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Abstract

Motivation: Multiple sequence alignment (MSA) is a basic step in many
bioinformatics pipelines. However, achieving highly accurate alignments
on large datasets, especially those with sequence length heterogeneity, is
a challenging task. UPP (Ultra-large multiple sequence alignment using
Phylogeny-aware Profiles) is a method for MSA estimation that builds an
ensemble of Hidden Markov Models (eHMM) to represent an estimated
alignment on the full length sequences in the input, and then adds the
remaining sequences into the alignment using selected HMMs in the en-
semble. Although UPP provides good accuracy, it is computationally
intensive on large datasets.
Results: We present UPP2, a direct improvement on UPP. The main
advance is a fast technique for selecting HMMs in the ensemble that al-
lows us to achieve the same accuracy as UPP but with greatly reduced
runtime. We show UPP2 produces more accurate alignments compared to
leading MSA methods on datasets exhibiting substantial sequence length
heterogeneity, and is among the most accurate otherwise.
Availability: https://github.com/gillichu/sepp
Contact: warnow@illinois.edu

1 Introduction

Multiple sequence alignment is a fundamental bioinformatics task, and produc-
ing accurate alignments can have profound impact in many downstream analy-
ses such as phylogeny inference and protein structure inference (Blackburne and
Whelan, 2013; Söding, 2004; Rao et al., 2021). Because of the significant interest
in alignment estimation, many alignment methods have been developed (e.g.,
MUSCLE (Edgar, 2004), PRANK (Löytynoja and Goldman, 2005), BAli-Phy
(Suchard and Redelings, 2006), Clustal Omega (Sievers et al., 2011), MAFFT
(Katoh and Standley, 2013), PASTA (Mirarab et al., 2015), MAGUS (Smirnov
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and Warnow, 2021b), and regressive T-COFFEE (Garriga et al., 2019)). How-
ever, accurate alignment is still challenging under some conditions. For example,
large datasets (with many thousands of sequences) can be difficult to align with
high accuracy and also present substantial computational challenges (Nguyen
et al., 2015; Mirarab et al., 2015; Smirnov, 2021). The difficulty in aligning
datasets that are highly heterogeneous due to high rates of evolution has also
been documented (Liu et al., 2009), but several methods (largely employing
divide-and-conquer) have been able to achieve good accuracy in such condi-
tions (e.g., PASTA (Mirarab et al., 2015) and MAGUS (Smirnov and Warnow,
2021b)). Sequence length heterogeneity introduces another challenge for align-
ment estimation, and one that is relatively less studied (Nguyen et al., 2015;
Shen et al., 2021).

UPP (Ultra-large alignments using Phylogeny-aware Profiles) (Nguyen et al.,
2015)) is a multiple sequence alignment method that was specifically designed
to provide good accuracy on datasets with substantial sequence length hetero-
geneity, while maintaining scalability on large datasets. UPP operates in three
basic stages: first, it extracts and aligns a subset of the sequences it deems to
be full-length; second, it builds an ensemble of Hidden Markov Models (HMMs)
(Durbin et al., 1998) on the alignment of the full-length sequences; and third, it
uses the ensemble to align the remaining sequences. This third step is often the
bottleneck in terms of runtime. Specifically, for each additional sequence that
needs to be aligned, the HMM with the highest bit-score is selected from the en-
semble and is used to add the sequence into the alignment. By design, the first
two steps are reasonably fast, but the third step requires an all-against-all com-
parison of the remaining sequences against the HMMs in the ensemble. Thus,
the runtime of UPP can be prohibitively high when there are many sequences
that are not full-length and when the ensemble contains many HMMs.

In the last year, modifications to UPP to improve its accuracy and theoretical
foundation have been explored. The default for UPP (Mirarab, 2022) uses
PASTA to align the backbone sequences. However, Shen et al. (2021) showed
that alignment accuracy was improved by using MAGUS instead of PASTA to
compute the backbone alignment. Another potential weakness in the original
UPP approach is the use of the bit score to select the single HMM to align
the query sequence. A modification to this technique was presented in Shen
et al. (2022), which replaces the use of the bit score by another calculation
that more accurately reflects the probability that the given HMM generated the
query sequence. Thus, the current recommended setting for UPP uses MAGUS
for the backbone alignment and selects the “best” HMM from the ensemble
based on the statistical calculation presented in Shen et al. (2022). However,
the version in the github site (Mirarab, 2022) still uses PASTA for the backbone
and selects the best HMM based on raw bit-scores.

These modifications aimed to improve accuracy rather than runtime, and
UPP has remained computationally intensive as a result of its all-against-all
algorithmic design. Here we present UPP2 (available in open source form at
https://github.com/gillichu/sepp), a modification to UPP that is designed to
reduce its runtime and improve its scalability to large sequence datasets. The
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main modification we use is a replacement of the all-against-all comparison of
query sequences and HMMs by a much smaller number of comparisons, so that
each query sequence is scored against a logarithmic number of HMMs instead of
against all the HMMs. This change dramatically reduces the runtime without
hurting accuracy, as our study on simulated and biological datasets establishes.

