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1 Abstract

2 During brain development, billions of axons must navigate over multiple spatial scales to reach
3 specific neuronal targets, and so build the processing circuits that generate the intelligent behavior of
4 animals. However, the limited information capacity of the zygotic genome puts a strong constraint on
5 how, and which, axonal routes can be encoded. We propose and validate a mechanism of development
6 that can provide an efficient encoding of this global wiring task. The key principle, confirmed through
7 simulation, is that basic constraints on mitoses of neural stem cells—that mitotic daughters have
8 similar gene expression to their parent and do not stray far from one another—induce a global
9 hierarchical map of nested regions, each marked by the expression profile of its common progenitor
10 population. Thus, a traversal of the lineal hierarchy generates a systematic sequence of expression
11 profiles that traces a staged route, which growth cones can follow to their remote targets. We
12 have analyzed gene expression data of developing and adult mouse brains published by the Allen
13 Institute for Brain Science, and found them consistent with our simulations: gene expression indeed
14 partitions the brain into a global spatial hierarchy of nested contiguous regions that is stable at
15 least from embryonic day 11.5 to postnatal day 56. We use this experimental data to demonstrate
16 that our axonal guidance algorithm is able to robustly extend arbors over long distances to specific
17 targets, and that these connections result in a qualitatively plausible connectome. We conclude that,
18 paradoxically, cell division may be the key to uniting the neurons of the brain.

tCurrent address: Janelia Research Campus, Ashburn, VA, USA


https://doi.org/10.1101/2022.02.26.482112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.26.482112; this version posted February 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

1 AUTHOR SUMMARY

» Author Summary

2 The embryological development of each brain installs an essentially identical communication network
a1 between its cells that is roughly as complex as that between the billions of people living on Earth.
2 Although vast scientific resources are currently applied to identifying the final pattern of connections,
23 the connectome, there has until now been relatively little effort to answer the fundamental question
2 of how this complex network across billions of neurons realized through the mitotic elaboration of the
s initial embryonic cell. The problem is sharpened by the constraints that construction of the network is
» limited by the information budget of the initial genome, and that it has no pre-existing address space for
s placing neurons and guiding axons. We explain how Biology can solve this problem by using the family
s tree of neurons to install a global space of molecular addresses, which axons can use to navigate from
2 their source neuron to its relatives. We provide experimental evidence for this familial address space
s in gene expression patterns of the developing mouse brain, and demonstrate through simulation that
a1 the experimentally observed address space indeed supports global navigation to produce a qualitatively

2 plausible default connectome.
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2 INTRODUCTION

» Introduction

s A century of neuroanatomical studies attest that, while their detailed synaptic configurations may differ,
55 the fundamental organization of neuronal types and their axonal projections are highly conserved within a
3 species. Major resources of neuroscience are currently devoted to describing the species-specific patterns
w of connections, or connectomes, of brains [40, 52, 12, 49, 62, 35, 16, 44, 29]. These projects typically
;s approach the connectome from a reductive point of view: Given a mature brain, extract the graph of
3 its neural nodes and axonal edges. This paper approaches the connectome from an entirely different
w0 point of view: Given a few progenitor cells derived from the zygote, explain their elaboration into the

s stereotypically connected graph of the brain. We will call this approach Constructive Connectomics.

P There are two aspects to this construction problem: The generation, from a few precursors, of the
s vast number and various types of neuron that comprise the brain; and the process whereby these neurons
#+ then connect to one another. The process of generation is relatively well understood [42, 36, 43]. Un-
s differentiated progenitors who have inherited their genome from the zygote, undergo successive rounds
s« of mitosis resulting in a exponentially large cell mass. At each division the mother cell gives rise to two
«  daughters whose gene expression, and consequently whose phenotype, may differ from their mother and
s from one another. Overall, the branched sequence of mitoses can be represented as a lineage tree with
« undifferentiated progenitors at its root, and fully differentiated neurons at its leaves. Although some cell
so  types do actively migrate, the cells of the growing mass generally maintain their location relative to one
s1  another. However, differentiated neuronal cells do give rise to excrescences tipped by growth cones, and
s> these cones migrate away from their cell while drawing out an axon in their wake, actively searching for
53 and then connecting to remote target neurons. Typically, the growth cone(s) will branch many times
s« during this search, so generating a highly arborized axon that maps the source neuron through brain

ss  space to its many targets.

56 In vertebrates the fundamental wiring of the brain is established before birth, and occurs in near
57 informational isolation from the external world. Therefore, the information required for stereotypical
ss axonal guidance must be contained in the brain’s precursor cells, and hence is limited by the roughly
ss 1GB information capacity of the original zygote*. This amount is many orders of magnitude too small
o to explicitly encode sequences of receptor configurations for billions of neurons [64, 61, 26]. A naive
a1 encoding of this source-to-target connection matrix would require at least 10TB for a mouse brain,
e excluding the additional information required for detailed and staged axonal routing. The compression

63 of the connectome into a 1GB genome implies that neuronal progenitors encode axon trajectories through

*The mouse genome has roughly 2.5 billion base pairs, each encoding 2 bits. At 8 bits per byte this constitutes 625
megabytes, which generously rounds to 1GB. The number for other vertebrates is similar.
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2 INTRODUCTION

e brain space more efficiently than the naive approach. This raises the important question addressed here,
6s of how neuronal progenitors encode and express the complex connections of the brain, and how this

e process is orchestrated through development (Figure 1).

o7 Growth cone guidance is crucial to the developing brain’s construction of its complex neuronal infor-
¢ Imation processing circuits [6, 5, 50]. This claim is far from new: In his original description of axonal
e extension over a century ago, Cajal recognized that the cones are the agents of the neuronal circuit
7 organization, and suggested that they are attracted to their targets by chemotaxis [7]. Later, Sperry
n  elaborated that idea in his Chemoaffinity Hypothesis, whereby axons have differential markers; target
2 cells have matching markers; markers are the result of cellular differentiation; and axons are actively
73 directed by these markers to establish their specific connections [31, 48]. These tenets are now widely
= accepted, and there is by now broad experimental evidence that growth cones navigate by following gra-
75 dients of molecular cues in their surrounding tissue [17, 5]. At decision points along their route, growth
7 cones change their receptors to tune into a different molecular signal, and so change direction [32]. Long-
77 range projections are achieved by growth cones passing through long sequences of growth cone receptor

7 configurations [50].

70 Although these local molecular guidance mechanisms are relatively well understood, the global ques-
s tions of just how these sequences and cues are encoded and deployed in both the navigating axons and
s navigated tissue (i.e., Sperry’s claim that they are installed by cellular differentiation) have been largely
& mneglected. Our work addresses these issues and offers a principled account of how the connectome can

&3 be constructed within the zygote’s information budget.

8 Our working hypothesis is that the mitotic lineage tree induces a global hierarchical map over the
s developing brain. This map consists of nested regions of brain, each consisting of the progeny of a small
s definite population of progenitors whose profile of expression over multiple genes is maintained in the

s7 average expression profile of their collected progeny.

88 We propose that by successive differentiative mitoses of development, cells implicitly obtain unique
s gene expression addresses that encode their respective mitotic lineages (Figure 2). Then, by inverting
o the developmental program of their differentiation to revisit ancestral expression states, axons could
o effectively traverse the global family lineage tree by re-generating specific sequences of growth cone
e receptor configurations—each configuration seeking a region’s ancestral expression profile—that lead to
o3 long-range targets, which are in effect their mitotic cousins. That is, the sequence of intermediate targets
o between two neurons is implicit in their relative expression addresses, and requires no additional genetic

os encoding.
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2 INTRODUCTION

96 This guidance scheme requires that the lineage tree have a dual embedding in both expression and
o physical space (Figure 2). Through simulation, we show that this requirement is satisfied under rather
¢ simple conditions: That the mitotic daughters have gene expression similar to their parent; and, that

o the daughters do not usually migrate far from one another.

100 We find clear experimental evidence for our hypothesis in the in situ gene expression atlas published
1 by the Allen Institute for Brain Science (ABI) [51], which provides voxelated spatial expression data of
2 ~2000 developmentally relevant genes throughout the brain, extending from embryonic (E) day 11.5 to
;s postnatal (P) day 56. Our analysis of their data reveals that the expression covariance of sets of randomly
14 selected genes pattern the developing mouse brain on multiple spatial scales. These hierarchical patterns
s of expression involve the entire brain and spinal cord, transcend neuroanatomical boundaries, and are
s consistent over the available data. Furthermore, detailed simulations of our proposed guidance process
w7 on the ABI gene expression data confirm that axons can use it to robustly navigate over long distances

s to specific targets, as shown schematically in Figure 2.

100 We begin by describing in detail our overall concept, which provides the rationale for our analyses
o of experimental data, and for our simulations, presented in Results and Discussion. We conclude that
m  the fundamental wiring of brain can be compactly encoded and expressed through the mitotic lineage
2 implied by the genetic code of its embryonic stem cells. Thus, the connectome and its functioning can be
us  more readily understood in terms of the global mechanisms that generate it (constructive connectomics),
us rather than from interpretation of the final wiring diagram (reductive connectomics), just as inspecting

us  source code is more revealing of principles of operation than inspecting the compiled program.
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3 RATIONALE

» Rationale

uz  The brain is an organized aggregation of billions of cells that are generated by many successive mitotic
us divisions of relatively few stem cells. Each of these stem cells is the root of a mitotic lineage tree that
1o describes the branched sequence of mitoses beginning in that root and terminating in a population of
120 post-mitotic leaf cells. Tracing these lineage trees experimentally, and understanding the relationship
121 between the underlying cell states and their transitions during mitosis is a field of active research [23,
2 54, 53]. However, instead of pursuing the biological detail of these lineages, we explore an overarching
123 statistical question: Could the sequence of mitoses impose an implicit order on the expression patterns
e of the leaf cells? And conversely, can the statistics of gene expression across a population of leaf cells
125 offer an estimate of their shared lineage tree? The following section and Figure 3 offers an argument
s that both these properties are true, and lay a foundation for interpreting the experimental results and

w7 explanatory simulations that will follow in Results.

s Familial Address Space Model

120 First we consider how and why the statistics of differential gene expression between mitotic siblings should

1w be detectable across the brain as a map-like spatial hierarchy of gene expression covariance (Figure 3).

