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Abstract 

 
North America has seen a massive increase in cropland use since 1800, accompanied 
more recently by the intensification of agricultural practices. Through genome analysis of 
present-day and historical samples spanning environments over the last two centuries, we 
studied the impact of these changes in farming on the extent and tempo of evolution in 
the native common waterhemp (Amaranthus tuberculatus), a now pervasive agricultural 
weed. Modern agriculture has imposed strengths of selection rarely observed in the wild 
(0.027-0.10), with striking shifts in allele frequency trajectories since agricultural 
intensification in the 1960s. An evolutionary response to this extreme selection was 
facilitated by a concurrent human-mediated range shift. By reshaping genome-wide 
diversity and variation for fitness, agriculture has driven the success of this 21st-century 
weed. 

 

One Sentence Summary 
 
Modern agriculture has dramatically shaped the evolution of a native plant into an 
agricultural weed through imposing strengths of selection rarely observed in the wild. 
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Main text 

Agricultural practices across North America have rapidly intensified over the last two 
centuries, through cropland expansion (1), habitat homogenization (2), and increased 
chemical inputs (3). Since the beginning of the 1800s, cropland usage has expanded from 
8 million to 200 million hectares in Canada and the United States alone (1). Since the 
1960’s, increased reliance on pesticides, irrigation, large-scale mechanization, and newly 
developed crop varieties have greatly improved the efficiency of food production in all 
farming sectors, a transformation oft-referenced as the agricultural “Green Revolution” 
(4, 5). For pesticides, however, their effectiveness has been limited by the evolution of 
resistance across numerous pest species (6). While technological innovation for efficient 
food production has risen with increasing global food demands, the concomitant 
conversion of our landscape has become one of the foremost drivers of global 
biodiversity loss (7).  

Species that have managed to survive, and even thrive, in the face of such extreme 
environmental change provide remarkable examples of rapid adaptation on contemporary 
timescales and illustrate the evolutionary consequences of anthropogenic impacts. One 
such species is common waterhemp (Amaranthus tuberculatus), which is native to North 
America and persists in large part in natural, riparian habitats (8), providing a unique 
opportunity to investigate the timescale and extent of contemporary agricultural 
adaptation in this prevalent weed. The genetic changes underlying weediness is 
particularly important to understand in A. tuberculatus, as it has become one of the most 
problematic weeds in North America due to widespread adaptation to herbicides, 
persistence in fields across seasons, and strong competitive ability with both soy and corn 
(9, 10).   

To understand how changing agricultural practices have shaped the success of a 
ubiquitous weed, we analyzed genomic data from contemporary paired natural and 
agricultural populations alongside historical samples collected from 1828 until 2018 (Fig 
1). With this design, we identify agriculturally adaptive alleles—those that are 
consistently higher in frequency in agricultural than in geographically close natural sites 
which constitute contrasts in selective pressures; track their frequency across nearly two 
centuries, and link the tempo of weed adaptation to demographic changes and key 
cultural shifts in modern agriculture. 
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Fig 1. Sequenced waterhemp collections through space and time. A) Map of 14 contemporary 
paired natural-agricultural populations (n=187, collected and sequenced in Kreiner et al., 2021), 
along with 108 novel sequenced herbarium specimens dating back to 1828 collected across three 
environment types (Ag=Agricultural, Nat=Natural, Dist=Disturbed). B) Distribution of 
sequenced herbarium samples through time.  

 
 
The genome-wide signatures of agricultural adaptation 

 
To find alleles favored under current farming practices, we looked for those alleles that 
were consistently overrepresented in extant agricultural populations compared to 
neighboring natural populations (11), using Cochran–Mantel–Haenszel (CMH) tests (Fig 
2A). Alleles involved in agricultural adaptation (the 0.1% of SNPs with lowest CMH p-
values; n=2,055) are significantly enriched for 21 GO-biological process terms related to 
growth and development, cellular metabolic processes, and responses to biotic, external, 
and endogenous stimuli, including response to chemicals (Table S1). The importance of 
chemical inputs in shaping weed agricultural adaptation is clear in that the most 
significant agriculturally associated SNP (raw p-value = 8.551x10-11, [FDR corrected] q-
value = 0.00062) falls just 80 kb outside the gene protoporphyrinogen oxidase (PPO)—
the target of PPO-inhibiting herbicides (Fig 2B). Other genes with the strongest 
agricultural associations include ACO1, which has been shown to confer oxidative stress 
tolerance (12); HB13, involved in pollen viability (13) as well as drought and salt 
tolerance (13); PME3, involved in growth via germination timing (14); CAM1, a 
regulator of senescence in response to stress (15, 16); and both CRY2 and CPD, two key 
regulators of photomorphogenesis and flowering via brassinosteroid signaling (17–20) 
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(Table S2). These signals of agricultural adaptation are notable given that genome-wide 
differentiation among environments as measured by FST is negligible, a mere 0.0008 
(with even lower mean FST between paired sites = -0.0029; Fig 2C), suggesting that 
despite near panmixia among environments, strong antagonistic selection acts to maintain 
spatial differentiation for particular alleles. 

To further investigate the extent to which herbicides shape adaptation to agriculture, we 
assayed signals of selection for two complex resistance variants—a deletion of codon 210 
within PPO, which is causal for resistance to PPO-inhibiting herbicides (21), and 
amplification of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which confers 
resistance to glyphosate herbicides (22). Natural-vs-agricultural FST (highly correlated 
with the CMH test statistic, Fig S1) at the PPO210 deletion, 0.21, is higher than 
anywhere else in the genome and is even stronger when calculated within-population 
pairs (FST= 0.27) (Fig 2C). Similarly, the EPSPS amplification is ranked 20th among 
genome-wide biallelic FST values, 0.14 (within-pair FST= 0.22), in support of herbicides 
as a foremost driver of agricultural adaptation.  

How differences in selection relative to migration among environments may mediate 
agricultural adaptation is pivotal for understanding the consequences of agricultural 
selection in natural environments and the persistence of resistance mutations through 
time. For 6 common alleles, previously shown to be causal for conferring herbicide 
resistance (10), as well as the top 30 independent CMH outliers, we implemented a 
Wright-Fisher allele-frequency-based migration-selection balance model to infer the 
relative strength of selection favoring resistance alleles in agricultural environments 
versus selection favoring susceptible alleles in natural environments at equilibrium. 
While resistance alleles were at intermediate frequency in agricultural populations, 
ranging from 0.08 to 0.35, they were rarer in natural populations, with frequencies from 
0.04 to 0.22, consistent with on-going migration from agricultural into natural 
environments balanced by selection against these alleles in the absence of herbicides (Fig 
2D). Assuming these sites are at equilibrium, we inferred that the costs of resistance per 
migrant arriving in natural environments are stronger than the costs of susceptibility per 
migrant arriving in agricultural environments (per migrant costs: benefit ratio ranges 
from 1.09 for ALS653 to 4.2 for the PPO210 deletion, with a mean = 1.99; Fig 2D, 
Table S3). For the top 30 independent CMH outliers, the costs in natural environments 
were about equally likely to be stronger or weaker (12/28, 42%) than the benefits in 
agricultural environments, scaled to the migration rate (Fig S2). Thus, while substantial 
gene flow between agricultural and natural sites repeatedly introduces locally unfit alleles 
across environments, the spread of herbicide resistance alleles appears to be strongly 
constrained by their cost in herbicide-free, natural environments.  
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Fig 2. Signals of contemporary agricultural adaptation, gene flow, and antagonistic 
selection across the genome in A. tuberculatus. A) Results from Cochran–Mantel–Haenszel 
(CMH) tests for SNPs with consistent differentiation among environments across contemporary 
natural-agricultural population pairs. A 10% FDR threshold is indicated by the lower dashed 
horizontal black line, while the Bonferroni q-value < 0.1 cutoff is shown by the upper dashed 
horizontal gray line. Red points indicate focal adaptive SNPs after aggregating linked variation 
(r2 > 0.25 within 1 Mb). Candidate agriculturally adaptive genes for peaks that are significant at a 
10% FDR threshold shown. B) CHM results from the scaffold containing the most signficant 
CMH p-value, corresponding to variants linked to the PPO210 deletion conferring herbicide 
resistance and to the nearby herbicide-targeted gene ALS. C) Distribution of FST values between 
all agricultural and natural samples for ~3 million genome-wide SNPs (minor allele frequency > 
0.05). Vertical lines indicate FST values for the 10 candidate genes named in A. D) Pairwise 
frequency of six common herbicide resistance alleles across agricultural and natural habitats 
sampled in 2018; the first four are nonsynonymous variants in ALS and EPSPS, the EPSPSamp is 
a 10 Mb-scale amplification that includes EPSPS, and the last one is an in-frame single-codon 
deletion in PPO (each dot represents on average ~5 individuals). Per migrant natural cost: 
agricultural benefit ratio relative to migration (C:B) is shown in the top right corner of each 
locus-specific comparison of frequencies across population pairs. 
 
 

Agriculturally-adaptive alleles change rapidly with intensified regimes 

 
With a strong set of agriculture-associated alleles (251 loci after aggregating linked 
SNPs), we searched for signatures of temporal evolution using newly collected whole 
genome sequence data from a set of historical samples (n=108) dating back to 1828, 
collected from natural, agricultural, and disturbed environments (Fig 1). Of the 165 loci 
for which we had sufficient information in the historical SNP set (sequenced to 10x 
coverage on average), 151 were segregating with the same reference/alternate allele 
combination, and only three were invariant. To model allele frequency change through 
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time on these loci, we implemented logistic regressions of genotypes (within individual 
allele frequencies) at each locus on collection year, where the slope of the logit-transform 
is equivalent to the strength of selection (s). Because our historical collections sampled 
both natural and human-mediated environments through time, we were able to compare 
allele frequency trajectories and selection across environments.  