2 UPP2

2.1 The UPP algorithm

Recall that UPP operates in several stages. In the first stage, it computes
a backbone alignment and backbone tree on a subset of the input sequences,
in the second stage it builds an ensemble of profile HMMs on the backbone
alignment, and in the third stage it uses the ensemble to add all the remaining
sequences into the backbone alignment using commands from HMMER (Eddy,
2011) (hmmbuild, hmmsearch, and hmmalign). Here we provide some additional
details.

For Stage 1, by default, UPP will select up to 1000 sequences to include
in its backbone, and these sequences are selected at random from the set of
sequences within 25% in length of the median length sequence. The alignment
is built using a selected “base method”, with PASTA the original technique and
now MAGUS the recommended technique.

For Stage 2, UPP computes a set of subset alignments by hierarchically
decomposing the backbone tree at a centroid edge (i.e., an edge that splits the
leaf set into two roughly equal sizes) until all the subtrees are at most size z,
where z is an input to UPP. UPP builds an HMM on each set created during this
decomposition, including the full set, thus producing a collection of HMMs that
we refer to as the “ensemble of HMMs” (eHMM) for the backbone alignment.
In the initial version of UPP, z was set to 10. Some studies (Mirarab et al.,
2012) that developed eHMMs for other purposes have suggested that smaller
values (e.g., z = 2) might improve accuracy, but a more recent study exploring
this question for alignment estimation Shen et al. (2021) has found otherwise.

For Stage 3, UPP adds every additional sequence (i.e., ones that are not
in the backbone) into the backbone alignment. These additional sequences are
referred to as “query sequences” and are added as follows. For each query
sequence, hmmsearch is used to find the HMM that returns the highest bit-
score. Then, each query sequence is added into the subset alignment used
to construct the selected HMM using hmmalign. Since the subset alignments
are induced by the backbone alignment, this also means the query sequence
can be added into the backbone alignment as well. The addition of the query
sequence into the backbone alignment defines an “extended alignment”. Finally,
the extended alignments from the different query sequences are merged together
using transitivity, thus producing a final alignment containing all the sequences.
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2.2 Adjusted bit-scores

A bit-score represents the log likelihood ratio of a query sequence being emitted
by an HMM to the likelihood of a query sequence being emitted by a null HMM.
However, the raw bit-score does not correspond to the probability that the query
sequence is generated by the selected HMM, as this specific question depends
also on the number of sequences used to build the HMM.

To address this, a modification to the use of bit-scores, called “adjusted bit-
scores”, is presented in Shen et al. (2022). We provide the adjusted bit-score
formula here; the derivation of the formula is provided in the Supplementary
Materials and also in Shen et al. (2022).

Suppose BS(Hi, q) is the bit-score of query sequence q for the HMM Hi,
si is the number of sequences that were used to build Hi, sj is the number of
sequences that were used to build Hj , and h is the number of HMMs in the
ensemble. The adjusted bit-score, denoted by BSadj , is then given by

BSadj(Hi, q) =
1∑h

j=1 2
BS(Hj ,q)−BS(Hi,q)+log2

sj
si

(1)

As shown in Shen et al. (2022), adjusted bit-scores are always between 0 and
1, and can be interpreted as the probability that the given HMM generates
the given query sequence. In particular, the sum, across all the HMMs in the
ensemble, is always 1.

2.3 Improving speed

Due to its hierarchical decomposition strategy, UPP produces many HMMs, all
of which have to be compared against every single query sequence. This quickly
presents scalability issues in several cases: as the size of backbone increases, as
z (which defines the decomposition stopping rule) decreases, or as the number
of query sequences increases. However, Stage 2 defines a hierarchy of HMMs
based on their sequence sets, so that the set of HMMs forms a rooted tree. We
propose two strategies (“Hierarchical” and “EarlyStop”) based on this hierarchy
to speed up the search: Hierarchical and EarlyStop (Figure 1).

Hierarchical To select an HMM for a given query sequence q, we start at the
root HMM and we compute its adjusted bit-score given q. We then evaluate the
children HMMs and descend down into the subtree that has the larger adjusted
bit-score (randomly selecting one in the case of a tie). The process continues
until a leaf HMM is reached. The HMM with the largest adjusted bit-score
(i.e., the HMM deemed the most likely to have emitted the query sequence)
encountered during the traversal then becomes selected HMM for the query
sequence. Note that this strategy evaluates at most two HMMs per level in the
tree. In the case of a tie, the HMM that comes first in a pre-order traversal is
chosen.

EarlyStop We follow the same basic strategy as Hierarchical. However, the
process stops descending down the subtree in the hierarchical search process if
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Figure 1: UPP and UPP2 Search Strategies (Toy Example) Here we
show an ensemble of HMMs with HMMs queried and chosen for different meth-
ods. UPP and UPP2 by default search through every HMM but use different
criteria (raw bit-scores or adjusted bit-scores, respectively). UPP will choose
HMM-1 since HMM-1 has the highest bit-score while UPP2 will choose HMM-2
since HMM-2 has the highest adjusted bit-score. UPP2-Hierarchical will start
at HMM-1 and descend down the subtree with the highest adjusted bit-score.
UPP2-EarlyStop will descend down the subtree with the highest adjusted bit-
score and stop once all immediate children HMMs have worse adjusted bit-scores
than the current best HMM. In all cases, the HMM with the highest adjusted
bit-score encountered during the traversal is chosen.
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both of the two children HMMs have lower adjusted bit-scores, and are therefore
considered less likely to have emitted the query sequence, than the current best
HMM (hence the name “EarlyStop”).