131 Our model for the gene expression around cell division is as follows. The life of each cell i starts
12 as it is born from its mitotic mother, ends when it divides into its two mitotic daughters, and has an
133 expression profile ¢; over all genes and averaged over its lifetime. The lineage tree is rooted in progenitor
134  cell 1, whose expression profile is ¢;. On mitosis, this parent cell splits into two daughter cells, 2 and
135 3, whose expression profiles become ¢ = ¢1 + 02, and c3 = ¢1 + d3 respectively. Just so, the expression
s profile of every cell 7 in the lineage tree can be understood as the expression profile of its parent, plus
w a (positively or negatively signed) differential profile d; that summarizes the complex dynamics of gene
s regulation. The injection of these changes through mitosis is recursive, so that the gene expression of

e every cell is the accumulation of all its ancestral profiles, e.g., ¢4 = ca + 04 = (¢1 + d2) + 4.

140 Consider now the implications of these d’s for the measurement of covariance in gene expression across
w1 populations of cells. The mitosis of progenitor 1 induces an expression asymmetry Ay = ¢o —c3 = 3 — d3
12 between its daughters. This asymmetry propagates down the daughter’s two branches of the lineage, and
w3 is preserved across the two progenies as a quantity denoted as A,. In other words, the parental mitosis
s injects a characteristic asymmetry that persists through development into the leaf cells (Figure 3a),
s and this signature could be detectable by an observer (Figure 3b). Every mitosis introduces such an
us asymmetry, so that the overall population of leaf cells, collectively, carry statistical evidence of the

7 overall shape of the lineage. How can an observer extract this information? We argue (and demonstrate
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3.1 Familial Address Space Model 3 RATIONALE

us by simulations below) that lineage can be recovered by hierarchical decomposition of gene expression

ue covariance.

150 Figure 3b sketches the method. Consider first the asymmetry A; induced by ¢;. This asymmetry
11 propagates down the lineage tree resulting in a trace Ay across all the leaf cells. We may estimate Ay
12 by measuring the direction of greatest variance of gene expression, denoted Cov over the leaf offspring
153 of 1. And, in general we expect that Cc?/i, measured over the leaf cells of i, will be correlated with the
15+ original asymmetry A; induced by mitosis of ¢;. The decomposition begins by measuring C(Rq (across
155 green cells). Then split these cells along Cov into two the daughter populations (red and blue); repeat
s Cov for each of these; and so on recursively. This hierarchical decomposition provides an estimate of the

17 lineage tree.

158 The precise changes in gene expression ¢ are, in general, unknown. But fortunately, detailed knowledge
159 about the §’s is not relevant for present purposes, only their general statistics. Figure 3¢ shows that
w A; and A; are strongly correlated when (but not necessarily only when) the 0’s are independently and

11 normally distributed.

162 Our Address Space Model asserts two principles. The first is that the profile of gene expression over
13 multiple genes between a parent and daughter does not change on average. Although mitotic division
1« may induce different gene expression profiles in the two daughters, both up- and down-regulation of
15 any single gene are a priori equally likely. Thus, the expression profile over all genes averaged over
s both mitotic daughters will resemble the expression profile of the parent. This property (illustrated in
w7 Figure 3 a,b) is maintained recursively over successive cell divisions, such that the average expression
168 Over a given ancestor’s progeny resembles its own expression. It is this property that permits hierarchical
10 decomposition: If we are able to select the progeny of a single progenitor while excluding cells from other
o branches of the lineage tree, then we could measure the asymmetry A induced by the division of that

wm  progenitor by measuring Cov over the leaf progeny (see Figure 3b).

172 The second principle is that, also on average, the daughters of a mitosis do not stray too far from
w3 one another in 3D physical space. In this case, we expect that the mitotic lineage will be systematically
s organized across brain space, as seen in the clustering of each daughter’s progeny in Figure 3d. Therefore,
s mitotic asymmetries in gene expression (Figure 3a) are similarly organized in brain space (Figure 3c)
e and so encode a potential lineage address space. This associates a contiguous region in brain space with
w7 an ancestor in the lineage tree (larger regions correspond to earlier ancestors), and a trajectory through

s the lineage tree with a trajectory through brain space.
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3.2 Familial Guidance Model 3 RATIONALE

7o Familial Guidance Model

1w First we describe our generic model (Figure 4) for the extension of a single axon arising from a source
11 neuron in a cellular mass. Then, in Results we will report the application of this generic model to the

182 voxelated case of the ABI data.

183 The progeny of a given ancestor contain (on average) that ancestor’s gene expression signature. More-
e over, the expression profiles of cells are related (Figure 4, color gradients) by their ancestral sub-tree
185 structure. Therefore, a particular axonal route through space from one cell to another is determined
185 by the growth cone’s search over the successive expression signatures of the route through its ancestral
w7 lineage tree, which connects those two leaf cells (e.g., red path in Figure 4). Since the ancestral signa-
188 tures are projected onto the leaf cells, the growth cone can navigate towards its target by maximizing

189 the incidence of the successive signatures.

190 An axonal growth cone is instantiated by its source neuron. This growth cone extends its axon by
11 moving in a direction that increases the match of its locally sensed expression with respect to search
12 template. The cone selects as a search template the expression state of a node of the lineage tree. As
13 explained above, these nodes represent ancestral expression patterns whose signatures can still be found
104 in the current generation of leaf cells. Therefore the selection of a node as a template implies a search
105 amongst local cells for that familial signature. The gradient of signature state in the familial address

s space is the frequency of encountered cells that test positively for that signature.

107 The lineage tree is implicitly encoded in every cell’s gene regulatory network, and the growth ac-
18 cesses templates by manipulating that network. Axonal growth and arborization results from successive
109 optimization through growth cone movement, and replacement of the search template through genetic
20 regulation in the axon, according to the following simple rules. The growth cone takes as its initial search
20 template the leaf state of its source neuron. At each subsequent step of the search process the growth
22 cone senses its external environment, and moves in a direction that satisfies its internal search template
203 better than its current position. If there are other distinct directions that also increase satisfaction, then

24 the growth cone divides and different axonal branches pursue each of those directions.

20 All branches of the same neuron are constrained by self-avoidance. In this sense, the paths in brain-
206 space of a growing branch are irreversible, and their paths subject to race conditions. Additionally, before
27 each step, the cone may replace its current search template with the expression state of any adjacent node
28 in the lineage tree, so that the search will now be for a different, but closely related, familial template.
200 However, such steps along the lineage tree are irreversible; and so this growth cone and its downstream

a0 branches will explore only those paths in brain-space and expression space that are coded in sub-tree
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3.2 Familial Guidance Model 3 RATIONALE

au sequences of expression templates. Growth cones terminate (or become dormant) when they can neither
a2 improve their template match, nor replace their template. The growth cone does distinguish between no
a3 gradient due to failure, and no gradient due to successfully reaching a peak. The cone will transition to
a1 the next possible state in both cases. If the cone continues to make progress with its search templates, it
a5 will ultimately reach a leaf state. If however, the local signals do not offer suitable gradients the growth

26 cone will fail after exhausting its options.

w7 In executing this search algorithm, the initial cone and its clones extend axons along all the routes
218 in brain-space that offer contiguity in brain-space of familial expression patterns encoded in the lineage

20 tree, and as a result create a particular repeatable axonal arborization from source to target leaf nodes.
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4 RESULTS

» Results

21 We sought evidence of expression address maps by performing our hierarchical decomposition of covari-
22 ances on experimentally measured gene expression data. We used the gene expression data published by
23 the ABI in their Developing Mouse Brain Atlas [51]. Their data are provided as 3D grids of isotropic
24 voxels. The expression energies of the ~2000 genes were measured by in-situ hybridization and take any

»s non-negative value (see Methods).

226 Our prediction, leaning on the principles outlined above, was that the measured covariances should
27 reveal a dual set of systematic patterns: a hierarchical ordering in expression space, and a nesting of
»g region in brain space. Here, ‘expression space’ denotes the abstract multidimensional space in which
20 the gene expression profile of a cell can be represented by a point; and ‘brain space’ or ‘space’ denotes
20 physical 3D space. We will use ‘profile’ for a fixed relative expression of all genes within a cell or voxel,
an ‘pattern’ to denote an evident spatial regularity in gene expression, and ‘organization’ to denote the

2 systematic order underlying these patterns.

23 Global spatial expression hierarchy

22 We performed our hierarchical decomposition (described in the Concept and Methods sections) on the
25 experimentally measured spatial gene expression, and consider to what extent that hierarchy could
236 constitute an estimate of the mitotic lineage tree. Figure 5 shows the results for P28. Other time points

27 from E11.5-P56 are shown in Figures S13—-S20.

238 The hierarchical decomposition is based exclusively on the gene expression covariance measured across
20 unordered sets of voxels: The physical locations of voxels within the brain were not taken into account.
20  However, when the voxels are now considered in their correct physical locations, we observe that the sets
an - selected during the unordered hierarchical decomposition form nested and spatially continuous regions
a2 spanning brain space. Thus, the hierarchy of nested voxel sets found by our analysis in expression space

23 parallels a hierarchy of spatially continuous regions in brain space, which is not entailed by the analysis.

244 To confirm that these patterns are due to intrinsic spatial organization of gene expression rather than
25  being induced by the analysis, we performed the same decomposition on voxels with randomly shuffled

26 gene expression values (see Methods). After shuffling, all spatial structure vanishes (Figures S13-520).

247 We quantified the degree to which the hierarchy of asymmetries derived from gene expression projects
28 into physical brain space by measuring the spatial spread of the voxel set. If the nested voxel sets
29 form continuous regions in space beyond the first few generations, then the spread of their constituents

20 should decrease over successive generations as the sub-populations become more resolved (and therefore

10
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4.2 Hierarchy exists in small gene sets 4 RESULTS

1 smaller). Otherwise, if the constituent voxels are scattered across space, their spread would remain

22 roughly constant. We find that indeed the spread consistently reduces with generation (Figure 5¢).