Consistent with the rapid change in land use and farming practices in the recent past, the 
frequency of these 154 contemporary agricultural alleles has increased substantially over 
the last two centuries. Whereas in present-day natural environments agriculturally-
adaptive alleles have increased by 6% on average since 1870, the earliest time point at 
which we have collections across environment types, these same alleles have increased 
by 22% in disturbed and agricultural environments (Fig 3A). This observed change 
greatly exceeds the expected change over this time period, under null processes (drift, 
migration, and selection) (null 95% interquantile range for allele frequency change in 
agricultural and disturbed sites = [3.3, 7.9%]; for change in natural sites = [-2.7, 2.0.%]). 
We generated these null expectations by randomly sampling the same number of 
observed loci across the genome and calculating their allele frequency change through 
time, where each of the 1000 randomized sets matched the frequency distribution 
observed for extant agricultural alleles (Fig S4) and were constrained to alleles across the 
genome that were at a higher frequency in agricultural compared to natural habitats. 
These randomizations were performed separately across environment types. 

The considerable increase in frequency of these alleles across environments corresponds 
to remarkably strong selection even when estimated over century-long time periods. The 
154 agriculture-associated alleles collectively exhibit 𝑠̃	= 0.011 since the 1870s in 
agricultural and disturbed habitats but exhibit much weaker selection, 𝑠̃ = 0.0028, in 
natural habitats (agricultural and disturbed null interquantile range = [0.0013, 0.0034]; 
natural null interquantile range = [-0.0009, 0.0009]). The range of selection estimated 
across loci varies between -0.098 and 0.075 in natural habitats, and -0.045 and 0.186 in 
agricultural and disturbed habitats (Fig 3B, Fig S5). The top 15 agriculture-associated 
alleles that have experienced the strongest, significant selection over the last ~150 years 
include SNPs that map near PPO, ACO1, CCB2, WRKY13, BPL3, and ATPD (Table S3). 
We find that both the total frequency change of agriculture-associated alleles and the 
estimated strength of selection in agricultural and disturbed environments are positively 
correlated with the extent of contemporary linkage disequilibrium around these loci (the 
number of SNPs with r2 > 0.25 within 1Mb) (frequency change: F = 5.16, p = 0.024; 
strength of selection: F= 3.99, p = 0.048; Fig S6), consistent with theoretical 
expectations for the genomic signatures around alleles that have recently been impacted 
by positive selection (23, 24). 
 
Along with evidence of much stronger selection and frequency change of agriculturally 
adaptive alleles in agricultural versus natural environments over the last 150 years, we 
find that the trajectory of these alleles among environments varies considerably through 
time (Fig 3C, Fig S7). While extant pairs of agricultural and natural populations are 
differentiated by 18% at these loci, this decreases as we look further back in time, so that 
around 1900, these alleles still had equal frequencies in both environments (predicted 
1900 frequency in agricultural and disturbed sites = 41.9% [SE=2.7%], predicted 1900 
frequency in natural sites = 38.6% [SE=2.7%]) (Fig 3D). Moreover, when we split out 
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samples into those that predate or are subsequent to the intensification of agriculture 
during the Green Revolution, we find that the increase in frequency of agricultural alleles 
was negligible in agricultural and disturbed environments before the 1960s (predicted 
1870-1960 change = 0.005), with the subsequent change near completely accounting for 
the observed rise in frequency of the alleles more common today in agricultural 
environments (predicted 1960-2018 change = 0.219, versus total 2018-1870 change = 
0.221) (Fig 3C). Corresponding estimates of selection by logistic regression using only 
data from before 1960 shows no evidence of selection on these loci in disturbed and 
agricultural (𝑠̃ = 0.0008, null interquantile range = [-0.0022,0.0010]) or in natural habitats 
(𝑠̃= 0.0003, null interquantile range = [-0.002,0.002]). However, samples collected 
subsequent to 1960 reflect a dramatic shift in selection—a collective 𝑠̃= 0.027 in 
disturbed and agricultural environments and a collective 𝑠̃= 0.014 in natural 
environments (ag null interquantile range =[0.0032,0.0098]); nat null interquantile range 
=[-0.0028,0.0027]) (Fig 3C; Fig S8). Together, these results suggest that while most 
contemporary agricultural alleles were present in historical populations, that these alleles 
only became associated with agricultural and human-managed sites over the last century, 
on timescales and rates consistent with the rapid uptake and intensification of 
agrochemicals, controlled irrigation, and mechanization in agriculture. 

The historical trajectory of known herbicide resistance alleles epitomizes extreme 
selection over the last 50 years (Fig 3D). Five out of seven known herbicide resistance 
loci present in our contemporary collection are absent from our historical samples, 
consistent with the suggested importance of resistance adaptation from de novo mutation 
(25, 26). Only three out of 108 historical samples show variation for herbicide resistance, 
two samples homozygous for resistance at ALS574 and one heterozygous for resistance 
at ALS122—all of which were sampled after the onset of herbicide applications in the 
1960s (Fig 3D). Since 1960, we find that these seven known resistance alleles in our 
contemporary samples have collectively experienced selection of 𝑠̃= 0.099 (Z = 2.11, p = 
0.035) per year—ranging from s > 0.097 for PPO210, s > 0.057 for EPSPS106, and s > 
0.044 for ALS574 to no evidence of selection on ALS122 and ALS197 (Fig 3D; Table 
S3). As expected, selection has been particularly strong on these alleles in disturbed and 
agricultural environments (𝑠̃= 0.1003, Z = 2.121, p = 0.034), but selection on these 
known resistance alleles remains high when estimated from samples taken over time in 
natural environments (𝑠̃= 0.071, Z = 1.912, p = 0.056), where presumably the alleles have 
been recurrently introduced by migration from agricultural sites. 
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Fig 3. Genomic signatures of agricultural adaptation through time. A) Agricultural allele 
frequency trajectories for each locus, in agricultural and disturbed habitats (left), and natural 
habitats (right). Trajectories coloured by the quantile of frequency change in agricultural and 
disturbed habitats. Transparent lines indicate those with non-significant evidence of selection at 
𝛼=0.05 after FDR=10% correction. B) The strength of selection on agricultural alleles for each 
locus in natural (dark gray) and agricultural and disturbed (light gray) habitats between 1870 and 
2018. C) Agricultural allele frequency trajectories in each environment type, before and after the 
start of agricultural intensification in 1960. Vertical dashed line represents an inferred breakpoint 
in the data in a segmented regression. Environmental regression lines represent logistic fits to 
data that either predate or are subsequent to 1960. Large circles represent moving averages (over 
both loci and individuals) of allele frequencies, whereas dots represent raw genotype data for 
each locus and sample from which the allele frequency trajectory is estimated. Cropland use per 
capita in North America data from (1), rescaled by use in 1600. D) The trajectory of alleles at 
known herbicide resistance loci through time, fit by logistic regression for each of the seven 
alleles present in our contemporary data. Dots represent genotypes for each historical and 
contemporary sample at each herbicide resistance locus. 95% credible interval of the maximum 
likelihood estimate of selection between 1960-2018 provided in the legend for each resistance 
allele. 
 
 

Concurrent temporal shifts in ancestry underlie agricultural adaptation 

Finally, we explored whether historical demographic change over the last two centuries 
has played a role in agricultural adaptation. Early taxonomy described two different A. 
tuberculatus varieties as separate species, with few distinguishing characteristics (seed 
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dehiscence and tepal length (8)). Sauer’s 1955 revision of the genus, which used 
herbarium specimens to gauge the distribution and migration of congeners over the last 
two centuries (27), led him to describe an expansion of the southwestern var. rudis type 
(at the time, A. tamariscinus (Sauer)) northeastward into the territory of var. tuberculatus 
(A. tuberculatus (Sauer)), sometime between 1856-1905 and 1906-1955. Our sequencing 
of over 100 herbarium samples dating back to 1828, combined with nearly 200 
contemporary sequences, allowed us to directly observe the change in the distribution of 
these two ancestral types, adding resolution to Sauer’s morphological observations of the 
species’ contemporary range shifts at a genome-wide level and over more recent 
timescales.  

