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Abstract1

During brain development, billions of axons must navigate over multiple spatial scales to reach2

specific neuronal targets, and so build the processing circuits that generate the intelligent behavior of3

animals. However, the limited information capacity of the zygotic genome puts a strong constraint on4

how, and which, axonal routes can be encoded. We propose and validate a mechanism of development5

that can provide an efficient encoding of this global wiring task. The key principle, confirmed through6

simulation, is that basic constraints on mitoses of neural stem cells—that mitotic daughters have7

similar gene expression to their parent and do not stray far from one another—induce a global8

hierarchical map of nested regions, each marked by the expression profile of its common progenitor9

population. Thus, a traversal of the lineal hierarchy generates a systematic sequence of expression10

profiles that traces a staged route, which growth cones can follow to their remote targets. We11

have analyzed gene expression data of developing and adult mouse brains published by the Allen12

Institute for Brain Science, and found them consistent with our simulations: gene expression indeed13

partitions the brain into a global spatial hierarchy of nested contiguous regions that is stable at14

least from embryonic day 11.5 to postnatal day 56. We use this experimental data to demonstrate15

that our axonal guidance algorithm is able to robustly extend arbors over long distances to specific16

targets, and that these connections result in a qualitatively plausible connectome. We conclude that,17

paradoxically, cell division may be the key to uniting the neurons of the brain.18

†Current address: Janelia Research Campus, Ashburn, VA, USA
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1 AUTHOR SUMMARY

Author Summary19

The embryological development of each brain installs an essentially identical communication network20

between its cells that is roughly as complex as that between the billions of people living on Earth.21

Although vast scientific resources are currently applied to identifying the final pattern of connections,22

the connectome, there has until now been relatively little effort to answer the fundamental question23

of how this complex network across billions of neurons realized through the mitotic elaboration of the24

initial embryonic cell. The problem is sharpened by the constraints that construction of the network is25

limited by the information budget of the initial genome, and that it has no pre-existing address space for26

placing neurons and guiding axons. We explain how Biology can solve this problem by using the family27

tree of neurons to install a global space of molecular addresses, which axons can use to navigate from28

their source neuron to its relatives. We provide experimental evidence for this familial address space29

in gene expression patterns of the developing mouse brain, and demonstrate through simulation that30

the experimentally observed address space indeed supports global navigation to produce a qualitatively31

plausible default connectome.32
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2 INTRODUCTION

Introduction33

A century of neuroanatomical studies attest that, while their detailed synaptic configurations may differ,34

the fundamental organization of neuronal types and their axonal projections are highly conserved within a35

species. Major resources of neuroscience are currently devoted to describing the species-specific patterns36

of connections, or connectomes, of brains [40, 52, 12, 49, 62, 35, 16, 44, 29]. These projects typically37

approach the connectome from a reductive point of view: Given a mature brain, extract the graph of38

its neural nodes and axonal edges. This paper approaches the connectome from an entirely different39

point of view: Given a few progenitor cells derived from the zygote, explain their elaboration into the40

stereotypically connected graph of the brain. We will call this approach Constructive Connectomics.41

There are two aspects to this construction problem: The generation, from a few precursors, of the42

vast number and various types of neuron that comprise the brain; and the process whereby these neurons43

then connect to one another. The process of generation is relatively well understood [42, 36, 43]. Un-44

differentiated progenitors who have inherited their genome from the zygote, undergo successive rounds45

of mitosis resulting in a exponentially large cell mass. At each division the mother cell gives rise to two46

daughters whose gene expression, and consequently whose phenotype, may differ from their mother and47

from one another. Overall, the branched sequence of mitoses can be represented as a lineage tree with48

undifferentiated progenitors at its root, and fully differentiated neurons at its leaves. Although some cell49

types do actively migrate, the cells of the growing mass generally maintain their location relative to one50

another. However, differentiated neuronal cells do give rise to excrescences tipped by growth cones, and51

these cones migrate away from their cell while drawing out an axon in their wake, actively searching for52

and then connecting to remote target neurons. Typically, the growth cone(s) will branch many times53

during this search, so generating a highly arborized axon that maps the source neuron through brain54

space to its many targets.55

In vertebrates the fundamental wiring of the brain is established before birth, and occurs in near56

informational isolation from the external world. Therefore, the information required for stereotypical57

axonal guidance must be contained in the brain’s precursor cells, and hence is limited by the roughly58

1GB information capacity of the original zygote∗. This amount is many orders of magnitude too small59

to explicitly encode sequences of receptor configurations for billions of neurons [64, 61, 26]. A naive60

encoding of this source-to-target connection matrix would require at least 10TB for a mouse brain,61

excluding the additional information required for detailed and staged axonal routing. The compression62

of the connectome into a 1GB genome implies that neuronal progenitors encode axon trajectories through63