3 Experimental Study

Overview. We performed two experiments, one for designing UPP2 (Experi-
ment 1) and one for evaluating UPP2 in comparison to leading alignment meth-
ods (Experiment 2). Experiment 1 was performed on a small set of “training
datasets” and Experiment 2 was performed on a larger set of “testing datasets”.
Accuracy in these alignments was evaluated with respect to SPFN (sum-of-pairs
false negative) and SPFP (sum-of-pairs false positive) error rates. We also eval-
uated the total runtime for all methods as well as the runtime restricted to Stage
3 for UPP variants, which is the only stage in which UPP variants differ from
each other.

Alignment methods. We evaluated possible variants of UPP2, which
differ in terms of the backbone alignment method (PASTA or MAGUS), the
use of raw or adjusted bit-scores, the stopping condition (i.e., how z is set), and
whether the all-against-all comparisons are performed or one of the two faster
search strategies is used. Recall that the original version of UPP uses PASTA
backbones, raw bit-scores, sets z = 10, and performs all-against-all comparisons
to find the best HMM for each query sequence.

We explore the following variants of UPP2 (indicating how they differ from
the original version of UPP below). Each of these versions is described with
the PASTA backbone; when used with the MAGUS backbone, the name of the
method is modified by the inclusion of “(MAGUS)”.

• UPP+adj : UPP+adj differs from the original UPP by using adjusted
bit-scores.

• UPP+adj-Hierarchical : Identical to UPP+adj except that it uses the hi-
erarchical search strategy.

• UPP+adj-EarlyStop: Identical to UPP+adj except that it uses the EarlyStop
search strategy.

We also evaluated the following leading alignment methods:

• MUSCLE (3.8.31), limited to 2 iterations.

• Clustal Omega (1.2.4), used in its default mode.

• T-COFFEE (13.45.0.4846264), used in regressive mode.

• MAGUS, (Commit on 4/5/21, commit ID in supplement) used in its
default mode, which is with recursion in the newest version of MAGUS
(Smirnov and Warnow, 2021b; Smirnov, 2021).
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• PASTA (v1.9.0), used in its default mode.

• MAFFT (7.487), with the linsi mode used for datasets of size at most
1000 and the auto mode used for larger datasets.

• UPP (4.5.1), where we set z = 2 but otherwise use it in default mode, as
specified in its github page (Mirarab, 2022).

Datasets. We used both biological and simulated datasets for the ex-
periments, separating them into the training datasets (used in Experiment 1)
and the testing datasets (used in Experiment 2). We had fragmentary versions
of the datasets; for these datasets, the suffix “HF” denotes high fragmentary
datasets, which are constructed by taking the original dataset and making half
of the sequences 25% of the original median sequence length. The fragmentation
process is explained in full detail in Smirnov and Warnow (2021c). The empiri-
cal statistics (i.e., number of sequences, average sequence length, percent of the
reference alignment occupied by gaps, and average and maximum p-distance)
for these datasets are provided in the Supplementary Materials Table S1.

The ROSE simulated datasets, introduced in Liu et al. (2009), are 1000-
sequence datasets with varying gap lengths, which are denoted by “S” for short
gap lengths, “M” for medium gap lengths, and “L” for long gap lengths. We used
1000S1 through 1000S5, 1000M1 through 1000M5, and 1000L1 through 1000L5
as well as their high fragmentary counterparts 1000S1-HF through 1000S5-HF,
1000M1-HF through 1000M5-HF, and 1000L1-HF through 1000L5-HF. 1000M1
and 1000M1-HF were using for training while the other model conditions were
reserved for testing. These datasets range in alignment difficulty as a result
of the evolutionary rate, as reflected in their average p-distance (i.e., average
normalized Hamming distance between any two sequences). The most difficult
model conditions are 1000M1, 1000S1, and 1000L1, and the easiest ones are
1000S5, 1000M4, 1000M5, and 1000L5. Comparing the p-distances, we see that
the difficult model conditions have average p-distances at least 69% and the
easiest model conditions have average p-distances below 50%.

RNASim datasets are created by sampling from the RNASim million se-
quence dataset, originally created by Guo et al. (2009) and studied in Mirarab
et al. (2015). We used the same 1000-sequence RNASim datasets as Smirnov and
Warnow (2021c), which are published at Smirnov and Warnow (2021a); these
are the RNASim1000 and RNASim1000-HF. RNASim1000 and RNASim1000-
HF datasets. The RNASim datasets have average p-distance of 41%.

The 16S datasets are biological datasets based on the 16S gene. The 16S.BALL,
16S.3, and 16S.T datasets were used in the study by Liu et al. (2011) and are
available at Mirarab (2017). These datasets have reference alignments based
on secondary structure (Cannone et al., 2002). 16S.3 has average p-distance
of 31.5%, 16S.T has average p-distance of 34.5%, and 16S.B.ALL has average
p-distance of 21.0%.