Range-wide, we see clear shifts in the distribution of var. rudis ancestry based on 
faststructure inference at K=2 (Fig S9) across three-time spans, 1830-1920, 1920-1980, 
and 1980-2018 (timespan: F = 5.47, p = 0.0045), and particularly so in the East (timespan 
x longitude: F = 5.49, p = 0.0045), consistent with a recent expansion of var. rudis 
ancestry (Fig 4A). Furthermore, we see strong state and province-specific shifts in 
ancestry through time in our historical sequences (time span by state interaction: F = 
4.22, p = 7 x 10-5), highlighting not only the shift of var. rudis eastwards (with increases 
through time in Ontario, Ohio, Illinois, and Missouri) but also the very recent 
introduction of var. tuberculatus ancestry into the most eastwards part of the range in 
Kansas (Fig 4B). A. tuberculatus demography thus appears to have been drastically 
influenced by human-mediated landscape change over the last two centuries, consistent 
with the massive recent expansion of effective population size we have previously 
inferred over this same timeframe (26). That this shift has been most notable over the last 
40 years is further consistent with the timescale of rampant herbicide resistance evolution 
within the species (10, 26, 28), suggesting selection on resistance may facilitate the 
colonization of var. rudis ancestry outside its historical range. Along these lines, we find 
this contemporary expansion has facilitated the sorting of var. rudis ancestry across 
environments (a longitude by time span by environment interaction: F = 5.13, p = 4 10-5; 
Fig 4C), with increasing overrepresentation of var. rudis ancestry in agricultural and 
disturbed environments in the eastern portion of the range through time, as previously 
suggested (11). 
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Fig 4. Temporal shifts in the distribution of var. rudis ancestry have facilitated polygenic 
agricultural adaptation. A) Longitudinal clines in individual-level var. rudis ancestry over 
three timespans, illustrating the expansion of var. rudis ancestry eastwards over the last two 
centuries. B) The distribution of individual-level var. rudis ancestry by state and through time, 
illustrating state-specific changes in ancestry. Vertical lines represent first, second, and third 
quantiles of ancestry within each timespan and state. Timespans indicated in A)  C) Increasing 
sorting of individual-level var. rudis ancestry into agricultural environments on contemporary 
timescales. D) Environment-specific metrics of selection (CMH p-value and cross-population 
extended haplotype homozygosity (XPEHH)) across the genome in 100 kb windows positively 
correlate with var. rudis ancestry in agricultural, but not natural habitats.  
 
 

To investigate whether agricultural adaptation has preferentially favored var. rudis 
ancestry, we reconstructed fine-scale ancestry across the genome. Based on analyses in 
100 kb windows, we find a least squares mean of 5.6% more var. rudis ancestry genome-
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wide in agricultural environments compared to the adjacent natural habitat (Fig S10). The 
environment-specific proportion of var. rudis ancestry is not only positively correlated 
with recombination rate (F = 16.67, p = 4.5 x 10-5) and gene density (F = 5.85, p = 
0.016) but also with SNP and haplotype-based evidence of environment-specific 
selection. Agricultural, but not natural populations, have an excess of cross-population 
haplotype homozygosity (agricultural vs natural XPEHH) and within-pair environmental 
differentiation (CMH p-value) in genomic regions of high var. rudis ancestry (Env x 
XPEHH: F=9.34, p=0.002; Env x CMH: F=99.70, p < 10-16; Fig 4D), implying that 
ancestry composition genome-wide in large part determines the extent of polygenic 
agricultural adaptation. Together, these findings suggest that the expansion of var. rudis 
ancestry across the range, particularly in the last 40 years, has facilitated adaptation to 
novel agricultural selective pressures through providing preadapted genetic variation. 

In summary, agricultural adaptation in A. tuberculatus, a native plant in North America, 
has occurred over extremely rapid timescales, facilitated by range shifts in response to the 
agriculturalization of its native habitat. The human-mediated expansion of the southern 
lineage of the species northeastwards since the later half of the 20th century has 
introduced new genetic variation across the genome on which selection in agricultural 
settings could act. Through our paired sampling design, we identified 251 independent 
SNPs across 240 genes that are implicated in agricultural adaptation; these genes tend to 
be enriched for expanded southwestern ancestry, with functions affecting growth, 
development, abiotic tolerance, and herbicide resistance. Concurrent with the 
intensification of agriculture, the prevalence of agricultural alleles has increased rapidly 
over just the last 60 years, in agricultural environments by nearly 3% per year, and even 
in natural sites by more than 1% per year. The first empirical estimates of selection 
coefficients for herbicide resistance provided here—10% per year range-wide over a 60 
year period—emphasizes the long lasting impact of selection on genetic variation even 
across heterogeneous environments. Modern, industrial agriculture thus imposes 
strengths of selection rarely observed in the wild.  

These results highlight that anthropogenic change not only leads to the formation of new 
habitats but also provides an opportunity for range expansion that may facilitate and 
feedback with local adaptation, reshaping genetic variation for fitness within native 
species.  
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Supplementary Materials 

 
Materials & Methods 

 
Herbarium collections 
In 2019, we obtained 10 mg tissue collections of herbarium specimens from 7 herbaria 
across Canada and the United States and one governmental organization: the Royal 
Ontario Museum Herbarium, the Museum of Biological Diversity at Ohio State 
University Herbarium, the Dean Herbarium at Indiana State University, the Michigan 
State University Herbarium, the Illinois Natural History Survey Herbarium, Missouri 
Botanical Gardens, The McGregor Herbarium at Kansas State University, and 
Agriculture and Agrifood Canada. We selected samples to have an even representation of 
habitats through time. Samples were classified as natural (n=54), agricultural (n=28), or 
disturbed (n=20) based on collectors’ annotations on each plate: any reference to a 
cultivated field was treated as an ‘agricultural’ collection; general environmental 
descriptions such as dry grassland or riverbank was treated as a ‘natural’ collection; and 
reference to disturbed soil, railroad tracks, or manicured or managed land was treated as a 
‘disturbed’ collection. For inference of contemporary allele frequency and ancestry 
change through time, samples collected from disturbed habitats were grouped together 
with the agricultural category—in both of which waterhemp exists as a weed (Table S5). 
When geographic coordinates were not provided, we referred to the state, county, section, 
intersection, and landmark descriptions to infer the geographic coordinate of a given 
sample. In total, we collected samples from 172 specimens, 108 of which were selected 
for whole-genome sequencing. 
 
 
Herbarium DNA extractions & library preparations 
The work was performed in the ancient DNA lab at the University of Tübingen. For DNA 
extraction of the herbarium samples, we followed basic protocol 1 outlined in (29). 
Briefly, under sterile conditions, ~10 mg of each sample were ground and incubated with 
N-phenacylthiazolium bromide (PTB)-based mix overnight to lyse DNA. After a 
shredding step with QIAshredder spin columns, DNA was purified and eluted with 
DNAeasy Mini spin columns. Sequencing libraries were prepared using the basic 
protocol 2 outlined in (29), performing blunt-end repair, adapter ligation, a fill-in 
reaction, indexing, and finally PCR amplification (10 cycles) and a cleaning step. The 
libraries were sequenced on an Illumina NovaSeq instrument on a single flow cell. The 
sequencing run produced ~3,442 Gb data, an average of 32 Gb per sample.  
 
 
Mapping, damage correction, SNP calling and filtering 
 
We removed adapters, polyQ tails, and merged reads from herbarium sequencing reads 
using fastp (30). Because of the small fragment size of historical DNA, this resulted in a 
sizable loss of sequence coverage, from 46X coverage to a mean of 11X coverage. On 
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average, 89% of merged reads mapped to the female reference genome from (31), 
suggesting low rates of contamination by exogenous DNA. Finally, we performed de-
duplication of merged reads with DeDup (32), which is optimized for merged paired-end 
sequencing data. This resulted in a final mean per-sample coverage of 9.7X.  
We used the program MapDamage (33) to quantify damage patterns in the historical 
DNA. The fraction of C deamination, which leads to C-to-T substitutions, was low, at the 
first base ~2% on average across samples, barely inflated above the C-to-T substitution 
rate across the rest of the reads (Fig S3). Nonetheless, the fraction of C-to-T substitutions 
at the first base was positively correlated with the age of the samples (Fig S3). We thus 
used MapDamage to rescale mapping quality scores to take into account the patterns of 
DNA damage. We called SNPs with freebayes (v1.3.2) in 100 kb regions in parallel 
across the genome, merged, and then filtered SNPs based on quality (QUAL > 30) and 
missing data ( < 0.30).  
 
Herbicide resistance alleles in herbarium samples were identified based on known 
locations of non-synonymous substitutions within ALS and EPSPS. Initially, two 
genotype calls from herbarium samples that predated the onset of ALS herbicide use in 
the 1950s, showed standing variation for resistance at ALS574 and ALS122: one 
individual heterozygous for Trp-574-Leu collected in 1930 from a sandy agricultural 
field in St. Louis, Missouri, USA (HB0973); and another individual heterozygous for 
Ala-122-Ser collected in 1895 from a corn field in Fayette, Ohio, USA (HB0914). Upon 
further inspection, read-level support for resistance alleles was low with the allelic-bias at 
these genotype calls being highly skewed (reference to alternate ratio = 1:9 and 2:18, 
respectively). Similarly, one individual collected in 1967 from the Bottom of Maumee 
River, Ohio (HB0977) was heterozygous for ALS122, but the alternate resistance allele 
had support at only one read (reference to alternate ratio =1:7). We subsequently dropped 
these genotype calls from analyses of selection on herbicide resistance alleles through 
time. 
 
Metrics of differentiation across Environments: CMH, FST, & XPEHH 
We used the 7,262,599 genome-wide high-quality SNPs called from contemporary 
agricultural-natural paired populations (n=187 individuals total from 17 pairs of 
populations, 34 populations in total) from (11) (Fig 1). Previously, these data had been 
only used for genome-wide PCA and faststructure based individual-level ancestry 
estimates. To make use of our paired sampling design, we used plink (34) to perform a 
Cochran–Mantel–Haenszel test, testing an (environment by SNP | pair) effect after 
applying a minor allele frequency cutoff of 0.01. We identified candidate agriculturally-
adaptive genes based on the nearest gene (bedtools closest) to each LD-clumped, FDR q-
value < 0.1 SNP. We found the Arabidopsis thaliana orthologues of our A. tuberculatus 
genes with orthofinder (35). For genes where orthofinder found no A. tuberculatus 
orthologue and in which our annotation identified no orthologue in closely related species 
based on gene expression data, we used blastn (36) to perform a conclusive search for 
similar genes across species. 
Additionally, we used plink to calculate Weir and Cockerham’s FST, both between all 
natural and agricultural samples, and between environments within each population pair, 
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which we later averaged to obtain the mean pairwise FST. For calculation of Fst at the 
EPSPS amplification, we recoded individuals as 0, 1, 2 based on copy number amplitude 
(<1.5, 1.5 < copies < 2.5, and >2.5, respectively). We used selscan (37) to calculate the 
cross-population extended haplotype homozygosity, after read-back and population-level 
phasing with Shapeit2 (38), both of which required knowledge of recombination rates, 
which we supplied in the format of our imputed LD-based map from (31). 
 