253 In addition to spanning brain space, the patterns are consistent over time from E11.5 to P56. The
x4 temporal consistency cannot be measured directly, because there is no clear map between individual
»s  voxels of subsequent time points. To side-step this problem we instead project the voxels of one time
6 point onto the hierarchy measured at another time point. In Figure 6 the voxels of all available time

7 points are projected onto the hierarchy measured at P28.

258 To quantify the temporal consistency of the spatial patterns we measure how many voxels are sorted
29 into the same hierarchical bin when projected into the hierarchy measured at the original time point
x0  versus the hierarchy measured at P28. We find that the spatial patterns at the various time points agree

261 significantly above chance (Figure 6b).

262 We also measure the correlation between the axes of covariance Cov among the same hierarchical
»3  node at different time points, and among different hierarchical nodes at the same time point. We find
x4 that the axes of the same node across time correlate more than the axes of various nodes within a single

265 time point (Figure S12).

xs Hierarchy exists in small gene sets

%7 As we have selected genes without bias, the spatio-temporal patterning may be a general property of
xs gene expression, rather than the specific property of a particular set of specialized genes. We explored
x0 this possibility by randomly selecting sets of genes of various sizes, and then measuring how well the

a0 spatial patterns were maintained.

o From the spatial gene expression data we found that small sets (~50) of genes selected randomly from
o»  the database can already achieve an accuracy (ratio of voxels sorted in the same hierarchical bin) with
o the signal over all genes (Figure 7). So, the lineage identity of a cell may be encoded in the profile of

a1 any small set of genes.

s Simulated mitosis induces spatial hierarchy

s We verified that our division model is able to explain the above results by simulating the mitotic devel-
o7 opment of a cell mass from a small pool of precursors (see Methods for a more detailed description of

zs  the simulation).

279 The simulation embodies the constraints of the model. The basic element of the simulation is a space-

20 occupying (not a point) cell that expresses a profile of genes. When a cell divides, the expression profiles

11
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4.4 Simulated axons traverse the brain 4 RESULTS

2 of its two daughters are normally distributed variants of the expression of their mother. The cells are
22 additionaly positioned in a spatial 3D grid. When a cell divides it pushes a nearby cells in a random
23 direction to make space to place the mitotic daughters adjacent to one another (see Methods). In this
e  way, we are able to efficiently simulate the growth of a volume of cells, analogous to the embryonic brain.

s A particular lineage tree of cells is generated by recursive application of this division rule.

286 The simulation results in a mass of 500,000 cells, each expressing 500 genes, and distributed over
27 100 independent lineages. This mass was divided into 21140 voxels of 3x3x3 cells (excepting voxels
23 on the outer surface, which may contain fewer cells), to emulate the voxelation of the ABI data. We
0 then applied the same hierarchical decomposition as was applied to the experimental data, yielding
200 qualitatively similar results (Figure 8). This simulation indicates that the spatial and genetic constraints
2 of the model are sufficient to explain the spatial patterns that we observed in the developing mouse

202 brain.

23 Simulated axons traverse the brain

24 We simulate the process of axonal growth to demonstrate that they can use the Familial Guidance Model
25 described in the Concept to navigate through the voxels of the ABI gene expression atlas (Figure 9). The
26 Guidance Model in the Rationale was described in terms of individual cells and a given lineage tree. In
27 applying that model to the experimentally observed ABI data, we have to consider that the expression
2s data is voxelated, with each voxel containing many cells; the lineage tree is only estimated, as described
200 in the previous section; and we cannot yet predict which exact set of genes participates in the address
0 space. So, we need to test whether robust long range guidance is possible at all using our proposed

s mechanism, rather than predict specific projections.

302 The growing axons were simulated using a spatial-state graph approach. In this approach, the axon
203 traverses a graph where each nodes represents the growth cone at a spatial location (i.e. a voxel) with a
;4 specific receptor configuration. Two nodes are connected by an edge if they are spatially adjacent and
ss  represent the same receptor configuration—this represents a move of the growth cone in space; or if they
w6 represent the same spatial location, and the receptor configurations are adjacent in the lineage tree—this

sr - represents a transition of the growth cone in state.

308 The axon can only traverse an edge to an adjacent node if the gene expression in that node is a better
300 fit to its receptors than the current node (i.e. if the currently held ancestral state is more correlated to
a0 the adjacent node). This ‘biological’ algorithm resembles Dijkstra’s algorithm for finding the shortest

su  route between two nodes of a graph [10].

312 Simulated axons were found to be able to extend up to about 10 pm source-tip distance, with axonal
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4.4 Simulated axons traverse the brain 4 RESULTS

sz lengths of up to 16 um (Figure 9b). The axon length is longer than the source-tip covered distance
s because the axons do not move in a straight line. Nevertheless, the relation between path and straight

a5 distance is close to linear for many axons, particularly those of shorter ranges.

316 The axonal guidance is robust against signal noise. We demonstrated this by adding noise to the
sir - gene expression after the lineage tree was reconstructed, but before the axons began guidance, effectively
sis reducing the signal to noise ratio. The added noise does not significantly change the trajectories of
a0 the axons (Figure 9e). However, when gene expression is shuffled completely, either before or after

20 reconstructing the lineage tree, axons fail to navigate beyond 1 or 2 voxels (not shown).

321 Similar axon length distributions are found from the fully simulated tissue (Figure 9d). This result

s further supports the hypothesis that simple constraints on mitosis can induce the address space.

23 The control case for axonal arborization is a random walk axon of identical total length, whose growth
;24 cones are still self-avoiding, but able to move in random directions at every step. We find that the random
»s  walk axons have much lower specificity, robustness, and spatial reach, than the navigating axons (See
»s Figure 9e). Note that for the navigation algorithm the total length of the axon is an implicit result, rather
s27 than a set parameter. Thus, the random walk axon already over-informed compared to the navigating

328  axons.

329 We generated a typical connectivity matrix by simulating 500 axons rooted in voxels sampled uni-
s formly from the available data, (Figure 9f). The matrix is sparse and block structured, with many
s off-diagonal components (rather than narrow diagonal band), indicating a specific, regionalized, con-
s nection pattern. Remarkably, these typical connections conform to reasonable anatomical patterns, as
;3 can be appreciated by comparing the block-structured axonal connections with anatomical regions taken
s from the independent annotations of the Allen Brain Institute (Figure 9f. We emphasize that these

35 anatomical annotations are not used at any point during simulation or analysis.
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5 DISCUSSION

= 1iscussion

sv The literature describing the progressive organization of vertebrate brains over embryonic and evolution-
s ary time [42, 2] has emphasized local organizational processes and their dependence on a local landscape
s of molecular signals [37, 1]. However, that focus neglects the more global question of how the guidance
s landscapes are themselves established. Long-range migration of neurons, extension of their axons, and
s the formation of their many synaptic connections require a global orchestration of guidance cues [17, 50]

w2 at various spatial scales.

3 In this paper we have explored the hypothesis that the mitotic lineage tree, which is implied by the
s cellular gene regulatory network (GRN), is key to understanding the necessary global orchestration of
ss  molecular cues. The lineage tree induces a global guidance address space over the embryonic brain that
us 1s encoded in profiles of expression of multiple genes. Some part of the expression pattern of each cell
sr  includes the precursor signatures that encode its ancestral path down the lineage tree. The expression
us  signatures of early ancestors are broadly spread across the present progeny, whereas the distribution of
s signatures of recent progenitors is more restricted. These systematic differences in location and scale of
0 distribution of ancestral expression patterns supports the address space. Because the address reflects

s family lineage, we call it a Familial Address Space (Figure 3).

352 We further propose that the address space is navigable by axonal growth cones, which are able to grow
33 to specific target addresses by matching local gene expression patterns to those of successive nodes of a
3 lineage tree traversal. We call this process Familial Guidance (Figure 4). In other words, the expression
55 of the brain, and the growth cone’s ability to exploit it, are dual consequences of the brains developmen-
6 tal process which both creates the Familial Address Space as a consequence of cellular differentiation,
ss7 - and then exploits that differentiation for active cellular organization including the formation of axonal

38 connections.

350 Molecular labels were proposed by Sperry to explain how retinal axons select their targets in the
0 tectum [31, 48]. However, it has been unclear in how unique, dynamic, and matching labels could be
50 simultaneously presented by the tectum and recognized by axons from the retina [56]. Particularly, in
;2 these and other explanations of circuit formation [11, 46] it is unclear how the reproducible connectivity
3 can be encoded within the genetic budget. Our proposed mechanism resolves this issue by showing
w4 that the lineage tree can efficiently install unique labels in target tissue, and that navigating axons can
s recognize them due to their shared origin in the cellular GRN. It also extends the scope of comprehensive

s molecular labels from the retino-tectal projection to the brain at large.

367 We searched for evidence of such an address space in the ABI mouse brain atlases, because they

14


https://doi.org/10.1101/2022.02.26.482112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.26.482112; this version posted February 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

5 DISCUSSION

sss  provide voxelated (rather than tied to pre-conceived anatomical regions) spatial expression data of de-
0 velopmentally relevant genes throughout brain development. Previous analyses of these and related
s atlases have been largely concerned with identifying profiles of co-expression that support anatomical
s organization [37, 39, 38, 34, 51]; and also whether these regional profiles can be explained in terms of the
s known expression of specific cell types [18, 58, 60]. Although there are also systematic transcriptional

s similarities across cortical areas [34, 19], no global map-like organization has been reported as yet.

374 Our results now indicate that systematic spatial patterns of gene expression covariance do exist and are
s widespread in the embryonic and postnatal brain. These patterns involve non-specific groups of genes,
s occur on multiple spatial scales across the entire brain and spinal cord, transcend neuroanatomical
s boundaries, and are consistent at least from E11.5 to P56. Interestingly, we found that the primary
ss  axis of variance corresponds spatially to the dorso-ventral axis of the embryonic brain, rather than the
;9 antero-posterior axis that is expected on the naive assumption of greater variance along a longer axis.
s This suggests that the patterns do not simply reflect the geometry of the developing embryo, but are

s related to controlled regionalization in embryogenesis itself.

