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Summary 69 

Rheumatoid arthritis (RA) is a prototypical autoimmune disease that causes destructive tissue 70 

inflammation in joints and elsewhere. Clinical challenges in RA include the empirical selection of 71 

drugs to treat patients, inadequate responders with incomplete disease remission, and lack of a 72 

cure. We profiled the full spectrum of cells in inflamed synovium from patients with RA with the 73 

goal of deconstructing the cell states and pathways characterizing pathogenic heterogeneity in 74 

RA. Our multicenter consortium effort used multi-modal CITE-seq, RNA-seq, and histology of 75 

synovial tissue from 79 donors to build a >314,000 single-cell RA synovial cell atlas with 77 cell 76 

states from T, B/plasma, natural killer, myeloid, stromal, and endothelial cells. We stratified 77 

tissue samples into six distinct cell type abundance phenotypes (CTAPs) individually enriched 78 

for specific cell states. These CTAPs demonstrate the striking diversity of RA synovial 79 

inflammation, ranging from marked enrichment of T and B cells (CTAP-TB) to a congregation of 80 

specific myeloid, fibroblast, and endothelial cells largely lacking lymphocytes (CTAP-EFM). 81 

Disease-relevant cytokines, histology, and serology metrics are associated with certain CTAPs. 82 

This comprehensive RA synovial atlas and molecular, tissue-based CTAP stratification reveal 83 

new insights into RA pathology and heterogeneity, which could lead to novel targeted-treatment 84 

approaches in RA. 85 

 86 

Introduction 87 

Rheumatoid arthritis (RA) is a systemic autoimmune disease affecting up to 1% of the 88 

population1. It causes synovial joint tissue inflammation and extra-articular manifestations that 89 

lead to pain, damage, disability2–5. The clinical course of RA has been transformed by targeted 90 

therapeutics, including those aimed at TNF, IL-1, IL-6, B cells, T cell co-stimulation, and the 91 

JAK-STAT pathway2,6. Unfortunately, many patients are refractory to these therapies and do not 92 

achieve remission. Less than 25% of patients achieve an ACR70 response to any subsequent 93 
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treatment after failing first-line therapies7–9. While current treatments can partially ameliorate 94 

disease activity, there is no cure. Thus, there is a clinical need for new RA treatment targets and 95 

an improved ability to predict patient-specific responses to treatment.  96 

 97 

Genetic diversity and highly variable responses to targeted therapeutics suggest that RA may 98 

be a heterogeneous disease10–13. For example, patients who produce antibodies specific for 99 

cyclic citrullinated peptides (CCP) have different HLA and non-HLA susceptibility factors 100 

compared to CCP-negative patients14. However, genetic differences and clinical differences in 101 

disease duration or activity have not reliably predicted treatment response or druggable targets 102 

thus far15–18. 103 

 104 

A more granular understanding of tissue inflammation and cell states may reveal synovial 105 

phenotypes that could inform prognosis and potentially identify new treatment targets. 106 

Encouragingly, preliminary clinical trials using histological or bulk RNA-seq analysis of tissue 107 

suggest treatment response may depend on tissue cellular composition19,20. We and others 108 

previously identified specific effector cell states in RA pathophysiology that represent promising 109 

treatment targets including pro-inflammatory HBEGF+IL1B+ macrophages, MERTK+ 110 

macrophages, ITGAX+TBX21+ autoimmune-associated B cells (ABCs), PDCD1+ peripheral 111 

helper T (TPH) cells, and NOTCH3+ synovial fibroblasts21–27. We do not yet know whether this is 112 

a comprehensive list of disease-associated populations and if these disease-associated 113 

populations are present in every patient with RA.  114 

 115 

To deconstruct the inflammatory cellular components of RA synovium, we analyzed cell-state 116 

composition in a diverse set of patients with clinically active RA. We sought to determine 117 

whether certain states are enriched only in certain subsets of patients. Since RA is a 118 

prototypical autoimmune disease that shares disease-associated tissue cell states23,28–32 and 119 
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risk loci with other autoimmune diseases33,34, these analyses may offer insights into other 120 

diseases in which tissue inflammation is a hallmark. 121 

 122 

Results 123 

To characterize RA patient heterogeneity, we utilized a multimodal single-cell synovial tissue 124 

pipeline to stratify tissue samples into distinct subgroups, characterize their associated cell 125 

states, and identify their clinical and histologic associations (Figure 1A-D).  126 

 127 

Collection of synovial samples from RA patients. 128 

We recruited patients exhibiting moderate to high disease activity (100% with CDAI≥10; 80.6% 129 

with DAS28-CRP3≥3.2) and obtained synovial tissue biopsies. To capture the full diversity of 130 

RA, we recruited treatment-naive patients (n=28) early in their disease course (mean 2.64 131 

years), methotrexate-inadequate (MTX) responders (n=27), and anti-TNF agent inadequate 132 

responders (n=15). The patients were similar in age, sex, disease activity, and other clinical 133 

parameters across the three treatment groups (Supplementary Table 1). For comparison, we 134 

obtained tissues from patients with osteoarthritis (OA, n=9). We assayed a total of 82 synovial 135 

tissue samples, including three pairs of samples from RA patients biopsied at two separate 136 

times. Three pathologists independently scored each sample for lining layer hyperplasia, cell 137 

density, and aggregates35, and observed that only cell density was different among patient 138 

groups (p=0.005, Supplementary Table 1). 139 

 140 

Multimodal single-cell integration defines major cell types 141 

We used CITE-seq to simultaneously characterize the full transcriptome and surface expression 142 

of 58 proteins, for which we developed and optimized an oligo-conjugated antibody CITE-seq 143 

panel spanning key immune and stromal cell lineage and functional markers (Supplementary 144 
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Table 2). We titrated 58 oligo-conjugated antibodies to maximize signal-to-noise (Methods). 145 

After disaggregating synovial tissue samples, we sorted viable cells for sequencing. A total of 146 

314,030 cells (~3,800 per sample) passed stringent RNA QC, protein QC, and doublet 147 

detection. We also excluded cells with inconsistent cell-type identities based on protein and 148 

mRNA (Supplementary Figure 1A-G, Methods). The proportion of cells within 15 lineage 149 

gates in CITE-seq and in flow cytometry correlated across samples (median Pearson r=0.88, 150 

Supplementary Figure 1G-H, Supplementary Table 3). We integrated surface marker and 151 

RNA data using canonical correlation analysis (CCA), corrected batch effects with Harmony36, 152 

and defined six major cell types: T, B/plasma, natural killer (NK), myeloid, stromal, and 153 

endothelial cells (Figure 1E-F, Supplementary Figure 2A-G, Methods). 154 

 155 

Clustering samples on major cell-type abundance to define CTAPs 156 

We quantified the frequency of the six major cell types in each synovial tissue sample (Figure 157 

1G). We used these six major cell types instead of finer-grained cell states to create a broad 158 

categorization scheme that generalizes easily to many technologies (e.g. flow cytometry) for 159 

wide clinical use. We then used hierarchical clustering to classify the spectrum of patient 160 

samples into six different synovial cell-type abundance phenotypes (CTAPs). We arrived at six 161 

groups because they demonstrated robust in-group similarity with bootstrapping and revealed 162 

biological heterogeneity (Figure 1G-H, Supplementary Figure 2H, Jaccard index=0.727). We 163 

named CTAPs based on dominant cell type(s): 1) endothelial, fibroblast, and myeloid cells 164 

(EFM), 2) fibroblasts (F), 3) T cells and fibroblasts (TF), 4) T and B cells (TB), 5) T and myeloid 165 

cells (TM), and 6) myeloid cells (M) (Figure 1I, Supplementary Table 4, Methods). CTAPs 166 

reflect a spectrum of cell-type abundances apparent in principal component analysis (PCA) of 167 

cell-type frequencies (Figure 1J). 168 

 169 

Characterizing a comprehensive RA synovial cell state atlas 170 
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We defined finer-grained cell states and quantified sample abundances within cell types (Figure 171 

2). Surface proteins were informative for cell-state delineation in T and B cells (Supplementary 172 

Figure 3A-C), so we clustered cells on CCA canonical variates (CVs) capturing both RNA and 173 

protein data (Supplementary Figure 3D-F, Supplementary Figure 4, Methods). For other cell 174 

types, proteins were less informative, so we defined clusters from mRNA alone. In total we 175 

defined 77 cell states: 24 T cell clusters (n=94,056 cells), 9 B/plasma cell clusters (n=30,697), 176 

14 NK clusters (n=8,497), 15 myeloid clusters (n=76,181), 5 endothelial clusters (n=25,044), 177 

and 10 stromal clusters (n=79,555) (Figure 2A). Using Symphony37, we mapped cell states 178 

from our prior study of 5,000 synovial cells21 onto these fine clusters21; coarse cell states 179 

previously identified as associated with RA versus OA were also associated in this data set 180 

(Supplementary Figure 5, Supplementary Table 5). 181 

 182 

The 24 T cell clusters spanned innate-like states and CD4+ and CD8+ adaptive lineages 183 

(Figure 2A, Supplementary Figure 6A-C). These included states implicated in autoimmunity, 184 

such as regulatory CD4+ T cells (Treg; T-8 and T-9) and TPH and TFH cells (T-3, T-7)24,28–30,38–41. T-185 

3 and T-7 both expressed B cell-helper factors CXCL13 and IL21. T-7 comprised exclusively 186 

TPH cells and expressed more ICOS, IFNG, and GZMA, while T-3 contained TPH and TFH cells 187 

expressing the lymphoid homing marker CCR7 (Supplementary Figure 6A-D). TPH cells are 188 

known to be expanded in RA compared to OA21,24. CD8+ subsets expressed different 189 

combinations of GZMB and GZMK (T-13, T-14, T-15), reflecting differential cytotoxic potential. 190 

With surface protein data we resolved T cell clusters that were not observed in our earlier 191 

study21. This included GNLY+CD4+ (T-12), two double-negative (CD4-CD8-) gamma-delta T cell 192 

clusters expressing TRDC (T-22 and T-23), and a cluster containing double-negative and CD8+ 193 

T cells expressing ZBTB16 (PLZF) that resemble innate-like T cells such as natural killer T cells 194 

and mucosal-associated innate T (MAIT) cells (T-21). 195 

 196 
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We found distinct separation between CD20+ (MS4A1+) B cells and CD138+ (SDC1+) plasma 197 

cells (Figure 2B, Supplementary Figure 7A-D). CD20+ B cells comprised six clusters, 198 

including IGHM+IGHD+TCL1a+ naive (B-2) and two CD27+ memory B cell clusters: 199 

CD24+CD27+CD11b+ switched memory B cells (B-0) and CD24++CD27+IGHM+ unswitched 200 

memory B cells (B-1). We also identified CD11C+CXCR5low ABCs (B-5)42–44, previously noted to 201 

be associated with RA relative to OA21. B-5 expresses LAMP1, a lysosomal-associated 202 

membrane protein that may play a role in B cell antigen-presentation45. Additional B-5 genes 203 

suggest ABC antigen-presentation46 including HLA-DR and CIITA47. We unexpectedly observed 204 

CD1c+ B cells (B-3) with CD27 and IGHD expression consistent with recirculating extrasplenic 205 

marginal zone (MZ) B cells48–51. CD1c+ MZ-like B cells (B-3) and other non-plasma B cells were 206 

high producers of IL6 and TNF (Supplementary Figure 7D). We identified AICDA+BCL6+ GC-207 

like B cells (B-4) consistent with ectopic germinal center (GC) formation in the synovium52,53. 208 

Plasma cells were surprisingly diverse and included HLA-DRA+MKI67+ plasmablasts (B-7), 209 

IGHM+ plasma cells (B-6), and more mature IGHG1+IGHG3+ plasma cells (B-8). Plasma cell 210 

heterogeneity may reflect both in situ generation and circulation from the periphery.                                                                                                                        211 

 212 

We also captured innate lymphocytes, including CD56brCD16- NK (8 clusters), CD56dimCD16+ 213 

NK (4 clusters), and CD56dimCD16-IL7R+ innate lymphoid cells (ILCs, 2 clusters) (Figure 2C, 214 

Supplementary Figure 8A-C). CD56brCD16- NK cells were more abundant (mean 47.6% per 215 

donor) than CD56dimCD16+ NK cells (35.7%) and ILCs (12.9%), consistent with previous 216 

observations in gut and lymph nodes54. CD56brCD16- NK clusters were the only innate 217 

lymphocytes expressing GZMK, and they variably expressed other genes encoding cytotoxic 218 

molecules such as GZMB and GNLY. CD56dimCD16+ NK cells had universally high expression 219 

of GZMB, GNLY, and PRF1. IFNG was expressed highly in two CD56dimCD16+ clusters (NK-1, 220 

and NK-2) but was also expressed in NK-5 and NK-10. Some activating and inhibitory NK cell 221 

receptors were differentially expressed, including KLRK1 (NKG2D), predominantly expressed by 222 
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CD56brCD16- cells, and KLRF1 (NKp80) and FCRL6, predominantly expressed by 223 

CD56dimCD16+ cells (Supplementary Figure 8D). We identified ILCs based on absence of 224 

CD56 and CD16 and high expression of CD127 (IL-7Ra) protein55. The larger ILC cluster 225 

resembled group 3 ILCs (RORC+ NK-12), the functional analog of TH17 T cells55,56. The smaller 226 

CD161+ population resembled group 2 ILCs (GATA3+ NK-12)55–57, analogous to TH2. We did not 227 

see a discrete cluster of TH1-analogous group 1 ILCs, which may have co-clustered with NK 228 

cells. 229 

 230 

We identified 15 myeloid clusters spanning tissue macrophages, infiltrating monocytes, 231 

conventional and plasmacytoid dendritic cells (Figure 2D). CD68 and CCR2 protein expression 232 

discriminate tissue macrophages from infiltrating monocytes (Supplementary Figure 9A-C). 233 

Three tissue macrophage clusters (M-0, M-1, M-2) in RA synovium were also found at high 234 

frequencies in OA synovium and display a phagocytic phenotype with high expression of CD206 235 

(FOLR2), CD163, MERTK and MARCO (Supplementary Figure 9B,D), suggesting 236 

homeostatic debris-clearing function58,59. LYVE1 expression on tissue macrophages (M-0) may 237 

indicate a perivascular function25,60. Infiltrating monocytes included a sizable 238 

IL1B+FCN1+HBEGF+ pro-inflammatory subset (M-7), likely derived from classical CD14high 239 

monocytes, which we previously described21,25. A STAT1+CXCL10+ subset (M-6) likely derives 240 

from non-classical CD14lowCD16high monocytes and expresses interferon-response gene 241 

signatures; these cells are enriched in the inflamed lung from COVID-19 pneumonia, colon from 242 

