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Abstract:  8 

Failure of antibiotic therapies causes > 700,000 deaths yearly and involves both bacterial resistance 9 

and persistence. Persistence results in the relapse of infections by producing a tiny fraction of path-10 

ogen survivors that stay dormant during antibiotic exposure. From an evolutionary perspective, 11 

persistence is either a ‘bet-hedging strategy’ that helps to cope with stochastically changing envi-12 

ronments or an unavoidable minimal rate of ‘cellular errors’ that lock the cells in a low activity state. 13 

Here, we analyzed the evolution of persistence over 50,000 bacterial generations in a stable environ-14 

ment by improving a published method that estimates the number of persister cells based on the 15 

growth of the reviving population. Our results challenged our understanding of the factors under-16 

lying persistence evolution. In one case, we observed a substantial decrease in persistence propor-17 

tion, suggesting that the naturally observed persistence level is not an unavoidable minimal rate of 18 

‘cellular errors’. However, although there was no obvious environmental stochasticity, in most cases 19 

the persistence level was maintained during 50,000 bacterial generations, and even increased in few 20 

cases. 21 

Keywords: antibiotic persistence, evolution, Escherichia coli, beta-lactam, ampicillin, fluoroquin-22 

olones, ciprofloxacine, Start-Growth-Time, bacterial quantification. 23 

 24 

1. Introduction 25 

The current evolution of bacterial resistance to antibiotics brings humanity back to a 26 

situation reminiscent of the 'pre-antibiotic era' [1,2], mostly owing to the impressive bac-27 

terial adaptive properties. This alarming situation results in the death of more than 28 

700,000 people every year. A worst-case scenario anticipates that this number might rise 29 

up to 10 million deaths per year by 2050, about three times the COVID-19 death rate [2]. 30 

In Europe in 2015, this caused ~ 30,000 deaths per year, twice that in 2007 [3]. 31 

To cope with high antibiotic concentrations, bacteria rely on various processes that 32 

lead to different population dynamics [4–6]. These differences can be used to tentatively 33 

classify them. I) Resistance allows bacteria to grow under such antibiotic stress. II) Toler-34 

ance slows down the death rate of most of the population. III) Persistence involves only a 35 

tiny proportion of the population, from 10-6% to 1% in natural populations [7], that bene-36 

fits from a low death rate associated with low metabolic activity. This persistent state al-37 

lows bacterial cells to cope with a broad range of stresses, albeit being genetically suscep-38 

tible. Indeed, the size of a population exposed to antibiotics and containing persister cells 39 

first quickly decreases owing to the death of susceptible and metabolically-active cells, 40 

before experiencing a much slower decrease due to the death of persister quiescent cells. 41 

This physiological state is not heritable; hence, if a population regenerated from the per-42 

sister sub-population is re-exposed to the antibiotic, a similar phenotypic heterogeneity 43 
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will typically be observed again. This phenomenon allows growth rescue and restart after 44 

many stresses including nutrient depletion, temperature change, acid, oxidative or os-45 

motic challenges, phage infection, and exposure to heavy metals or antibiotics [6,8]. 46 

Persistence is a natural process that evolved before the anthropogenic use and abuse 47 

of antibiotics. It might exist in all living organisms as it has been observed in all studied 48 

bacterial species [6,9], in eukaryotic cells resulting in cancer relapse [9–12], and even acci-49 

dentally in digital organisms that learned to play dumb randomly at a low rate [13]. Un-50 

derstanding the evolutionary forces driving persistence emergence and maintenance may 51 

have far-reaching sanitary consequences. Indeed, persistence contributes to the relapse of 52 

many infections [14–17], including recurrence of mycobacterial infections in 10% of pa-53 

tients [18]. Moreover, persistence may have indirect effects on the evolution of antibiotic 54 

resistance as it can increase: i) mutation rates, ii) horizontal gene transfer rates, and iii) 55 

survival to antibiotics of susceptible cells by allowing repeated antibiotic exposures that 56 

select for progressive increase of antibiotic resistance [6,19]. Therefore, persistence is likely 57 

an important driver of antibiotic resistance evolution. 58 

Although first described more than 70 years ago [20], the evolutionary forces driving 59 

persistence are still not well understood. It is important to emphasize that persistence is a 60 

typical case of phenotypic stochasticity, i.e., genetically identical bacterial cells that behave 61 

differently in given environments. This phenotypic stochasticity may either pre-exist to 62 

the stress (type I persister cells) or be induced by it (type II persister cells) [15,21]. Beyond 63 

persistence, stress-induced phenotypic stochasticity is a general feature of living organ-64 

isms that is observed in many taxa and organization levels, such as increased develop-65 

mental noise in plants [22], bears [23], fishes [24], Drosophila [25] (for reviews, see [26–66 

30]).  67 

There is a current debate about the evolutionary meaning of phenotypic stochasticity 68 