38 We explored the embryological origin of these patterns by analyzing the statistical structure of the
;3 expression covariance [20], rather than the relationship between expression and anatomy [34] or to pheno-
s typic expression of cells [18]. The essence of this structure is that the differential gene expression between
35 arbitrary sibling branches of a lineage tree (the asymmetry) in expression space has a dual expression
s as covariance across the region of brain space occupied by the leaf nodes of those sibling branches, as
s7 proposed in the Rationale section. Indeed, simulations of the Familial Address Space model showed good
s qualitative agreement with the experimental data (Figure 8). They confirm that the differential gene
;9 expression profiles induced by early divisions can be reconstructed from the gene expressions observed

s0 in the leaf cells of the lineage tree.

301 The covariance patterns indicate only that common gradients of expression exist across sets of genes,
s and seem to be hierarchically organized. Our results do not of themselves indicate which genes contribute
;3 most strongly to the patterns, nor which, if any, are actually utilized for addressing. It remains to be
su  tested whether the spatial organization observed in the current data is restricted only to the ~2000 genes
35 that the ABI chose for assaying [51], and consequently to the subset of ~1,240 that we have analyzed.
s However, both the experimental data and our simulations indicate that the organization does not arise
s7  from the expressions of a specific set of genes dedicated to encode spatial structure, but rather can be
ss  found in the expressions of any sufficiently large (> ~50) set of genes. Thus, the spatial hierarchy in
30 gene expression depends primarily on the statistics of the induced changes, while the specifics of gene

a0 function are less relevant to their generation.
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5 DISCUSSION

401 The range of spatial scales (Figure 5), temporal stability (Figure S11), and near orthogonality (Fig-
w2 ure S12) of the covariance nesting is suggestive of an address space. This putative address space has an
w3 interesting property: Because the nested regions are a projection of the lineage tree onto 3D brain space,
ss  regions composed of cells that are closely related in their respective lineage trees are also close in space.
a5 Thus, the address map is a systematic arrangement of cells in terms of their ancestral gene-expression,
w6 and so provides an implicit encoding of cell lineages that could be used as a relative localization mecha-
«07  nism that can guide tissue organization. For example, migrating cells or individual axonal growth cones
a0 could steer to their target locations by tracing a sequence of address patterns. These patterns need not
w0 have evolved with the intention to guide growth cones: It is sufficient that a growth cone recognize the
a0 pattern and exploit it as a directional cue. Growth cones might recognize these patterns, because they
an  are not only the product of the global developmental program, but themselves contain that full program
a2 in the genetic code of their source cell. Thus, we may expect migrating cells and cellular excrescences
a3 such as axons to have methods of decoding that and relate to mechanisms by which the expression

a4 patterns are themselves induced.

a1 While constructing the address space, the mitotic tree is rooted in the stem state of its gene regulatory
a6 machinery. However, if the leaf cells root their regulation in their own current states, then their potential
a7 exploration paths are traversals of regulatory paths to destination states, as seen from their origin state.
as Thus, the exploration paths of the growth cone can be seen as the lineage tree hung from a leaf (with some
mo  pruning). So, growth cone routes are anti-differentiating up the tree to some ancestral node, followed by

a0 re-differentiating toward the leaf states accessible from that ancestral node.

an An appealing aspect of this lineage-induced address is that it greatly simplifies the evolution of complex
w22 spatial organization of cells. The systematic spatial labeling of cells is given as a direct consequence of
«23  mitotic specialization and cell proximity. Evolution needed only to discover how to exploit this labeling
«2¢  for organizational migration of cells and their components (e.g. growth cones). It could opportunistically
o5 select a set of gene products for axonal growth cone guidance, because most gene sets will encode a
o6 similar spatial pattern. This generality of the address space could also help to explain the wide range of
w7 guidance cues that have been documented [50, 28, 45]. The selection of a subset of cell surface markers,

a8 or diffusible markers would be a convenient choice for growth-cone sensors.

429 The Familial Address Space model is entangled by two factors. Firstly, the mitotic root of the
a0 developing brain is difficult to define exactly. It seems reasonable to consider as starting point a small
a1 collection of early progenitor cells downstream from the zygote that are committed to formation of
.2 the neural tube, rather than the single progenitor that we have assumed for simplicity in describing

43 the model. Secondly, the experimental data are voxelated and so average over the various cell types
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5.1 Axonal connections by Familial Guidance 5 DISCUSSION

ae  (possibly derived from different lineage trees) that they contain. These two factors will mix and average
a5 the effects of the simple model. Nevertheless, if the lineage of mitoses is sufficiently coherent in time
a6 and brain space, then the statistical signature of the mitotic process remains detectable. The spatial
a7 patterns persist even when confounding mechanisms, such as symmetric cell division, de-synchronized
43 mitotic clocks, data voxelation, and multiple independent lineage trees are introduced to the simulation

439 (Figure 8) .

440 Gene expression is a central aspect of our Familial Address Space model. The gene expression of
a1 a cell is a 2000-element vector, which encodes the expression energies of the ~2000 genes used by the
a2 ABI atlas. Since the exact expression profile of the root cell is unknown, we assign to it a fixed pseudo-
w3 random number. The profiles of its progeny are obtained by successive applications of s, drawn also
as from a frozen generator. These frozen stochastic expression profiles and their transformations are merely
ws a convenient proxy for the unknown (deterministic) sequences of gene expression over consecutive cell
ws  division that occur in individual cells during development. The actual sequences of expression are not
a7 crucial to the model because it is the induction by mitosis and then the propagation of the statistical
ws  signal that is of interest here, rather than the absolute expressions of particular genes. We may also allow
o that the stochastic profiles be subject to cell-external or internal factors, provided that these influences
w0 are reproducibly regulated as part of the developmental process (and thus not due to environmental

1 noise external to the embryo).

52 Axonal connections by Familial Guidance

a3 There has been substantial progress in understanding how axonal growth cones respond to local guidance
¢ cues [5]. They are exquisitely sensitive to local gradients, able to detect gradients on the order of a
w5 few molecules across their span [41]. However, physical noise, ligand binding, and other signal detection
a6 considerations indicate that molecular gradients alone are insufficiently robust to explain axonal guidance,
»s7  particularly at longer spatial scales [17, 5]. Over these longer distances the algorithmic rather than the

s reactive aspects of guidance rather relevant.

450 Previous models have described network formation in terms of cellular agents containing a small, but
w0 explicit, program consisting of few developmental primitives [63, 64, 65, 4, 3]. These generative cellular
w1 programs include physical constraints on development to explain network formation [21]. Our work puts
42 such generative algorithms in a broader context, by showing how physical constraints induce an address
43 map essentially without any explicit program. The generation of the address map acts as an organizing
s principle that more specialized cellular programs might exploit. Here, we have shown that even a very

w5 generic axonal algorithm, Familial Guidance, is able to install a basic connectome.
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5.1 Axonal connections by Familial Guidance 5 DISCUSSION

466 The Familial Guidance Model is cast as a growth cone guidance algorithm. The algorithm depends
w7 on the embedding of the lineage tree in both expression space and brain space (Figure 4). The axon
s navigates by entering a control loop that first uses the inverted developmental program to revisit an
w0 ancestral expression state, and then configures the receptors in the growth cone to search for marks of
a0 that expression in the surrounding tissue. When the local optimum is reached, the axon transitions to
a1 another ancestral state and the process repeats, until another leaf is found. The growth cone’s choice
a2 (i.e. reconfiguration) points reflect transitions through the ancestral lineage tree: The growth cone knows
w3 how to reconfigure its receptors appropriately because it is able traverse (in expression space) the lineage

a4 tree.

a7 To find its target an axon must trace a route through physical brain space. Growth cones at the
a6 tips of axonal branches guide the extension of axons by receptors in their membranes. These receptors
a7 recognize morphogenic cues [50], and also membrane bound makers [28], and either promote or prevent
a8 the extension of the axon in the direction of increasing cue concentration or prevalence. The cones
a0 dynamically change the profile of receptors in their membrane so as to change the criteria for direction
w0 sensing at discrete way-points [45]. In our model, these growth cone receptor profiles correspond to
w1 expression signatures (‘marks’) of ancestral cells. That is, the receptors recognize these ‘marks’ in
w2 current cells that they have acquired by virtue of being the progeny of those ancestors. A guidepost cell
w3 would then be an early born cell, in which these marks are still strongly expressed. Figure 3 explains how
w4 expression covariance patterns are induced at cellular level as ¢ changes in ¢;, but that the global address
w5 space arise is observed over whole populations of cells as A. And in this paper we have emphasized the
a6 experimental observations of lineage address space composed of the ordered A. But, of course, to make
s7 use of this lineage address space for guidance, individual grow cones will have access only to the local ¢;,

48 and their resultant guidance cues secreted into the extracellular space or exposed on cellular surfaces.

489 The model asserts that the navigation sequence can be generated if the axon inverts its developmental
w0 program to anti-differentiate to precursor expression states, and thereby traces a route through the
w1 lineage tree. There is evidence that cells and also neurons are able to de-differentiate as a whole [14, 30,
w2 57]. However, we require only that de-differentiation occur on some subset of the genome relevant the
a3 familial marks. While there is as yet no systematic work on this question, there is nevertheless clear and
s growing evidence that growth-cones used elaborate local context-dependent mRNA processing during

w5 their guidance behavior [55, 25, 9].

196 Our guidance algorithm requires that axons perform a virtual traversal through the neuronal lineage
w7 tree to generate a physical route map. This conformity is possible only if (1) the tissue retains a persistent

w0 record of the lineage tree, so that expression signatures of ancestral cells can be recognized in their progeny

18


https://doi.org/10.1101/2022.02.26.482112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.26.482112; this version posted February 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

5.1 Axonal connections by Familial Guidance 5 DISCUSSION

w9 after the ancestors have vanished (through mitosis), and (2) routes through the lineage tree are indeed
so matched (at least in relevant cases) by continuous routes of adjacent progenies through the tissue. We
so found evidence for these two conditions in voxelated gene expression data. The forward projection of
s a hierarchy measured at an early embryonic age matches that measured at later age (Figure 6, S11)
s3  indicating that the gene expression of cells holds a persistent record of their ancestral gene expression
soe  profiles. And secondly, the voxels of the grand lineage tree estimated without regard for location, are
sos nevertheless grouped together in space at each tier of the hierarchy so forming adjacent and contiguous
ss regions (Figure 5, S13-S20), indicating that lineage paths may indeed form continuous trajectories in

s the tissue.