For the training datasets (Experiment 1), we used two model conditions,
1000M1 (one of the model conditions from the ROSE simulated datasets with
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Figure 2: Experiment 1: Impact of Heuristic Search and Early Stop on
UPP(PASTA)+adj alignment error and runtime. UPP+adj uses the PASTA
backbone alignment on full-length sequences, sets z = 2, and uses adjusted
bitscores. The runtime reported here does not include the time to compute the
backbone alignment and tree. The means are shown with error bars indicating
standard error for alignment error and standard deviation for running time.
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high rates of evolution) and RNASim1000. For each model condition, we ex-
plored full-length versions and HF versions. We used the remaining datasets as
the testing datasets (Experiment 2).

Computational Resources. All experiments except MAFFT runs on
the large biological datasets (16S.B.ALL, 16S.T, and 16S.3) and UPP runs on
ROSE high fragmentary datasets were done on Blue Waters (Bode et al., 2013)
with every method receiving 16 threads on a dedicated node. MUSCLE does
not have multi-threaded versions and was unable to take advantage of the core
count. ROSE high fragmentary dataset UPP runs and 16S dataset MAFFT
runs were done on the Campus Cluster with 16 threads. All methods were
limited to a maximum of 7 days of wall-time and enough memory to complete
their analyses.

Alignment Error. We used FastSP (1.7.1) for calculating SPFN and
SPFP rates of estimated alignments against the reference alignments (Mirarab
and Warnow, 2011), defined as follows. SPFN refers to “sum-of-pairs false
negatives”, and is the number of the pairwise homologies found in the reference
alignment but not in the estimated alignment, while SPFP refers to “sum-of-
pairs false positives” and is the number of pairwise homologies found in the
estimated alignment but not in the reference alignment. These are normalized
by the number of homologies in the reference alignment or estimated alignment,
respectively, to produce the SPFN and SPFP error rates.

Experiment 1 Overview. Experiment 1 explored the impact of decom-
position stopping criterion (i.e., value for z), use of adjusted bit-scores, and new
search strategies (Hierarchical and EarlyStop) for UPP2. We additionally eval-
uate the impact of using MAGUS backbone alignments instead of PASTA back-
bone alignments for use in UPP2. . We used 1000M1, RNASim1000, 1000M1-
HF, and RNASim1000-HF. For 1000M1 and RNASim1000, 500 full length back-
bone sequences were selected by UPP. 1000M1-HF and RNASim1000-HF, the
full-length sequences are easily identified, and that information is provided to
UPP.

Experiment 2 Overview. We used Experiment 1 to specify how best
to run the new algorithm, and refer to this variant as “UPP2”. Experiment
2 compared UPP2, UPP, MAGUS, PASTA, MAFFT (using linsi for datasets
with at most 1000 sequences and auto otherwise), Clustal-Omega, regressive T-
COFFEE, and MUSCLE. Experiment 2a examined results on simulated datasets
with fragmentary sequences, and Experiment 2b examined results on biological
datasets. Finally, Experiment 2c performed a comparison between the top-
performing methods established in Experiments 2a and 2b. We used the testing
datasets for this experiment. For 16S.B.ALL, 10,000 sequences were chosen by
UPP’s algorithm for the backbone while the remaining 17,643 sequences were
used as the query set. For 16S.3 and 16S.T, 1000 sequences were chosen by UPP
as the backbone and the remaining sequences were used as the query set. A
larger backbone was chosen for 16S.B.ALL to reflect the larger dataset size com-
pared to 16S.3 and 16S.T. We followed the same procedure as for Experiment
1 to construct the backbone alignments and trees.

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.02.26.482099doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.26.482099
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.0

0.2

0.4

0.6

0.8

1.0
1000S1-HF 1000S4-HF 1000M2-HF 1000M3-HF 1000L1-HF 1000L5-HF

(S
PF

N 
+ 
SP

FP
) /
 2

(a) Alignment error

0

20

40

60

80

100

120

140
1000S1-HF 1000S4-HF 1000M2-HF 1000M3-HF 1000L1-HF 1000L5-HF

tim
e 
(m

)

UPP2 UPP MAGUS PASTA MAFFT linsi ClustalOmega T-COFFEE MUSCLE

(b) Running time

Figure 3: Experiment 2a: UPP2 against Benchmark Methods on Sim-
ulated Fragmentary Datasets We compare UPP2 to benchmark methods
on simulated datasets with fragmentary sequences. All methods except T-
COFFEE and MUSCLE were run in their default modes and with 16 threads,
when possible. T-COFFEE was run using the regressive mode and MUSCLE
was limited to 2 iterations. All datasets have 20 replicates each. The bar indi-
cates the mean while the error bars indicate standard error for alignment error
and standard deviation for running time.

4 Results

4.1 Experiment 1: Designing UPP2

In this first experiment we evaluated variants of UPP2, varying (a) use of ad-
justed or raw bit-scores, (b) using MAGUS or PASTA backbones, (c) changing
the value for z (maximum allowed size of subsets before decomposition stops),
and (d) use of EarlyStop or Hierarchical as opposed to all-against-all.