Crohn’s disease, and tumors23,61,62. MERTK+HBEGF+ (M-3) and SPP1+ (M-4) bridged infiltrating 243 

monocytes and tissue macrophages; both expressed high levels of SPP1, a marker of bone-244 

marrow-derived macrophages63,64 suggesting a transition from an inflammatory monocyte to a 245 

more phagocytic phenotype of tissue macrophages. We identified four DC populations 246 

corresponding to subsets described by Villani et al65. Reflecting their respective antigen 247 

presentation capacities, DC1 (M-12) expressing CLEC9A and THBD (CD141) cross-present 248 
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extracellular antigens to CD8 T cells, while DC2 and DC3 (M-10, 9) are CLEC10Ahigh cells that 249 

activate and polarize CD4 T cells65 (Supplementary Figure 9D). DC4 (M-11) expresses genes 250 

found in CD14+ monocytes such as IL1B while also displaying a strong IFN signature. Lastly, we 251 

identified a fifth DC subset (M-14) with high expression of endosomal marker LAMP366. 252 

 253 

In the stroma, fibroblasts were divided broadly into lining (PRG4high) and sublining (THY1+ 254 

PRG4low) (Figure 2E, Supplementary Figure 10A-F). As previously described, lining fibroblasts 255 

(F-0, F-1) were relatively depleted in RA and enriched in OA synovium, while sublining 256 

fibroblasts separated into HLA-DRA+, CD34+, and DKK3+ groups21,67,68 (Supplementary Table 257 

6). Lining fibroblasts subdivided into PRG4+CLIC5+ (F-0), PRG4+ (F-1), and an RSPO3+ 258 

population (F-8) with an intermediate lining/sublining phenotype. The CD34+ sublining fibroblast 259 

cluster (F-2) highly expressed PI16 and DPP4 (CD26), suggesting they may be fibroblast 260 

progenitors69. CXCL12+ fibroblasts included an inflammatory CD74highHLAhigh cluster (F-5) with 261 

high HLA expression, and a CXCL12+SFRP1+ cluster (F-6) with the highest levels of IL6, a 262 

proven drug target in RA70–72. The inflammatory signature in F-5 and F-6 suggest an 263 

inflammatory phenotype driven by cytokine activation by infiltrating immune cells73. The stromal 264 

compartment also included a small cluster of NOTCH3+MCAM (CD146)+ mural cells (Mu-0). 265 

 266 

Endothelial cells separated into NOTCH4+ arteriolar (E-3), SPARC+ capillary (E-0), CLU+ 267 

venular (E-1, E-2), and LYVE1+PROX1+ lymphatic endothelial cells (LEC, E-4) (Figure 2F, 268 

Supplementary Figure 10G-K). The majority (53%) were venular and further subdivided into 269 

LIFR+ (E-1) and ICAM1+ (E-2); these cells had high expression of inflammatory genes such as 270 

IL6 and HLA, along with genes that facilitate the transmigration of leukocytes into tissue such as 271 

ICAM1 and SELE (E-selectin)(Supplementary Figure 10I)74. Arteriolar cells expressed high 272 

levels of CXCL12, LTBP4, NOTCH4, and NOTCH ligand DLL4. SPARC+ capillary cells 273 
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expressed collagen and extracellular matrix genes. LECs represented a small number of cells 274 

(n=324) with high expression of CCL21 and FLT475,76. 275 

 276 

For each sample, we calculated the proportion of each cell cluster within each cell type. Then, 277 

we calculated the average of these cluster proportions within each RA CTAP and OA (Figure 278 

2). These values are independent of cell-type abundance differences since they are calculated 279 

relative to each cell type. For example, these values may reflect the relative abundance of IL1B+ 280 

macrophages among all myeloid cells, regardless of the total number of myeloid cells in a 281 

sample. We observed reported differences in RA compared to OA, including an expansion of 282 

sublining fibroblasts relative to lining fibroblasts, and expansion of IL1B+ macrophages relative 283 

to MERTK+ macrophages.  284 

 285 

CTAPs are characterized by specific cell states 286 

We next set out to quantify how the composition of fine-grained cell states differed between 287 

CTAPs. To accurately identify cell-states associated with individual CTAPs within each given 288 

cell type, we used co-varying neighborhood analysis (CNA)77. CNA tests highly granular 289 

“neighborhoods”—small groups of phenotypically similar cells—rather than larger clusters and 290 

accounts for age, sex, and cell count per sample. CNA associations suggest that certain single-291 

cell-resolution states within each cell type are more likely to be found in samples from one 292 

CTAP than others. After identifying CTAP-associated neighborhoods, we defined the canonical 293 

cell states that contain those neighborhoods to infer biologic meaning. In these analyses, we 294 

use “expanded” and “depleted” to refer to changes in relative abundance within a cell type, but 295 

notably these changes may not reflect a change in absolute cell numbers relative to total 296 

number of cells. 297 

 298 
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We observed skewed T cell neighborhoods in CTAP-TB (permutation p=0.046) (Methods, 299 

Figure 3A-B, Supplementary Figure 6E, Supplementary Table 6). T cell neighborhoods 300 

among CD4+ TFH/TPH (T-3) and CD4+ TPH (T-7) cells were expanded, while T cell neighborhoods 301 

among cytotoxic CD4+GNLY+ (T-12) and CD8+GZMB+ cells (T-15) were depleted. Recognizing 302 

that TFH and TPH cells differentiate B cells towards antibody production24,78, we tested B cells for 303 

association to CTAP-TB (permutation p=0.03). We observed expanded neighborhoods in 304 

memory B (B-0 and B-1) and ABC (B-5) clusters, while IgG1+IgG3+ and IgM+ plasma cells (B-8, 305 

B-6) were relatively depleted (Figure 3C-D, Supplementary Figure 7E, Supplementary Table 306 

6). We note that though plasma cells are depleted among B/plasma cells in CTAP-TB, B and 307 

plasma cells overall are enriched among total cells in CTAP-TB (23% compared to 1-10% in 308 

other CTAPs) (Figure 1I, Supplementary Table 4). While TPH (T-7), TFH/TPH (T-3), and ABC (B-309 

5) cells are enriched in CTAP-TB, they are present in all six CTAPs (Supplementary Figures 310 

6E and 7G, Supplementary Table 6). In contrast, GC cells (B-4) were almost exclusively found 311 

in CTAP-TB (Supplementary Figure 7G). Consistent with a role for TFH/TPH  and IL21 in ABC 312 

generation43  and plasma cell differentiation, the frequency of ABCs (B-5) amongst B/plasma 313 

cells correlated with the proportion of TPH (T-7) (Pearson r=0.50, p=3.7e-6, Figure 3E) and 314 

TFH/TPH (T-3) amongst T cells (Pearson r=0.24, p=0.034, Supplementary Figure 7F). 315 

 316 

T cell neighborhoods enriched in CTAP-TF (permutation p=0.036) mainly consisted of cytotoxic 317 

CD4+GNLY+ (T-12) and CD8+GZMB+ cells (T-15) (Figure 3A, Supplementary Figure 6E, 318 

Supplementary Table 6). Similarly, NK cell neighborhoods were altered in CTAP-TF 319 

(permutation p=1e-4), and these neighborhoods contained GZMB-expressing CD56dimCD16+ 320 

NK cells (NK-0-3) (Figure 3G-H, Supplementary Figure 8E). The GZMB+ (NK-0-3) proportion 321 

of NK cells correlated with the GZMB+ (T-15) proportion of T cells (Pearson r=0.63, p=4.87x10-322 

10, Figure 3F). This suggests that a subset of RA samples is enriched in GZMB+ NK and T cells 323 

expressing high IFNG (Supplementary Figure 6D, Supplementary Figure 7D). Conversely, 324 
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we observed that CD8+ T cells expressing GZMK (T-13/14) correlated with NK cells expressing 325 

GZMK (NK-4-8, Pearson r=0.51, p=1.41x10-6, Figure 3F), suggesting that GZMK-expressing 326 

CD8 T and NK cells share a transcriptional program that may result from their tissue 327 

environments. 328 

 329 

CTAP-TF also exhibited specific expansions of fibroblast subpopulations (permutation p=0.048, 330 

Figure 4A-B). Specifically, CXCL12+SFRP1+ sublining fibroblasts (F-6) were disproportionately 331 

expanded in CTAP-TF. These CXCL12+SFRP1+ sublining fibroblasts highly expressed IL6 but 332 

did not express HLA-DR genes.  333 

 334 

Myeloid populations were different in CTAP-M compared to other CTAPs (permutation p=1e-3). 335 

Cell neighborhoods within SPP1+ (M-4) and MERTK+HBEGF+ (M-3) bone marrow-derived 336 

macrophages were enriched in CTAP-M suggesting recruitment of inflammatory monocytes and 337 

transition to macrophage function (Figure 4C-D). Furthermore, in CTAP-M, CD74highHLAhigh 338 

sublining fibroblast neighborhoods (F-5) were expanded relative to stromal cells (permutation 339 

p=1e-3) and SPARC+ capillary cells (E-0) were expanded relative to endothelial cells 340 

(permutation p=7e-3, Figure 4A-B, E-F). Interestingly, the neighborhoods expanded in CTAP-M 341 

were depleted in CTAP-F, while neighborhoods depleted in CTAP-M were enriched in CTAP-F. 342 

Specifically, subpopulations like lining (F-0 and F-1) and CD34+ sublining (F-2) fibroblasts 343 

(permutation p=3e-3), MERTK+LYVE1+ (M-0) and MERTK+S100A8+ (M-2) macrophages 344 

(permutation p=1e-3), and LIFR+ venular (E-1) and ICAM1+ venular (E-2) endothelial cells were 345 

expanded in CTAP-F (permutation p = 3e-3) and depleted in CTAP-M. Notably, the pro-346 

inflammatory IL1B+ macrophages21 (M-7), known to be expanded in RA patients in general21, 347 

were lower in frequency in CTAP-EFM relative to other CTAPs (Figure 4C). 348 

 349 

 350 
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Cell states and CTAPs associated with histology and clinical metrics 351 

In addition to association with CTAPs (Figure 5A), cell neighborhoods may also be associated 352 

with histologic features of RA synovium, which are useful in clinical practice and reflect disease 353 

pathogenesis79–81. Using CNA, we identified transcriptional neighborhoods associated with 354 

histology, accounting for age and sex (Methods). We scored samples for Krenn histologic 355 

inflammation and lining layer domains, in addition to discrete histologic cell density and 356 

aggregate abundance, reflecting inflammatory cell infiltration and organization respectively 357 

(Supplementary Figure 11A). T cells were associated with aggregate scores (permutation 358 

p=0.0088), driven by expanded T cell neighborhoods in CD4+ TFH/TPH (T-3), consistent with their 359 

role in organizing secondary lymphoid structures82,83 (Supplementary Figure 11B, Figure 5A). 360 

IgM+ plasma cells (B-6), plasmablasts (B-7), and ABCs (B-5) were also positively associated 361 

with aggregates (permutation p=0.007) (Supplementary Figure 11B, Figure 5A). In similar 362 

analysis of NK cell neighborhoods, CD56brCD16-GZMA+CD160+ cells (NK-4) were positively 363 

associated with density and aggregate scores (permutation p=3e-04 and 1e-04, respectively) 364 

(Supplementary Figure 11B); this population also contained cell neighborhoods relatively 365 

enriched in CTAP-TB (Figure 2), although the functional role of these cells in follicle-rich 366 

synovium is less clear. Inflammatory myeloid neighborhoods within STAT1+CXCL10+ (M-6), 367 

SPP1+ (M-4) and inflammatory DC3 (M-9) (Supplementary Figure 11B, Figure 5A) were 368 

associated with density (permutation p=0.005). 369 

 370 

We wanted to understand if histologic and clinical measures are explained by CTAPs, taking 371 

age, sex, cell count, and clinical collection site into account (Methods). CTAPs account for 18% 372 

variance of histologic density (p=0.0035) and 18% of variance for aggregates (p=0.0059), with 373 

CTAP-TB and CTAP-TF having the highest scores for both (Figure 5B, Supplementary Figure 374 

12A). Consistent with these observations, CTAPs are associated with Krenn inflammation 375 

scores (p=4e-04), but not with Krenn lining scores (p=0.11) (Figure 5B, Supplementary Figure 376 
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12B). CTAP-F, CTAP-EFM, and CTAP-M have the lowest scores for all histological parameters 377 

(Figure 5B). 378 

The presence of CCP autoantibodies and rheumatoid factor subcategorize RA patients as 379 

seropositive or seronegative. Patients with positive CCP have more severe disease and 380 

radiographic progression84,85. CCP titer values differed across CTAPs (p=0.023, 18% variance), 381 

with CTAP-TB having the highest CCP (mean=292) (Figure 5B), even after restricting the 382 

analysis to seropositive patients (p=0.0047) (Supplementary Figure 12C). 383 

 384 

Intriguingly, CTAPs were independent of most clinical variables including disease activity, 385 

clinical inflammatory markers, smoking history, total swollen joint counts, and sex (Figure 5C, 386 

Supplementary Table 10, Supplementary Figure 12D-L). CTAPs were also mostly 387 

independent of anatomic category and clinical sites (Supplementary Figure 12H-I). Patients in 388 

CTAP-EFM tended to be older and have longer-standing RA than patients in other CTAPs and 389 

were mostly TNFi-inadequate responders (Supplementary Figure 12J-K), although these 390 

associations were not statistically significant. 391 

 392 

CTAPs feature disease-relevant cytokine profiles 393 

We recognized that cell states differentially expressed specific effector molecules, such as 394 

cytokines and their receptors (Supplementary Figure 13). Most cytokines and chemokines are 395 

produced predominantly by one cell type (Figure 6A). For key cytokines produced by multiple 396 

cell types, we quantified the relative contributions of each cell type. For example, we found that 397 

roughly equal numbers of T cells and myeloid cells express TNF while stromal, endothelial, and 398 

B cells dominate among IL-6-expressing cells (Figure 6B). 399 

 400 
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Next, we linked these key effector molecules to CTAPs to complement the previous analyses 401 

where we identified clusters overlapping with associated cell neighborhoods. To do this, we 402 

correlated CTAP neighborhood association scores with expression of key cytokines and 403 

receptors to identify soluble factors produced by CTAP-associated cell states. 404 

 405 

CTAP-TB T cell neighborhood association scores correlated with expression of TFH/TPH-marker 406 

CXCL13 in T cells (Figure 6C-D), consistent with the observation that associated T cell 407 

neighborhoods were in the TFH/TPH clusters (Figure 3A). In contrast, CTAP-TF-associated T cell 408 

neighborhoods were associated with expression of IFNG and TNF, expressed by cytotoxic 409 

(GZMB+ or GNLY+) CD8+ and CD4+ T cell populations (Figure 3A, Figure 6D). NK cell 410 

populations enriched in CTAP-TF also expressed high IFNG and TNF (Figure 3G, Figure 6D). 411 

These results suggest that TNF and IFNG may be intrinsic to the molecular environment of 412 