[31–34], including persistence. It is hypothesized to be either an unavoidable consequence 69 

of biological constraints or an adaptive process related to bet-hedging. According to the 70 

first hypothesis, any phenotype has a minimal amount of random variance. In addition, 71 

this variance can be increased by stresses which may lead to random abnormal pheno-72 

types by causing cell alterations. Indeed, stresses will hamper mechanisms selected to re-73 

duce phenotypic stochasticity (developmental stability [35]), thereby resulting in a mini-74 

mal amount of phenotypic stochasticity. For example, acid and temperature stresses can 75 

lower protein conformational stability [36]. In the second hypothesis, by increasing the 76 

probability that few individual cells are adapted to the stress, this variability may be ad-77 

vantageous and thus selected for, leading to the evolution of bet-hedging [37]. For exam-78 

ple, cells from all life kingdoms have a mistranslation mechanism that is activated as a 79 

stress response [30]. This discrepancy between the two hypotheses is particularly relevant 80 

for persistence [7]. Levin et al. [38] emphasized that persistence might be related to errors 81 

in cellular processes that block cells in almost inactive states. In agreement, a large number 82 

of mutations can result in increased persistence frequency [39], while no mutation has 83 

ever been found to prevent it [40], supporting the hypothesis that persistence is merely a 84 

result of biological constraints. On the other hand, some persister cells can actively pump 85 

antibiotics out from cells [41,42], and their proportion in the population may evolve rap-86 

idly, suggesting an adaptive process. Indeed, chronic bacterial infections evolved an in-87 

creased rate of persistence after antibiotic treatment [43–46]. 88 

Laboratory evolution experiments confirmed the high persistence evolvability. In the 89 

presence of antibiotics, a 100- to 1000-fold increase in persistence has indeed been reported 90 

after only two to three cycles of antibiotic selection (less than five days) [47]. In contrast to 91 

antibiotic resistance, the production of a small proportion of persister cells entails low cost 92 

to the population. Therefore, restoring the initial level of persistence is a slow process, 93 

requiring hundreds to thousands of generations [47]. Hence, long-term experimental evo-94 

lution in the absence of killing stressors such as antibiotics is particularly relevant to study 95 

persistence evolution. Here, we used the long-term evolution experiment (LTEE) that was 96 
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initiated in 1988, during which twelve populations are propagated from a common Esch-97 

erichia coli ancestor in a glucose-limited, antibiotic-free environment [48]. We recently 98 

showed that susceptibility to many antibiotics increased over time in these conditions in 99 

which bacteria were selected for faster growth for more than three decades [49]. 100 

We investigated the evolution of persistence for ampicillin and ciprofloxacin by com-101 

paring their effects in the ancestor and evolved clones sampled in each of the twelve pop-102 

ulations up to 50,000 generations. We improved a high-throughput methodology [50] to 103 

estimate the prevalence of persisters while accounting for growth rate heterogeneity. 104 

2. Results 105 

We performed two sets of analyses. First, in the ‘LTEE-50K’ analysis, we compared 106 

persistence to the two antibiotics ampicillin and ciprofloxacin of one clone sampled at 107 

50,000 generations from each of the 12 populations of the LTEE to their respective ances-108 

tors REL606 and REL607. Second, in the ‘Ara‒2_S_L’ analysis, we investigated the persis-109 

tence level within the population called Ara‒2 (Table 1) in which an adaptive diversifica-110 

tion event occurred. Indeed, two phenotypically-distinct ecotypes, called S and L, 111 

emerged by generation 6,500 and co-exist ever since [51]. We sampled 10 evolved clones 112 

from Ara‒2, including one from each generation 2,000 and 5,000 before the emergence of 113 

this polymorphism, and one S and L clone from each generation 6,500, 11,000, 20,000 and 114 