508 We tested the Familial Guidance algorithm in the original voxelated data. Because we do not have
so0  access to the true mouse lineage tree and its genetic states, we used the reconstructed lineage tree
sw  obtained by hierarchical decomposition of the voxelated data as an estimate the growth cone reconfig-
su  uration transitions. The growing axons were simulated using a spatial-state graph approach. These
sz simulations confirmed that axons do indeed grow to more specific and longer range targets than the
sz random walk model, and that an arbitrary collection of axons reproduce qualitatively the sparse and
siu - block structured connection matrix of the kind observed in experimentally observed connectomes. These
sis  typical connections conform to reasonable anatomical patterns, as can be appreciated by comparing the
sis  block-structured axonal connections with anatomical regions taken from the independent annotations
sz of the Allen Brain Institute (Figure 9f. Although this general agreement is in itself remarkable, the
si8 particular connectome is not yet a proper prediction of actual connectivity. Several issues will need to
s be resolved in order to improve the prediction. Obviously, the range and resolution of experimental data
s0 must be improved: the ABI data offers only subset of genes, and even these data degraded by averaging
s over voxels and brains. Furthermore, the address space was inferred from the set of all genes. However,
s» this set is only one of many possible sets of genes that support the true address space (Figure 7). It is
s23 likely that evolution has selected a particular set of genes to establish a particular address space that
s« supports well evolution’s preferred connectivity. Unfortunately, this particular set of genes is as yet un-
s known to us, although there are some strong candidates for inclusion [24]. Furthermore, the simulations
so  themselves are restricted. Guidance was only simulated at one time point, consequently the trajectories
so7 - are generated as if development were frozen in the P28 geometry and gene expression. Of course, other
s trajectories will be possible at different developmental times. And for reasons of computational resource,
s0  sampled axon sources were a randomly sampled subset of all voxels, so many trajectories are omitted:

s 1t would take prohibitively long to simulate all sources.

531 Overall though, the address space induced by mitosis, as well as the guidance process that it supports,

s» is consistent with reasonable axonal projection pattern. Full agreement between our simulations and
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5.1 Axonal connections by Familial Guidance 5 DISCUSSION

513 experimentally observed projections will depend on the agreement between our estimated differential
su  gene expression model, and the true differential gene expression generated by the actual gene regulation
s network of the mouse. These simulations also confirm at least a partial projection of the expression
s space onto brain space. This conformity is not self-evident, because the high dimensional expression
s space cannot be faithfully projected into the lower, three dimensional brain-space. Even in the best
ss  embedding, the pairwise distances between the embedded nodes in 3D Euclidean space cannot exactly
s match the pairwise path distances between nodes in the tree. The error can be made arbitrarily small in
ss0  the limit of many dimensions. This limit is not relevant for 3D physical space because its dimensionality
s is fixed; but for gene expression space it is relevant because the dimension can be increased by recruiting
s2  genes for the embedding. Fortunately, constraints on mitotic daughter migration will result in at least
si3 some regions of continuity in the lineage tree embedding. Thus, although not all traversals through the
s lineage tree will be matched by traceable paths in brain space, those traversals whose embedding in
ss  brains space provides for continuity of expression signals will be successful. This property is reflected
s in that our connectivity matrix is not fully connected or diagonally structured, but sparse and block-
s structured (Figure 9f). The manifold of traceable paths, and so connection probabilities, will no doubt
sis be influenced by the anatomical distortions imposed on the growing cell mass by factors such as relative

ss0  Mitotic rates, cell size, asynchronous axonal outgrowth, ventricular volumes etc.

550 Note that our algorithmic approach differs from more usual methods for the generation connections,
ssu such as a connection table of source destination pairs, or a graph generation rule (e.g. Erdés—Rényi)
s> that connects nodes according to a statistical model. For example, a common connectome generating
53 rule is that Euclidean distance between pairs of neurons be inversely proportional to their connection
s« probability. In this case, two nearby neurons are more likely to connect than distant neurons [13]. A
555 typical implementation of this rule would involve measuring the Euclidean distance between two neurons,
sss  and then deciding whether a connection exists between them by evaluating a probability distribution.
ss7 This method will establish suitable entries in a table, but does not explain how these connections should
s be grown in space. To satisfy the rule by a developmental algorithm the growth cones must perform a
ss0  random walk in space, governed by a fixed probability of extension; and connect to encountered neurons
soo - also with some fixed probability. This simple connection algorithm closely reproduces the empirically
ss1  observed axonal length distributions. However, because the behavior of these parameterized stochastic
s2 models depend on random data (rather than fixed data), they are also unable to explain the repeatability
s (across individuals) patterns of axonal trajectories and connectivity observed in biology. Repeatability
ssa  would require that the ‘random’ walk be decided by a frozen random number generator, so simulating a

55 deterministic guidance mechanism, whose data is that frozen random number.

566 A traversal of axons through the lineage tree explains the experimental finding that cortical excitatory
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5.2 Genetic encoding of Familial Guidance 5 DISCUSSION

s7  cells seem to preferentially target their clonal siblings [8, 27, 59], rather than simply nearby targets.

568 Our axonal growth simulations are only for pioneer axons. Many other axons may reach their remote
0 target through fasciculation with a pioneer axon than by pure pioneering themselves [47]. However,
s these follower axons could still use the same guidance mechanism as pioneers to make decisions for
sn (de-)fasciculation, so avoiding additional encoding as to when to fasciculate with which other axon. (If
s such a fasciculation specific route encoding were necessary, it would probably require on the same order
s of information as the naive wiring diagram, depending on how prominent fasciculation is.) An elegant
sz solution would be that each axonal segment maintains the expression state of the growth cone when it
ss created that segment. In this case the growth cone is seen as any other axonal segment, except that
st the growth cone is motile. In this way the axon segments become strong markers, expressing the signal
sz that other growth cones can follow. Their signals would be exceptionally strong because the growth cone
sis imparts to each segment the ground-truth ancestral signature obtained from source genetic information,
si9 - rather than the a noisy signature that has been projected through generations of progeny. This address
ss0  efficiency could explain the observation that the growth cone of a fasciculated axon is only a fraction of
se1  the size of a pioneering axon’s growth cone. Such an Ariadne mechanism would permit late growing axons
sz to traverse areas whose geometric continuity with the lineage tree existed earlier during development,

se3 but has since been disrupted.

ssa Genetic encoding of Familial Guidance

sss The genetic (and epigentic) information required for instantiating the physical neuronal network is largely
ss6  limited by the roughly 1GB information capacity of the original zygote. Evidently, the detailed physical
se7 network arise through a decompression of this information, resulting in the connections summarized
sss by the connection matrix. A naive encoding of this matrix for mouse brain connectome would require
ss9  roughly 10TB. However, viewing the connectome as a generic connection matrix considers too many
s possible configurations, and consequently overestimates the information necessary to specify the brain’s
s connectome among them. No doubt there are regularities in axonal construction that can express var-
s2 ious arborization types using simple codes [64, 22], and there are means to generate connectomes from
ss compressed codes that do not suffer from the constraints of the construction process [26]. However, the
s many disparate long range pathways of the brain would require more elaborate codes and co-ordinate
sos  systems. The Familial Guidance principle shows how the implicit, compressed, representation of the
s6  target connectome can be decompressed through the very construction of the neurons to be connected.
sov  Self-replication, with its inherent constraints, organizes the growing mass of cells in a family hierarchy
ss  whose parent-child relations manifest as spatial gradients of differential expression. These gradients act

s0  as a network of roads that axons explore to reach their targets. The directions for axons to establish a
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5.2 Genetic encoding of Familial Guidance 5 DISCUSSION

oo default wiring in this familial landscape are simple: grow and branch along every accessible road. The
sr final network and the landscape are hand in glove. In this view, growing the landscape is at least as
s2 relevant as axonal outgrowth. But fortunately the growth of the fundamental landscape follows very di-
o3 rectly from simple constraints mitosis, and so has low informational cost. In this view, the 1GB genome
s4 contains no compressed 10TB connectomic blueprint for the brain. Rather, the genome encodes the
o5 host cell, which is essentially a self-replicating physical machine [33] whose execution (or decompression)
oo generates the wired brain. Therefore, the size of the brain’s blueprint is not limited by the size of the
sr genome, just as the uncompressed size of the output of a computer program is not limited by the size of

es its source code.
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6 CONCLUSION

« Conclusion

s Our analysis of gene expression in embryonic and postnatal mouse brains reveals a hierarchy of spatial
e patterns of expression covariance that extend over the entire brain, and are stable over the available
sz data. This organization is present across the 1240 genes analyzed. However, they are also present in the
e13  expressions of random subsets of as few as 50 genes. The organization is consistent with a multi-scale
s1e  address space that could be exploited for cell migration or growth cone guidance. Our simulation studies
a5 confirm that this organization can be generated by persistent asymmetries of gene expression introduced
s16 by the successive mitoses of the lineage trees that give rise to the brain, provided that mitotic daughters

ei7  do not stray too far from one another after their birth.

618 Due to the generality of these mitotic constraints, it is likely that similar map-like structures exist
619 also in other tissues, and may provide a fundamental scaffold for cell migration and tissue organiza-
o0 tion. However, the Familial Address Map has particular relevance for neurons, whose many stereotyped

e connections cover distances up to the scale of the whole brain.

622 We conclude that the fundamental wiring of brain can be compactly encoded and expressed through
23 the mitotic lineage implied by the genetic code of its embryonic stem cells, because the arborizations of
2« axons are just the available search paths through lineage tree. So, paradoxically, (cell) division may be
s the key to uniting the neurons of the brain. The resolution of the paradox is that division in reverse is

e6 unification.