CTAP-TF. 413 

 414 

Analysis of myeloid cell neighborhoods in CTAP-EFM, CTAP-F, and CTAP-M also highlighted 415 

key cytokines (Figure 6D). CTAP-M myeloid neighborhood association scores correlated with 416 

expression of chemokines that related to activity of myeloid cells and neutrophils, CXCL10 and 417 

CCL2 (Figure 6D), and angiogenic factors CXCL16 and VEGFA. In CTAP-M, endothelial cell 418 

neighborhood association scores correlated with KDR (VEGF receptor 2) (Figure 6D), 419 

consistent with the prevalence of capillary cells in CTAP-M86. In contrast, in CTAP-F, LIFR+ and 420 

ICAM1+ venous endothelial cells expressed high levels of CCL14, whose cognate receptor 421 

CCR1 was highly expressed by MERTK+ macrophages, offering a potential mechanism for the 422 

enrichment of this macrophage subset (Figure 4C-D, Figure 6D). 423 

 424 

CTAPs serve as a reference to map data from other patients and cohorts 425 
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Our study included three patients with replicate biopsies obtained from the same joint (98, 105, 426 

and 190 days) after the initial biopsy. We assessed the stability of CTAP phenotypes over time 427 

between repeated and baseline samples. We found that the cell-type composition of repeat 428 

biopsies was similar to the initial biopsy (mean Mahalanobis distance=1.55, permutation 429 

p=0.073) (Supplementary Figure 14A-B), though a larger study would be necessary to 430 

understand how dynamic CTAPs are in a given patient. 431 

 432 

Given the potential benefits of categorizing synovial tissues from future RA studies into CTAPs, 433 

we next examined whether samples can be classified into CTAPs using a lower-resolution 434 

technology such as flow cytometry. We built a Mahalanobis-distance-based nearest-neighbor 435 

classifier, and we were able to accurately replicate CITE-seq-based CTAP assignments based 436 

on flow cytometry data (accuracy=87%, Figure 6E, Supplementary Figure 14C-D, Methods). 437 

Since CTAPs appear to correlate with known drug targets (Figure 6D) and can be assigned 438 

even with flow cytometry, we expect that CTAPs can be used to systematically query RA 439 

heterogeneity across technologies to improve the granularity of clinical studies and trials and 440 

potentially to guide therapy selection. 441 

 442 

 443 

Discussion 444 

We constructed a comprehensive synovial tissue inflammation reference of >314,000 single 445 

cells. This clinically phenotyped RA atlas can be used to classify single-cell data from other RA 446 

patients, identify shared pathways across diseases, and identify novel drug targets. We 447 

observed that inflamed tissue samples from RA patients have diverse cellular composition that 448 

is captured in six CTAPs. 449 

 450 
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CTAPs represent categories of RA characterized by the presence of certain cell states and the 451 

absence of others. We observed that some previously identified pathogenic cell states in RA are 452 

expanded in specific CTAPs. For example, CD4+ TFH and TPH cells, generally observed to be 453 

enriched among T cells in RA compared to OA24, are present in all CTAPs but are most 454 

expanded in CTAP-TB. These T cell states are enriched along with ABCs and memory B cells, 455 

consistent with the formation of B and T cell aggregates. Independent work has shown that B 456 

cell activation pathways are active in the setting of human autoimmunity44. Importantly, prior 457 

work has focused on peripheral blood and normal secondary lymphoid tissue87–89, and it 458 

remains unknown how this translates to B cell activation and ectopic lymphoid reactions in RA 459 

synovium. Our work suggests the presence of two synovial B cell activation pathways, including 460 

conventional germinal center responses and extra-follicular pathways, the latter characterized 461 

by CXCR5- ABCs and TPH. The rarity of GC dark-zone B cells and abundance of ABCs suggest 462 

the prominence of extra-follicular activation pathways in RA synovium. Other novel findings from 463 

the B-cell analyses include genes associated with antigen presentation in the ABCs, the 464 

presence of CD1c- MZ-like B cells previously described in Sjogren’s disease salivary glands90, 465 

and the heterogeneity of plasma cells. 466 

 467 

In other cell types as well, CTAPs delineate RA subsets where established cell states of interest 468 

may be more or less prominent. For example, among fibroblasts, prior studies have found that 469 

inflammatory sublining cells expressing HLA-DR, CXCL9, CXCL12, and IL6 are known to be 470 

enriched in RA compared to OA21,68. Here, we find that these inflammatory sublining cells are 471 

composed of several subpopulations—some of which, specifically CXCL12+ and 472 

CD74highHLAhigh cells, were enriched in CTAP-TF and CTAP-M, respectively. These findings 473 

may reflect different axes of inflammatory fibroblast phenotypes, likely involving signals 474 

exchanged with surrounding leukocytes. Interestingly, CTAP-M, where CD74highHLAhigh 475 

fibroblasts are enriched, also exhibits specific enrichment of MERTK+HBEGF+ and SPP1+ 476 
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(osteopontin) macrophages, and several other myeloid populations (e.g. IL1B+ FCN1+) are also 477 

prominent. These and other instances of co-enriched populations (e.g. GZMK+ versus GZMB+ 478 

CD8 T cells and NK cell subsets) inspire new questions about cell-cell interactions underlying 479 

inflammatory phenotypes in RA synovium and potentially other tissues and diseases.  480 

 481 

CTAPs are associated with histologic and serologic (CCP) parameters but not with drug history 482 

and clinical disease activity metrics in this study. We argue that CTAPs from biopsies offer 483 

independent information from what physician assessments offer. Our study does not address 484 

the evolution of CTAPs in patients over time. We anticipate future longitudinal studies to 485 

investigate CTAP changes over time along with treatment effects. In our limited assessment of 486 

three patients, we noted minimal evolution of CTAPs despite treatment changes. 487 

 488 

Targeting the specific cell subsets enriched in a given CTAP may be key in personalized RA 489 

treatment. For example, abrogating T-B cell communication with B cell-depleting antibodies 490 

(e.g. rituximab) or blocking costimulation (e.g. abatacept) in CTAP-TB may break the 491 

pathogenic mechanisms that drive inflammation in these patients18,82. Conversely, patients with 492 

CTAP-TF and CTAP-M feature fibroblast populations with high IL-6, an established target of 493 

current FDA-approved treatments of RA (e.g. tocilizumab). CTAP-TF and CTAP-M feature 494 

abundant IFNG-expressing cells or IFN-associated gene signatures, suggesting that these 495 

patients may respond effectively to JAK inhibitors (e.g. tofacitinib, upadacitinib). Lastly, other 496 

CTAPs, such as CTAP-EFM and CTAP-F, currently have no obvious targets of currently 497 

available treatments and warrant further focused study. Thus, CTAPs represent valuable 498 

molecular classifications of RA that may drive the search for new treatments. 499 

 500 

The CTAP paradigm provides a tissue classification system that captures coarse cell-type and 501 

fine cell-state heterogeneity. Importantly, CTAPs use global cell-type frequencies and are 502 
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thereby an accessible tool to categorize heterogeneity of tissue inflammation using multiple 503 

technologies. The model presented here may serve as a powerful prototype to classify other 504 

types of tissue inflammation, including in other immune-mediated diseases. A deeper 505 

understanding of the heterogeneity of tissue inflammation in RA and other autoimmune 506 

diseases may shed new light on disease pathogenesis and reveal new treatment targets. 507 

 508 
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Figure 1. Overview of multimodal single-cell synovial tissue pipeline and cell type abundance analysis reveals distinct RA cell type abundance phenotypes (CTAPs). 
A. Description of patient recruitment, clinical and histologic metrics, synovial sample processing pipeline, and computational analysis strategy, including B. identifying major cell 
types and fine-grained cell states, C. definition of distinct RA CTAPs, and D. cell neighborhoods associations with each CTAP or with clinical or histologic parameters for each 
major cell type, E. Integrative UMAP based on mRNA and protein discriminated major cell types, F. UMAPs of CITE-seq antibody-based expression of cell type lineage protein
markers. Cells are colored based on expression from blue (low) to yellow (high), G. Hierarchical clustering of cell type abundances captures six RA subgroups, referred to as cell 
type abundance phenotypes (CTAPs). The nine OA samples are shown as a comparison. Each bar represents one synovial sample, colored by the proportion of each major cell 
type, H. Mean Jaccard similarity coefficient to test CTAP stability by bootstrapping 10,000 times for each tested number of patient subgroups ranging from 2 to 10, I. Average 
proportions of each major cell type among samples in each CTAP. Overall average proportions across all samples are shown as a comparator. Asterisk represents the proportion
that is greater than the overall average for that cell type, J. PCA of major cell type abundances. Each dot represents a sample colored by CTAPs.
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Figure 2. Cell-type-specific single-cell analysis captures 77 distinct cell states in RA synovium. A-F. Six cell-type-specific reference UMAPs colored by 
fine-grained cell states. For each cell type, the heatmap shows the average proportions of each cluster across patient samples in each RA CTAP and OA, scaled
within each cluster.
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Figure 3. Different T cell, B cell, and NK cell populations are associated with RA CTAPs. A, Associations of T cell neighborhoods with CTAP-TB and CTAP-TF. P-values 
are from the CNA test for each CTAP within T cells. For all CNA results, cells in UMAP are colored in red (positive) or blue (negative) if their neighborhood is significantly 
associated with the CTAP (FDR < 0.05), and gray otherwise. Distributions of neighborhood correlations are shown for clusters with >50% of neighborhoods correlated with
the CTAP at FDR > 0.05, B. Expression of selected surface proteins and transcripts among T cells. For all expression UMAPs, cells are colored from blue (low) to yellow 
(high), C. Associations of B/plasma cell neighborhoods with CTAP-TB, D. Expression of selected surface proteins and transcripts among B/plasma cells, E. Percentage of 
TPH (T-7) out of T cells and CD11c+ LAMP1+ ABCs (B-5) out of B/plasma cells for each donor sample, represented by points. R and p-value are calculated from Pearson
correlation, F. Heatmap colored by Pearson correlation between per-donor CD8 T cell and NK cell cluster abundances, G. Associations of NK cell neighborhoods with 
CTAP-TF. H. Expression of selected surface proteins and transcripts in NK cells.
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Figure 4. Different stromal, myeloid, endothelial cell populations are associated with RA CTAPs. A. Association of stromal cell neighborhoods with CTAP-TF, CTAP-M, 
and CTAP-F. For all CNA results, cells in UMAPs are colored in red (positive) or blue (negative) if their neighborhood is significantly associated with the CTAP (FDR < 0.05), 
and  gray otherwise. Distributions of neighborhood correlations are shown for clusters with >50% of neighborhoods correlated with the CTAP at FDR>0.05, B. Expression of 
selected surface proteins and transcripts among stromal cells. For all expression UMAPs, cells are colored from blue (low) to yellow (high), C. Association of myeloid cell 
neighborhoods with CTAP-EFM, CTAP-M, and CTAP-F, D. Expression of selected surface proteins and transcripts among myeloid cells, E. Association of endothelial cell 
neighborhoods with CTAP-M and CTAP-F, F. Expression of selected surface proteins and transcripts among endothelial cells. 
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Figure 6. Cell type clusters and CTAPs feature distinct disease-relevant soluble factor and receptor profiles. A. Expression profiles of cell type cluster-specific soluble 
factors, B. Percent contribution among cytokine mRNA-expressing cells from each major cell type, C. Expression of representative cytokine, CXCL13, that is significantly 
correlated with CTAP-associated cell neighborhoods. Cells in UMAPs of CTAP associations are colored in red (positive) or blue (negative) if their neighborhood is significantly 
associated with the CTAP (FDR < 0.05), and gray otherwise. Cells in expression UMAPs are colored from blue (low) to yellow (high), D. With a heatmap, we visualized the 
cytokines and receptors whose expressions are significantly correlated (r > 0.5) with CTAP-associated cells; we then hierarchically clustered them based on cell type-specific 
CTAPs. For each gene, receptor/ligand designation and current RA drug target status are labeled, E. Pipeline and results to map and classify flow cytometry samples by 
single-cell RA CTAPs. Bar plot shows accuracy of flow sample classification (i.e., assigned to the same CTAP as a single-cell sample from the same patient).
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Figure Legends 548 

Figure 1. Overview of multimodal single-cell synovial tissue pipeline and cell type 549 

abundance analysis reveals distinct RA cell type abundance phenotypes (CTAPs). A. 550 

Description of patient recruitment, clinical and histologic metrics, synovial sample processing 551 

pipeline, and computational analysis strategy, including B. identifying major cell types and fine-552 

grained cell states, C. definition of distinct RA CTAPs, and D. cell neighborhoods associations 553 

with each CTAP or with clinical or histologic parameters for each major cell type, E. Integrative 554 

UMAP based on mRNA and protein discriminated major cell types, F. UMAPs of CITE-seq 555 

antibody-based expression of cell type lineage protein markers. Cells are colored based on 556 

expression from blue (low) to yellow (high), G. Hierarchical clustering of cell type abundances 557 

captures six RA subgroups, referred to as cell type abundance phenotypes (CTAPs). The nine 558 

OA samples are shown as a comparison. Each bar represents one synovial sample, colored by 559 

the proportion of each major cell type, H. Mean Jaccard similarity coefficient to test CTAP 560 

stability by bootstrapping 10,000 times for each tested number of patient subgroups ranging 561 

from 2 to 10, I. Average proportions of each major cell type among samples in each CTAP. 562 

Overall average proportions across all the samples are shown as a comparator. Asterisk 563 

represents the proportion that is greater than the overall average for that cell type, J. PCA of 564 

major cell type abundances. Each dot represents a sample, plotted based on its PC1 and PC2 565 

projections and colored by CTAPs. 566 

 567 

Figure 2. Cell-type-specific single-cell analysis captures 77 distinct cell states in RA 568 

synovium. A-F. Six cell-type-specific reference UMAPs colored by fine-grained cell state 569 

clusters. For each cell type, the heatmap shows the average proportions of each cluster across 570 

patient samples in each RA CTAP and OA, scaled within each cluster. 571 

 572 
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Figure 3. Different T cell, B cell, and NK cell populations are associated with RA CTAPs. 573 

A, Associations of T cell neighborhoods with CTAP-TB and CTAP-TF. P-values are from the 574 

CNA test for each CTAP within T cells. For all CNA results, cells in UMAP are colored in red 575 

(positive) or blue (negative) if their neighborhood is significantly associated with the CTAP (FDR 576 

< 0.05), and gray otherwise. Distributions of neighborhood correlations are shown for clusters 577 

with >50% of neighborhoods correlated with the CTAP at FDR>0.05, B. Expression of selected 578 

surface proteins and transcripts among T cells. For all expression UMAPs, cells are colored 579 

from blue (low) to yellow (high), C. Associations of B/plasma cell neighborhoods with CTAP-TB, 580 

D. Expression of selected surface proteins and transcripts among B/plasma cells, E. Percentage 581 

of TPH (T-7) out of T cells and CD11c+ LAMP1+ ABCs (B-5) out of B/plasma cells for each 582 

donor sample, represented by points. R and p-value are calculated from Pearson correlation, F. 583 