On all the datasets we explored (i.e., full-length and also HF versions of
1000M1 and RNASim1000), there were no noteworthy differences in alignment
accuracy for any of these modifications, with the exception that using MAGUS
instead of PASTA for the backbone alignment improved accuracy (Figure 2 and
Supplementary Figures S1 and S2). We also saw that using MAGUS instead of
PASTA for the backbone alignment reduced runtime (Supplementary Figure S2)
and that using the new search strategies (EarlyStop or Hierarchical) improved
runtime even further (Figure 2). Specifically, using UPP2-Hierarchical reduced
the runtime by a large margin and UPP2-EarlyStop slightly improved runtime
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Figure 4: Experiment 2a: Comparison of UPP2, MAGUS, and PASTA
on Simulated Datasets. We compare UPP2, MAGUS, and PASTA on
the ROSE model conditions with fragmentary sequences. Asterisks denote the
model conditions on which UPP2 was statistically significantly better than MA-
GUS. All model conditions have 20 replicates, and each replicate has 1000 se-
quences. The bar indicates the mean while the error bars indicate standard
error.

compared to UPP2-Hierarchical.
The runtime improvement obtained through the use of Hierarchical or EarlyStop

is not surprising, but the achievement of comparable accuracy was not guaran-
teed. Although we did not see a difference in accuracy between z = 2 compared
to z = 10, because previous studies (e.g., Mirarab et al. (2012)) has suggested
the potential for this setting to improve accuracy, we set z = 2 for the default
for all datasets. Our final default settings for the algorithmic parameters are to
use: (a) adjusted bit-scores, (b) z=2, (c) MAGUS for the backbone alignment,
and (d) EarlyStop for the search strategy. We denote this variant simply as
“UPP2”.

4.2 Experiment 2: UPP2 compared to Benchmark Meth-
ods

In this experiment we compare UPP2 to other alignment methods on the testing
datasets. Experiment 2(a) explores results on simulated datasets with fragmen-
tary sequences and Experiment 2(b) explores results on biological datasets.

Experiment 2a: Results on simulated datasets with fragmentation.
In this experiment we evaluate UPP2 to other alignment methods on simulated
datasets with fragmentary sequences (Figure 3a). On these datasets, UPP2
was the most accurate, followed by UPP and MAGUS in that order. PASTA
and MAFFT had comparable accuracy to each other and trailed behind the
leading group of three methods. Clustal Omega, T-COFFEE, and MUSCLE
were the least accurate methods, but Muscle was somewhat more accurate than
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(a) alignment error

(b) running time

Figure 5: Experiment 2b: Comparison of UPP2 to other MSA Meth-
ods on Biological Datasets. The three datasets are from the Comparative
Ribosomal Website (Cannone et al., 2002). 16S.3 has 6323 sequences, 16S.T has
7350 sequences, and 16S.B.ALL has 27,643 sequences. MAFFT auto mode was
used rather than the linsi mode due to the large dataset sizes. X indicates that
UPP could not finish within the time limit (7 days) for the 16S.B.ALL dataset.

the others and Clustal Omega and T-COFFEE tended to perform similar to
each other.

The runtime comparison (Figure 3b) shows relative performance is based
on the model condition. UPP2, MAGUS, Clustal Omega, and T-COFFEE the
fastest methods on three of the six model conditions (1000S4-HF, 1000M3-HF,
1000L5-HF). UPP2, UPP, and Clustal Omega were the fastest methods on the
remaining the model conditions (1000S1-HF, 1000M2-HF, and 1000L1-HF). On
the first set of model conditions, MAGUS was faster than UPP, and MUSCLE
was the slowest. On the second set of model conditions, UPP was faster than
MAGUS and MAFFT was the slowest. PASTA was consistently the second
slowest method.

Thus, these results establish that UPP2 is at least as accurate as UPP but
faster, and that PASTA and MAGUS are the next two most accurate methods.
Here we directly compare UPP2, MAGUS, and PASTA to enable a more detailed
understanding of their relative accuracy.

Figure 4 shows alignment error for UPP2, MAGUS, and PASTA on the
ROSE model conditions (each with fragmentary sequences), sorted (approxi-
mately) so that alignment error rates generally increase from left-to-right. While
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the three methods are identical on the six easiest model conditions (i.e., the left-
most conditions), as the model condition difficulty increases we see error rates
increasing for all methods, but UPP2 error rates increase more slowly than
for the others. Thus, across all the more difficult model conditions, we see that
UPP2 is much more accurate than MAGUS, which in turn is more accurate than
PASTA. Furthermore, accuracy differences between methods UPP2 are statis-
tically significantly on several high fragmentary model conditions, as indicated
using asterisks in Figure 4.

An examination of the properties of these model conditions (Supplementary
Materials Table S1) shows that these conditions vary significantly in terms of av-
erage and maximum p-distances (i.e., normalized Hamming distances), and that
these average p-distances generally increase as we move from left to right. Specif-
ically, the first six model conditions (i.e., 1000S4, 1000S5, 1000M4, 1000M5,
1000L4, and 1000L5) range in average p-distances from 49.5% to 50.1%, and
the next eight model conditions have increasing average p-distances that range
from 66.0% to 69.6%. Thus, increases in average p-distance result in increases
in alignment error for all methods, and also increase the gap between methods.