50,000 (Table 1). 115 

 116 

Table 1: List of theLTEE-derived clones used in this study. 117 

Clone LTEE population Generation Mutator state* Analyses** 

606 Ancestor (Ara‒) 0 N LTEE-50K Ara‒2_S_L 

607 Ancestor (Ara+) 0 N LTEE-50K Ara‒2_S_L 

11330 Ara‒1 50,000 M LTEE-50K  

1165A Ara‒2 (BC***) 2,000 N  Ara‒2_S_L 

2180A Ara‒2 (BC***) 5,000 M  Ara‒2_S_L 

6.5KS1 Ara‒2 (S) 6,500 M  Ara‒2_S_L 

6.5KL4 Ara‒2 (L) 6,500 M  Ara‒2_S_L 

11KS1 Ara‒2 (S) 11,000 M  Ara‒2_S_L 

11KL1 Ara‒2 (L) 11,000 M  Ara‒2_S_L 

20KS1 Ara‒2 (S) 20,000 M  Ara‒2_S_L 

20KL1 Ara‒2 (L) 20,000 M  Ara‒2_S_L 

13335 Ara‒2 (S) 50,000 N LTEE-50K Ara‒2_S_L 

11333 Ara‒2 (L) 50,000 M LTEE-50K Ara‒2_S_L 

11364 Ara‒3 50,000 M LTEE-50K  

11336 Ara‒4 50,000 M LTEE-50K  

11339 Ara‒5 50,000 N LTEE-50K  

11389 Ara‒6 50,000 N LTEE-50K  

11392 Ara+1 50,000 N LTEE-50K  

11342 Ara+2 50,000 N LTEE-50K  

11345 Ara+3 50,000 M LTEE-50K  

11348 Ara+4 50,000 N LTEE-50K  

11367 Ara+5 50,000 N LTEE-50K  

11370 Ara+6 50,000 M LTEE-50K  
*The mutator (M) or non-mutator (N) state is indicated. 118 

**See text below, section “Rationale of data analyses”. 119 

***BC, before co-existence. 120 

 121 
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To quantify persistence after a 5-hour antibiotic exposure, we performed a ten-fold 122 

dilution cascade, from 100 to 107. For each dilution, we recorded the bacterial culture re-123 

vival, i.e. the presence/absence of growth after 24h and, if revival, we quantified the num-124 

ber of persister cells by analyzing the growth curve (initial OD̂  approach described hereaf-125 

ter). Absence of growth after 24h was related to either the absence of persister cells or a 126 

number of persister cells too low for their revival and detection. In this case, we set the 127 

number of persister cells to zero.  128 

2.1 Validation of the initial OD̂  approach to quantify persister cells 129 

We adapted the approach used by Hazan et al. [50] by recording the intercept of a 130 

linear model fitted to the 𝑙𝑜𝑔2 of the growth curve, which is an estimate of the initial OD 131 

(hereafter, initial OD̂ ), instead of recording the time needed to reach a threshold OD 132 

called the Start Growth Time (SGT). This approach avoids biases induced by growth rate 133 

variations and can detect tiny variations in initial OD̂  (Appendix A). However, as the 134 

SGT approach [50], it assumes that the lag time for cell regrowth is unaffected by the an-135 

tibiotic treatment, although it is known to differ between persister and non-persister cells 136 

[21]. We accounted for this approximation by referring, for this estimated number of per-137 

sister cells (CFU number), to an Equivalent Number of Normal Cells (#EqNC), i.e., the 138 

initial number of cells that would have yielded the same initial OD ̂ in the absence of an-139 

tibiotic exposure. 140 

To validate this initial OD̂  approach, we checked that, on average, the ten-fold dilu-141 

tion series yielded ten-fold differences in the #EqNC. In that case, the average of the slopes 142 

of models predicting 𝑙𝑜𝑔10(#𝐸𝑞𝑁𝐶)  by 𝑙𝑜𝑔10(𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛)  should be equal to one. We 143 

found an average of 0.97 with a bootstrap 95%CI of [0.90; 1.05]. 144 

2.2 Evolution of persistence in the ‘LTEE-50K’ analysis 145 

For each growth curve, we estimated initial OD̂  and used standard curves specific to 146 

each strain for conversion into CFUs (#EqNC, Appendix A). We used a linear mixed model 147 

to estimate the mean #EqNC and its confidence interval for each clone (Table 1) and treat-148 

ment (ampicillin, ciprofloxacin, no antibiotics). This model predicts the log2(#EqNC) of 149 

each growth curve as a function of, as fixed effects, log10 of the dilution, antibiotic treat-150 

ment, clone ID, and two second-order interactions with the antibiotic treatment, and ran-151 

dom effects on these fixed effects. All fixed effects were highly significant (Table 2). 152 

 153 

Table 2: Tests of the fixed effects of the model analyzing the #EqNC. 154 

Variable df F-value p-value 

𝑙𝑜𝑔10(dilution) 1, 100.58 595.11 <0.001 

Clone ID 23, 59.92 48.86 <0.001 

Antibiotic 2, 1342.65 144.94 <0.001 

Antibiotic × 𝑙𝑜𝑔10(dilution) 2, 131.47 7.63 <0.001 

Antibiotic × clone ID 44, 399.89 9.45 <0.001 

P-values of fixed effects are based on F-tests with Satterthwaite’s approximation. The corresponding numerator 155 

and denominator degrees of freedom (df) and statistics of the tests (F-values) are given. 156 

2.2.1 Overall trends in the persistence level to ampicillin and ciprofloxacin. 157 

We analyzed the estimated #EqNC for each investigated clone and treatment (coeffi-158 

cients of the model summarized in Table 2 and shown Figure 1). We found that the overall 159 

level of persistence to ciprofloxacin and ampicillin was similar (bootstrapped paired t-test 160 

implemented in the R package MKinfer: p-value = 0.22), and positively correlated (Spear-161 

man rank correlation = 0.508; p‑value = 0.014; Figure 1). However, this pattern varied ac-162 

cording to the clones. Six of the twelve populations evolved a mutator phenotype owing 163 

to mutations in DNA repair genes before 50,000 generations (Table 2; [52]). We found no 164 
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association between the persistence level and the mutator/non-mutator state of the popu-165 

lations (linear mixed model, p-value of the interaction between mutator state and treatment 166 