 
Models of Migration-Selection Balance 
We modeled migration-selection balance between natural and agricultural habitats in our 
contemporary data for 6 common target-site resistance alleles, based on a two-patch, 
allele-focused model. In each patch, we modeled the frequency of the resistance allele 
and the susceptible (xS, xR and yS, yR, respectively) from year to year as: 

𝑥!∗ =	𝑥!#𝑊$$ 	+ 𝑥!𝑥% 𝑊$&, 			𝑥%∗ = 𝑥!𝑥% 𝑊$&	+𝑥%#𝑊&& 

𝑦!∗ =	𝑦!#𝑉$$ 	+ 𝑦!𝑦% 𝑉$&,			𝑦%∗ = 𝑦!𝑦% 𝑉$&	+𝑦%#𝑉&& 

where xS*, yS*represent the frequency of the susceptible allele and and xR*, 
yR*represent the frequency of the resistance allele after a bout of selection in natural (x) 
and agricultural (y) sites within a generation. We then allowed for migration of surviving 
genotypes and modeled their frequency in the next generation as follows: 

𝑥!' =	 (1 − 𝑚()(
𝑥!∗

𝑥!∗ 	+ 	𝑥%∗
) + 𝑚((

𝑦!∗

𝑦!∗ 	+ 	𝑦%∗
),

𝑥%' = (1 − 𝑚()(
𝑥%∗

𝑥!∗ 	+ 	𝑥%∗
) + 𝑚((

𝑦%∗

𝑦!∗ 	+ 	𝑦%∗
) 

𝑦!' =	 (1 − 𝑚))(
𝑦!∗

𝑦!∗ 	+ 	𝑦%∗
) + 𝑚)(

𝑥!∗

𝑥!∗ 	+ 	𝑥%∗
),

𝑦%' = (1 − 𝑚))(
𝑦%∗

𝑦!∗ 	+ 	𝑦%∗
) + 𝑚)(

𝑥%∗

𝑥!∗ 	+ 	𝑥%∗
) 

where mN and mA represent immigration rates into natural and agricultural sites, 
respectively. Assuming additivity (h=0.5) and that migration at the loci is much weaker 
than selection (m << s), a given pair of populations is expected to approach a 
polymorphic equilibrium, where: 

𝑠𝐴
𝑚𝐴
=

2(𝑦𝑆
′ −	𝑥𝑆

′ )

𝑦𝑆
′ 𝑦𝑅
′  in natural patches and 

𝑠𝑁
𝑚𝑁

=
2(𝑥𝑅

′ −𝑦𝑅
′ )

𝑥𝑆
′ 𝑥𝑅
′  in agricultural patches 

While it is not possible to solve for selection directly in the absence of data on migration 
rates, these formulae allow us to estimate the strength of divergence by inferring the 
strength of selection relative to migration in natural (

𝑠𝑁
𝑚𝑁

) and agricultural (
𝑠𝐴
𝑚𝐴

) 
environments, as presented in Table S3. The ratio of these metrics gives the ratio of the 
cost faced per migrant arriving in natural environments versus the benefit per migrant in 
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agricultural environments, assuming that the pair of populations is near equilibrium. We 
note that the approach to migration-selection balance occurs exponentially at a rate 
proportional to the selection coefficient (when m << s << 1) and so should occur rapidly 
at sites under strong selection (Supplemental Index 1). 

 
Logistic models of temporal allele frequency change 
 
We used CMH outliers from the contemporary paired population scan to investigate 
patterns of agricultural-allele frequency change over the last two centuries. We were 
interested in tracking independent allele frequency trajectories, so from the 403 SNPs 
with CMH p-values that exceeded 10% FDR correction (p < 6 x 10-6), we performed a 
subsequent clumping step, effectively retaining a set of largely unlinked SNPs (Fig S11) 
that represent the most significant SNP in a particular region. Specifically, we used plink 
--clump, to find the most significant hit genome-wide, scan 1 Mb around it, and exclude 
any SNP from the resulting output that is in r2 > 0.25 with the focal SNP. This algorithm 
is repeated until all SNPs passing the genome-wide significance threshold have been 
clumped. This resulted in 251 loci that on average showed a 17.9% allele frequency 
difference between extant agricultural and natural environments. Because some of the 
alternate alleles across these loci were more frequent in natural environments, we 
redefined the alleles based on which one was more common in agricultural compared to 
natural sites. 
We then found the intersection of these agriculture-associated alleles, identified in our 
contemporary paired collections, with the historical, filtered SNPs from the herbarium 
sequence data. 154 loci were present in the historical samples with the same 
reference/alternate allele combinations. We extracted a matrix of 0, 0.5, 1 values, 
representing the frequency of the agricultural allele for each locus within each individual, 
for samples from both our contemporary and historical collections. Combining these 
individual agricultural allele frequencies at each locus across historical and contemporary 
datasets, we then performed a logistic regression in R (glm function, family=“binomial”) 
of genotype on collection year, separately on samples from either natural or agricultural 
environments. From each logistic regression, we extracted the logit-transformed slope 
(selection coefficient, s), p-value, and standard error, as well as the predicted value (allele 
frequency) at 1870 and 2018, representing the minimum sample year and maximum 
sample year. While we have samples dating back to 1828, we constrained this analysis to 
samples collected after 1870, as the density of samples before then is low (n=4), with no 
representation of samples from agricultural environments.  
The total allele frequency change at each locus was calculated by taking the difference 
between the predicted frequency of the allele in 2018 and 1870. We merged the output of 
these locus-specific logistic regressions in agricultural environments, with both SNP and 
haplotype-based statistics from these same individuals to identify contemporary 
correlates of the magnitude of allele frequency change and selection through time. 
Specifically, we examined how well contemporary recombination rate, XPEHH, the 
CMH p-value, the number of SNPs in linkage (r2 > 0.25) with the focal SNP (< 1Mb; i.e. 
number of SNPs in a clump), and the distance between linked SNPs, explained both the 
total allele frequency change and the estimated strength of selection (Fig S6).  
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We also performed a separate set of analyses, where a logistic regression was used to 
analyze the trajectory of all agricultural alleles or known herbicide resistance alleles at 
once, first across samples from natural environments and then for samples from 
agricultural and disturbed environments (‘genotype ~ year + locus’; Fig 3D). We further 
partitioned samples in each environment to those that predate or are subsequent to the 
1960s, to infer the importance of the intensification of agriculture and herbicides in 
shaping the strength of selection on contemporary agricultural loci. For each of the four 
logistic regressions ran on these partitioned sets of data, the slope of the year term 
represents a joint estimate of the strength of selection for agricultural alleles, between 
1870-1960 or 1960-2018, in natural or agricultural environments. We refer to this joint 
estimate of selection at multiple loci as s.  
 
To test whether a comparison of selection before and after the 1960’s was statistically 
supported, we also compared our full model analyzing temporal signatures of allele 
frequency change between 1870-1960 to one that fits either two or three logistic 
regression lines between that time frame (i.e. a segmented logistic regression). A 
segmented logistic regression with two breakpoints provides the best fit to our data, 
compared to a model with either one or no breakpoints (two-break segmented 
AIC=54360.55, one-break segmented AIC =54437.66, non-segmented AIC=54444.67), 
and converges on 1913 and 1961 breakpoints, the later supporting a priori hypotheses and 
our interest in interrogating signals before and after the start of the green revolution in 
1960 (Fig 3D). 
We designed a randomization test based on observed allele frequency changes across the 
genome to obtain an expected distribution under null processes (drift, migration, and 
selection). In particular, we were interested in quantifying the potential bias in higher 
frequency agricultural alleles having the leeway to change more through time, as 
compared to a set of lower frequency alleles. We thus randomly sampled 154 loci from 
our contemporary collections (the same number as our observed clumped and historically 
matched set of agricultural alleles), 1000x across the genome, exactly matching the 
frequency distribution observed for extant agricultural alleles, first in extant agricultural 
and then in extant natural environments. To emphasize, this randomization was done 
independently in each environment, such that the alleles sampled to match the extant 
agricultural-allele frequency distribution in agricultural environments in one iteration 
were different from the alleles sampled to match the frequency distribution in natural 
environments (Fig S4). To account for the ascertainment bias in our set of putatively 
agriculturally adaptive alleles—finding alleles that show the greatest excess of allele 
frequency in agricultural compared to natural environments—we further constrained 
these randomizations to alleles across the genome which were at greater frequency in 
agricultural than in natural environments. On each of the 1000 randomizations within 
each environment, we then performed the same analyses as above: matching these alleles 
in our historical samples, producing a matrix of genotype data for both contemporary and 
historical sets, and performing a logistic regression for each locus, as well as logistic 
regression on all loci at once, for either samples from natural or agricultural 
environments, and for those that either preceded or were subsequent to 1960. For the 
1000x randomizations within agricultural and natural environments, we then computed 
the 2.75 and 97.25% quantiles (“null 95% interquantile range”) of the statistics of interest 
(total allele frequency change and selection coefficients) to compare against our observed 
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values. 
 