Experiment 2b: Results on biological datasets. Results on the bio-
logical datasets (Figure 5(a)) show UPP2 and MAGUS were the most accurate
methods, with PASTA being as accurate as the top methods on 16S.B.ALL
and 16S.3 but not on 16S.T. UPP was as accurate as UPP2 on 16S.3 and
16S.T but could not finish in the allotted time (seven days) on the 16S.B.ALL
dataset. Clustal Omega had the highest alignment error across all biological
model conditions. T-COFFEE, MUSCLE, and MAFFT all performed similarly
to each other on 16S.3, but MAFFT was able to beat the other two methods
on 16S.B.ALL and 16S.T.

Runtime comparisons on the biological datasets (Figure 5(b)) shows differ-
ences that depend on the dataset. On the largest of the three biological datasets
(16S.B.ALL, with 27,643 sequences), UPP did not finish within the allowed time,
and only MAFFT was very fast (finishing in just a few minutes). The remaining
methods varied in runtime, with UPP2 and Muscle using the most time (more
than 15 hours), followed by MAGUS (more than 7 hours), and then by the re-
maining methods (between 5 and a little over 6 hours each). On the two smaller
datasets (6323 sequences and 7350 sequences), MAFFT was again by far the
fastest (finishing in a few minutes). Although runtimes have dropped for the
remaining methods on these smaller datasets, some trends can nevertheless be
discerned. On the 16S.3 and 16S.T datasets, the remaining methods group into
two sets: Clustal Omega, T-Coffee, and Muscle are the fastest (all finishing in at
most 4 hours) and UPP2, UPP, MAGUS, and PASTA are the slowest (finishing
in 4 to 10 hours).

Thus, although UPP tied for most accurate when it could complete, it was
too slow to complete on the largest biological dataset. UPP2 and MAGUS
reliably had good accuracy (tieing for best) and completing within reasonable
times. The comparison between UPP2 and MAGUS shows indistinguishable
accuracy on these datasets, with UPP2 faster than MAGUS on two of the three
datasets.
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5 Discussion

In our first experiment we selected UPP+adj+EarlyStop with MAGUS back-
bones as the most promising variant of UPP2, since it provided improved ac-
curacy over UPP (as a result of using the MAGUS backbone) and improved
runtime (as a result of the EarlyStop search strategy). This variant, which we
more simply refer to as “UPP2”, overall provides advantages over other align-
ment methods. Specifically, on datasets with fragmentation, it provides better
accuracy than all other methods; the only method that comes close for accuracy
is UPP, but the change in search strategy (EarlyStop vs all-against-all) makes
UPP2 much faster. On simulated datasets without any fragmentation (Supple-
mentary Materials, Figure S3), UPP2 is a very good method but not the most
accurate (instead, MAGUS is the most accurate and UPP2 is in second place);;
however, given the levels of sequence length heterogeneity seen in biological
datasets (see Figure 1 in Nguyen et al. (2015)), results on simulated datasets
without sequence length heterogeneity are not as relevant for understanding
performance on biological datasets.

We also see that the rate of evolution impacts absolute and relative accuracy
of alignment methods. On datasets with low rates of evolution all methods can
be highly accurate even if there is a high level of fragmentation; however, differ-
ences appear under higher rates, where UPP2 dominates all the other methods,
and the gap between UPP2 and the other methods increases with the rate of
evolution (Figure 4). This trend explains in part why UPP2 matches but does
not consistently improve on UPP (other than for runtime) nor on MAGUS or
PASTA on the CRW datasets (Figure 5a), which have low evolutionary diame-
ters (as evidenced by the low p-distances in these datasets).

UPP2 is also generally reasonably fast, and generally at least as fast as the
other most accurate methods (UPP, MAGUS, and PASTA). However, UPP2
is not nearly as fast as MAFFT –auto (which is the fastest of the methods we
explored) and was slow on the 16S.B.ALL dataset. The biggest component of
the runtime for UPP2 on 16S.B.ALL is Stage 3, which took about 9 hours to
place 17,643 sequences into its backbone alignment of 10,000 sequences; the
second most expensive step is Stage 1 (a bit more than 5 hrs), computing the
backbone alignment using MAGUS. Since the runtime for Stage 3 is linear in the
number of query sequences, to reduce the runtime the backbone alignment could
have been bigger. On this particular dataset, MAGUS provided good accuracy
and was fast, suggesting that a larger backbone (computed by MAGUS) would
have been a safe substitution. Exploring the impact of changing the backbone
size on accuracy and runtime is a direction for future research.