= 0.94). Nevertheless, the positive correlation between persistence to ciprofloxacin and am-167 

picillin was mostly driven by the non-mutator clones (Spearman rank correlations = 0.87 168 

and 0.08; p‑values = 0.003 and 0.78, respectively for the non-mutator and mutator clones). 169 

A permutation test comparing these two correlations yielded a p-value of 0.037 (50,000 per-170 

mutations of |𝜎𝑚𝑢𝑡𝑎𝑡𝑜𝑟 − 𝜎𝑛𝑜𝑛−𝑚𝑢𝑡𝑎𝑡𝑜𝑟|). 171 

The among-strain variability for persistence to ciprofloxacin was higher than to am-172 

picillin (Ansari-Bradley test AB = 331; p‑value = 0.016; Figure 1). There was no correlation 173 

between persistence and resistance to these antibiotics [49] (Spearman rank correlations = 174 

0.365 and 0.074; p‑values = 0.22 and 0.81 for ampicillin and ciprofloxacin, respectively).  175 

 176 

 177 

Figure 1: Persistence to ampicillin vs. ciprofloxacin in evolved clones sampled from each of the 12 LTEE 178 

populations. 179 

For each clone (Table 2), the abundance of persister cells to ampicillin and ciprofloxacine was quantified by the 180 

ratio between the #EqNC in the treatment and the control. Each dot corresponds to a given clone and gives the 181 

abundance of persister cells to the two antibiotics. Dotted lines give the 95 % CI. These values were obtained 182 

from the coefficients of the models (Table 2). 183 

 184 

2.2.2 Evolution of persistence after 50,000 generations of evolution 185 

We first showed that there was no significant difference in the level of persistence 186 

between the two ancestral clones REL606 and REL607 (p-values = 0.20 and 1 for ampicillin 187 

and ciprofloxacin, respectively). Then, we performed both comparisons of each evolved 188 

clone to each of the two ancestral strains and pairwise comparisons among the 13 clones 189 

sampled at generation 50,000 using the model coefficients (Table 2; Figure 2). Evolution 190 

of persistence to ciprofloxacin of the S clone from population Ara‒2 was the only signifi-191 

cant difference compared to the ancestors (p-value = 0.01; Figure 2). However, the pairwise 192 
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comparisons among clones from generation 50,000 had more statistical power and de-193 

tected significant changes in the level of persistence to ciprofloxacin. Persistence was: i/ 194 

higher in the Ara+4 clone than in clones from populations Ara‒3, Ara‒4, Ara‒5, Ara‒6, 195 

Ara+2, Ara+3 and the S clone from Ara‒2; ii/ higher in the Ara+5 and Ara+6 clones than in 196 

clones from populations Ara‒4 and Ara+2 and the S clone from Ara‒2 (Supplementary 197 

materials, Table S1, S2, and S3).  198 

 199 

Figure 2: Evolution of persistence to ampicillin (×) and ciprofloxacin (▲) in evolved clones sampled from the 200 

12 LTEE populations. For each antibiotic, we compared the level of persistence of each evolved clone sampled 201 

at generation 50,000 to the one in each of the two ancestors REL606 and REL607, and to be conservative, only 202 

the least significant of the two comparisons was kept for each evolved clone. The p-values for each antibiotic 203 

are shown below the name of the population (and for each of the S and L ecotypes in population Ara‒2, in red 204 

and blue respectively). These values were obtained from the coefficients of the models summarized in Table 2. 205 

95% confidence intervals are shown. Dark symbols represent the ancestor strains, pink the clones from the 206 

Ara‒1 to Ara‒6 populations, and green the clones from the Ara+1 to Ara+6 populations. 207 

Significance codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1. 208 

2.3 Evolution of persistence in the ‘Ara‒2_S_L’ analysis 209 

We investigated the interplay between the adaptive diversification event that oc-210 

curred in population Ara‒2 and the evolution of persistence. The emergence of diversifi-211 

cation was detected between generations 5,000 and 6,500, leading to the co-existence of 212 

two ecotypes called Ara‒2L and Ara‒2S [51]. From generation 11,000 to 50,000, each Ara‒213 

2S sampled clone had a significantly lower level of persistence to ciprofloxacin compared 214 
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to both the ancestors and the corresponding contemporary Ara‒2L sampled clone, while 215 

there were no significant differences for persistence to ampicillin (Figure 3). 216 

 217 

 218 

Figure 3: Evolution of persistence to ampicillin (A) and ciprofloxacin (B) in evolved clones sampled from the 219 