 
 
Maximum likelihood estimate of selection 
 
For the 7 known herbicide resistance alleles, we were particularly interested in individual 
estimates of selection on each allele over time. We used a maximum likelihood approach 
to estimate the strength of selection for each resistance allele between 1960-2018, along 
with a 95% credibility interval using profile likelihood. Summing over all years (t), the 
log-likelihood of observing the data is given by the binomial sampling formula describing 
the chance of observing the number of resistance (nR) and susceptible alleles (nS) in any 
given year: 

𝑙𝑛(𝐿) 	= 3 (𝑛% ⋅ 𝑙𝑜𝑔	
𝑝34

(1 − 𝑝) 	+	𝑝34) + (𝑛! ⋅ 𝑙𝑜𝑔	
𝑝34

(1 − 𝑝) 	+	𝑝34)4
 

where p represents the initial frequency of the allele when t = 0 (defined as the present) 
and s represents the strength of selection, both of which are unknown and estimated by 
maximizing the likelihood. Because many of the resistant alleles were only observed in 
contemporary samples, selection must be sufficiently strong to explain this rise, but the 
maximum strength of selection cannot be determined (the likelihood surface becomes 
flat). We thus only present the 95% confidence interval in the text (i.e., those values of 
the s for which the ln(L) falls within 12[0.05]/2 of the maximum likelihood). We 
implemented this algorithm in R, using the mle2 function implemented within the bblme 
package in R. 
 
Ancestry inference 
For genome-wide ancestry inference, we merged filtered SNPs from herbarium samples 
with high-quality SNP sets from (11) (n=187, collections from 2018) and (31) (n=162, 
collections from 2015), resulting in 457 individuals and representing all resequenced A. 
tuberculatus whole genomes. We used faststructure (39) to infer individual-level 
ancestry, taking the proportion of an individual’s assignment to a grouping at K=2 to 
represent either var. rudis or var. tuberculatus ancestry. An individual’s proportion of 
var. rudis ancestry was then analyzed in a multivariate regression that tested how well 
var. rudis ancestry was explained by longitude, latitude, environment (natural or 
agricultural), timespan (1800-1920 [n=39], 1920-1980 [n=44], 1920-2020 [n=374]), a 
two-way timespan by longitude interaction, a two-way timespan by state interaction, and 
a three-way timespan by environment by longitude interaction:  

Individual ancestry assignment ~  longitude + latitude + environment + 
timespan + timespan:longitude + timespan:state + 
timespan:environment:longitude 

We also used plink to perform a principle component analysis of merged SNPs from just 
herbarium samples (Fig S12) and all 457 samples jointly (Fig S13). 
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We were interested in the distribution of var. rudis ancestry across the genome, and so 
used LAMP (40) to assign ancestry to SNPs, based on two reference populations 
homogenous for either var. rudis or var. tuberculatus ancestry (Kansas and Ontario 
Natural Populations, respectively; (31)). Ancestry informative SNPs were those with an 
Fst > 0.40  (2x the mean genome-wide ancestry differentiation between varieties, in these 
two populations) between these reference populations and that were also in common 
between datasets (<20% of samples with missing data) after merging historical sequences 
with the contemporary paired sequence data (11). Since LAMP requires recombination 
rate information, we also imputed the LD-based genetic map from (31) to the ancestry-
informative SNPs to get genetic distance between each. Finally, we performed the LAMP 
analysis, one population at a time, one scaffold at a time. After merging SNP-wise 
ancestry assignments across scaffolds, we calculated the mean, 5%, and 95% quantile of 
var. rudis ancestry in 100 kb regions for each population, and eventually, each 
environment (Fig S10).  
To understand the relationship between ancestry, agricultural selection, and genomic 
architecture, we performed a multiple regression to quantify drivers of fine-scale ancestry 
across the genome. We regressed the individual proportion of var. rudis ancestry in 100 
kb windows across the genome against gene density, recombination rate, scaffold, 
environment, average CMH score, average XPEHH (difference in extended haplotype 
homozygosity across environments), the interaction between environment and average 
CMH score in each window, and the interaction between environment and the mean 
XPEHH in each window. 

100kb mean ancestry ~  scaffold + mean_genedensity + mean_recomb + 
mean_xpehh:env + mean_cmh:env + env 

The least squares effect of environment on ancestry was taken to calculate the average 
difference in ancestry between agricultural and natural environments.  
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Tables S1 to S5 
 
Table S1. GO Enrichment results for the top 0.01% CMH outliers (n=2055 SNPs). 

 
GO biological process complete Expected alleles Fold Enrichment Bonferroni p-value 
growth 6.8 3.1 2.59E-02 
anatomical structure morphogenesis 14.1 2.3 4.69E-02 
anatomical structure development 44.1 1.9 1.67E-04 
developmental process 46.2 1.8 3.20E-04 
response to hormone 19.2 2.3 4.60E-03 
response to organic substance 26.3 2.0 6.75E-03 
response to chemical 41.4 1.8 1.79E-03 
response to stimulus 85.3 1.6 3.30E-06 
response to endogenous stimulus 19.6 2.2 3.38E-03 
post-embryonic development 22.8 2.1 6.45E-03 
multicellular organism development 38.2 1.9 7.02E-04 
multicellular organismal process 42.5 1.8 6.59E-04 
response to external stimulus 23.3 2.1 4.87E-03 
system development 29.2 2.0 1.10E-03 
response to abiotic stimulus 32.8 1.9 1.14E-02 
response to stress 47.9 1.7 2.77E-02 
cellular metabolic process 116.0 1.5 7.79E-07 
metabolic process 127.9 1.5 5.08E-06 
cellular process 182.1 1.5 5.85E-15 
regulation of biological process 81.4 1.5 2.01E-02 
biological regulation 89.9 1.5 1.05E-02 
organic substance metabolic process 119.0 1.4 4.05E-04 
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Table S2. Gene and orthologue information for the 50 SNPs with the most significant 
CMH p-values, sorted by Scaffold and then CMH p-value. AMATA=Amaranthus 
tuberculatus, AT=Arabidopsis thaliana. 
 
 
Scaffold Position CMH p-value AMATA gene AT gene Orthologue Blastn 
1 59264411 6.08E-10 2592 NA NA Nuclear Fusion Defective 4-like 
1 55158523 3.29E-09 2285 At4g34215 SGNH-hydrolase   
1 54510509 8.91E-09 2244 NA NA NA 
1 12324718 1.93E-07 825 AT5G09550.1 Guanosine nucleotide diphosphate dissociation inhibitor (GDI) 
1 64789405 2.39E-07 3031 AT4G38380.4 Protein DETOXIFICATION 45%2C chloroplastic (DTX45) 
10 15265237 7.25E-08 22183 NA NA NA 
10 26222541 1.03E-07 22540 AT3G29385.1 dentin sialophosphoprotein-like protein 
10 5374087 2.74E-07 21789 NA NA NA 
11 24079642 8.55E-11 25990 AT5G63460.1 LOWER TEMPERATURE 1  
11 24078348 3.09E-10 25990 AT5G63460.1 LOWER TEMPERATURE 1  
11 24086055 1.10E-09 25990 AT5G63460.1 LOWER TEMPERATURE 1  
11 24006946 2.18E-09 25984 AT5G14220.4 PPO2  
11 24062979 2.36E-09 25989 AT5G50380.1 Exocyst complex component EXO70B1 
11 24080739 4.33E-09 25990 AT5G63460.1 LOWER TEMPERATURE 1  
11 32783081 7.71E-09 26623 NA NA  
11 24048769 1.30E-08 25988 AT4G14110.1 COP9 signalosome complex subunit 8 (CSN8) 
11 24047019 4.13E-08 25988 AT4G14110.1 COP9 signalosome complex subunit 8 (CSN8) 
11 24083434 4.40E-08 25990 AT5G63460.1 LOWER TEMPERATURE 1  
11 24070607 4.79E-08 25989 AT5G50380.1 Exocyst complex component EXO70B1 
11 26024805 1.35E-07 26127 AT1G75125.1 plastid transcriptionally active protein 
11 25369807 1.47E-07 26088 AT5G39610.1 Nucleobase-ascorbate transporter 6 (NAC6) 
11 24021382 1.69E-07 25985 AT5G16550.1 LDAP INTERACTING PROTEIN  
11 24024155 1.69E-07 25985 AT5G16550.2 LDAP INTERACTING PROTEIN  
11 24048722 2.07E-07 25988 AT4G14110.1 CONSTITUTIVE PHOTOMORPHOGENIC 9 
11 24046969 2.55E-07 25988 AT4G14110.1 CONSTITUTIVE PHOTOMORPHOGENIC 9 
12 29335314 7.69E-10 24987 ATMG00310.1 ORF154  
12 29335422 3.09E-09 24987 ATMG00310.1 ORF154  
12 29327164 3.31E-09 24987 ATMG00310.1 ORF154  
12 29343299 1.81E-08 24987 ATMG00310.1 ORF154  
12 29336458 3.50E-08 24987 ATMG00310.1 ORF154  
12 29333763 5.83E-08 24987 ATMG00310.1 ORF154  
12 11427671 7.91E-08 24182 NA NA PPX2L 
12 29328119 1.21E-07 24987 ATMG00310.1 ORF154  
12 11429925 2.10E-07 24182 NA NA PPX2L 
12 29333575 2.30E-07 24987 ATMG00310.1 ORF154  
12 29333622 2.30E-07 24987 ATMG00310.2 ORF155  
13 35715956 8.71E-09 19321 NA Calmodulin (Physarum polycephalum OX%253D5791) 
13 38847060 6.31E-08 19605 NA NA WIP2-like protein 
13 26858220 8.73E-08 18867 NA NA NA 
13 33084574 1.93E-07 19117 AT4G14310.2 KIN14B-interacting protein 
13 41600578 2.63E-07 19862 AT3G24160.1 PUTATIVE TYPE 1 MEMBRANE PROTEIN 
2 53114550 8.86E-08 5599 NA NA NA 
2 10688517 9.38E-08 3997 AT3G09630.1 SUPPRESSOR OF ACAULIS 56 (SAC56) 
3 4797458 8.95E-09 6345 NA NA ATHB13 
3 1072396 9.09E-09 5998 AT1G23820.1 SPERMIDINE SYNTHASE 1 
3 1072448 8.96E-08 5998 AT1G23820.1 SPERMIDINE SYNTHASE 1 
3 16438213 1.27E-07 7059 AT1G10150.1 Carbohydrate-binding protein 
3 5632229 1.80E-07 6414 AT4G09650.1 ATP SYNTHASE DELTA-SUBUNIT GENE (ATPD) 
6 18669007 1.54E-07 15047 AT4G35830.1 Aconitase 1 (ACO1)  
8 15398786 1.13E-08 20978 AT3G14310.1 Pectin Methylesterase 3  
 