Heatmap colored by Pearson correlation between per-donor CD8 T cell and NK cell cluster 584 

abundances, G. Associations of NK cell neighborhoods with CTAP-TF. H. Expression of 585 

selected surface proteins and transcripts in NK cells. 586 

 587 

Figure 4. Different stromal, myeloid, endothelial cell populations are associated with RA 588 

CTAPs. A. Association of stromal cell neighborhoods with CTAP-TF, CTAP-M, and CTAP-F. 589 

For all CNA results, cells in UMAPs are colored in red (positive) or blue (negative) if their 590 

neighborhood is significantly associated with the CTAP (FDR < 0.05), and gray otherwise. 591 

Distributions of neighborhood correlations are shown for clusters with >50% of neighborhoods 592 

correlated with the CTAP at FDR>0.05, B. Expression of selected surface proteins and 593 

transcripts among stromal cells. For all expression UMAPs, cells are colored from blue (low) to 594 

yellow (high), C. Association of myeloid cell neighborhoods with CTAP-EFM, CTAP-M, and 595 

CTAP-F, D. Expression of selected surface proteins and transcripts among myeloid cells, E. 596 

Association of endothelial cell neighborhoods with CTAP-M and CTAP-F, F. Expression of 597 

selected surface proteins and transcripts among endothelial cells.  598 
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 599 

Figure 5. Single-cell covarying neighborhood analysis reveals significant association of 600 

cell states with disease indicators. A. Heatmap of CNA associations of specific cell states 601 

with each RA CTAP. Colors represent % cell neighborhoods from each cell state with local 602 

(neighborhood-level) phenotype correlations passing FDR < 0.05 significance from white to pink 603 

(expanded) or green (depleted). Cell types significantly associated globally (cell-type-level) with 604 

a phenotype at permutation p < 0.05 are boxed in black, B. Association between clinical 605 

features and CTAPs, adjusting covariates for age, sex, cell number, and clinical collection site. 606 

Percentage of variance explained by CTAPs alone and p-value are calculated with ANOVA 607 

tests. 95% confidence intervals are shown. C. Clinical, demographic, and histologic metrics 608 

plotted by percentage of variance explained by CTAPs and the ANOVA p-value for its 609 

association with CTAPs. Features in red are significant at ANOVA p < 0.05. 610 

 611 

Figure 6. Cell type clusters and CTAPs feature distinct disease-relevant soluble factor 612 

and receptor profiles. A. Expression profiles of cell type cluster-specific soluble factors, B. 613 

Percent contribution among cytokine mRNA-expressing cells from each major cell type, C. 614 

Expression of representative cytokine, CXCL13, that is significantly correlated with CTAP-615 

associated cell neighborhoods. Cells in UMAPs of CTAP associations are colored in red 616 

(positive) or blue (negative) if their neighborhood is significantly associated with the CTAP (FDR 617 

< 0.05), and gray otherwise. Cells in expression UMAPs are colored from blue (low) to yellow 618 

(high), D. With a heatmap, we visualized the cytokines and receptors whose expressions are 619 

significantly correlated (r > 0.5) with CTAP-associated cells; we then hierarchically clustered 620 

them based on cell type-specific CTAPs. For each gene, receptor/ligand designation and 621 

current RA drug target status are labeled, E. Pipeline and results to map and classify flow 622 

cytometry samples by single-cell RA CTAPs. Bar plot shows accuracy of flow sample 623 

classification (i.e., assigned to the same CTAP as a single-cell sample from the same patient). 624 
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Supplementary Figures 625 

Supplementary Figure 1. Detailed single-cell CITE-seq quality control. A. Quality of the 626 

cells based on number of genes detected and percent mitochondrial UMIs (%MT), B. 627 

Percentage of good quality cells for sample-level QC, C. Doublet detection using Scrublet, D. 628 

UMAP of the number of genes and UMIs detected, E. Number of cells remaining after each step 629 

of QC, F. Distributions of cell type lineage antibody staining from CITE-seq determine 630 

percentage of major cell types based on the thresholds (red line) including % CD45+ cells, % T 631 

cells based on CD4 antibody, % B cells based on CD20+, % macrophages based on CD14+, % 632 

endothelial cells based on CD146+, and % fibroblasts based on PDPN+, G. Representative 633 

gating of flow cytometry data to quantify selected synovial cell populations, H. Concordance of 634 

single-cell CITE-seq antibody staining with an analogous gating schema for flow cytometry. For 635 

flow gating, we determined % CD45+ based on CD45+ over all live cells, % T cells based on 636 

CD45+CD3+ over all live cells, % B cells based on CD45+CD3-CD14-CD20+, % macrophages 637 

based on CD45+CD14+, % fibroblasts based on CD45-CD146-CD31-, % endothelial cells based 638 

on CD45-CD146+CD31+, % CD4 T cells based on CD45+CD3+CD4+, % HLA+ CD4 T cells based 639 

on CD45+CD3+CD4+HLA-DR+, % CD8 T cells based on CD45+CD3+CD8+, % HLA+ CD8 T cells 640 

based on CD45+CD3+CD8+HLA-DR+, % PD1+ CD4 T cells based on CD45+CD3+CD4+PD1+, % 641 

HLA+ fibroblasts based on CD45-CD146-CD31-HLA+, % sublining fibroblast based on CD45-642 

CD146-CD31-CD90+, % CD27+ B cells based on CD45+CD3-CD14-CD20+CD27+, and % CD11c+ 643 

B cells based on CD45+CD3-CD14-CD20+CD11c+, respectively.   644 

 645 

Supplementary Figure 2. Single-cell CITE-seq integrative analysis. A. CCA-based pipeline 646 

for integrating mRNA and protein expressions, B. Concordance between average mRNA 647 

expression and the correlations of corresponding protein and mRNA expression. Black line 648 

represents the linear best fit line and the shaded region represents the 95% confidence interval, 649 
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C. Sample sources (n=82) in the UMAP space, paired with sensitivity analyses of Harmony 650 

parameters based on LISI scores to measure mixture levels on D. samples and E. cell types, F. 651 

The effect of varying the selected number of antibodies based on each antibody’s specificity: KL 652 

divergence equals 0.5 (25 proteins), 0.3 (36 proteins), and 0 (58 proteins), while also varying 653 

the number of highly variable genes used: 500/sample (3,164 genes in total) and 1,000/sample 654 

(5,751 genes in total) on the mRNA and protein integrative analysis. We used the top 1,000 655 

most variable genes per sample and 36 most specific proteins because it best recovered major 656 

cell types and more clearly identified rare cell types, G. Gene expression of cell type lineage 657 

signatures, H. Jaccard similarity coefficient that assessed the clustering stability of CTAPs. 658 

 659 

Supplementary Figure 3. Surface protein specificity and selection for integrative 660 

analysis. Kullback-Leibler divergence measured the specificity of each protein across A. all 661 

cells, B. T cells, and C. B/plasma cells. Proteins to the left of the red line were chosen for the 662 

CCA integration of each set of cells. Canonical correlations for each of the top 20 canonical 663 

variates (CVs) from canonical correlation analysis of D. all cells, E. T cells and F. B/plasma 664 

cells, respectively.  665 

 666 

Supplementary Figure 4. Gene and protein features that correlated with the top 20 CVs 667 

for integrative analysis. Correlation z scores for genes (top) and proteins (bottom) in A. T 668 

cells, and B. B/plasma cells. 669 

 670 

Supplementary Figure 5. The single-cell CITE-seq RA reference serves as an RA atlas to 671 

query other cells. A-B. We used Symphony37 to map synovial cells from the AMP phase I RA 672 

dataset (Zhang, et al., 2019) 21 onto this AMP phase II single-cell RA reference, C-D. We are 673 

able to accurately map and predict the cells (Zhang, et al., 2019) from the same cell types with 674 

the reference, E. We further used Symphony to map cells (Zhang, et al, 2019) from each cell 675 
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type including B/plasma cells (n=1,142), T cells (n=1,529), fibroblasts (n=1,844), and 676 

macrophages (n=750) onto the corresponding cell-type specific references from this study 677 

(B/plasma cell, T cell, stromal cell, and myeloid cell) to determine correspondence between cell 678 

types defined in Zhang, et al, 2019 to the cell states in this study. Each heatmap shows results 679 

for the major cell type, with rows corresponding to cell states from this study and columns 680 

corresponding to cell states from Zhang, et al, 2019. Blue-red color scale indicates the log(OR) 681 

for a given pair of states (OR is the ratio of odds of mapping a cluster cell in Zhang, et al, 2019 682 

to a given cluster of this study compared to odds of mapping other cells in Zhang, et al, 2019 683 

onto the same cluster of this study), with higher values indicating greater correspondence 684 

between Zhang, et al., 2019 and the fine-grained cell states in this study. 685 

 686 

Supplementary Figure 6. T cell-specific analysis. A. T cell UMAP colored by fine-grained cell 687 

state clusters, B. Expression of selected surface proteins among T cells. Cells are colored from 688 

blue (low) to yellow (high), C. Heatmap of surface protein expression in T cell clusters colored 689 

according to the average normalized expression across cells in the cluster, D. Heatmap of gene 690 

expression in T cell clusters colored according to the average normalized expression across 691 

cells in the cluster, scaled for each gene across clusters, E. Distribution of T cells across 692 

clusters, stratified by CTAP. The size of each segment of each bar corresponds to the average 693 

proportion of cells in that cluster across donors from that CTAP. F. Number of T cells per donor, 694 

stratified by CTAP. Points represent donors. Box plots show median (vertical bar), 25th and 695 

75th percentiles (lower and upper bounds of the box, respectively) and 1.5 x IQR (or 696 

minimum/maximum values; end of whiskers). 697 

 698 

Supplementary Figure 7. B/plasma cell-specific analysis. A. B/plasma cell UMAP colored by 699 

fine-grained cell state clusters, B. Expression of selected surface proteins among B/plasma 700 

cells. Cells are colored from blue (low) to yellow (high), C. Heatmap of surface protein 701 
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expression in B/plasma cell clusters colored according to the average normalized expression 702 

across cells in the cluster, D. Heatmap of gene expression in B/plasma cell clusters colored 703 

according to the average normalized expression across cells in the cluster, scaled for each 704 

gene across clusters, E. Number of B/plasma cells per donor, stratified by CTAP. Points 705 

represent donors. Box plots show median (vertical bar), 25th and 75th percentiles (lower and 706 

upper bounds of the box, respectively) and 1.5 x IQR (or minimum/maximum values; end of 707 

whiskers), F. Heatmap of correlations between select T and B cell subsets, colored by Pearson 708 

correlation between per-donor proportions, G. Distribution of B/plasma cells across clusters, 709 

stratified by CTAP. The size of each segment of each bar corresponds to the average 710 

proportion of cells in that cluster across donors from that CTAP. 711 

 712 

Supplementary Figure 8. NK cell-specific analysis. A. NK cell UMAP colored by fine-grained 713 

cell state clusters, B. Expression of selected surface proteins among NK cells colored from blue 714 

(low) to yellow (high), C. Heatmap of surface protein expression in NK cell clusters colored 715 

according to the average normalized expression across cells in the cluster, D. Heatmap of gene 716 

expression in NK cell clusters colored according to the average normalized expression across 717 

cells in the cluster, scaled for each gene across clusters, E. Distribution of NK cells across 718 

clusters, stratified by CTAP. The size of each segment of each bar corresponds to the average 719 

proportion of cells in that cluster across donors from that CTAP. F. Number of NK cells per 720 

donor, stratified by CTAP. Points represent donors. Box plots show median (vertical bar), 25th 721 

and 75th percentiles (lower and upper bounds of the box, respectively) and 1.5 x IQR (or 722 

minimum/maximum values; end of whiskers). 723 

 724 

Supplementary Figure 9. Myeloid cell-specific analysis. A. Myeloid cell UMAP colored by 725 

fine-grained cell state clusters, B. Expression of selected surface proteins among myeloid cells 726 

colored from blue (low) to yellow (high), C. Heatmap of surface protein expression in myeloid 727 
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cell clusters colored according to the average normalized expression across cells in the cluster, 728 

D. Heatmap of gene expression in myeloid cell clusters colored according to the average 729 

normalized expression across cells in the cluster, scaled for each gene across clusters, E. 730 

Distribution of myeloid cells across clusters, stratified by CTAP. The size of each segment of 731 

each bar corresponds to the average proportion of cells in that cluster across donors from that 732 

CTAP. F. Number of myeloid cells per donor, stratified by CTAP. Points represent donors. Box 733 

plots show median (vertical bar), 25th and 75th percentiles (lower and upper bounds of the box, 734 

respectively) and 1.5 x IQR (or minimum/maximum values; end of whiskers). 735 

 736 

Supplementary Figure 10. Stromal- and endothelial-specific analysis. A. Stromal cell 737 

UMAP colored by fine-grained cell state clusters, B. Expression of selected surface proteins 738 

among stromal cells colored from blue (low) to yellow (high), C. Heatmap of surface protein 739 

expression in stromal cell clusters colored according to the average normalized expression 740 

across cells in the cluster, D. Heatmap of gene expression in stromal cell clusters colored 741 

according to the average normalized expression across cells in the cluster, scaled for each 742 

gene across clusters, E. Distribution of stromal cells across clusters, stratified by CTAP. The 743 

size of each segment of each bar corresponds to the average proportion of cells in that cluster 744 

across donors from that CTAP, F. Number of stromal cells per donor, stratified by CTAP. Points 745 

represent donors. Box plots show median (vertical bar), 25th and 75th percentiles (lower and 746 

upper bounds of the box, respectively) and 1.5 x IQR (or minimum/maximum values; end of 747 

whiskers), G. Endothelial cell UMAP colored by fine-grained cell state clusters, H. Expression of 748 

selected surface proteins among endothelial cells colored from blue (low) to yellow (high), I. 749 

Heatmap of gene expression in endothelial cell clusters colored according to the average 750 

normalized expression across cells in the cluster, scaled for each gene across clusters, J. 751 

Distribution of endothelial cells across clusters, stratified by CTAP. The size of each segment of 752 

each bar corresponds to the average proportion of cells in that cluster across donors from that 753 
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CTAP. K. Number of endothelial cells per donor, stratified by CTAP. Points represent donors. 754 

Box plots show median (vertical bar), 25th and 75th percentiles (lower and upper bounds of the 755 

box, respectively) and 1.5 x IQR (or minimum/maximum values; end of whiskers). 756 

 757 

Supplementary Figure 11. Clinical and histologic association results using CNA. A. 758 

Representative histologic images illustrating different levels of density and aggregation scores, 759 

B. For each broad cell type, we identified and presented specific cell populations that were 760 

associated with histologic density and aggregation scores by controlling age, sex, and number 761 

of cells per sample; cells in red/blue represent positive/negative associations that pass FDR 762 