Ara‒2 population. Dark symbols represent the ancestor strains REL606 and REL607, pink the Ara‒2 evolved 220 

clones sampled before the adaptive diversification event, red and blue the evolved clones from the S and L 221 

ecotypes, respectively. P-values close to the Ara‒2S evolved clones refer to the comparisons to the ancestors, 222 

and p-values close to the Ara‒2L evolved clones refer to the comparison between the co-existing contemporary 223 

S and L evolved clones. 95% confidence intervals are shown. 224 

 225 

3. Discussion 226 

We investigated the evolution of bacterial persistence during the LTEE over 50,000 227 

generations, corresponding to 22 years during which bacterial cells were maintained in a 228 
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defined antibiotic-free environment [53]. Environmental variations included the daily cy-229 

cles of feast and famine and changes produced by bacteria themselves, as for example 230 

secretion of metabolic byproducts [54]. We improved a high-throughput method to quan-231 

tify persister cells by accounting for growth rate heterogeneity. Despite evolutionary po-232 

tential for lower persistence, it was not observed in most cases in this antibiotic-free envi-233 

ronment. 234 

Studying persistence is complex because: i/ persistent cells are genetically identical 235 

to non-persistent cells, ii/ it is rare in entire populations, iii/ persistence state is not herita-236 

ble, and iv/ once in the persistence state, cells do not multiply. Here, we improved a pre-237 

viously published method [50] to quantify persister cells. This approach relied on analyz-238 

ing the growth curve of the bacterial population that recovered from the stress that killed 239 

non-persistent cells. The more persister cells, the faster the growth of the reviving popu-240 

lation, which thereby becomes detectable. This approach assumed that the growth rate is 241 

constant among treatments. We however showed that this was not the case for persister 242 

cells (Supplementary material, Fig. S1). Therefore, we fitted linear models on the log2 of 243 

each growth curve, which estimates the growth rate and initial population density. 244 

We detected no relationship between the levels of persistence and antibiotic re-245 

sistance [49], thereby showing that the two phenomena are related to two different path-246 

ways in the conditions of the LTEE where there is no antibiotic pressure but selection for 247 

growth. Similar results were observed in natural strains of Pseudomonas spp. [55].  248 

Overall, among the LTEE clones, the level of persistence to the two antibiotics was 249 

similar and positively correlated, suggesting similar physiological pathways. However, 250 

the positive correlation was only driven by non-mutator strains, and the among-strain 251 

variation was significantly higher for ciprofloxacin than ampicillin. In addition, we de-252 

tected no significant differences among clones for ampicillin by contrast to ciprofloxacin. 253 

This suggests the existence of different types of persister cells, some being shared between 254 

ampicillin and ciprofloxacin, and some that are specific to each antibiotic. The observed 255 

among-clone variation would result from both types of persister cells, those common to 256 

the two antibiotics explaining the correlation in the non-mutators and those specific to 257 

each antibiotic explaining the difference between the two antibiotics in among-clone var-258 

iance. In agreement with this diversity of persister cells, it has been observed that a large 259 

panel of pathways can trigger persistence [15], and the correlation between persistence to 260 

different antibiotics is variable. Hence, a marginally significant correlation between the 261 

persistence to ampicillin and nalidixic acid was found in environmental samples of E. coli 262 

[56], but no correlation between the persistence to these two antibiotics and to ciprofloxa-263 

cin, albeit ciprofloxacin and nalidixic acid share a similar mechanism of action. A similar 264 

analysis by Stewart and Rozen [57] revealed no correlation in the level of persistence to 265 

ampicillin, streptomycin, and norfloxacin. 266 

Persistence in the ancestral strains REL606 and REL607 may originate from either 267 

past selection by environmental stochasticity or minimal amount of ‘cellular errors’. In the 268 

former case, we would expect no evolution of persistence and a higher amount of persister 269 

cells in mutator clones because the mutational target for higher persistence is large [39]. 270 

In addition, if persistence in the ancestor results from adaptation to former environmental 271 

stochasticity, the naïve prediction would be a reduced persistence level in most, if not all, 272 

LTEE populations that evolved under strong selection for improved growth during 22 273 

years in a constant environment. Indeed, bacteria have a strong capacity to adapt to cyclic 274 

or correlated environmental changes [58–61], and shifting to a random dormancy state 275 

should be costly as any growing mutant among other dormant cells would have a higher 276 

growth rate. 277 

By contrast to these two alternative predictions, we detected no relationship between 278 

persistence and mutator state, and only one of the 13 analyzed clones (from the Ara‒2S 279 

ecotype) showed significant evolution toward lower persistence. Evolved clones from the 280 

two populations Ara‒4 and Ara+2 evolved lower persistence that was only significant 281 

when compared to clones that evolved higher persistence (from populations Ara+4, Ara+5 282 
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and Ara+6). These results show an evolutionary potential for both higher and lower per-283 

sistence, but in most cases, the stable LTEE environment did not select for low persistence. 284 