627 Future work must establish: which specific sub-set of genes is used for axon navigation; how the
w8 growth cone reverts its host’s differentiation and how receptors are generated to recognize an ancestral
o9 state; and how the address space, that is the geometry of the brain and spatial gene expression, are

s tuned to realize a specific observed connectivity.

631 Contrary to the prevailing reductive approaches to understanding the wiring of the brain, this paper
sz has taken a more global synthetic view. While much more effort will be required to confirm the var-
63 1lous implications of our approach, the theory and available data are remarkably consistent; and offer
64 the prospect that the connectome and its functioning can be more readily understood in terms of the
35 global mechanisms that generate it, rather than from interpretation of the final wiring diagram, just as

636 inspecting source code is more revealing of principles of operation than inspecting the compiled program.
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zygote proliferation & it connectome
<1GB differentiation axon navigation >10TB
contains all build an address space  exploits the address space
information that axons can navigate to build connectome

Figure 1: The connectome is the result of a constructive process that starts ultimately with the zygote,
and involves the two aspects of first generating a mass of cells with various types, and then routing
axons through this mass to their proper targets. An observer’s description of the resulting detailed mouse
connection matrix (right bottom) takes at least 10TB to encode. However, as development occurs largely
in isolation, all instructions to construct this connectome must fit into the 1GB of genetic material of the
zygote. This implies that neural progenitors have efficient methods for expanding the highly compressed
wiring instructions into axonal trajectories. To do this, they need to, as they proliferate and differentiate,
install a space of molecular addresses that axons can exploit for navigation.
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Figure 2: As progenitors divide they progressively differentiate their gene expression until they reach
their post-mitotic neuronal states at the leaves of the lineage tree (a: top left). Constraints on mitosis
(see text) embed the global neuronal lineage tree (a) into both gene expression (b) and physical space
(c), so that cells of related differentiation have similar expression profiles (similar colors) and are nearby
one another physically. Consequently, a trajectory from one leaf node to another through the lineage
tree (a: red arrow) often corresponds to an unbroken trajectory through both gene expression space
(b: red arrow) and physical brain space (c: red arrow). An axon navigates by inverting its source neuron’s
instance of the global genetic differentiation program (a: top right). This inversion generates a sequence
of expression profiles that correspond to ancestral states and so act as guidepost profiles. d The axonal
branch configures its growth cone to match the sensed expression to the internally generated expression,
and so moves to the direction that improves that match . When the match can no longer be improved by
moving, the axon updates the its internal state to the next ancestor, and repeats. If the match between
internal and external expression can be improved by moving into multiple different directions, or by
transitioning to multiple different states, the single axonal branch is split into two new branches that
continue to execute the same algorithm, but whose independent states may subsequently diverge. When
an axonal branch arrives at a leaf state, both in expression and physical space, navigation of that branch
is complete and local synapses are formed.
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6 CONCLUSION

Figure 3: a Cells are points positioned in high-dimensional expression space, where each axis represents
the expression of one gene. Here, this high-dimensional space is reduced to 2D dimensions for plotting
purposes, so that their 2D distance approximates their high-dimensional distance. In our division model,
the differential expression between a parent cell ¢; and its daughters co,c3 is a normally distributed
random vector representing the genetic state transition from parent to daughter, denoted o = co — ¢;.
(Here we use the division of the root progenitor 1 as a running example for any division.) The differential
expression between two siblings, which we call the parent’s asymmetry, is denoted Ay = ¢3 —co = d3 —do.
As a result, the correlation in gene expression between two cells reflects their distance through the lineage
tree. (See c for verification of this process by numerical simulation.) b The expression of a progenitor
can be estimated as the mean expression over its leaf progeny; and the asymmetry of a progenitor can
be measured as the main axis of variance across its progeny. The diagram shows only the leaves of
the lineage tree show in a—they have identical positions in embedded expression space. Each nested
contour encloses the progeny of a progenitor; lines within the countour indicate the main axis of variance
across the enclosed progeny; and dotted circles the average expression across the progeny. The sets
of progenies for individual progenitors can be obtained by iteratively splitting the progeny along their
main axis of variance, so with a decision boundary (black line with arrow) orthogonal to this axis. ¢
Numeric simulation of expression profiles induced by our division model, and subsequent reconstruction
of expression profiles and mitotic asymmetries from the leaves of the simulated tree. The root expression
¢y is drawn from a normal distribution with zero mean and unit variance. The expression profiles of
other cells are generated recursively by adding differential expression patterns d;, which are also normally
distributed. (All random number are drawn independently.) The determination (squared correlation) was
measured between between the true and reconstructed asymmetries (blue), and true and reconstructed
expressions (orange). d Progenies group naturally in brain space according to their ancestry. Shown is
a 2D simulation of growing tissue, started from a single root, only constrained to not detach from one
another and not pass through each other.
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Figure 4: Navigation of an axon (red branching arrow) through the familial address space. Throughout
the figure, similarity in color denotes similarity in gene expression profile. a The axon traverses the brain
by traversing a sequence of familial states of the lineage tree that is implicit in its genome. The growth
cone uses the sequence of familial states as successive search templates in brain space, and so navigates
from a source leaf node to a number of target leaves. Familial states (colored circles) correspond to
nodes of the encoded lineage tree. For purpose of explanation, the tree is hung from the leaf state
corresponding to the axon’s source neuron, rather than from its root node as in 3b. Terminal states of
leaf (existant) nodes have a solid circumference, while ancestral states in the interior of the tree have a
dotted circumference. Transitions between states occur downward, along the arrowed arcs, beginning at
the source leaf (red encircled) and ending at (some) other leaves. The original tree root can be recognized
as the only state having two edges, rather than three (since the root progenitor has no mitotic parent). b
Various decision scenarios that the axon encounters during traversal. Each familial state is characterized
by a profile of gene expression, whose distribution across all cells peaks at one or more locations in brain
space. The gradient of a state in the familial address space is the frequency of encountered cells that
test positively for a familial state. By selecting a particular familial template, the growth cone tunes
into the corresponding expression gradient and filters out the others. If the tuned gradient is in range,
the growth cone follows it to arrive at one of that gradient’s peaks (case indicated by [1]). If the tuned
gradient is not in range [3], the axonal branch of that growth cones fails. When the axon arrives at
a peak, its growth cone tunes to the next downstream familial state, and so on, until a leaf state is
found. If multiple downstream states are in range, the axon branches [2], with each branch tuned to one
of the possible downstream states. The axon also branches if the gradient is bifurcated by a valley, so
that the axon can follow an upward gradient in multiple directions [4]. Each branch pursues a different
direction, but in this case they are tipped with growth cones in the same state (unlike the branches in
scenario [2].) When a growth cone reaches a leaf state, guidance terminates [5]. ¢ Cells have composite
genetic identities, with one component (small inner circle) inherited from each ancestor state. The overall
state of a leaf cell is the aggregation of these components (3). A growth cone can test whether a cell
possesses a component by selecting the familial state template corresponding to that component, and
then matching the internally produced gene expression to that of the tested cell. d Various regions of
the brain correspond to branches of the mitotic lineage tree. Consequently, the regions are nested and
each marked by the component of the genetic identity code corresponding to the common progenitor of
the region.
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6 CONCLUSION

Figure 5: Hierarchical decomposition of covariance in gene expression space brain is mirrored
by a matching decomposition in brain space. Here the results are for postnatal (P) day 28. The
results from further time points can be found in the Supplementary figures. (a) Expression Hierarchical
decomposition on the collection of voxels in expression space, independent of source location in brain.
Decomposition is performed by measuring the first principal component of covariance; then sorting all
voxels into two bins, (competing bins indicated by dotted arrows) based on their individual projection
coefficients. This process is repeated recursively on each of the resulting bins, until a bin contains only
a single voxel remains (Figure shows only the first 3 generations of the resulting hierarchy). Physical
Space Same voxel bins and coloring, but voxels now positioned at their source locations in brain. Coronal
and horizontal sections are shown: the color of each pixel indicates the most common bin in the occluded
direction for that pixel. Horizontal section (labeled top) is drawn at a smaller scale. Multi-scale spatially
coherent covariance patterns are present. Two example branches of the hierarchy are indicated with
red and black curves. (b) Hierarchy of bins of the hierarchical decomposition. The bins are colored to
represent, the hierarchy: the parent bin has the average hue of the child bins. This coloring is applied
throughout the paper. (c) Although regions are nested by construction (hierarchical decomposition), we
quantified the extent to which the regions are also continuous by measuring their spatial spread (average
distance from the region centroid) as a function of their depth in the hierarchy. At the root of the
hierarchy the spatial spread covers the entire brain, and we expect that as the depth increases the spatial
spread (i.e. the mean distance from the region centroid to the constituent voxels) decreases. To make the
different time points and simulation comparable we present the spreads as a fraction of the root spread.
The solid line indicates the median spread over all regions at that depth, and the gray area the first
(below) and third (above) quartiles. As expected, the mean distance from the centroid decreases as the
regions become more resolved at with depth.
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Figure 6: The root asymmetry measured at P28 is projected to the other available embryonic and post-
natal developmental time points, and compared to the root asymmetry measured at the respective time
point. (a) First division of the hierarchy, but the direction of variance used to sort the bins is derived
from P28, rather than from the data of the time point itself (except Original P56). This temporally
projected pattern only has small differences with the patterns derived from the original data (compare
Original P56 to Projected P56). When the expression data is shuffled over voxels and genes, maintaining
pooled expression statistics but destroying covariance structure, all spatial patterning disappears. Images
are proportional to their actual brain sizes. (b) Quantification of the agreement between the original
and projected hierarchy, measured as the proportion of voxels in matching bins, at different levels in the
hierarchy. (Although the images in a are 2D, quantification is done on the 3D voxels.) The number of
possible bins grows exponentially with tree depth, and so chance level decreases inverse-proportionally
(dashed line), quantitatively verified by the shuffled case (yellow line). P28 projects onto itself, and
is hence in perfect agreement. The other time points show an agreement consistently above chance.
Consider that a mismatch at a shallow depth cannot be corrected at a deeper depth, and so mismatch
can only accumulate.