 
 
 
 
 
 
 
 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.02.25.482047doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.25.482047
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

 
Table S3. Selection-migration differentiation statistics for 6 common resistance alleles, 
along with estimates of selection estimated by logistic regression of the allele frequency 
through time. Ag, agricultural sites; Nat, natural sites. Cost and benefit estimates shown 
here for the additive (h=0.5) case.  s (1960-2018) represents the maximum likelihood 
estimate of selection from the binomial sampling equation of allele frequency change, 
and we provide the associated 95% credible interval. 
 
 
  Ag Freq Nat Freq Ag Benefit (sA/mA) Nat Cost (sN/mN) Cost/Ben s (1960-2018) 95% CI of s 
PPOdel 0.66 0.056 2.53119 10.7446 4.24488087 1.16 0.097, 3 
EPSPSamp 0.48 0.25 2.16346 2.88 1.33120095 NA NA 
EPSPS106 0.89 0.08 0.40858 0.4884 1.19535954 1.12 0.053, 3 
ALS122 0.034 0 NA NA NA -0.01 -1, 3 
ALS197 0.011 0.015 NA NA NA 0.286 -1, 3 
ALS574 0.65 0.22 1.14286 1.51515 1.32575294 0.09 0.044, 0.0167 
ALS376 0.921 0.0357 1.19023 2.51558 2.11352428 0.59 0.023, 3 
ALS653 0.9326 0.0612 0.196636 0.215061 1.09370105 0.55 0.029, 3 

 

 
 
Table S4. The top 15 loci with the strongest evidence of temporal selection between 
1970 and 2018.  

 
s s p-value s(SE) AF 

change scaf position AMATA annotated gene AT orthologue AT gene 
name 

0.106 4.680E-04 0.030 0.846 Scaffold_11 26068182 AMATA_chromosomes_26131 NA NA* 
0.081 1.081E-04 0.021 0.823 Scaffold_2 10755264 AMATA_chromosomes_03999 Subtilase family protein AT5G58840 
0.057 2.382E-03 0.019 0.512 Scaffold_10 22995135 AMATA_chromosomes_22407 phosphotyrosyl phosphatase activator (PTPA family 

protein) AT4G08960 
0.052 8.211E-03 0.020 0.402 Scaffold_11 26024805 AMATA_chromosomes_26127 plastid transcriptionally active protein AT1G75125* 
0.052 6.084E-05 0.013 0.646 Scaffold_3 14213167 AMATA_chromosomes_06976 WRKY DNA-binding protein 13 AT4G39410 
0.047 2.549E-07 0.009 0.783 Scaffold_10 36863790 AMATA_chromosomes_23250 hypothetical protein AT1G36320 
0.046 1.272E-01 0.030 0.162 Scaffold_3 49332690 AMATA_chromosomes_08117 NA NA 
0.045 2.889E-05 0.011 0.677 Scaffold_6 18669007 AMATA_chromosomes_15047 ACO1 AT4G35830 
0.043 8.557E-05 0.011 0.599 Scaffold_12 21792253 AMATA_chromosomes_24760 NA NA 
0.043 4.601E-08 0.008 0.888 Scaffold_3 5632229 AMATA_chromosomes_06414 ATPD (F-type H+-transporting ATPase subunit delta) AT4G09650 
0.036 8.069E-06 0.008 0.666 Scaffold_12 5658420 AMATA_chromosomes_23853 NA NA 
0.033 4.729E-07 0.007 0.831 Scaffold_10 20690917 AMATA_chromosomes_22321 CCB2 (chaperone DUF2930)  AT5G52110 
0.032 1.755E-07 0.006 0.819 Scaffold_10 16005835 AMATA_chromosomes_22202 NA NA 
0.032 3.939E-05 0.008 0.708 Scaffold_10 24312710 AMATA_chromosomes_22452 BPA4 (RNA-binding RRM/RBD/RNP motifs family 

protein, AT1G14340) AT1G14340 
0.031 5.175E-06 0.007 0.764 Scaffold_2 17891465 AMATA_chromosomes_04209 NA NA 
* ~2 Mb from PPO 
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Table S5. Metadata on herbarium collections.  
 
 
Sample Herbarium Year State County/Locality Description Nat/Ag/Dist Lat Long Catalog # 
HBO900 INHS 1876 Illinois Oquawka Banks of the Mississippi Nat 40.900098 -90.991298 1 
HBO901 INHS 1870 Illinois Kankakee Wet Banks Nat 41.154318 -87.919365 2 
HBO902 INHS 1875 Illinois Oquawka Banks of the Mississippi Nat 40.900098 -90.991298 3 
HBO903 INHS 1897 Illinois Warrenville Mudflats Nat 41.823199 -88.174393 6 
HBO904 INHS 1892 Illinois Chicago Waste Ground 

("Exposition Building") Dist 41.779452 -87.61641 7 (429) 
HBO907 INHS 1897 Illinois Chicago Dumping ground, Brighton 

Park Dist 41.818787 -87.706608 10 
HBO908 INHS 1952 Illinois Fithian, Vermilion 

County Along railroad Dist 40.114645 -87.875056 11 (56279) 
HBO909 INHS 1946 Illinois Gardenplain, Whiteside 

County Peat soil in potato field, 
"L.C. Anderson Farm" Ag 41.782572 -90.138152 12 (19934) 

HBO910 INHS 1948 Illinois W of Antioch, Lake 
County Disturbed soil Dist 42.481444 -88.157622 13 (32479) 

HBO911 INHS 1947 Illinois W of Gillespie, 
Macoupin County Corn field Ag 39.127901 -89.860508 14 (22536) 

HBO912 INHS 2005 Illinois Minooka Rd & Route I-
80, Minooka Disturbed moist cropland 

margin near sable creek Ag 41.457917 -88.308444 15 (242814) 

HBO913 INHS 2000 Illinois Cooperstown, Brown 
County 

Former marsh in partly 
filled obow, mostly used as 

corn fields Ag 39.959059 -90.611708 16 (205271) 

HBO914 MBDH 1895 Ohio Fulton Co. 
Cornfield along the new 

river improvement on the 
prairie Ag 41.67333333 -

84.32694444 357 
HBO915 MBDH 1903 Ontario Essex Co. NA NA 41.772246 -82.79184 265 
HBO916 MBDH 1955 Ohio Greene Co. Front lawn of Campus 

house Dist 39.82083333 -
84.01944444 292 

HBO917 MBDH 1956 Ohio Mercer Co. Roadside, edge of soybean 
field Ag 40.67861111 -

84.51861111 197 
HBO918 MBDH 1991 Ohio Putnam Co. Weedy ground alongside 

Blanchard river Nat 41.03944444 -
84.15694444 253 

HBO919 IUH 1898 Indiana Lake on ballast (railroad bed) Dist 41.602259 -87.25837 IND-0088703 
HBO920 IUH 1941 Indiana Vanderburgh cultivated ground Ag 37.870283 -87.634147 IND-0088729 
HBO921 IUH 1941 Indiana Vanderburgh field north of river slough Ag 37.979365 -87.544518 IND-0088730 
HBO922 IUH 1952 Indiana Johnson Low cornfield Ag 39.482726 -86.019624 IND-0088699 

HBO923 IUH 2007 Indiana Vigo 
Mesic loam plain fallow 

cropland with successional 
weeds Ag 39.43257 -87.380135 IND-0088738 

HBO924 KUMH 1897 Missouri Jackson, Courtney Common along river Nat 39.15556 -94.39333 176647 
HBO925 KUMH 1913 Kansas Doniphan, Mesophytic oat field. Ag 39.813187 -95.160615 43812 
HBO926 KUMH 1913 Kansas Doniphan, Mesophytic oat field. Ag 39.813187 -95.160615 43965 
HBO927 KUMH 1949 Kansas Shawnee, Lake 

Shawnee Dry grassland. Nat 39.000784 -95.626093 43811 
HBO928 KUMH 1940 Kansas Douglas, Lawrence Field. Ag 38.9365 -95.22391 44000 
HBO929 KUMH 1970 Kansas Chautauqua, Peru Low, cultivated field. 