The only clone revealing lower persistence is the 50,000-generation Ara‒2S clone. In-285 

terestingly, its relative fitness compared to its contemporary clone from the Ara‒2L eco-286 

type is higher during stationary phase than exponential phase [62,63]. Indeed, while the 287 

Ara‒2L clone was starving from glucose, the Ara‒2S clone consumed the acetate produced 288 

during growth on glucose [64]. Hence, it might favor dormancy of the Ara‒2L clone dur-289 

ing stationary phase to lower both its energy consumption and death rate, while the Ara‒290 

2S clone was actively growing on acetate. This hypothesis is particularly appealing since 291 

starvation has been shown to be a main natural cause of persistence evolution [6,21,65]. 292 

Hence, persistence may provide benefits to starvation in natural environments because 293 

feast and famine phases are poorly predictable. By contrast in the LTEE, bacteria experi-294 

ence a seasonal and predictable environment every day since more than three decades, 295 

oscillating between exponential phase (feast) and stationary phase (famine). Because of 296 

such reduced stochasticity in the LTEE between the different growth seasons, randomly 297 

switching a small proportion of cells into dormancy may not be a beneficial strategy. 298 

Further studies may investigate the influence of the daily starvation phase in the 299 

maintenance of persistence during the LTEE. Alternatively, the observed variability 300 

among the evolutionary trajectories of persistence might result from pleiotropic interac-301 

tions between persistence and other selected traits. According to this scenario, the varia-302 

bility in evolutionary trajectories of different populations would result from some contin-303 

gencies and would be a side effect of the divergence of populations. Understanding these 304 

pleiotropic interactions would be very useful to optimize the treatments of infections or 305 

cancers. Indeed, this might allow to pre-evolve an infecting bacterial cell population or a 306 

cancer cell population to have a low persistence to the future treatment. 307 

The conundrum of the unexpected maintenance of persistence in a stable environ-308 

ment over 50,000 bacterial generations, albeit evolutionary potential for decreasing the 309 

amount of persistence as observed in the Ara‒2S clone, highlights the LTEE importance 310 

for challenging and testing our understanding of evolution. 311 

 312 

4. Materials and Methods 313 

Strains  314 

We used a total of 23 E. coli clones that are all derived from the LTEE: the two ances-315 

tral clones REL606 and REL607, the latter being a spontaneous Ara+ revertant of REL606 316 

[53,66], one evolved clone sampled at 50,000 generations from 11 of the 12 LTEE popula-317 

tions, and 10 evolved clones from the population called Ara‒2 (Table 1). Indeed, the pop-318 

ulation Ara‒2 experienced an adaptive diversification event during which two phenotyp-319 

ically-distinct ecotypes, called S and L, emerged by generation 6,500 and co-exist ever 320 

since [51]. Therefore, we sampled one Ara‒2 evolved clone from generations 2,000 and 321 

5,000 before the emergence of this polymorphism, and one S and L clone at each of the 322 

generations 6,500, 11,000, 20,000 and 50,000 (Table 1). 323 

 324 

Measuring the proportion of persister cells 325 

For each LTEE-derived clone, we estimated the amount of persister cells after expo-326 

sure to each of two bactericidal antibiotics belonging to two different families, ampicillin 327 

and ciprofloxacin, by hypothesizing that the larger the persister population is, the faster 328 

regrowth will happen and therefore be detectable by optical density [49, see below]. 329 

All clones were grown in DM1000 medium (Davis Minimal broth supplemented with 330 

glucose at 1 g/L) at 37°C and 180 rpm. This high glucose concentration improves the ac-331 

curacy of the OD measure during regrowth after antibiotic exposure. After overnight cul-332 

ture, stationary-phase cells were diluted at 1/1000 in 500 mL DM1000. After 2.5h of growth 333 

(mid-exponential phase), we divided each culture into nine 5-mL tubes that were subdi-334 

vided into three groups, i.e., three technical replicates per group. In the two first groups, 335 
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we added either ampicillin or ciprofloxacin at a final concentration of 100 and 1 µg/mL, 336 

respectively. The third group was used as an antibiotic-free control. After 5 hours at 37°C 337 

and 180 rpm, we removed antibiotics by three successive washes consisting in 5-min cen-338 

trifugation at 1500g, removal of 90% of the supernatant and resuspension of the pellet in 339 

antibiotic-free DM1000. Finally, cells were resuspended in 200 µL DM1000 and each tube 340 

content was transferred into a well of a 96-well microplate (Thermo Scientific 260860). We 341 

performed for each initial tube tenfold dilution cascades from 100 to 107 fold, and moni-342 

tored growth in an Infinite M200 microplate reader (Tecan®) to quantify the proportion of 343 

persister cells for each clone. We recorded the OD600 every 15 min for 24 h that we will use 344 

as the ‘time’ variable in our analysis (see below). In addition for each antibiotic-free con-345 

trol tube, we estimated the CFU number to compute the relationship between the number 346 

of cells and the time after which regrowth was detected by OD. We performed at least 347 

three biological replicates for each clone. 348 

 349 

Rationale of data analyses 350 

All analyses were performed to: i) compare the persistence frequency in each of the 351 