0.05 correlation, and global permutation p-value is also shown for each association testing.  763 

 764 

Supplementary Figure 12. Association of single-cell RA CTAPs with different clinical 765 

characteristics. A. Clinical, histologic, and ultrasound parameters of patients in each CTAP. 766 

For all box plots, each dot represents a donor; boxes show median (vertical bar), 25th and 75th 767 

percentiles (lower and upper bounds of the box, respectively) and 1.5 x IQR (or 768 

minimum/maximum values; end of whiskers), B Association of Krenn inflammation and Krenn 769 

lining with CTAPs, adjusting covariates for age, sex, cell number, and clinical collection site. 770 

Percent of variance explained by CTAPs only and p-value are calculated with ANOVA test, C. 771 

CCP levels among seropositive patients alone, C. CTAP frequency among seropositive (CCP+, 772 

RF+, or both) versus seronegative patients, D. CTAP frequency by sex, E. CTAP frequency by 773 

smoking history, F. CTAP frequency by anatomic site of synovial biopsy H. Number of patient 774 

samples for each CTAP between biopsy and synovectomy, I. Collection/cryopreservation sites, 775 

J. Association of age and RA duration with CTAPs, adjusting covariates for age, sex, cell 776 

number, and clinical collection site. Percentage of variance explained by CTAPs alone and p-777 

value are calculated with ANOVA test. 95% confidence intervals are shown. K. Sample 778 
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distributions across CTAPs by recruitment cohort, L. Overview of clinical variables for patient 779 

samples distributed by CTAPs. “X” represents missing data for a particular sample. 780 

 781 

Supplementary Figure 13. Single-cell cellular sources of cytokines and cytokine 782 

receptors. Z-scored pseudo-bulk expression across the identified 77 cell states of a curated 783 

cytokine and receptor list from KEGG (M9809)105 is shown. 138 cytokines and receptors that are 784 

expressed in more than 3% of total single cells are shown here. 785 

 786 

Supplementary Figure 14. Assigning repeated biopsy and flow samples to CTAPs. A. 787 

Mapping three repeated biopsy samples onto CTAP PC space based on the cell type 788 

abundance, B. We evaluated CTAP stability by randomly selecting 1,0000 samples and 789 

measuring the Mahalanobis distance between these random samples to the baseline samples, 790 

C. Mapping flow cytometry samples onto CTAP PC space, D. Mahalanobis distance of each 791 

flow sample to each CTAP centroid; the original CTAP of the single-cell samples from the same 792 

donors are labeled as red. 793 

 794 

 795 

Supplementary Tables 796 

Supplementary Table 1. Statistics of demographic, clinical, and histology metrics across 797 

recruitment groups and disease activity levels.  798 

Supplementary Table 2. Antibodies used in CITE-seq panel.  799 

Supplementary Table 3. Antibodies used in flow cytometry panels. 800 

Supplementary Table 4. Proportions of cell types within each CTAP compared with the 801 

proportions across all samples. For each identified CTAP, we named it based on the cell 802 
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types if their average proportions were higher in it compared to their average across all 803 

samples. 804 

Supplementary Table 5. Examination of our previously identified RA expanded single-cell 805 

clusters21 in the single-cell dataset from this study. 95% confidence interval (CI) for the 806 

odds ratio (OR) and one-sided MASC (mixed-effects modeling of associations)106 p-value are 807 

shown. 808 

Supplementary Table 6. Each identified single-cell cluster’s median proportion across 809 

samples within each CTAP. 810 

Supplementary Table 7. Details and parameters of single-cell integration and clustering 811 

for each cell type. For each broad cell type, we present the number of variable genes, KL 812 

divergence threshold for protein selection, Harmony parameters for batch correction, and 813 

clustering resolution. 814 

Supplementary Table 8. Differentially expressed genes and relative statistics per CITE-815 

seq cluster. For each broad cell type, pseudo-bulk differential expression is used with a linear 816 

regression model accounting for donor and number of UMIs to identify genes that were more 817 

highly expressed inside vs. outside the cluster. Likelihood ratio test p-values and fold change 818 

are presented for prioritized markers. 819 

Supplementary Table 9. Statistics of single-cell cell type-specific associations with 820 

CTAPs and histologic parameters. We show the statistics for each CTAP-specific association 821 

testing and histologic parameter association testing. 822 

Supplementary Table 10. Statistics of demographic, clinical, and histologic metrics 823 

across RA CTAPs. We show the statistics of clinical characteristics, demographic variables, 824 

medications, and treatment groups across RA CTAPs. 825 

 826 

 827 
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Methods  828 

RA patient recruitment and clinical data collection 829 

The Accelerating Medicines Partnership (AMP) Network for RA and SLE constructed a cross-830 

sectional cohort - samples were collected from 13 clinical sites across the United States and 2 831 

sites in the United Kingdom. The collection occurred over the course of a 45-month period from 832 

October 2016 to February of 2020. The study was performed in accordance with protocols 833 

approved by the institutional review board. Demographics, RA clinical data, clinical 834 

assessments, and measurements of ESR and CRP were performed at the baseline visit. Data 835 

collected include age, sex, RA duration, RF or anti-CCP status, RA treatments, tender and 836 

swollen joint counts. ESR and CRP were measured using commercial assays in each 837 

institution’s clinical laboratory. Disease activity for each subject was calculated using a DAS28-838 

CRP3 validated instrument91,92. 839 

 840 

Synovial tissue collection and processing 841 

Synovial tissue samples were obtained from ultrasound-guided biopsies or surgical procedures. 842 

Of the 82 samples that completed the tissue processing pipeline, 54 samples were biopsies 843 

obtained with a Quick-Core needle, 15 samples were biopsies obtained with portal and forceps, 844 

10 samples were collected during arthroplasty surgery, and 6 samples were collected during 845 

surgical synovectomy procedures.  All specimens consisted of a median of 13 samples (range 846 

4-36), of which 6-8 fragments were fixed in formalin for subsequent paraffin embedding and 847 

processing for histologic analysis. The remaining fragments were cryopreserved in one or more 848 

aliquots in Cryostor CS10 (Sigma-Aldrich) cryopreservation media. Samples were shipped to a 849 

central biorepository site until sample collection was complete. They were then transited to the 850 

central pipeline site, where samples were thawed and processed in batches. 851 

 852 
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Histology assessment, definition of density and aggregation for RA synovium 853 

In order to exclude low-quality synovial tissue samples from our multi-omics tissue processing 854 

platform, we analyzed hematoxylin and eosin-stained slides of formalin-fixed, paraffin-855 

embedded synovial tissue from each patient. At least six tissue fragments per patient were 856 

included in the analysis to mitigate sampling bias. Synovial tissue was identified as previously 857 

described21, and samples that lacked any discernible synovial tissue were excluded from further 858 

analysis. To separate histologic domains of the density of the infiltrate and the extent of 859 

formation of discrete aggregates that are not distinguished by the Krenn inflammatory infiltrate 860 

domain, we developed consensus semiquantitative four point scales for density and aggregate 861 

radial size with a custom atlas using a test set of tissues from the Birmingham Early Arthritis 862 

Cohort93, scored by three pathologists. This approach was validated by scoring tissues from the 863 

first AMP RA cohort21, achieving an intra-class correlation coefficient score of 0.896 for 864 

summary mean density score of fragments for each tissue and kappa 0.862 for the worst case 865 

aggregate score achieved in each tissue. Equivalent ICC figures for the summary mean scores 866 

of fragments for Krenn inflammatory domain and Lining layer thickness domains were 0.937 and 867 

0.646 respectively. Three pathologists independently determined Krenn lining and inflammatory 868 

infiltrates scores (0-3 each)94, cellular density scores (0-3), and aggregate (0-3) scores for each 869 

tissue sample, and the mode of the three scores was used for further analysis.  870 

 871 

Tissue disaggregation, live cell sorting, and cell allocations 872 

For pipeline analysis, cryopreserved synovial tissue samples were thawed and disaggregated 873 

into single-cell suspension as previously described95. Briefly, thawed synovial tissue fragments 874 

were mechanically and enzymatically separated in digestion buffer (Liberase TL (Roche) 100 875 

μg/ml and DNase I (New England Biolabs) 100 μg/ml in RPMI) in 37°C water bath for 30 min. 876 

Single-cell suspensions from disaggregated synovial tissues were stained with anti-CD235a 877 

antibodies (clone 11E4B-7-6 (KC16), Beckman Coulter) and Fixable Viability Dye eFlour 780 878 
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(eBioscience/ThermoFisher). Live non-erythrocyte cells (viability dye- CD235-) were collected by 879 

fluorescence-activated cell sorting (BD FACSAria Fusion). Cells were allocated as follows, in 880 

order of priority: (1) 60,000 cells for CITE-seq analysis; (2) 50,000 cells for flow cytometry and 881 

bulk RNA-seq analysis; (3) remaining cells re-frozen in aliquots of 70,000 - 100,000 cells in 882 

CryoStor CS10 for other analyses (e.g. single-cell ATAC-seq and immune cell repertoire 883 

studies). Samples with fewer than 60,000 cells were applied to CITE-seq analysis alone. 884 

 885 

Flow cytometry and bulk RNA-seq 886 

Up to 50,000 sorted live synovial cells were stained with the following antibodies to define cell 887 

subsets: CD3 (UCHT1), CD4 (OKT4), CD8 (SK1), CD11c (3.9), CD14 (M5E2), CD19 (HIB19), 888 

CD27 (M-T271), CD31 (WM59), CD45 (HI30), CD90 (5E10), CD146 (P1H12), HLA-DR (L234), 889 

PD-1 (EH12.2H7). All antibodies were purchased from Biolegend, and staining was performed 890 

in the presence of Fc block (eBioscience/ThermoFisher, True-Stain Monocyte Blocker 891 

(Biolegend), and Brilliant Stain Buffer (BD Bioscience). We collected flow cytometry data in 892 

conjunction with fluorescence-activated cell sorting of up to 1,000 B cells (CD45+CD3-CD14-893 

CD19+), fibroblasts (CD45-CD31-CD146-), macrophages (CD45+CD3-CD14+), and T cells 894 

(CD45+CD3+CD14-) on a BD FACSAria Fusion cell sorter. 895 

 896 

Single-cell CITE-seq antibody staining, RNA library preparation, and sequencing 897 

Antibody staining using TotalSeqTM-A antibodies was performed as per the recommended 898 

protocol (BioLegend). Briefly, we first curated a list of surface proteins based on markers of cell 899 

states identified in previous RA studies and TotalSeqTM-A antibodies available at the time. To 900 

identify optimized concentrations of these antibodies for synovial tissue, we conducted a series 901 

of pilot studies where we titrated antibodies and measured their staining quality with mean 902 

expression (i.e., intensity) and Kullback-Leibler (K-L) divergence (i.e., specificity). We calculated 903 

K-L divergence by comparing the distribution across mRNA-defined clusters of cells expressing 904 
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the protein highly (>85th percentile) versus the null distribution of all cells. If an antibody had low 905 

mean staining and low K-L divergence, we removed it from the panel. If it had high mean 906 

staining and low K-L divergence, we titrated it at a lower concentration.  907 

After optimizing the panel and final concentrations (Supplementary Table 2), we 908 

prepared a cocktail of TotalSeq antibodies and centrifuged for 10 min at 14,000G to remove 909 

precipitates. Up to 60,000 sorted live synovial cells were pre-incubated with Human TruStain 910 

FcX (BioLegend) in Cell Staining Buffer (BioLegend) for 10 minutes prior to the addition of 100 911 

uL of the antibody cocktail. Single-cell RNA-seq for all synovial samples was performed by the 912 

BWH Single Cell Genomics Core. After a 30-minute incubation at 4°C, cells were washed twice 913 

in the Cell Staining Buffer and resuspended in 0.4% BSA/PBS. After performing a live cell count 914 

using Trypan blue, cells were resuspended at 1,000 cells per microliter and a maximum of 915 

15,000 cells were loaded into a Chromium Next GEM Chip G (10x Genomics). For samples with 916 

fewer than 15,000 live cells, all cells were loaded into the chip. cDNA and library generation was 917 

done according to the manufacturer’s protocol. mRNA libraries were sequenced to an average 918 

of 50,000 reads per cell using Illumina Novaseq S4. CITE-seq antibody-derived tag (ADT) 919 

libraries were sequenced to an average of 5,000 reads per cell using Illumina Hi-Seq X Ten. 920 

 921 

Single-cell CITE-seq gene expression and protein expression quantification 922 

We quantified mRNA and antibody-derived tag (ADT) unique molecular identifier (UMI) counts 923 

using Cell Ranger v3.1.0. First, raw BCL files were demultiplexed using cellranger mkfastq with 924 

default parameters to generate FASTQ files. Then, these FASTQ files were aligned to the 925 

GRCh38 human reference genome using Cellranger v3.1.0. Gene and ADT reads were 926 

quantified simultaneously using cellranger count.   927 

 928 

Quality control of single-cell CITE-seq data 929 
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We show each QC step in Supplementary Figure 1. Specifically, we performed consistent QC 930 

to remove cells that expressed fewer than 500 genes or contained more than 20% of their total 931 

UMIs mapping to mitochondrial genes, resulting in 403,596 cells. Then, we performed sample-932 

level QC and removed samples with a low percentage (< 40%) of cells passing QC. We 933 

removed three lower-quality samples (processed on the same day) with less than 40% of cells 934 

passing QC compared to 71% for other good quality samples. In the end, we obtained 393,344 935 

cells from 82 samples that passed QC.  936 

 937 

We identified and removed doublets based on a combined strategy: 938 

 939 

1. To detect doublets/multiplets based on gene count, we utilized the Scrublet96 framework 940 

implemented in Python on each sample. We input the full raw, unnormalized UMI count 941 

data into the Scrublet() function with default parameters. We determined the doublet 942 

scores and the threshold for doublet detection by using the scrub_doublets() function 943 

with the following parameters: min_counts = 2, min_cells = 3, min_gene_variability_pctl 944 

= 85, and n_prin_comps = 30. Based on the distribution of modes of simulated doublet 945 

gene expression distributions, we set the threshold at 0.66. Based on this threshold, we 946 

identified 4.5% of cells as doublets.  947 

2. Using protein expression, we trained an LDA (Linear Discriminant Analysis)-based 948 

classifier on non-doublet cells and then predicted the posterior probability of doublets 949 

using cell-type-specific antibodies (CD45, CD3, CD14, CD19, CD20, CD56, CD1C, 950 

PDPN, CD146), which improved the precision of doublet detection in a multimodal 951 

fashion. We obtained 314,030 cells after doublet detection. 952 

 953 

To assess the accuracy of protein measurements in CITE-seq, we selected antibodies for 954 

surface markers of each cell-type lineage: T cells (CD45 and CD3D), NK cells (CD45, CD56, 955 
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CD16, and IL17R), B cells and plasma cells (CD45 and CD19), macrophages (CD45 and 956 