Gumbo soil. Ag 37.09524 -96.07752 43956 

HBO930 KUMH 1973 Kansas Allen, Elsmore 
Roadside right of way 

along field. Weedy, good 
soil. Ag 37.79382 -95.16832 

43987 

HBO931 KUMH 1981 Kansas Doniphan, Denton Edge of cultivated field. Ag 39.70289 -95.30739 43933 

HBO932 KUMH 1994 Kansas Labette, Parsons 
Disturbed roadside along 
bean field and adjacent 

woodlands to the S. 
(scattered pop in field) Ag 37.29416 -95.210223 

111589 

HBO933 ROM 1891 Ontario NA Leading to the H null 
Cemetery Dist 43.892294 -81.312444 447 

HBO934 ROM 1889 Ontario Wingham Alluvial soil (wet soil) Nat 43.89161 -81.312795 189975 
HBO935 ROM 1880 Ontario London Fields Ag 42.954827 -81.234897 188334 
HBO936 ROM 1891 Ontario Leasselman Alluvium along the Nation 

River Nat 45.319337 -75.093578 438 
HBO937 ROM 1880 Ontario North Branch, London Low River Flats Nat 43.04267 -81.175264 441 
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HBO938 ROM 1940 Ontario New Durham, Brant Co Edge of Field Ag 43.04956 -80.523938 129548 
HBO939 ROM 1960 Ontario Dunnville, Haldimand 

Co Wasteground by Lake Erie Dist 42.86879 -79.617923 159479 
HBO940 ROM 1950 Ontario Kent Co Wet sand at Rankin creek 

near Mitchell Bay Nat 42.48877 -82.413605 80.118 
HBO941 ROM 1960 Ontario Grenville Co, ON Muddy shore of South 

Nation River Nat 44.828922 -75.554629 134207 
HBO942 ROM 1986 Ontario Walpole Island Disturbed forest/tall grass 

prairie - swampy Nat 42.568369 -82.504545 TRT00029148 
HBO943 ROM 1991 Ontario Louth Twp., Niagara 

RM W Shoreline of Jordan 
Marsh Nat 43.174444 -79.375015 246184 

HBO944 ROM 1985 Ontario Ottawa-Carleton Silty wet sand in dried-up 
pond in old pasture Dist 45.274525 -76.088545 234833 

HBO945 ROM 1988 Ontario Wasaga Beach Nottawasaga R. at Jack L. Nat 44.485637 -79.99545 240977 
HBO947 ROM 1997 Ontario Brighton Tw., 

Northumberland Co Sand pile, N shore of Lake 
Ontario Nat 43.997787 -77.729332 256250 

HBO948 ROM 1990 Ontario Wingham Riverbanks Nat 43.89161 -81.312795 27813 
HBO949 ROM 1880 Ontario N.B. London River flat Nat 43.083152 -81.166767 85.246 

HBO950 UMH 2001 Michigan Lenawee Co 
Open roadside at edge of 
cornfield, S side of Lime 
Creek Rd, w of Rogers 

Hwy Ag 41.766065 -84.227971 1209687 
HBO951 UMH 1909 Michigan near Port Huron Invading cultivated fields 

as a weed, abundant Ag 42.979577 -82.470627 1209704 
HBO952 UMH 1897 Illinois Warrenville Mud flats Nat 41.829751 -88.177826 1559076 
HBO953 UMH 1883 Ohio Cincinnati NA NA 39.136053 -84.502294 1207957 
HBO954 UMH 1833 Ohio North Bend, Cincinnati Sandy beach of Ohio River Nat 39.14757 -84.753428 1207929 
HBO955 UMH 1932 Ontario Little Current, 

Manitoulin Island In open fields Ag 45.966667 -81.933333 1208039 
HBO956 UMH 1986 Ontario Essex Co, Malden Twp Big creek marsh Nat 42.05088 -83.056715 1208029 
HBO957 UMH 1946 Illinois Sangamon Co Woods Nat 39.578464 -89.730027 1208025 

HBO958 UMH 1989 Ontario 
N Plantagent Ip, 

Jessup's Falls (South 
Nation PP), Hwy 17 @ 

S Nation R Rockshore protection and 
waste ground along river Dist 45.559302 -75.064719 1207959 

HBO959 UMH 1882 Illinois Riverside Gravelly, dry bed of Des 
Plaines River Nat 41.826723 -87.82569 1559075 

HBO961 UMH 1949 Illinois Champaign Co Mud and sand at bottom of 
a ditch Dist 40.061911 -88.105443 1559082 

HBO962 UMH 1993 Ontario Middlesex Co, Lobo 
Twp, 

Komoka Creek Swamp 
near Thames River, Edge 

of Thames Nat 42.917996 -81.441417 1207956 

HBO963 UMH 1995 Ontario 
Niagara Regional 

Municipality, Niagara 
Falls Twp Moist disturbed ground 

near railway tracks Dist 43.06736 -79.084574 1208030 
HBO964 MOB 1877 Illinois Saint Clair Low places Nat 38.55 -89.916667 1740835 
HBO965 MOB 1889 Missouri St. Louis City NA NA 38.62975 -90.242434 1740859 
HBO966 MOB 1893 Illinois Saint Clair Low places Nat 38.509011 -90.177817 1740847 
HBO967 MOB 1897 Illinois Warrenville Mudflats *note: same 

pop/date/collector as #93 Nat 41.829751 -88.177826 38973 
HBO968 MOB 1902 Illinois Saint Clair Wet plains in East St Louis Nat 38.625 -90.16 1740833 
HBO969 MOB 1912 Missouri St. Louis City In open field Ag 38.603097 -90.257021 778075 
HBO960 MOB 1919 Illinois Pope Muddy banks of Ohio 

River Nat 37.364829 -88.482798 853159 

HBO970 MOB 1925 Illinois Lake Wet open ground, borders 
of tamarack swamp Nat 42.370872 -88.121862 940825 

HBO971 MOB 1927 Missouri St. Louis Mo River Sand Bar Nat 38.595548 -90.767735 2157288 

HBO972 MOB 1927 Illinois St. Clair 
In moist ground near Sugar 
Loaf Station, about 2 miles 

south of Du Po Dist 38.495758 -90.217877 
1026850 

HBO973 MOB 1930 Missouri St. Louis Sandy fields Ag 38.715451 -90.48898 2157285 

HBO974 MOB 1933 Missouri St. Louis 
Alluvial banks along 

mississippi river, 6500 
South St. Louis Nat 38.572701 -90.229642 

1140474 

HBO975 MOB 1940 Illinois Champaign 
Moist thicket along 

sangamon River, 15 miles 
west of Urbana Nat 40.119754 -88.498602 

1579795 
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HBO976 MOB 1962 Illinois Tazwell Low River Bank Nat 40.720818 -89.597212 1812554 

HBO977 MOB 1967 Ohio Lucas 
Bottom of Maumee River 
at SW corner of Maumee 

city Limits Nat 41.542549 -83.689433 
6773122 

HBO978 MOB 2005 Illinois Madison 
Weedy mowed and 
cultivated fields and 

bulldozed areas Ag 38.779167 -89.640556 
6113965 

HBO979 MOB 2009 Missouri St. Charles 
Howell Island 

Conservation area, huge 
population, in large field 

next to hiking trail Nat 38.665567 -90.70705 
6449615 

HBO980 MOB 2009 Illinois Hancock 
Dallas city public fishing 
access on the bank of the 

Mississippi River, and 
nearby railway tracks Nat 40.634567 -91.179467 

6443667 

HBO981 MOB 2010 Missouri Montgomery Loutre River Nat 38.911389 -91.592778 6334467 

HBO982 MOB 2011 Illinois Randolph 
Roadside through 

floodplain with deep 
alluvial sandy loam Dist 37.923333 -89.893333 

6341594 

HBO983 MOB 1919 Missouri Jasper A common weed in low 
and cultivated ground Ag 37.204167 -94.344167 6773126 

HBO984 AAFC 1892 Ontario Ottawa NA NA 45.289379 -75.737232 1001151662 
HBO985 AAFC 1955 Ontario Richmond, Carleton 3 miles East, Wet 

Roadside Dist 45.19477 -75.78076 1151663 
HBO986 AAFC 1954 Ontario Rockcliffe Park Shoreline of Ottawa River, 

moist sandy gravelly soil Nat 45.457179 -75.676253 1151664 
HBO987 AAFC 1921 Ontario Ottawa Lac Constane Nat 47.387012 -77.283366 1151665 
HBO988 AAFC 1951 Ontario Haldimand County 1 mile N of York, Sand 

beach Nat 43.035303 -79.897787 1151667 
HBO989 AAFC 1988 Ontario Essex County East beach, moist sand 

beach Nat 41.93464 -82.505179 1151668 
HBO990 AAFC 1998 Ontario Essex County North shore or W End, 

Moist woods Nat 41.683999 -82.682764 1151669 
HBO991 AAFC 1964 Ontario Glengarry County Dried bed of the Raisin 

River at rapids Nat 45.13414 -74.575361 1151671 

HBO992 AAFC 1949 Ontario Lanarck 
Along sandy beach, 

Between Mississippi River 
& McEwan Nay. Nat 45.046655 -76.230997 1151672 

HBO993 AAFC 1960 Ontario Sarnia 
High grass along tracks, 
Railyards north of the 

station Dist 42.957915 -82.393943 1151673 
HBO994 AAFC 1937 Ontario Ottawa Shore line, Moira Lake Nat 44.486839 -77.458612 1151674 
HBO995 AAFC 1960 Ontario Grenville County Muddy inundated shore of 