12 evolved clones sampled at 50,000 generations to the corresponding ancestor REL606 or 352 

REL607, and ii) analyze the evolutionary dynamics of persistence in the population Ara‒353 

2 in which the S and L ecotypes emerged by generation 6,500 and co-exist since then [67]. 354 

We refer hereafter to these two analyses as LTEE-50K and Ara‒2_S_L, respectively (Table 355 

1). 356 

 357 

Quantification of the population size of persister cells 358 

We improved a previous approach [50] that is similar to qPCR as the time needed to 359 

detect an increase in the signal (here, OD600) is proportional to the initial amount of mate-360 

rial (here, the number of persisters cells). Hence, the time needed to reach a given OD600 361 

threshold is defined as the Start Growth Time, SGT [50]. This approach however assumed 362 

that persister cells have both a growth rate and a lag phase that are similar to the cells of 363 

the cultures used for the standard curve, albeit they were not exposed to antibiotics (Fig. 364 

A1e). Comparing the growth rates of each strain in each treatment showed that persister 365 

cells actually had a slower growth rate than other cells. For unknown reasons, this differ-366 

ential effect was stronger for ciprofloxacin than ampicillin (Supplementary material, 367 

Fig. S1). Therefore, we developed an alternative approach based on a statistical model that 368 

predicted the 𝑙𝑜𝑔2 of the OD600 observed during exponential growth as a function of time 369 

(Supplementary material, Heuristic selection of the exponential growth phase). These 370 

models estimate both the growth rate (slope) and initial OD600 (intercept; hereafter, 371 

initial OD̂ ) for each growth curve. This approach can detect tiny variations in initial OD as 372 

they increased during exponential growth (for more details, see Appendix A). Using this 373 

approach, we obtained initial OD̂  for each growth curve and converted it into cell numbers 374 

using standard curves obtained for each strain by quantifying both initial OD̂  and CFUs in 375 

dilution series (Fig. A1d). 376 

However, while this approach accounted for growth rate heterogeneity, it still as-377 

sumed that the mean lag time for cell regrowth was identical in all strains and treatments. 378 

Hence, we refer to this estimated number of persister cells (number of CFU) as an Equiv-379 

alent Number of Normal Cells (#EqNC), corresponding to the initial number of cells that, 380 

in the absence of antibiotics, would have produced the same initial OD̂ . In the absence of 381 

growth after 24h, the #EqNC was set to zero. To validate this initial OD̂  approach, we 382 

checked that the ten-fold dilution series indeed yielded ten-fold differences in the esti-383 

mated amount of persister cells (#EqNC). Specifically, we used the initial OD̂  approach to 384 

estimate #EqNC separately for each growth curve. Then, for each dilution series, we fitted 385 

a model predicting 𝑙𝑜𝑔10(#𝐸𝑞𝑁𝐶) by 𝑙𝑜𝑔10(𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛). If the ten-fold dilutions resulted in 386 

an averaged ten-fold difference in the number of persister cells, these models should have 387 

a slope of one that we checked by bootstrapping the slopes. 388 

 389 
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Estimating and comparing persistence 390 

We estimated the level of persistence to ampicillin and ciprofloxacin in each strain 391 

by fitting a linear mixed model predicting log2(#EqNC) with as i/ fixed effects: the log10 of 392 

the dilution factor, the antibiotic treatment, the clone, and the two second-order interac-393 

tions with antibiotic treatments, ii/ random effects: ‘replicates’ on the intercept, the three 394 

fixed effects ‘dilution’, ‘treatment’ and their interaction. The intercept of these models es-395 

timates the mean log2(#EqNC) in the non-diluted sample, i.e., when log10 of the dilution is 396 

equal to zero. 397 

We fitted this model with the lme4 package [68] of the R version 4.0.3 and tested 398 

significance of effects with F tests and the Satterthwaite approximation for degrees-of-399 

freedom [69,70] (Table 2). We compared clones to each other using the R package 400 