CD14), classical dendritic cells (cDCs, CD1C), fibroblast (PDPN), mural cells (PDPN and 957 

CD146), and endothelial cells (CD146) (Supplementary Table 2). For flow cytometry, we used 958 

13 antibodies (Supplementary Table 3). We measured the Pearson correlation between the 959 

per-donor proportion of cells in each gate across donors. We removed surface proteins with low 960 

expression overall. 961 

 962 

mRNA feature normalization, selection, and scaling 963 

Global: For each cell, we normalized the expression of each gene with log(1 + UMIs for 964 

gene/total UMIs in cell *10,000). Then, we selected the top 1,000 most highly variable genes in 965 

each sample based on a variance stabilizing transformation (VST)97, which considers overall 966 

variance of the transcript per sample. We excluded cell cycle genes from “Seurat::cc.genes” for 967 

downstream analysis. We then pooled the most highly variable genes across all samples for a 968 

cell type into a data matrix and performed z-score scaling on each gene to have mean=0 and 969 

variance=1 across cells. 970 

 971 

By cell type: We carried out the same normalization, feature selection, and scaling steps as 972 

described for the global analysis, but on only the cells of each given cell type.  973 

 974 

Protein feature normalization, selection, and scaling  975 

Global: For each cell, we normalized each protein with centered-log ratio (CLR): 976 

{𝑙𝑛(𝑥!/𝑔(𝑥)), . . . , 𝑙𝑛(𝑥"/𝑔(𝑥))}, where 𝑥 is a vector of protein counts98. For each feature, we then 977 

performed z-score scaling on each protein to have mean 0 and variance 1 across cells. To 978 

improve discrimination of signal and background in visualizations, we corrected for antibody’ 979 

background staining by fitting a Gaussian mixture model (with the normalmixEM function from 980 

the mixtools R package; k = 2, lambda = 0.5) to the CLR-normalized expression of each protein 981 
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in each cell type. Then we calculated the mean of the first (lower) Gaussian in each cell type, 982 

identified the lowest mean across cell types, and subtracted this value—representing 983 

background—from all cells’ expression of the protein (with a lower bound of 0 for any values 984 

that would otherwise become negative).  985 

 986 

To select variable proteins, we measured Kullback-Leibler (KL) divergence for each protein by 987 

comparing the distribution of cells with normalized expression above the 75th percentile for that 988 

protein across broad cell-type clusters, versus the distribution of all cells across broad cell-type 989 

clusters. For each feature, we then performed z-score scaling on each protein to have mean=0 990 

and variance=1 across cells. We used a KL-divergence threshold of 0.3.  991 

 992 

By cell type: We carried out the same normalization as described for global analysis, but only on 993 

the cells of each given cell type. For T and B/plasma cells only, we conducted protein feature 994 

selection and scaling as described for global analysis. We removed proteins expressed in < 1% 995 

of cells and selected variable proteins based on KL divergence (computed as described above 996 

except using the 85th percentile to define the distribution of protein-expressing cells). Proteins 997 

with KL divergence greater than or equal to 0.025 were considered variable. 998 

 999 

A unimodal dimensionality reduction strategy for single-cell gene expression 1000 

For cell-type-specific analysis of myeloid cells, fibroblasts/mural cells, endothelial cells, and 1001 

natural killer cells, we used a unimodal pipeline to reduce the dimensionality of the data based 1002 

on mRNA expression. For each cell type, we used truncated principal component analysis 1003 

(PCA) as implemented in the prcomp_irlba function from the irlba R package99 and calculated 1004 

20 principal components (PCs) based on the scaled mRNA data.  We then corrected sample-1005 

driven batch effects with the HarmonyMatrix function from the harmony R package36 with 1006 
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parameters as specified in Supplementary Table 7 and projected the cells into two dimensions 1007 

with UMAP100. 1008 

 1009 

A multi-modal dimensionality reduction strategy for CITE-seq data  1010 

For global analysis of all cell types and cell-type-specific analysis of T and B/plasma cells, we 1011 

used a multi-modal pipeline to integrate mRNA and surface protein expression from the same 1012 

cells and project the cells into a low dimensional embedding informed by both modalities101. 1013 

After scaling the protein features so that their total variance was equal to the total variance of 1014 

the mRNA features, we used canonical correlation analysis (CCA) as implemented in the cc 1015 

function from the CCA R package to calculate canonical variates (CVs)102 based on the scaled 1016 

mRNA and surface protein data; these are projections of cells onto axes defined by maximally 1017 

correlated linear combinations of genes and surface proteins that capture the greatest amount 1018 

of shared variance. For further analysis, we selected the top 20 CVs with highest canonical 1019 

correlations, as defined in the mRNA space. We then corrected sample-driven batch effects with 1020 

the HarmonyMatrix function from the harmony R package36 with parameters and projected the 1021 

cells into two dimensions with UMAP100. 1022 

 1023 

Graph-based clustering, differential gene expression, and cell type annotation  1024 

We then constructed shared nearest neighbor graphs derived from the top 20 CVs/PCs and 1025 

applied graph-based Louvain clustering103 at various resolution levels (0.2, 0.4, 0.6, 0.8, 1.0). 1026 

We selected optimized resolution values for each cell type (1.2 for T cells, 0.8 for NK cells, 0.6 1027 

for myeloid cells, 0.6 for B cells, 0.6 for stromal cells, 0.3 for endothelial cells) to gain the 1028 

biological interpretations that made the most sense. We incorporated the number of variable 1029 

genes chosen per sample and parameters for each cell type’s analytical pipeline in 1030 

Supplementary Table 7. In the end, we identified 24 T cell clusters (94,056 cells), 9 B cell 1031 

clusters (30,697 cells), 14 NK clusters (8,497 cells), 15 myeloid clusters (76,181 cells), 5 1032 
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endothelial clusters (25,044 cells), and 10 stromal cell clusters (79,555 cells), for a total of 77 1033 

clusters. 1034 

 1035 

For each major cell type, we identified differentially expressed mRNA features and surface 1036 

proteins by comparing cells from one cluster with all the other cells. We collapsed single-cell 1037 

mRNA and protein expression profiles into pseudo-bulk count matrices by summing the raw 1038 

UMI counts for each gene or surface protein across all cells from the same donor and cluster. 1039 

For mRNA, we tested all mRNA features that were detected in more than 100 cells per donor 1040 

with non-zero UMI counts. For each feature, we normalized counts in each pseudo-bulk sample 1041 

into counts per million (CPM). Using linear models, we estimated the effect of each cluster for 1042 

each feature on pseudo-bulk expression accounting for effects from the donor and the number 1043 

of UMIs for each pseudo-bulk sample. Next, we used likelihood ratio tests (LRT) between two 1044 

models: one that has the cluster variable, and another that doesn’t have the cluster variable. 1045 

Finally, we selected a feature to be a cluster marker if it had a fold change greater than 2 and p-1046 

value less than FDR 5%, which is p < 0.05/(number of tested genes × number of clusters). We 1047 

repeated a similar analytical pipeline of normalization and scaling, feature selection, multi-modal 1048 

dimensionality reduction, clustering, and differential expression analysis for T cells (p < 1.5x10-1049 

6), B cells and plasma cells (p < 1.9x10-6), NK cells (p < 1.6x10-6), myeloid cells (p < 1.8x10-8), 1050 

stromal cells (p < 4.3x10-7), and endothelial cells (p < 1.2x10-6), respectively. Furthermore, we 1051 

annotated each cell-type cluster based on literature. We present cluster-specific marker genes 1052 

and relative statistics in Supplementary Table 8. 1053 

 1054 

Building and mapping to global and cell-type-specific references 1055 

We used the buildReferenceFromHarmonyObj() function from the Symphony37 package to build 1056 

integrated reference atlases for the global and cell-type specific atlases from the Harmony 1057 

objects. To find concordance between cell types from our previous study21 and this study, we 1058 
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used the Symphony mapQuery() function to map the 5,254 scRNA-seq query cells from Zhang 1059 

et al, 2019 onto the global and respective cell-type reference atlases. We predicted reference 1060 

cell types and states for the query cells using the knnPredict() function with k=5. For the cell-1061 

type specific mapping, we excluded reference dendritic cells or mural cells because they were 1062 

absent in the query. Note that because the gene expression matrices for the reference (this 1063 

study) and query21 datasets were generated using different versions of Gencode (version 19 vs. 1064 

version 29, respectively), certain genes were named differently between the two datasets (e.g. 1065 

IL8 and CXCL8 are synonyms for the same gene ENSG00000169429). Because the mapping 1066 

procedure uses overlapping gene names between reference and query, we “synced” the query 1067 

gene names to the version 29 names using the shared Ensembl IDs (which do not change 1068 

between Gencode versions) using the Gencode .gtf files. This converted 9,663 query gene 1069 

names, and the synced expression matrix was used as input to mapping. 1070 

 1071 

Identification of CTAPs based on single-cell cell-type abundance  1072 

We identified six cell-type abundance phenotypes (CTAPs) based on hierarchical clustering on 1073 

cell-type abundances for each CITE-seq patient sample. The differences across CTAPs are 1074 

also reflected in the PCA space. We named each CTAP based on the cell types whose average 1075 

proportions were higher among samples in the CTAP compared to their average across all 1076 

samples (Supplementary Table 4). To assess the stability of CTAPs, 1) We first bootstrapped 1077 

the patient samples and clustered the resampled dataset, 2) For every original CTAP subgroup, 1078 

we found the most similar cluster (based on Jaccard similarity) in each resampled clustering and 1079 

recorded that value, giving us the maximum Jaccard similarity coefficient for each CTAP. The 1080 

Jaccard similarity coefficient can be a value between 0 and 1, where 1 indicates complete 1081 

overlap and 0 indicates no overlap between two sets of the clustering results, 3) We repeated 1082 

the above two steps 1e4 times and calculated the mean Jaccard similarity coefficient. We 1083 

performed this process on different possible numbers of patient subgroups ranging from 2 to 10, 1084 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

and evaluated the statistical stability retaining in-group similarity. We selected six clusters as 1085 

CTAPs because they gave us relatively high stability (mean Jaccard similarity coefficient=0.727) 1086 

and also high granularity of biologically meaningful interpretations. 1087 

 1088 

Covarying neighborhood analysis (CNA) to identify cell populations associated with 1089 

patient CTAP membership 1090 

We evaluated whether the global RA CTAPs are associated with changes in the relative 1091 

abundances of cell states within each of our six major cell types, which would indicate that these 1092 

CTAP groupings reflect both coarse (relative abundance of major cell types) and fine-scale 1093 

heterogeneity in synovial tissue composition. 1094 

 1095 

For each major cell type, we used CNA77 to associate sample-level attributes to the abundances 1096 

of cell states within that cell type. CNA defines many small cell neighborhoods in the batch-1097 

corrected low-dimensional space and stores that fractional abundance of cells from each 1098 

sample in each neighborhood in a neighborhood abundance matrix (NAM). By decomposing the 1099 

NAM with principal component analysis, CNA defines NAM-PCs within each cell type that 1100 

capture axes of heterogeneity defined by groups of neighborhoods whose abundances vary in a 1101 

coordinated manner. Here, we use CNA to test for associations between sample-level clinical 1102 

characteristics and the abundance of covarying neighborhood groups. For associations with 1103 

histologic metrics such as histology density and aggregate scores, we only used samples that 1104 

passed histology-level QC grades (Grade A and B). We also use CNA to identify neighborhoods 1105 

that are associated with one CTAP compared to other CTAPs. 1106 

 1107 

To perform CNA, we used the tl.association() function in the cna Python package with default 1108 

parameters and top four NAM-PCs as inputs, while controlling for the “age”, “sex”, and “number 1109 

of cells per sample” as covariates. As CNA utilizes a permutation test, we determined a 1110 
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significant association based on a global permutation p < 0.05. For visualization of local 1111 

associations, which indicate the particular neighborhoods driving a found global association, we 1112 

used the 5% FDR threshold from CNA to determine which neighborhoods featured a locally 1113 

significant correlation. In violin plots, we plotted this threshold as dotted lines. In UMAP plots, 1114 

we colored neighborhoods that pass local significance based on the intensity of their correlation, 1115 

with red indicating a higher positive correlation, while we colored neighborhoods that did not 1116 

attain local significance as grey. We used a modified version of CNA, available on Github, which 1117 

included the following features: 1) scaling the variance per neighborhood within the NAM 1118 

inversely to the sample size of the source sample for that neighborhood’s anchor cell such that 1119 

total variance across all neighborhoods anchored on cells from the same sample sums to 1, and 1120 

2) the addition of a pseudo-count, a small number that was added to each entry in the NAM. 1121 

Using CNA, we tested associations of cell neighborhoods that are associated with histology, 1122 

ultrasound, clinical metrics, and also each CTAP group. The statistics are in Supplementary 1123 

Table 9. 1124 

 1125 

Modeling histologic, clinical, and demographic characteristics using CTAPs 1126 

We used linear mixed modeling to model each histologic parameter and clinical demographic 1127 

variable using single-cell CTAPs. Only samples that passed histology-level QC (Grade A and B) 1128 

were included to seek an association between molecular-level categories and histologic metrics. 1129 

Taking histologic density 𝑌 as an example, we fitted a mixed-effect model for each CTAP with 1130 

the number of cells per sample as a cell-level fixed effect, age and sex as demographical level 1131 

fixed effects, and clinical collection site as a random effect covariate:  1132 

Full model: 𝑌# = 0 +∑ 	𝛽$𝑋#,$$ + 𝛽&'(𝑋#,&'( +	𝛽)(*𝑋#,)(* +	𝛽+(,-𝑋#,+(,- 	+ 	(1|𝑠𝑖𝑡𝑒), 1133 

Null model: 𝑌# = 0 + 𝛽&'(𝑋#,&'( +	𝛽)(*𝑋#,)(* +	𝛽+(,-𝑋#,+(,- 	+ 	(1|𝑠𝑖𝑡𝑒) 1134 

 1135 
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where 𝛽$ is the effect size for each CTAP 𝑗 for sample 𝑖, 𝛽&'( 	is a vector of age values and 𝛽)(* 1136 

is a vector of sex values, 𝛽+(,- is a vector containing a technical covariate that captures the 1137 

number of cells for each single sample, 𝑋# is the one-hot encoded variable for sample 𝑖 in CTAP 1138 

𝑗 as appropriate, and (1|𝑠𝑖𝑡𝑒)	 is the random effect for clinical collection sites. Thus, we used the 1139 

full model to calculate the corrected values of CTAPs accounting for these technical, cell-level, 1140 

and donor-level covariates. For modeling age and disease duration, we used a similar model 1141 

but we removed the age fixed effect from both the full and null model. We obtained percent of 1142 

variance explained by the CTAPs only by subtracting the variance explained by the null model 1143 

from the variance explained by the full model. ANOVA p-value was also calculated. The R 1144 

package lme4 was used for the mixed effect modeling104. 1145 

 1146 

Classifying flow cytometry samples into RA CTAPs 1147 

We provided a proof-of-concept framework to assign RA samples processed by other data 1148 

modalities (e.g., flow cytometry) to the RA CTAPs generated from single-cell technology. 1149 