6 Conclusions

Given the fundamental nature of multiple sequence alignment in many bioin-
formatics pipelines and the availability of low cost DNA sequencing, the esti-
mation of multiple sequence alignments on large datasets is a common step in
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much biological discovery. However, many modern biological datasets exhibit
substantial sequence length heterogeneity, and only a few methods have been
able to provide good accuracy under these conditions. The previous most ac-
curate method for aligning datasets with fragmentary sequences was UPP, but
UPP’s all-against-all approach made it computationally intensive. By replacing
this search strategy with the EarlyStop approach, UPP2 achieves the same high
accuracy but is much faster than UPP. The improvement in runtime without
degradation of accuracy provided by UPP2 is encouraging, and suggests the
potential for even more significant advances.
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S1 Method Versions and Commands

FastSP

• Version: 1.7.1

• Availability: https://github.com/smirarab/FastSP

• Note: -ml and -mlr flags are omitted for MAFFT alignments since MAFFT
only outputs lowercase characters

• Command:

java -jar FastSP.jar -ml -mlr -r <REFERENCE ALIGNMENT> -e <ESTIMATED ALIGNMENT>

MAFFT

• Version: 7.487

• Availability: https://mafft.cbrc.jp/alignment/software/

• Command:

linsi --thread 16 <SEQUENCE FILE> 1> <OUTPUT>/mafft.fasta

MUSCLE

• Version: 3.8.31

• Availability: https://www.drive5.com/muscle/

• Command:

muscle -in <SEQUENCE FILE> -out <OUTPUT>/muscle.fasta

ClustalOmega

• Version: 1.2.4

• Availability: http://www.clustal.org/omega/

• Command:

clustalo --threads=16 --in <SEQUENCE FILE> --out <OUTPUT>/clustalo.fasta

MAGUS

• Commit id: 95522ec9539575189a0a2f90baaf81cbde480034

• Availability: https://github.com/vlasmirnov/MAGUS

• Command:

python MAGUS/magus.py -d <OUTPUT> -i <SEQUENCE FILE> -o <OUTPUT>/magus.fasta
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T-COFFEE

• Version: Version 13.45.0.4846264

• Availability: http://www.tcoffee.org/

• Command:

t_coffee -thread=16 -reg -seq <SEQUENCE FILE> -outfile <OUTPUT>/t_coffee.fasta

PASTA

• Version: PASTA v1.9.0

• Availability: https://github.com/smirarab/PASTA

• Command:

python run_pasta.py -i <SEQUENCE FILE> --num-cpus 16 -o <OUTPUT> --temporaries <OUTPUT>

UPP

• Version: 4.5.1

• Availability: https://github.com/smirarab/sepp

• Note: When letting UPP choose the backbone sequneces, the alignment
and tree flags can be omitted.

• Command:

python run_upp.py -c <CONFIG FILE>

UPP Config

[commandline]

sequence_file=<SEQUENCES>

backboneSize=<BACKBONE SIZE>

alignmentSize=<DECOMPOSITION SIZE>

molecule=<dna/rna/amino>

cpu=16

tempdir=<TEMP DIRECTORY>

outdir=<OUTPUT DIRECTORY>
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UPP2

• Commit ID: 0ba1b31829c1982d8ffbfe94452b7174663d13f3

• Availability: https://github.com/gillichu/sepp

• Note: When letting UPP2 choose the backbone sequneces, the alignment
and tree flags can be omitted.

• Command:

python run_upp.py -c <CONFIG FILE>

UPP2 Config

[commandline]

sequence_file=<QUERY SEQUENCES>

alignment=<BACKBONE FASTA>

tree=<BACKBONE TREE>

backboneSize=<BACKBONE SIZE>

alignmentSize=<DECOMPOSITION SIZE>

molecule=<dna/rna/amino>

cpu=16

tempdir=<TEMP DIRECTORY>

outdir=<OUTPUT DIRECTORY>

[upp2]

decomp_only=True

bitscore_adjust=True

hier_upp=False

early_stop=False

UPP2-Hierarchical Config

[commandline]

sequence_file=<QUERY SEQUENCES>

alignment=<BACKBONE FASTA>

tree=<BACKBONE TREE>

backboneSize=<BACKBONE SIZE>

alignmentSize=<DECOMPOSITION SIZE>

molecule=<dna/rna/amino>

cpu=16

tempdir=<TEMP DIRECTORY>

outdir=<OUTPUT DIRECTORY>

[upp2]

decomp_only=True

bitscore_adjust=True

hier_upp=True

early_stop=False
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UPP2-EarlyStop Config

[commandline]

sequence_file=<QUERY SEQUENCES>

alignment=<BACKBONE FASTA>

tree=<BACKBONE TREE>

backboneSize=<BACKBONE SIZE>

alignmentSize=<DECOMPOSITION SIZE>

molecule=<dna/rna/amino>

cpu=16

tempdir=<TEMP DIRECTORY>

outdir=<OUTPUT DIRECTORY>

[upp2]

decomp_only=True

bitscore_adjust=True

hier_upp=True

early_stop=True
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S2 Dataset properties

Table S1: Dataset properties. We show the average and maximum p-distances
(normalized Hamming distances) and number of sequences in each of the study
datasets. Most of these datasets are studied in three versions: unmodified (i.e.,
without fragmentation), low-fragmentation (LF, where 25% of the sequences are
shortened to 50% of their length) and high-fragmentation (HF, where 50% of
the sequences are shortened to 25% of their length).

Name Sim/Bio # Sequences avg. p-dist. max. p-dist.