‘multcomp’ (version 1.4-17; [71]). For each antibiotic, we compared each evolved strain to 401 

the two ancestors REL606 and REL607. This first set of tests was used to: i/ check for the 402 

absence of significant differences between the two ancestors, and ii/ assess whether the 403 

evolved clones were significantly different from their ancestors. To be conservative when 404 

detecting changes, only clones that were significantly different from both ancestors were 405 

considered has being significantly different. We also performed pairwise comparisons be-406 

tween 50,000-generation clones to detect groups of clones that evolved in opposite direc-407 

tions. Finally, we used this test to compare contemporary co-existing clones Ara‒2 L 408 

and S. 409 

 410 

Relationship between persistence and mutator phenotype 411 

To test for an effect of the mutator phenotype on persistence, we re-fitted the linear 412 

mixed model predicting log2(#EqNC) by setting the two variables clone and interaction 413 

between clone and treatment as a random instead fixed effect, and by adding, as fixed 414 

effect, the mutator state and its interaction with the treatment. Furthermore, we assessed 415 

the effect of the mutator state on the correlation between persistence to ampicillin and 416 

ciprofloxacin using Spearman rank correlations. Specifically, we measured and tested cor-417 

relation (𝜎) among all clones and then separately among mutator and non-mutator clones. 418 

We tested for the significance of the difference between mutator and non-mutator clones 419 

using 50,000 permutations of the statistic |𝜎𝑚𝑢𝑡𝑎𝑡𝑜𝑟 − 𝜎𝑛𝑜𝑛−𝑚𝑢𝑡𝑎𝑡𝑜𝑟|. 420 

Supplementary Materials: The following is available online at www.mdpi.com/xxx/s1, Table S1: 421 

‘Pairwise comparisons of the abundance of ciprofloxacin persister cells in the evolved clones sam-422 

pled from each of the 12 LTEE populations at 50,000 generations’; Table S2: ‘Pairwise comparisons 423 

of the abundance of ampicilin persister cells in the evolved clones sampled from each of the 12 LTEE 424 

populations at 50,000 generations’; Table S3: ‘Pairwise comparisons of the abundance of ciproflox-425 

acin persister cells in the evolved clones sampled from each of the 12 LTEE populations at 50,000 426 

generations’; Figure S1: ‘Effect of antibiotics on growth rates’; Supplementary method 1: ‘Heuristic 427 

selection of the exponential growth phase’; Figure S2: ‘Variability in background OD for the wells 428 

of a representative microplate’; Figure S3: ‘Illustration of the detection of the exponential phase in 429 

the growth curve’ 430 
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Appendix A: Estimation of the Equivalent Number of Normal Cells (#EqNC) 448 

We computed #EqNC by comparing how fast growth was detected compared to a 449 

standard curve that was obtained by quantifying living cells within a sample unexposed 450 

to antibiotics through CFU counting. To quantify persister cells from growth curves, Ha-451 

zan et al. [50] measured how fast growth was detected as the time OD reached a given 452 

threshold (Start Growing Time), as in qPCR analyses. It assumed however that all com-453 

pared strains had similar growth rates which was not the case since they are affected by 454 

antibiotics (Supplementary material, Fig. S1). We therefore developed an alternative ap-455 

proach independent from this assumption. For each growth curve, we fitted a linear model 456 

to the log2 of the OD from which the background OD has been removed. The slope and the 457 

intercept of these models estimate the growth rate and log2 of the initial OD minus the back-458 

ground OD, respectively. The estimated initial OD̂  is proportional to the number of initial 459 

cells and is unaffected by the growth rate. 460 

  461 
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Figure A1: Estimation of the #EqNC by both the Start Growth Time (SGT; [50]) and 511 

initial OD̂  (our approach). 512 

Left and right panels respectively refer to the SGT and initial OD̂  approaches. Panels a 513 

and b: representative real data as analyzed by each method, raw data for SGT and log of the 514 
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OD minus the background (Bg) for initial OD̂  (see Supplementary method 1 for back-515 

ground estimation). Panel a: the SGT approach yields an estimated SGT of 13, using a 516 

threshold of 0.105. Panel b: the linear model gives initial OD-Bĝ = 2−16.81. Panels c and d: 517 

The standard curve is obtained by quantifying cells by both counting CFUs and analyzing 518 

the growth curves whatever the approach (SGT or initial OD̂ ). If growth rates were similar 519 

when computing and using the standard curve, both approaches gave similar results. How-520 

ever, as illustrated in panels e and f, the SGT approach started to be inaccurate when growth 521 

rates varied. Panels e and f: Simulated examples showing both the inaccuracy of the SGT 522 

approach and the robustness of the initial OD̂  approach in the presence of growth rate var-523 

iation. Panel e: three theoretical growth curves obtained by assuming growth rates of 1.5, 524 

0.9, and 0.9 cell division per hour, for initial ODs of 2-26, 2-24, and 2-26, respectively for the red, 525 

green and black curves. The SGT approach based on the OD threshold would detect more 526 

cells in, successively, the red, green and black curves. However, as illustrated in the inset 527 

zoom, this is an artefact induced by growth rate variation. Panel f: log-transformed OD al-528 

lows the fit of a linear model that yields an estimate of both the growth rate and initial OD 529 

(𝑙𝑜𝑔2(initial OD–Bĝ )). 530 

 531 
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