Specifically for Figure 6E, 1) we quantified the major cell type abundances in a sample using 1150 

flow cytometry based on cell type markers derived from the single-cell technology, then 2) we 1151 

mapped each flow sample to the principal component space generated from the CTAP single-1152 

cell cell type abundance based on the same features. Here, the features are T, B, Myeloid, 1153 

stromal, endothelial, and NK cell canonical markers. Now that each flow sample has a loading in 1154 

the original single-cell abundance space, 3) we built a Mahalanobis-distance-based nearest-1155 

neighbor classifier to measure the distance of a flow sample to each of the CTAP centroids. We 1156 

use Mahalanobis distance to handle the covariance, because our CTAP clusters in PC space 1157 

are elliptical shaped covariances rather than circular shapes. 4) For each flow sample, we 1158 

assigned a CTAP label based on which CTAP centroid had the smallest Mahalanobis distance. 1159 
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We calculated the accuracy of our classifications based on a subset (n=15) of RA synovial 1160 

tissues sent to both single-cell CITE-seq and flow cytometry. 1161 

 1162 

 1163 

Acknowledgements 1164 

This work was supported by the Accelerating Medicines Partnership (AMP) in Rheumatoid 1165 

Arthritis and Lupus Network. AMP is a public-private partnership (AbbVie Inc., Arthritis 1166 

Foundation, Bristol-Myers Squibb Company, Foundation for the National Institutes of Health, 1167 

GlaxoSmithKline, Janssen Research and Development, LLC, Lupus Foundation of America, 1168 

Lupus Research Alliance, Merck Sharp & Dohme Corp., National Institute of Allergy and 1169 

Infectious Diseases, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Pfizer 1170 

Inc., Rheumatology Research Foundation, Sanofi and Takeda Pharmaceuticals International, 1171 

Inc.) created to develop new ways of identifying and validating promising biological targets for 1172 

diagnostics and drug development. Funding was provided through grants from the National 1173 

Institutes of Health (UH2-AR067676, UH2-AR067677, UH2-AR067679, UH2-AR067681, UH2-1174 

AR067685, UH2- AR067688, UH2-AR067689, UH2-AR067690, UH2-AR067691, UH2-1175 

AR067694, and UM2- AR067678). Accelerating Medicines Partnership and AMP are registered 1176 

service marks of the U.S. Department of Health and Human Services. This work was also 1177 

supported by a Rheumatology Research Foundation Investigator Award and Arthritis National 1178 

Research Foundation award (to A.H.J.); NIH NHGRI T32HG002295 and NIAMS T32AR007530 1179 

(to A. Nathan); NIH NIAMS K08AR077037, Rheumatology Research Foundation Innovative 1180 

Research Award, and Burroughs Wellcome Fund Career Award in Medical Sciences (to K. 1181 

Wei); NIH NIGMS T32GM007753 (to J.B.K.); NIH NIAID T32AR007258 (to K.S.); Research into 1182 

Inflammatory Arthritis Centre Versus Arthritis (22072), IMI-RTCure (777357) and the NIHR 1183 

Birmingham Biomedical Research Centre (BRC-1215-20009) (to A.F. and D.S.T.); NIH NIAMS 1184 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

K08AR072791 and Burroughs Wellcome Fund Career Award in Medical Sciences (to D.A.R.); 1185 

NIH NIAID R01AI148435 (to L.T.D.); NIH NIAMS R21AR071670 and P30 AR069655 (to J.H.A.); 1186 

NIH NIAMS R01AR073833 and R01AR073290 (to M.B.B.); NIH NHGRI U01HG009379 and 1187 

NIAMS R01AR063759 (to S.R.). We especially acknowledge people in the AMP RA/SLE 1188 

Network: Arnon Arazi, Celine Berthier, Jill Buyon, Maria Dall’Era, Anne Davidson, Betty 1189 

Diamond, Andrea Fava, Jennifer Grossman, Nir Hacohen, David Hildeman, Jeffrey Hodgin, 1190 

Tiffany Hwang, Mariko Ishimori, Ken Kalunian, Diane Kamen, Matthias Kretzler, Holden 1191 

Maecker, Rong Mao, Maureen McMahon, Fernanda Payan-Schober, Michelle Petri, Chaim 1192 

Putterman, Daimon Simmons, Thomas Tuschl, David Wofsy, Steve Woodle, and Aaron Wyse.  1193 

 1194 

 1195 

Author contributions 1196 

L.G-P., K.D.D., D.T., A.C., G.S.F., M.M., I.S., A.B-A., A.M.M., A. Nerviani, F.R., C.P., L.B.H., 1197 

and D.H., recruited patients and obtained synovial tissues. L.W.M., S.M.G., H.P., V.M.H., A.F., 1198 

V.P.B., and J.H.A. contributed to the procurement and processing of samples and design of the 1199 

AMP study. E.D., E.M.G., and B.F.B., performed histological assessment of tissues. D.W., 1200 

K.P.L., A.F., and V.P.B. curated and analyzed histologic and clinical data. W.A. provided project 1201 

management and curated histologic and clinical data. K. Wei, A.H.J, G.F.M.W., A. Nathan, and 1202 

M.B.B. designed and implemented the tissue disaggregation, cell sorting, and single-cell 1203 

sequencing pipeline. A.H.J., K. Wei, and G.F.M.W supervised and executed the tissue 1204 

disaggregation pipeline. F.Z., A. Nathan, N.M., Q.X., M.G-A., J.B.K, K. Weinand, J.M., L.R., and 1205 

S.R. conducted computational and statistical analysis. A.H.J., K. Wei, M.B.B., J.H.A., L.T.D., 1206 

D.A.R., F.Z., A. Nathan, S.R., D.E.O., J.R-M., and A.F. provided input on cellular analysis and 1207 

interpretation. D.E.O., J.R-M., A.F., and J.H.A. provided input on histologic analyses. N.M. and 1208 

K.S. implemented the website. S.R., M.B.B., J.H.A., L.T.D., and D.A.R. supervised the research. 1209 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

F.Z., A.H.J., A. Nathan, N.M., Q.X., and S.R. wrote the initial draft. F.Z., A.H.J., A. Nathan, K. 1210 

Wei, N.M., D.A.R, L.T.D. J.H.A, M.B.B., and S.R. edited the draft. AMP: RA/SLE Network 1211 

members contributed to this work by managing patient recruitment, curating clinical data, 1212 

obtaining and processing synovial tissue samples, managing biorepositories, conducting 1213 

histological or computational analysis, providing software code, providing website support, 1214 

and/or providing input on data analysis and interpretation. All authors participated in editing the 1215 

final manuscript. 1216 

 1217 

 1218 

Competing interests 1219 

A.H.J. reports research support from Amgen, outside the submitted work. K.W. is a consultant 1220 

for Mestag Therapeutics and Gilead Sciences and reports grant support from Gilead Sciences. 1221 

S.M.G. reports research support from Novartis and is a consultant for UCB, outside the 1222 

submitted work. V.M.H. is a co-founder of Q32 Bio and has previously received sponsored 1223 

research from Janssen and been a consultant for Celgene and BMS, outside the submitted 1224 

work. A.F. reports personal fees from Abbvie, Roche, and Janssen and grant support from 1225 

Roche, UCB, Nascient, Mestag, GlaxoSmithKline, and Janssen, outside the submitted work. 1226 

D.A.R. reports personal fees from Pfizer, Janssen, Merck, Scipher Medicine, GlaxoSmithKline, 1227 

and Bristol-Myers Squibb and grant support from Janssen and Bristol-Myers Squibb, outside the 1228 

submitted work. In addition, D.A.R. is a co-inventor on a patent submitted on T peripheral helper 1229 

cells. M.B.B. is a founder for Mestag Therapeutics and a consultant for GlaxoSmithKline, 4FO 1230 

Ventures, and Scailyte AG. S.R. is a founder for Mestag Therapeutics, a scientific advisor for 1231 

Janssen and Pfizer, and a consultant for Gilead and Rheos Medicines. 1232 

 1233 

 1234 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

Data availability 1235 

All raw and processed data will be available upon acceptance. A cell browser website will be 1236 

available to visualize our data and results. 1237 

 1238 

 1239 

Code availability 1240 

All source code will be available on Github upon acceptance. Supplementary Information is 1241 

available for this paper. 1242 

 1243 

 1244 

 1245 

 1246 

 1247 

 1248 

 1249 

 1250 

 1251 

 1252 

 1253 

 1254 

 1255 

 1256 

 1257 

 1258 

 1259 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

References 1260 

1. Alamanos, Y., Voulgari, P. V. & Drosos, A. A. Incidence and prevalence of rheumatoid 1261 

arthritis, based on the 1987 American College of Rheumatology criteria: a systematic 1262 

review. Semin. Arthritis Rheum. 36, 182–188 (2006). 1263 

2. Smolen, J. S. et al. Rheumatoid arthritis. Nature Reviews Disease Primers 4, 1–23 (2018). 1264 

3. Koduri, G. et al. Interstitial lung disease has a poor prognosis in rheumatoid arthritis: results 1265 

from an inception cohort. Rheumatology  49, 1483–1489 (2010). 1266 

4. McInnes, I. B. & Schett, G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 365, 1267 

2205–2219 (2011). 1268 

5. Orr, C. et al. Synovial tissue research: a state-of-the-art review. Nat. Rev. Rheumatol. 13, 1269 

463–475 (2017). 1270 

6. Kerrigan, S. A. & McInnes, I. B. Reflections on ‘older’ drugs: learning new lessons in 1271 

rheumatology. Nature Reviews Rheumatology vol. 16 179–183 (2020). 1272 

7. Nagy, G. & van Vollenhoven, R. F. Sustained biologic-free and drug-free remission in 1273 

rheumatoid arthritis, where are we now? Arthritis Res. Ther. 17, 181 (2015). 1274 

8. Smolen, J. S. & Aletaha, D. Rheumatoid arthritis therapy reappraisal: strategies, 1275 

opportunities and challenges. Nat. Rev. Rheumatol. 11, 276–289 (2015). 1276 

9. Alivernini, S., Laria, A., Gremese, E., Zoli, A. & Ferraccioli, G. ACR70-disease activity score 1277 

remission achievement from switches between all the available biological agents in 1278 

rheumatoid arthritis: a systematic review of the literature. Arthritis Res. Ther. 11, R163 1279 

(2009). 1280 

10. Viatte, S. & Barton, A. Genetics of rheumatoid arthritis susceptibility, severity, and 1281 

treatment response. Semin. Immunopathol. 39, 395–408 (2017). 1282 

11. Amariuta, T., Luo, Y., Knevel, R., Okada, Y. & Raychaudhuri, S. Advances in genetics 1283 

toward identifying pathogenic cell states of rheumatoid arthritis. Immunol. Rev. 294, 188–1284 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

204 (2020). 1285 

12. Terao, C. et al. Distinct HLA Associations with Rheumatoid Arthritis Subsets Defined by 1286 

Serological Subphenotype. Am. J. Hum. Genet. 105, 880 (2019). 1287 

13. Pitzalis, C., Choy, E. H. S. & Buch, M. H. Transforming clinical trials in rheumatology: 1288 

towards patient-centric precision medicine. Nat. Rev. Rheumatol. 16, 590–599 (2020). 1289 

14. Han, B. et al. Fine mapping seronegative and seropositive rheumatoid arthritis to shared 1290 

and distinct HLA alleles by adjusting for the effects of heterogeneity. Am. J. Hum. Genet. 1291 

94, 522–532 (2014). 1292 

15. Oliver, J., Plant, D., Webster, A. P. & Barton, A. Genetic and genomic markers of anti-TNF 1293 

treatment response in rheumatoid arthritis. Biomark. Med. 9, 499–512 (2015). 1294 

16. Smolen, J. S. et al. EULAR recommendations for the management of rheumatoid arthritis 1295 

with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. 1296 

Rheum. Dis. 79, 685–699 (2020). 1297 

17. Fraenkel, L. et al. 2021 American College of Rheumatology Guideline for the Treatment of 1298 

Rheumatoid Arthritis. Arthritis Care Res.  73, 924–939 (2021). 1299 

18. Aletaha, D. & Smolen, J. S. Diagnosis and Management of Rheumatoid Arthritis: A Review. 1300 

JAMA 320, 1360–1372 (2018). 1301 

19. Lewis, M. J. et al. Molecular Portraits of Early Rheumatoid Arthritis Identify Clinical and 1302 

Treatment Response Phenotypes. Cell Rep. 28, 2455–2470.e5 (2019). 1303 

20. Humby, F. et al. Rituximab versus tocilizumab in anti-TNF inadequate responder patients 1304 

with rheumatoid arthritis (R4RA): 16-week outcomes of a stratified, biopsy-driven, 1305 

multicentre, open-label, phase 4 randomised controlled trial. Lancet 397, 305–317 (2021). 1306 

21. Zhang, F. et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial 1307 

tissues by integrating single-cell transcriptomics and mass cytometry. Nat. Immunol. (2019) 1308 

doi:10.1038/s41590-019-0378-1. 1309 

22. Kuo, D. et al. HBEGF+ macrophages in rheumatoid arthritis induce fibroblast invasiveness. 1310 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

Sci. Transl. Med. 11, (2019). 1311 

23. Zhang, F. et al. IFN-γ and TNF-α drive a CXCL10+ CCL2+ macrophage phenotype 1312 

expanded in severe COVID-19 lungs and inflammatory diseases with tissue inflammation. 1313 

Genome Med. 13, 64 (2021). 1314 

24. Rao, D. A. et al. Pathologically expanded peripheral T helper cell subset drives B cells in 1315 

rheumatoid arthritis. Nature 542, 110–114 (2017). 1316 

25. Alivernini, S. et al. Distinct synovial tissue macrophage subsets regulate inflammation and 1317 

remission in rheumatoid arthritis. Nat. Med. 26, 1295–1306 (2020). 1318 

26. Wang, Y. et al. Rheumatoid arthritis patients display B-cell dysregulation already in the 1319 

naïve repertoire consistent with defects in B-cell tolerance. Sci. Rep. 9, 1–13 (2019). 1320 

27. Wei, K. et al. Notch signalling drives synovial fibroblast identity and arthritis pathology. 1321 

Nature 582, 259–264 (2020). 1322 

28. Bocharnikov, A. V. et al. PD-1hiCXCR5- T peripheral helper cells promote B cell responses 1323 

in lupus via MAF and IL-21. JCI Insight 4, (2019). 1324 

29. Christophersen, A. et al. Distinct phenotype of CD4+ T cells driving celiac disease identified 1325 

in multiple autoimmune conditions. Nat. Med. 25, 734–737 (2019). 1326 

30. Ekman, I. et al. Circulating CXCR5-PD-1hi peripheral T helper cells are associated with 1327 

progression to type 1 diabetes. Diabetologia 62, 1681–1688 (2019). 1328 

31. Martin, J. C. et al. Single-Cell Analysis of Crohn’s Disease Lesions Identifies a Pathogenic 1329 

Cellular Module Associated with Resistance to Anti-TNF Therapy. Cell 178, 1493–1508.e20 1330 

