our mapping. 200,000 cells are shown in each visualization to alleviate over-
plotting. (e) Heatmap showing the expression of 34 protein markers in the CyTOF dataset. Each column represents a pseudobulk aver-
age, after grouping cells by individual and reference-derived annotation. 
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Supplementary Figure 1: Mapping scATAC-seq data onto scRNA-seq references. Related to Figure 2.

(a) UMAP visualization of an scATAC-seq query dataset from (Granja et al, 2019), representing 26,159 profiles across 5 samples. Same 
as Fig. 2c, but in the top-left panel, cells are colored by sample identity. Remaining panels show cells from the individual batches, including 
three batches (bottom row) that are enriched for CD34+ cells. Cells are colored by their reference-derived annotation after bridge integra-
tion. Enriched samples overwhelmingly map to progenitor populations in the reference map. (b) Same as (a), but cells are colored by their 
unsupervised annotations assigned by the authors of (Granja et al, 2019). The annotations are generally concordant, but reference-de-
rived annotations provide additional granularity and help to resolve ambiguous cell names, including for CD16+ monocytes, CD56+ NK 
cells, Innate Lymphoid Cells (ILC), and Mucosal Associated Invariant T (MAIT) cells. (c-f) Coverage plots showing chromatin accessibility 
at selected loci, after grouping query cells by their predicted annotations. In each case, the predicted cell labels agree with the expected 
accessibility patterns.
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Supplementary Figure 2. Robustness and benchmarking analysis for bridge integration. Related to Figure 3.

(a) UMAP visualization of the mapped scATAC-seq dataset in Fig. 2, computed using the multiVI and Cobolt, and Bridge integration approaches. In Fig. 2, we visualize the results 
of bridge integration on the scRNA-seq reference-derived UMAP. Here, we compute a new UMAP visualization to enable comparison with alternative methods. (b) Since we do not 
have ground truth of cell labels for this dataset, we visualize chromatin accessibility patterns to assess annotation accuracy. At the CD8A locus, bridge integration shows the clearest 
celltype-specific accessibility patterns, suggesting that alternative methods blend CD8 and CD4 naïve cell populations together during integration. (c) At the RORC locus, all methods 
correctly infer MAIT-specific accessibility. (d) Ground-truth benchmarking, where integrated BMMC scRNA-seq and scATAC-seq profiles were originally measured in the same cells 
in a 10x multiome experiment. Left panel shows UMAP visualizations computed by all methods, with cells colored by either their measurement modality or expert-assigned cell anno-
tation provided with the dataset. Right panel shows Jaccard similarities of matched cell profiles, either averaged across all cells, or split by cell annotation. We show results for Bridge 
integration using two alignment strategies for the final step, mnnCorrect (mnn), and Seurat v3 (Sv3). (e-g) Same as in (d), but ground-truth datasets originate from the Paired-Tag 
technology which measured individual histone modifications with cellular transcriptomes in the mouse brain. (h) Prediction scores for annotating single cell methylation profiles from 
an scRNA-seq reference via bridge integration. (i-k) Same as Fig. 3d-f, but with a higher level of granularity for the scRNA-seq cell annotations. 
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Supplementary Figure 3. Community-scale integration in the human lung. Related to Figure 4.

(a) Confusion matrices for five representative studies, showing the agreement between the originally assigned cell annotations (pro-
vided with each individual study), with the assigned annotation from our ‘community-wide’ integrative analysis of 1,525,710 
scRNA-seq profiles. Large-scale integrative analyses can help to identify matches between disparate cell naming schemes and ontol-
ogies. (b) We calculated a ‘leverage score’ (Supplementary Methods) for each cell in each dataset, prior to performing any clustering 
analysis. Cells with high leverage scores should originate from rare populations, which is what we observe. Scatter plot shows rela-
tionship between the abundance of each cell population and the average leverage score all cells. (c) We used the leverage scores to 
sample a 5,000 cell ‘sketch’ from each dataset as atoms. Top barplot shows the probability of selecting cells from each population as 
an atom. For example, despite representing less than 0.05% of all cells in the dataset, we selected more than 60% of ionocytes as 
atoms. Bottom plot shows the relative enrichment of each cell population amongst the atoms, compared to the full dataset. Plots in 
(b-c) are shown for one representative dataset (tragavlini_2020).
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Supplementary Figure 4. Heatmap of reproducible gene expression markers in human lung cell states. Related to Figure 4.

Heatmap showing the top transcriptional markers of 39 cell states that are consistent across multiple studies. Each column represents a 
pseudobulk average of all cells from a single cell type and single study. The top ten markers are shown for each cell state.
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Supplementary Figure 5. Community-scale integration of sequencing and cytometry datasets. Related to Figure 5.

(a) UMAP visualization of integrated scRNA-seq profiles from human PBMC. Same as in Fig. 5a, but split into cells from healthy con-
trols, or samples associated with mild, moderate, and severe COVID. Activated B cells are at sharply reduced frequency in the healthy 
control samples (which were also depleted for granulocytes). Activated granulocytes are observed primarily in moderate and severe 
COVID samples. (b) Same as Fig. 5b, but showing cell type-specific responses that correlate with disease severity for eight additional 
cell states. Each column represents a pseudobulk average from one of 506 individuals. Expression of the module is correlated with dis-
ease severity within the individual, which is indicated by the color scale above the heatmap.
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Supplementary Figure 6. Heatmap of reproducible gene expression markers in human PBMC cell states. Relat-
ed to Figure 5.

Heatmap showing the top transcriptional markers of 30 cell states that are consistent across multiple studies. Each 
column represents a pseudobulk average of all cells from a single cell type and single study. The top ten markers are 
shown for each cell state.
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