South Nation River Nat 44.951292 -75.483802 1151675 
HBO997 AAFC 1988 Ontario Hald-Norfolk County Rocky Point Prov. Park, 

Dunville Twp. Nat 42.847407 -79.555433 1154001 
HBO998 AAFC 1958 Ontario Stormont County Railway tracks Dist 44.988422 -74.996022 1151676 
HBO999 AAFC 1938 Ontario Pelee Island NA Nat 41.683999 -82.682764 1154003 
HB1000 AAFC 1934 Ontario Mitchell's Bay Waste places Dist 42.468738 -82.407807 1154004 
HB1001 AAFC 1939 Ontario Waterloo County Edge of 1st Island below 

Gault Nat 43.352835 -80.316045 1154005 
HB1002 AAFC 1918 Ontario NA NA NA 42.77177 -81.197887 1154008 
HB1003 AAFC 1961 Ontario Waterloo County Wet Field beside Speed 

River Ag 43.455939 -80.290772 1154009 
HB1004 AAFC 1828 Ontario Middlesex County Thames River Nat 42.959472 -81.309866 1154010 
HB1005 AAFC 1828 Ontario Middlesex County Bank of the Thames Nat 42.980389 -81.344198 1154011 
HB1006 AAFC 1961 Ontario Waterloo County Wet Field beside Speed 

River Ag 43.455939 -80.290772 1154012 
HB1007 AAFC 1966 Ontario Middlesex County Muddy soil along side 

creek Nat 43.030996 -81.349254 1154014 
HB1008 AAFC 1828 Ontario Middlesex County NA NA 42.950068 -81.435938 1154013 
HB1009 AAFC 1903 Ontario NA In boggy soil Nat 43.892294 -81.312444 1151660 
HB1010 INHS 1906 Illinois Riverdale Along railroad Dist 41.640523 -87.626446 8 (2632) 
HB1011 INHS 1894 Ilinois Wheaton Roadside Dist 41.864251 -88.103346 9 (267) 
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Figures S1 to S13 
 
 
 

 
Fig S1. CMH 𝛸2 statistic against between-environment FST, with the latter not stratifying 
for population pair. 
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Fig S2. Agricultural 3

5
 versus natural 3

5
 for the 30 independent loci with the most 

signficant CMH scan hits compared to 6 common herbicide resistance alleles. Diagonal 
line represents equal agricultural benefits compared to natural costs, scaled by migration. 
 
 

Fig S3. Percent C-to-T substitution at first base, and its correlation with read position and 
collection year for 108 sequenced herbarium samples. Right figure additionally illustrates 
C-to-T substitution level for the six samples with known target-site resistance alleles 
(three TSR genotypes excluded from selection analyses due to allelic bias). 
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Fig S4. The distribution of frequencies for agriculturally adaptive alleles in agricultural 
samples along the x-axis, and in natural samples along the y-axis. Null distributions for 
an expectation of change in the frequency in our focal set of contemporary alleles was 
generated by producing randomized allele sets of the same size (n=154) matching the 
extant agricultural-allele frequency distributions shown here, first in natural environments 
(top histogram), and then in agricultural environments (right histogram). 
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Fig S5. Inferred strength of selection on 154 agricultural alleles through time, in either 
agricultural or natural environments. Selection coefficients were extracted from logit-
transformed logistic regressions of genotype on year, run separately for each locus in 
each environment. Gray ribbon for each locus represents the bounds of the standard error 
associated with the estimate of selection in each environment. 
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Fig S6. The association between contemporary patterns of linkage and selection and 
allele frequency change observed over the last 150 years across herbarium samples. 
Regression line shows the least square mean effect of contemporary linkage from a 
multiple regression analysis. 
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Fig S7. Cubic splines that illustrate the environment-specific frequency change of 
agricultural alleles through time since 1870. Gray ribbon denotes the 95% CI.  

 

 
 
Fig S8. Logistic estimates of selection before (left) and after (right) the 1960s, the start of 
agricultural intensification, for agriculturally-associated alleles in natural (dark gray) 
versus agricultural and disturbed (light gray) environments. 
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Fig S9. Longitudinal and state-wise patterns of ancestry across 457 A. tuberculatus 
individuals from contemporary and historical sampling, inferred from faststructure. 
Samples sorted by longitude, from west (left) to east (right). White dashed lines denote 
clusters of specimens sampled from different states and provinces across this longitudinal 
gradient. K=2 taken as var. rudis versus var. tuberculatus ancestry, as in (31). 

 

 
Fig S10. Excess of var. rudis ancestry in agricultural compared to natural environments, 
in 100 kb regions across the genome. Lines depict the mean ancestry across all 
populations within each environment, with error bars showing the mean 5th and 95th 
percentile of ancestry across populations. Fine-scale ancestry estimates were inferred 
with LAMP (40).  
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Fig S11. Heatmap of r2 values alongside a dendrogram of the 254 agriculturally 
associated SNPs identified through CMH tests across paired contemporary natural-
agricultural samples, illustrating independence among the 154 LD-clumped CMH 
outliers.  
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Fig S12. PCA of herbarium samples, coloured by state/province.  

 

 
Fig S13. PCA of 457 A. tuberculatus specimens, including 108 herbarium samples along 
with contemporary paired populations (11) (n=187) and 21 populations from 5 
geographic regions (31) (n=162).  
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Figure Captions 

 
 
Fig 1. Sequenced waterhemp collections through space and time. A) Map of 14 
contemporary paired natural-agricultural populations (n=187, collected and sequenced in Kreiner 
et al., 2021), along with 108 novel sequenced herbarium specimens dating back to 1828 collected 
across three environment types (Ag=Agricultural, Nat=Natural, Dist=Disturbed). B) Distribution 
of sequenced herbarium samples through time.  

 
Fig 2. Signals of contemporary agricultural adaptation, gene flow, and antagonistic 
selection across the genome in A. tuberculatus. A) Results from Cochran–Mantel–Haenszel 
(CMH) tests for SNPs with consistent differentiation among environments across contemporary 
natural-agricultural population pairs. A 10% FDR threshold is indicated by the lower dashed 
horizontal black line, while the Bonferroni q-value < 0.1 cutoff is shown by the upper dashed 
horizontal gray line. Red points indicate focal adaptive SNPs after aggregating linked variation 
(r2 > 0.25 within 1 Mb). Candidate agriculturally adaptive genes for peaks that are significant at a 
10% FDR threshold shown. B) CHM results from the scaffold containing the most signficant 
CMH p-value, corresponding to variants linked to the PPO210 deletion conferring herbicide 
resistance and to the nearby herbicide-targeted gene ALS. C) Distribution of FST values between 
all agricultural and natural samples for ~3 million genome-wide SNPs (minor allele frequency > 
0.05). Vertical lines indicate FST values for the 10 candidate genes named in A. D) Pairwise 
frequency of six common herbicide resistance alleles across agricultural and natural habitats 
sampled in 2018; the first four are nonsynonymous variants in ALS and EPSPS, the EPSPSamp is 
a 10 Mb-scale amplification that includes EPSPS, and the last one is an in-frame single-codon 
deletion in PPO (each dot represents on average ~5 individuals). Per migrant natural cost: 
agricultural benefit ratio relative to migration (C:B) is shown in the top right corner of each 
locus-specific comparison of frequencies across population pairs. 
 
Fig 3. Genomic signatures of agricultural adaptation through time. A) Agricultural allele 
frequency trajectories for each locus, in agricultural and disturbed habitats (left), and natural 
habitats (right). Trajectories coloured by the quantile of frequency change in agricultural and 
disturbed habitats. Transparent lines indicate those with non-significant evidence of selection at 
𝛼=0.05 after FDR=10% correction. B) The strength of selection on agricultural alleles for each 
locus in natural (dark gray) and agricultural and disturbed (light gray) habitats between 1870 and 
2018. C) Agricultural allele frequency trajectories in each environment type, before and after the 
start of agricultural intensification in 1960. Vertical dashed line represents an inferred breakpoint 
in the data in a segmented regression. Environmental regression lines represent logistic fits to 
data that either predate or are subsequent to 1960. Large circles represent moving averages (over 
both loci and individuals) of allele frequencies, whereas dots represent raw genotype data for 
each locus and sample from which the allele frequency trajectory is estimated. Cropland use per 
capita in North America data from (1), rescaled by use in 1600. D) The trajectory of alleles at 
known herbicide resistance loci through time, fit by logistic regression for each of the seven 
alleles present in our contemporary data. Dots represent genotypes for each historical and 
contemporary sample at each herbicide resistance locus. 95% credible interval of the maximum 
likelihood estimate of selection between 1960-2018 provided in the legend for each resistance 
allele. 
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Fig 4. Temporal shifts in the distribution of var. rudis ancestry have facilitated polygenic 
agricultural adaptation. A) Longitudinal clines in individual-level var. rudis ancestry over 
three timespans, illustrating the expansion of var. rudis ancestry eastwards over the last two 
centuries. B) The distribution of individual-level var. rudis ancestry by state and through time, 
illustrating state-specific changes in ancestry. Vertical lines represent first, second, and third 
quantiles of ancestry within each timespan and state. Timespans indicated in A)  C) Increasing 
sorting of individual-level var. rudis ancestry into agricultural environments on contemporary 
timescales. D) Environment-specific metrics of selection (CMH p-value and cross-population 
extended haplotype homozygosity (XPEHH)) across the genome in 100 kb windows positively 
correlate with var. rudis ancestry in agricultural, but not natural habitats.  
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