1000S1 Sim 1000 0.694 0.768
1000S2 Sim 1000 0.693 0.768
1000S3 Sim 1000 0.686 0.763
1000S4 Sim 1000 0.501 0.608
1000S5 Sim 1000 0.498 0.611
1000M1 Sim 1000 0.695 0.769
1000M2 Sim 1000 0.684 0.762
1000M3 Sim 1000 0.660 0.741
1000M4 Sim 1000 0.495 0.606
1000M5 Sim 1000 0.499 0.602
1000L1 Sim 1000 0.695 0.769
1000L2 Sim 1000 0.696 0.769
1000L3 Sim 1000 0.687 0.763
1000L4 Sim 1000 0.500 0.608
1000L5 Sim 1000 0.496 0.606
RNASim1000 Sim 1000 0.411 0.609
16S.3 Bio 6323 0.315 0.833
16S.T Bio 7350 0.345 0.901
16S.B.ALL Bio 27643 0.210 0.769
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S3 Extra figures

2 10
0.0

0.1

0.2

0.3

0.4
1000M1

2 10

RNASim1000

2 10

1000M1-HF

2 10

RNASim1000-HF

Smallest HMM Size

(S
PF

N 
+ 

SP
FP

) /
 2

UPP UPP+adj

Figure S1: Experiment 1: Impact of Adjusted Bit-score and Stopping
Rule (size of smallest subsets) on Alignment Error UPP uses the raw
bit-scores while UPP+adj uses the adjusted bit-scores. Both methods perform
an all-against-all search of HMMs to query sequences. Each subfigure shows two
values for z, the size of the smallest subset within the decomposition strategy
(i.e., stopping rule). The bar indicates the mean while the error bars indicate
standard error.
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Figure S2: Experiment 1 Impact of choice of backbone alignment method
(MAGUS vs PASTA) and Stopping Rule (size of smallest subsets) on align-
ment accuracy and total runtime. 1000M1 has 19 replicates, RNASim1000
has 20 replicates, 1000M1-HF has 19 replicates, and RNASim1000-HF has 20
replicates. The means are shown with error bars indicating standard error for
alignment error and standard deviation for running time.
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Figure S3: Experiment 2: UPP2 compared to benchmark alignment
methods on simulated datasets without fragmentation. We show align-
ment error and runtime of UPP2 (i.e., UPP+adj+EarlyStop with MAGUS back-
bones) compared to other alignment methods. All methods except T-COFFEE
and MUSCLE were run in their default modes and with 16 threads, when possi-
ble. T-COFFEE was run using the regressive mode and MUSCLE was limited
to 2 iterations. All datasets have 20 replicates each. The means are shown with
error bars indicating standard error for alignment error and standard deviation
for running time.
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S4 Results on simulated datasets without frag-
mentary sequences

Figure S3 compares methods on simulated datasets without any introduced frag-
mentation, showing both alignment error and running time. On these datasets,
UPP2, UPP, MAGUS, and PASTA were the four leading methods across the
simulated model conditions. Within this leading group of methods, MAGUS
was the most accurate alignment method, closely followed by UPP2, PASTA,
and UPP, in that order. Clustal Omega and T-COFFEE were the least accu-
rate methods. MUSCLE, although more accurate than Clustal Omega and T-
COFFEE, was less accurate than the leading group of four methods. UPP2 and
MAGUS were the fastest methods, followed by Clustal-Omega and T-COFFEE.
UPP was almost always the slowest, but PASTA, Muscle, and MAFFT linsi were
typically also slow. Thus, if selecting from the most accurate methods, UPP2
and MAGUS are the only ones that provide competitive accuracy and also fast
running times.
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S5 Bitscore to Probability When HMMs are Dif-
ferent Sizes

The bitscore of a query sequence given a HMMER HMM is log2
P (q|H)
P (q|H0)

where

H is the HMM, q is the query sequence, and H0 is the null model, or the random
model.

Using Bayes’ theroem, we arrive at the probability of Hi generating sequence
q as follows.

P (Hi|q) =
P (q|Hi) · P (Hi)

P (q)

=
P (q|Hi) · P (Hi)

Σn
j=1P (q|Hj) · P (Hj)

where n is the number of HMMs (Hi...Hn).
If we assume that the more sequences the HMM is trained on, the more

likely the HMM is to output a sequence, then we can transform the above into
the following.

P (Hi|q) =
P (q|Hi) · siS

Σn
j=1P (q|Hj) · sjS

=
1

Σn
j=1

P (q|Hj)·sj
P (q|Hi)·si

=
1

Σn
j=12

log2

P (q|Hj)·sj
P (q|Hi)·si

where si is the number of sequences that HMM Hi was trained on and S is the
total number of sequences that the HMMs were trained on.

From the definition of Bitscores, we can derive the following.

BS(Hj)−BS(Hi) = log2

P (q|Hj)

P (q|H0)
− log2

P (q|Hi)

P (q|H0)

= log2

P (q|Hj)

P (q|Hi)

So

P (Hi|q) =
1

Σn
j=12

log2

P (q|Hj)·sj
P (q|Hi)·si

=
1

Σn
j=12

BS(Hj)−BS(Hi)+log2

sj
si
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