(2019). 1331 

32. Na, Y. R., Stakenborg, M., Seok, S. H. & Matteoli, G. Macrophages in intestinal 1332 

inflammation and resolution: a potential therapeutic target in IBD. Nat. Rev. Gastroenterol. 1333 

Hepatol. 16, 531–543 (2019). 1334 

33. Kochi, Y. Genetics of autoimmune diseases: perspectives from genome-wide association 1335 

studies. Int. Immunol. 28, 155–161 (2016). 1336 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

34. Matzaraki, V., Kumar, V., Wijmenga, C. & Zhernakova, A. The MHC locus and genetic 1337 

susceptibility to autoimmune and infectious diseases. Genome Biol. 18, 76 (2017). 1338 

35. Krenn, V. et al. Grading of chronic synovitis--a histopathological grading system for 1339 

molecular and diagnostic pathology. Pathol. Res. Pract. 198, 317–325 (2002). 1340 

36. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with 1341 

Harmony. Nat. Methods (2019) doi:10.1038/s41592-019-0619-0. 1342 

37. Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. 1343 

Nat. Commun. 12, 1–21 (2021). 1344 

38. Ehrenstein, M. R. et al. Compromised function of regulatory T cells in rheumatoid arthritis 1345 

and reversal by anti-TNFalpha therapy. J. Exp. Med. 200, 277–285 (2004). 1346 

39. Dominguez-Villar, M., Baecher-Allan, C. M. & Hafler, D. A. Identification of T helper type 1-1347 

like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17, 673–675 1348 

(2011). 1349 

40. MacDonald, K. G. et al. Regulatory T cells produce profibrotic cytokines in the skin of 1350 

patients with systemic sclerosis. J. Allergy Clin. Immunol. 135, 946–955.e9 (2015). 1351 

41. McClymont, S. A. et al. Plasticity of human regulatory T cells in healthy subjects and 1352 

patients with type 1 diabetes. J. Immunol. 186, 3918–3926 (2011). 1353 

42. Johnson, J. L. et al. The Transcription Factor T-bet Resolves Memory B Cell Subsets with 1354 

Distinct Tissue Distributions and Antibody Specificities in Mice and Humans. Immunity 52, 1355 

842–855.e6 (2020). 1356 

43. Wang, S. et al. IL-21 drives expansion and plasma cell differentiation of autoreactive 1357 

CD11c hi T-bet+ B cells in SLE. Nat. Commun. 9, 1758 (2018). 1358 

44. Jenks, S. A. et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 1359 

Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity 49, 725–1360 

739.e6 (2018). 1361 

45. Yuseff, M.-I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen 1362 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

extraction to processing and presentation. Immunity 35, 361–374 (2011). 1363 

46. Rubtsov, A. V. et al. CD11c-Expressing B Cells Are Located at the T Cell/B Cell Border in 1364 

Spleen and Are Potent APCs. J. Immunol. 195, 71–79 (2015). 1365 

47. Radtke, D. & Bannard, O. Expression of the Plasma Cell Transcriptional Regulator Blimp-1 1366 

by Dark Zone Germinal Center B Cells During Periods of Proliferation. Front. Immunol. 9, 1367 

3106 (2018). 1368 

48. Palm, A.-K. E. & Kleinau, S. Marginal zone B cells: From housekeeping function to 1369 

autoimmunity? J. Autoimmun. 119, 102627 (2021). 1370 

49. Weller, S. et al. Human blood IgM ‘memory’ B cells are circulating splenic marginal zone B 1371 

cells harboring a prediversified immunoglobulin repertoire. Blood 104, 3647–3654 (2004). 1372 

50. Tull, T. J. et al. Human marginal zone B cell development from early T2 progenitors. J. Exp. 1373 

Med. 218, (2021). 1374 

51. Descatoire, M. et al. Identification of a human splenic marginal zone B cell precursor with 1375 

NOTCH2-dependent differentiation properties. J. Exp. Med. 211, 987–1000 (2014). 1376 

52. Weyand, C. M. & Goronzy, J. J. Ectopic germinal center formation in rheumatoid synovitis. 1377 

Ann. N. Y. Acad. Sci. 987, 140–149 (2003). 1378 

53. Schröder, A. E., Greiner, A., Seyfert, C. & Berek, C. Differentiation of B cells in the 1379 

nonlymphoid tissue of the synovial membrane of patients with rheumatoid arthritis. Proc. 1380 

Natl. Acad. Sci. U. S. A. 93, 221–225 (1996). 1381 

54. Dogra, P. et al. Tissue Determinants of Human NK Cell Development, Function, and 1382 

Residence. Cell 180, 749–763.e13 (2020). 1383 

55. Spits, H. et al. Innate lymphoid cells--a proposal for uniform nomenclature. Nat. Rev. 1384 

Immunol. 13, 145–149 (2013). 1385 

56. Ebbo, M., Crinier, A., Vély, F. & Vivier, E. Innate lymphoid cells: major players in 1386 

inflammatory diseases. Nat. Rev. Immunol. 17, 665–678 (2017). 1387 

57. Cella, M. et al. Subsets of ILC3-ILC1-like cells generate a diversity spectrum of innate 1388 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

lymphoid cells in human mucosal tissues. Nat. Immunol. 20, 980–991 (2019). 1389 

58. Gordon, S. Phagocytosis: An Immunobiologic Process. Immunity 44, 463–475 (2016). 1390 

59. Jakubzick, C. V., Randolph, G. J. & Henson, P. M. Monocyte differentiation and antigen-1391 

presenting functions. Nat. Rev. Immunol. 17, 349–362 (2017). 1392 

60. Lim, H. Y. et al. Hyaluronan Receptor LYVE-1-Expressing Macrophages Maintain Arterial 1393 

Tone through Hyaluronan-Mediated Regulation of Smooth Muscle Cell Collagen. Immunity 1394 

49, 326–341.e7 (2018). 1395 

61. Mulder, K. et al. Cross-tissue single-cell landscape of human monocytes and macrophages 1396 

in health and disease. Immunity 54, 1883–1900.e5 (2021). 1397 

62. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with 1398 

COVID-19. Nat. Med. (2020) doi:10.1038/s41591-020-0901-9. 1399 

63. Schuch, K. et al. Osteopontin affects macrophage polarization promoting endocytic but not 1400 

inflammatory properties. Obesity  24, 1489–1498 (2016). 1401 

64. Remmerie, A. et al. Osteopontin Expression Identifies a Subset of Recruited Macrophages 1402 

Distinct from Kupffer Cells in the Fatty Liver. Immunity 53, 641–657.e14 (2020). 1403 

65. Villani, A.-C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, 1404 

monocytes, and progenitors. Science 356, (2017). 1405 

66. Zhang, Q. et al. Landscape and Dynamics of Single Immune Cells in Hepatocellular 1406 

Carcinoma. Cell 179, 829–845.e20 (2019). 1407 

67. Korsunsky, I. et al. Cross-tissue, single-cell stromal atlas identifies shared pathological 1408 

fibroblast phenotypes in four chronic inflammatory diseases. bioRxiv 2021.01.11.426253 1409 

(2021) doi:10.1101/2021.01.11.426253. 1410 

68. Mizoguchi, F. et al. Functionally distinct disease-associated fibroblast subsets in 1411 

rheumatoid arthritis. Nat. Commun. 9, 789 (2018). 1412 

69. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage. Nature 593, 575–1413 

579 (2021). 1414 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

70. Yazici, Y. et al. Efficacy of tocilizumab in patients with moderate to severe active 1415 

rheumatoid arthritis and a previous inadequate response to disease-modifying 1416 

antirheumatic drugs: the ROSE study. Ann. Rheum. Dis. 71, 198–205 (2012). 1417 

71. Genovese, M. C. et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease 1418 

activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic 1419 

drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug 1420 

therapy study. Arthritis Rheum. 58, 2968–2980 (2008). 1421 

72. Genovese, M. C. et al. Sarilumab Plus Methotrexate in Patients With Active Rheumatoid 1422 

Arthritis and Inadequate Response to Methotrexate: Results of a Phase III Study. Arthritis 1423 

Rheumatol 67, 1424–1437 (2015). 1424 

73. Wei, K., Nguyen, H. N. & Brenner, M. B. Fibroblast pathology in inflammatory diseases. J. 1425 

Clin. Invest. 131, (2021). 1426 

74. Kalucka, J. et al. Single-Cell Transcriptome Atlas of Murine Endothelial Cells. Cell 180, 1427 

764–779.e20 (2020). 1428 

75. Wigle, J. T. et al. An essential role for Prox1 in the induction of the lymphatic endothelial 1429 

cell phenotype. EMBO J. 21, 1505–1513 (2002). 1430 

76. Fujimoto, N. et al. Single-cell mapping reveals new markers and functions of lymphatic 1431 

endothelial cells in lymph nodes. PLoS Biol. 18, e3000704 (2020). 1432 

77. Reshef, Y. A. et al. Co-varying neighborhood analysis identifies cell populations associated 1433 

with phenotypes of interest from single-cell transcriptomics. Nat. Biotechnol. 1–9 (2021). 1434 

78. Crotty, S. T Follicular Helper Cell Biology: A Decade of Discovery and Diseases. Immunity 1435 

50, 1132–1148 (2019). 1436 

79. Dennis, G., Jr et al. Synovial phenotypes in rheumatoid arthritis correlate with response to 1437 

biologic therapeutics. Arthritis Res. Ther. 16, R90 (2014). 1438 

80. Humby, F. et al. Synovial cellular and molecular signatures stratify clinical response to 1439 

csDMARD therapy and predict radiographic progression in early rheumatoid arthritis 1440 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

patients. Ann. Rheum. Dis. 78, 761–772 (2019). 1441 

81. Pitzalis, C., Kelly, S. & Humby, F. New learnings on the pathophysiology of RA from 1442 

synovial biopsies. Curr. Opin. Rheumatol. 25, 334–344 (2013). 1443 

82. Rao, D. A. T Cells That Help B Cells in Chronically Inflamed Tissues. Front. Immunol. 9, 1444 

1924 (2018). 1445 

83. Seth, A. & Craft, J. Spatial and functional heterogeneity of follicular helper T cells in 1446 

autoimmunity. Curr. Opin. Immunol. 61, 1–9 (2019). 1447 

84. Kroot, E. J. et al. The prognostic value of anti-cyclic citrullinated peptide antibody in patients 1448 

with recent-onset rheumatoid arthritis. Arthritis Rheum. 43, 1831–1835 (2000). 1449 

85. Jansen, L. M. A. et al. The predictive value of anti-cyclic citrullinated peptide antibodies in 1450 

early arthritis. J. Rheumatol. 30, 1691–1695 (2003). 1451 

86. Folkman, J. & D’Amore, P. A. Blood vessel formation: what is its molecular basis? Cell 87, 1452 

1153–1155 (1996). 1453 

87. Holmes, A. B. et al. Single-cell analysis of germinal-center B cells informs on lymphoma cell 1454 

of origin and outcome. J. Exp. Med. 217, (2020). 1455 

88. Milpied, P. et al. Human germinal center transcriptional programs are de-synchronized in B 1456 

cell lymphoma. Nat. Immunol. 19, 1013–1024 (2018). 1457 

89. Glass, D. R. et al. An Integrated Multi-omic Single-Cell Atlas of Human B Cell Identity. 1458 

Immunity 53, 217–232.e5 (2020). 1459 

90. Nocturne, G. & Mariette, X. B cells in the pathogenesis of primary Sjögren syndrome. Nat. 1460 

Rev. Rheumatol. 14, 133–145 (2018). 1461 

91. Prevoo, M. L. et al. Modified disease activity scores that include twenty-eight-joint counts. 1462 

Development and validation in a prospective longitudinal study of patients with rheumatoid 1463 

arthritis. Arthritis Rheum. 38, 44–48 (1995). 1464 

92. Wells, G. et al. Validation of the 28-joint Disease Activity Score (DAS28) and European 1465 

League Against Rheumatism response criteria based on C-reactive protein against disease 1466 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

progression in patients with rheumatoid arthritis, and comparison with the DAS28 based on 1467 

erythrocyte sedimentation rate. Ann. Rheum. Dis. 68, 954–960 (2009). 1468 

93. Choi, I. Y. et al. Stromal cell markers are differentially expressed in the synovial tissue of 1469 

patients with early arthritis. PLoS One 12, e0182751 (2017). 1470 

94. Krenn, V. et al. Synovitis score: discrimination between chronic low-grade and high-grade 1471 

synovitis. Histopathology 49, 358–364 (2006). 1472 

95. Donlin, L. T. et al. Methods for high-dimensonal analysis of cells dissociated from 1473 

cyropreserved synovial tissue. Arthritis Res. Ther. 20, 139 (2018). 1474 

96. Wolock, S. L., Lopez, R. & Klein, A. M. Scrublet: Computational Identification of Cell 1475 

Doublets in Single-Cell Transcriptomic Data. Cell Syst 8, 281–291.e9 (2019). 1476 

97. Stuart, T. et al. Comprehensive Integration of Single-Cell Data. Cell 177, 1888–1902.e21 1477 

(2019). 1478 

98. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. 1479 

Nat. Methods 14, 865–868 (2017). 1480 

99. Baglama, J. & Reichel, L. Augmented implicitly restarted lanczos bidiagonalization 1481 

methods. SIAM J. Sci. Comput. 27, 19–42 (2005). 1482 

100. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Projection 1483 

for Dimension Reduction. arXiv [stat.ML] (2018). 1484 

101. Nathan, A. et al. Multimodally profiling memory T cells from a tuberculosis cohort identifies 1485 

cell state associations with demographics, environment and disease. Nat. Immunol. 22, 1486 

781–793 (2021). 1487 

102. González, I., Déjean, S., Martin, P. & Baccini, A. CCA: An R Package to Extend Canonical 1488 

Correlation Analysis. Journal of Statistical Software, Articles 23, 1–14 (2008). 1489 

103. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities 1490 

in large networks. arXiv [physics.soc-ph] (2008). 1491 

104. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using 1492 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990


 

lme4. Journal of Statistical Software, Articles 67, 1–48 (2015). 1493 

105. Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference 1494 

resource for gene and protein annotation. Nucleic Acids Res. 44, D457–62 (2016). 1495 

106. Fonseka, C. Y. et al. Mixed-effects association of single cells identifies an expanded 1496 

effector CD4+ T cell subset in rheumatoid arthritis. Sci. Transl. Med. 10, (2018). 1497 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 28, 2022. ; https://doi.org/10.1101/2022.02.25.481990doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.481990