32


https://doi.org/10.1101/2022.02.26.482112
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2022.02.26.482112; this version posted February 27, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

6 CONCLUSION

® E11.5 Shuffled

>0.90 . 3.
[ ]
5 085 $o° o
@]
0.80 .
ét) oo o: .o: !
0.75 o 3
° [ ]
0.70 "~ Ghance
=00 020 mmmto e -t o Lmttn o/l Camo oum 000 m—(u—
0.65
1000 100 50 10 5
# Genes

Figure 7: Random sets of genes of various sizes from embryonic age E11.5 were selected, and the spatial
hierarchy they exhibit was compared to the hierarchy exhibited by the grand set of all genes at hierarchy.
To compare hierarchies all voxels are projected onto both hierarchies. For each matching choice the score
is incremented proportionally to the depth of the bin. As such, 1 indicates that the all voxels are sorted
into corresponding nodes of the hierarchies, and the dotted line indicates the score if all voxels were
sorted into hierarchical bins randomly (as in the shuffled case). The hierarchy established from a set of
20 random genes already agrees largely above chance with the original pattern.
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Figure 8: Hierarchical decomposition of expression data generated by simulation of the model (see text)
proposed to explain the results. Simulated ‘brain’ sphere composed of voxelated leaf cells was generated
by 300,000 mitoses distributed over 10 independent lineages. Cells express 500 genes. Asymmetrical
mitoses induce differential changes in gene expression. Each voxel contains 3 x 3 x 3 = 27 adjacent cells.
Similar to experimental results, the hierarchical decomposition of covariance in gene expression voxels
independent of location (left), is mirrored by matching decomposition in space (right).
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Figure 9: Simulated axons use familial guidance to navigate through the voxels of the ABI Developing
Mouse Brain gene expression atlas. a Arborizations of 50 example axons, show in a sagittal projection
of the ABI atlas. Each arbor is the collection of all branches that an axon could potentially navigate
using this gene expression space. Each axon is colored according to its source region. The colorings
correspond to those of Figure 5b. b Straight-line distance between the beginning of a branch (soma) and
end of that branch (top) versus the actual path length. Branches are points sorted in hexagonal 2D bins,
whose color intensity indicates the number of branches in that bin. ¢ Same as a but on a tissue grown in
simulation (as in Figure 8). d As b, but for the simulated tissue of c. e The dissimilarity between axons
beginning from the same voxel (measured as average minimum distance), under varying levels (10% or
30%) of expression noise. (Because the navigation algorithm is deterministic the 0% noise case produces
identical neurons.) The familial guidance dissimilarity is compared against a random walk axon of the
same path length. f Connectivity matrix corresponding to the connections made by the axons of a. The
connections conform to reasonable anatomical patterns. The anatomical regions marked on the matrix
are taken from the annotations of the Allen Brain Institute. They are not used for the analysis.
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A METHODS

« Methods

0 Experimental Data

so  The analyzed gene expression data were published by the ABI in their Developing Mouse Brain Atlas [51].
g0 The data are provided as 3D grids of isotropic voxels of various sizes. The expression energies of the
sz ~2000 genes were measured by n situ hybridization and take any non-negative value, while -1 indicates an
s3  invalid measurement in that voxel. ‘Expression energy’ is a combined measure of density and intensity.
sa  The voxel dimensions are 80 pm, 100 pm, 120 pm, 140 pm and 160 pm for developmental time points
s E11.5, E13.5, E15.5, E18.5, and P4, respectively, and at later time points, i.e. P14, P28 and P56, the
ss  voxel dimension remains constant at 200 pm [51]. Every voxel thus contains the cumulative expression

sr of many (probably thousands) cells.

808 The atlas data was retrieved through the API provided by ABI. The ABI expression grids were used as
s0 published, without performing any additional re-sampling or interpolation (see below for preprocessing).

s Thus, the voxel sizes were maintained as published by the ABI.

811 Only measurements from sagittal sections that were not labeled as failed images were used (omitting
a2 failed and coronal sections). When multiple successful experiments were available for a particular gene

sz at a particular time point, one of the experiments was selected arbitrarily.

814 From the 3D expression grids, only those voxels labeled (by the ABI) as part of the neural plate were
a5 selected. This includes all developmental derivatives of the neural plate, i.e. voxels of brain and spinal
sis  cord tissue, but omits those of ventricles and empty space. All individual voxels that have more than
sz 20% invalid measurements and all genes that have more than 20% invalid values across all remaining
as  voxels at every of the developmental time points (in that order) were removed from the analysis. In this
sie  way, the same set of 1240 genes was selected for each of the time points. The number of selected voxels
w0 are 7377, 12266, 11869, 11639, 21348, 24224, 28476, and 60129, for the time points E11.5, E13.5, E15.5,
a2 E18.5, P4, P14, P28, and P56, respectively.

822 To avoid the introduction of spatial confounds, the ABI recommendation to spatially interpolate
s23  remaining invalid expression values was not applied. Instead, missing values were replaced with the
s24  mean expression value of that gene over all voxels at that developmental time. Thus, when the data is

a5 later centered for analysis the invalid expression values become 0.

826 In order to make the gene expression energy levels roughly comparable across genes, the expression

sz values were normalized to unit variance and zero mean over the voxels at that developmental time.
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A.2 Hierarchical Decomposition A METHODS

ws Hierarchical Decomposition

s The voxels measured at one time point are sorted into the leaves of an estimated lineage tree through our
g0 hierarchical decomposition procedure. The procedure starts at the root of the tree, to which all voxels
sn  are initially assigned. FEach iteration of the procedure evaluates the voxels assigned to a node of the tree,
s and reassigns each voxel to one of the node’s two daughters. The procedure stops once every leaf node

a3 1s assigned exactly a single voxel.

834 An iteration considers the gene expression of the voxels assigned to a node. The collected expression
ss  can be expressed as a matrix X, where each row corresponds to a voxel and each column to a gene. The

s3s  voxels will be split over the daughter nodes along the axis of greatest variance.

837 The axis of greatest variance is the eigenvector corresponding to the greatest eigenvalue of the covari-
ss  ance matrix. The covariance matrix is computed by first centering the data by subtracting the empirical
s mean from each column Xj; = X;; — >, Xj;/n, where X;; is expression of the jth gene (column) in the

w0 ith voxel (row), and n is the total number of voxels (rows). The covariance matrix is then Q = X'7 X",

8a1 The main axis of covariance is the eigenvector Cov corresponding to the largest eigenvalue A such that
s Q) Cov = A Cov. The eigenvector Cov corresponds to the first principal component of gene expression

g3 covariance.

8a4 The coefficient w; per voxel i, obtained by projecting the original data onto the axis of greatest
ws covariance w = X’Cov corresponds to the agreement of the voxel’s expression content with the axis Cov.
ss  Based on these coefficient we sort the voxels into two subsets, namely one set (arbitrarily denoted L for
sr left) with L = {ilw; < 0}, and R = {i|w; > 0}. These voxels of these sets are assigned to the left and
ss  right daughter nodes, respectively. The decomposition procedure is then repeated recursively on these

a0 two daughter nodes.

850 If a node is assigned only a single voxel, the process terminates for that branch. The process as a

st whole terminates when all branches have terminated.

s2 Controls

sz Controls were performed to ensure that the observed spatial patterns are due to the spatial distribution
sa  Of experimental gene expression rather than being due to any inherent properties of the analyses. The
g5 null-hypothesis for the spatial patterning of expression covariance is that gene expression covariance is
sss  not spatially organized. In our control case, all gene expression values were permuted randomly across
ss7  voxels and genes. This ensures that the overall statistics of gene expression remained identical, while

s removing all spatial structure from the source data. When the analytic workflow was applied to this
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A.4  Simulation of Mitotic Model A METHODS

so  synthetic data we obtained the results. These results confirm that the development of the mouse brain
so 1S associated with a systematic spatial organization of measured gene expression covariances, and that

s this organization is consistent over the period E11.5 through P56 (see Figures 6,513-S20).

sz Simulation of Mitotic Model

g3 Our model of cell division was simulated numerically to confirm that constraints on gene regulation and
g4 mobility during cell division indeed induce a hierarchical gene expression address space. It also form one
ss  Of the two substrates—next to the gene expression data grids from the ABI—for our simulations of axon

s navigation.

867 The division model has three components: a model of gene regulation that determines the expression
ss  profiles of the mitotic daughters at mitosis; a mitotic clock that initiates mitosis at some interval, and
so  exits the cell cycle after some condition is met; and a rule for the placement of post-mitotic daughter
g0 cells in 3D space. In the minimal version of the model used here, a global clock initiates mitosis after
sn an interval drawn from a Poisson distribution from the birth of the cell, and the daughters are born

sz alongside one another along a randomly selected axis in the spatial simulation system described below.

873 A total of 200,000 mitoses distributed over 100 lineage trees, were simulated as follows. First, the
sra  topologies of 100 lineage trees were generated; next gene expressions were assigned to all cells; and
s finally the lineages were instantiated in model space. We chose this staged approach to the simulation
s for convenience of verification, and analysis. Simulations were written in the Python and C/C++, and

ez Tun on a laptop computer. Code and documentation will be available upon publication.

s A.4.1 Cellular Gene Expressions

so Each model cell has a profile of gene expression, consisting of 500 genes. This profile is expressed
so  mathematically as a vector of 500 values. For convenience, these values can be both positive and

g1 negative, which can be interpreted as positive or negative deviations from a base expression level.

882 Algorithm 1 describes the assignment of profiles in detail. In brief, the expression profile of each cell

3 is a random variant of its parent’s expression profile.

884 Although randomness is used to establish the expression profiles, the (frozen) random deviations are
ss  used as deterministic process with statistics that are indistinguishable from a random process. This is
sss analogous to fixing the seed of a random number generator: when the seed is fixed, the exact sequences

g7 of numbers is reproduced, but the statistics still seem random.

88 Of all cell divisions, 20% are symmetric (i.e. the gene expression of the daughter is equal to gene
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A.5 Simulation of Axons A METHODS

expression of the parent), and the others are asymmetric.

Algorithm 1: Gene expression

Data: Set C of cells organized in a lineage tree; Root cell » € C; Number of genes N = 500;
Gaussian random vector NV (n=0,0=1);
Draw X (r) ~ N'N;
F{rk
while |F| > 0 do
Choose arbitrary ¢ € F
if ¢ is not a leaf node then
for daughter d of ¢ do
if with probability 0.2 then
‘ Ax + 0;
else
L Draw Az ~ NN;

X(d) + X(c) + Ax;
F« FuU{d};

| P+ F— {c};
Result: Mapping of cell gene expression profiles X : C — RY

A.4.2 Mitotic clock

The mitotic clock mechanism generates the lineage trees by deciding when individual cells divide. It
is described in Algorithm 2. When a cell is born, it draws a cell cycle duration from an exponential
distribution (so that the process is Poisson). The division of that cell is then scheduled at the current
global time, plus the drawn duration. At each iteration, the global timer progresses to the cell that
divides next. The algorithm terminates when a fixed number of divisions is reached. Because the
cycle durations are randomly drawn, resulting trees of varying number of nodes and with a generally

unbalanced topology (i.e. branches have different sizes).

(The mitotic clock is thus independent of gene expression.)

To create multiple lineage trees, the algorithm is still performed only once, but starting not from one,
but from multiple root nodes. So, the total number of divisions is possibly divided unequally over the

lineage trees.

A.4.3 Cellular Locations

The cells of the lineage tree are positioned spatially by Algorithm 3, as illustrated in Figure 10. We
developed this algorithm because it is simpler and more tractable than a direct simulation of soft (or

solid) body physics.
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A.5 Simulation of Axons A METHODS

Algorithm 2: Mitotic clock
Data: Set ¢ € C with |C| = 100 cells; Number of divisions D = 200, 000; Mapping of division
times T : C — R™*;
T(c) « 0 forall c € C;
D« D—|C|;
while D > 0 do
Cmin < argmin, T'(c);
Create two daughters ¢; and ¢, of cuin;
C + (C = emin) U{c, e k5
Draw At, At’ ~ Poisson(A = 1);
T({c,cr}) + Tle) + {At, At'};
D« D-—1;

Result: Collection of lineage trees with time stamped divisions

I P @ Jdividing cell

/ random
.......... } division axis

:H: cells shift
..... along axis
""""" mitotic

..... - daughters

Figure 10: Illustration of cell placement. Although the illustration is 2D, the placement is the same for
3D. When a cell divides a random division axis is drawn uniformly from a unit circle (in 2D) or sphere
(in 3D). Then, the sequence of cells that intersect the division axis are shifted along the sequence to
create a free slot next to the dividing cell. The mitotic daughters take the original slot of the parent,
and the newly created free slot.

Algorithm 3: Tissue growth

Data: Unbounded 3D grid G with slots indexed by 14, j, k € Z; Collection of lineage tree root
cells ¢ € C; Mapping of division times T : C — R¥;
Select arbitrary cg € C;
Put co at GOQO 5
for ¢c € C — {co} in arbitrary order do
L Put ¢ in a free slot adjecent to a filled slot;

for c € C in order of ascending T(c) do
if ¢ is not a leaf node then
Cast a ray R from G(c) in a direction drawn from a sphere’s surface;
for filled slot G;j;1 intersecting R in reverse order do
L Move the cell in slot G;ji to the next slot along R;

¢, ¢ < daughters of ¢;
Put ¢; in the free slot adjacent to ¢ along R; Replace ¢ with ¢,;

Result: 3D Grid G of cells
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A.5 Simulation of Axons A METHODS

s  Simulation of Axons

ooz Our Familial Guidance model is simulated virtually, either on the voxel grid of measured expression, or

ws on a grid of simulated cells.

209 The axon begins in some chosen leaf voxel, and takes as its initial template the expression state of
oo its leaf voxel. Then, at each step, the growth cone senses the expression of the voxel it occupies, as
a1 well as expressions of the immediately adjacent voxels. The cone then moves into the adjacent voxel
o2 whose expression is most similar to its current template, so extending a new axonal segment between
a3 the traversed voxels. If multiple adjacent voxels contain a favorable expressions, then the growth cone
ae is cloned, and the axon branches into all of those favorable voxels. Additionally, a cone can change
as  (irreversibly) its present expression template to a that of an adjacent state up or down the ancestral
as  lineage tree. The growth cone then repeats its search for favorable translations, on the basis of this new
a7 template. Each cone is constrained not to re-visit voxels already occupied by the cell’s axonal arbor
as  (self-avoidance), and not to re-visit lineage states that it has already visited. The guidance process
a9 terminates when the growth cone can neither move to a more favorable adjacent voxel, nor change lineal

920 State.

o1 In executing this search algorithm, the initial cone and its clones extend axons along all the routes
e in brain-space that offer contiguity in brain-space of familial expression patterns encoded in the lineage

o tree (Figure 4).

o4 For our axonal simulations brain space is discretized: Each spatial position corresponds to a (measured
»s or simulated) voxel. Spatially adjacent voxels are connected by an edge. These nodes and edges form
ws a graph encoding the geometry of the brain. The 3D positions of the nodes are used to establish the

o7 spatial graph, but ignored thereafter.

028 The adjacency of nodes is established through a Gabriel tessellation, which is a subgraph of the
o0 Delaunay tessellation [15]. In a Gabriel tessellation a edge of the Delaunay tessellation is kept only if the
a0 sphere of which the edge is the diameter contains no other points. This criterion ensures the spatial graph
s is connected, but that there are no edges across large empty spaces, such as ventricles and contours. This
o2 is an improvement over the vanilla Delaunay tessellation, which always contains the convex hull of the

o3 points, and therefore connects, for example, the rostral tip of the olfactory bulb to the cortex.

o34 To navigate, axons follow signals on the spatial graph. A signal on a graph is a scalar value associated
o5 with each node, and the gradient of the signal is a value associated with an edge, that is the difference

a6 between the values of the nodes. The gradient depends on the direction the edge is traversed, and swaps
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A.5 Simulation of Axons A METHODS

o7 sign if the edge is traversed in the reverse direction.

038 The signal for a growth cone depends on the current state of the growth cone, and the expression of
o9 the nodes of the graph. The state of the growth cone is a profile of gene expression that corresponds to
wo & node in the lineage tree. The signal over the nodes of the spatial graph relative to a growth cone state

an is the correlation between the growth cone state’s expression profile, and each node’s expression.

0a2 For efficiency, the signal is only allowed to exist in the progeny of the ancestor whose state the growth
w3 cone has adopted. This constraint reduces the search space of the growth cone significantly, without

aa  significantly changing the routes taken by the growth cones.

oas The prominent action of the growth cone is to climb this signal by spatially moving across the graph,
ws each time moving in the direction of positive gradient. If the signal value cannot be improved through

w7 moving, the growth cone has reached a (local) optimum.

0ag In addition to moving, the growth cone can also change state. The state machine governing the
wo transitions the growth cone can take is (isomorphic to) the lineage tree, which is estimated through our
sso hierarchical decomposition. So, the growth cone can only transition to the parent state, or either of the

1 daughter states, of its current state.

052 To simulate this process, a spatial-state graph is constructed. The nodes of the spatial-state graph
3 are the Cartesian product of all spatial nodes, and all states. The nodes of this graph are connected if
esa either the nodes are spatially adjecent, and have identical states, or if the nodes are spatially identical

sss and have adjecent states in the lineage tree.

956 On the spatial-state graph there is only a single guidance signal, attributing to each node the corre-

o7 lation between the node state’s expression profile and node’s expression.

058 The navigation of an axon starting from a voxel is simulated by executing Dijkstra’s algorithm [10]
o from a source node in the spatial-state graph to all possible nodes containing leaf states, allowing only
wo movements along positive gradients. For graph implementations the igraph library with python bindings

o1 was used (https://igraph.org).

962 Axons were visualized using threejs (https://threejs.org)
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B SUPPLEMENTARY FIGURES

Figure S11: Hierarchical decomposition, as in Figure 5, but for all available time points. Only
depth 3—the lowest tile in Figure 5—is shown, but other depths can be inferred by grouping similar
colors. Decompositions were performed independently of one another (unlike Figure 6, where established
hierarchies are projected across time points). The spatial spread of hierarchical regions goes down with
hierarchy depth at each measured time point.
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Figure S12: Asymmetry profiles identifying regions of the hierarchical decomposition are poorly cor-
related within the hierarchy, but correlated across time points. Upper triangle Pairwise correlation
coeflicient between the estimated asymmetries Cov measured at the root of the hierarchies at various
time points. Altough the asymmetry measurement is done independently at each time point, the main
direction of covariance across all voxels is correlated. Generally, nearby time points are more correlated
than distant time points. This correlation is surprising a priori, because the absolute gene expression
changes from E11.5 to P56. Lower triangle Pairwise correlation coefficient between the estimated
asymmetries Cov at the root of a hierarchy and other asymmetries within the same hierarchy. (Each
column represents a time point, and each row a depth of the hierarchy, with the root at zero depth.) In
contrast to standard principal component analysis, orthogonality between components is not enforced
by our hierarchical decomposition. Nevertheless, we find that many pairs of components are poorly
correlated. This implies that the direction of strongest covariance is not along any single direction for all
subsets of voxels, but is rotated in high-dimensional expression space at each iteration of the decomposi-
tion. The model assumes that differential gene expression vectors d, and consequently the asymmetries
A are independent. This matches the observation in the experimental data that the successive Co_\;i are
poorly correlated in expression space. The poor correlation is not by construction, because unlike PCA
(Principal Component Analysis), orthogonality is not enforced by our decomposition.
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Figure S13: Hierarchical decomposition at E11.5. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S14: Hierarchical decomposition at E13.5. Analysis and depiction as in Figure 5. Bottom right

matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S15: Hierarchical decomposition at E15.5. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed

depths. (Similar to the bottom triangle in Figure S12.)
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Figure S16: Hierarchical decomposition at E18.5. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed

depths. (Similar to the bottom triangle in Figure S12.)
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Figure S17: Hierarchical decomposition at P4. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S18: Hierarchical decomposition at P14. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S19: Hierarchical decomposition at P28. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S20: Hierarchical decomposition at P56. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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