∗The mouse genome has roughly 2.5 billion base pairs, each encoding 2 bits. At 8 bits per byte this constitutes 625
megabytes, which generously rounds to 1GB. The number for other vertebrates is similar.
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2 INTRODUCTION

brain space more efficiently than the naive approach. This raises the important question addressed here,64

of how neuronal progenitors encode and express the complex connections of the brain, and how this65

process is orchestrated through development (Figure 1).66

Growth cone guidance is crucial to the developing brain’s construction of its complex neuronal infor-67

mation processing circuits [6, 5, 50]. This claim is far from new: In his original description of axonal68

extension over a century ago, Cajal recognized that the cones are the agents of the neuronal circuit69

organization, and suggested that they are attracted to their targets by chemotaxis [7]. Later, Sperry70

elaborated that idea in his Chemoaffinity Hypothesis, whereby axons have differential markers; target71

cells have matching markers; markers are the result of cellular differentiation; and axons are actively72

directed by these markers to establish their specific connections [31, 48]. These tenets are now widely73

accepted, and there is by now broad experimental evidence that growth cones navigate by following gra-74

dients of molecular cues in their surrounding tissue [17, 5]. At decision points along their route, growth75

cones change their receptors to tune into a different molecular signal, and so change direction [32]. Long-76

range projections are achieved by growth cones passing through long sequences of growth cone receptor77

configurations [50].78

Although these local molecular guidance mechanisms are relatively well understood, the global ques-79

tions of just how these sequences and cues are encoded and deployed in both the navigating axons and80

navigated tissue (i.e., Sperry’s claim that they are installed by cellular differentiation) have been largely81

neglected. Our work addresses these issues and offers a principled account of how the connectome can82

be constructed within the zygote’s information budget.83

Our working hypothesis is that the mitotic lineage tree induces a global hierarchical map over the84

developing brain. This map consists of nested regions of brain, each consisting of the progeny of a small85

definite population of progenitors whose profile of expression over multiple genes is maintained in the86

average expression profile of their collected progeny.87

We propose that by successive differentiative mitoses of development, cells implicitly obtain unique88

gene expression addresses that encode their respective mitotic lineages (Figure 2). Then, by inverting89

the developmental program of their differentiation to revisit ancestral expression states, axons could90

effectively traverse the global family lineage tree by re-generating specific sequences of growth cone91

receptor configurations—each configuration seeking a region’s ancestral expression profile—that lead to92

long-range targets, which are in effect their mitotic cousins. That is, the sequence of intermediate targets93

between two neurons is implicit in their relative expression addresses, and requires no additional genetic94

encoding.95
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2 INTRODUCTION

This guidance scheme requires that the lineage tree have a dual embedding in both expression and96

physical space (Figure 2). Through simulation, we show that this requirement is satisfied under rather97

simple conditions: That the mitotic daughters have gene expression similar to their parent; and, that98

the daughters do not usually migrate far from one another.99

We find clear experimental evidence for our hypothesis in the in situ gene expression atlas published100

by the Allen Institute for Brain Science (ABI) [51], which provides voxelated spatial expression data of101

⇠2000 developmentally relevant genes throughout the brain, extending from embryonic (E) day 11.5 to102

postnatal (P) day 56. Our analysis of their data reveals that the expression covariance of sets of randomly103

selected genes pattern the developing mouse brain on multiple spatial scales. These hierarchical patterns104

of expression involve the entire brain and spinal cord, transcend neuroanatomical boundaries, and are105

consistent over the available data. Furthermore, detailed simulations of our proposed guidance process106

on the ABI gene expression data confirm that axons can use it to robustly navigate over long distances107

to specific targets, as shown schematically in Figure 2.108

We begin by describing in detail our overall concept, which provides the rationale for our analyses109

of experimental data, and for our simulations, presented in Results and Discussion. We conclude that110

the fundamental wiring of brain can be compactly encoded and expressed through the mitotic lineage111

implied by the genetic code of its embryonic stem cells. Thus, the connectome and its functioning can be112

more readily understood in terms of the global mechanisms that generate it (constructive connectomics),113

rather than from interpretation of the final wiring diagram (reductive connectomics), just as inspecting114

source code is more revealing of principles of operation than inspecting the compiled program.115
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3 RATIONALE

Rationale116

The brain is an organized aggregation of billions of cells that are generated by many successive mitotic117

divisions of relatively few stem cells. Each of these stem cells is the root of a mitotic lineage tree that118

describes the branched sequence of mitoses beginning in that root and terminating in a population of119

post-mitotic leaf cells. Tracing these lineage trees experimentally, and understanding the relationship120

between the underlying cell states and their transitions during mitosis is a field of active research [23,121

54, 53]. However, instead of pursuing the biological detail of these lineages, we explore an overarching122

statistical question: Could the sequence of mitoses impose an implicit order on the expression patterns123

of the leaf cells? And conversely, can the statistics of gene expression across a population of leaf cells124

offer an estimate of their shared lineage tree? The following section and Figure 3 offers an argument125

that both these properties are true, and lay a foundation for interpreting the experimental results and126

explanatory simulations that will follow in Results.127

Familial Address Space Model128

First we consider how and why the statistics of differential gene expression between mitotic siblings should129

be detectable across the brain as a map-like spatial hierarchy of gene expression covariance (Figure 3).130

Our model for the gene expression around cell division is as follows. The life of each cell i starts131

as it is born from its mitotic mother, ends when it divides into its two mitotic daughters, and has an132

expression profile ci over all genes and averaged over its lifetime. The lineage tree is rooted in progenitor133

cell 1, whose expression profile is c1. On mitosis, this parent cell splits into two daughter cells, 2 and134

3, whose expression profiles become c2 = c1 + �2, and c3 = c1 + �3 respectively. Just so, the expression135

profile of every cell i in the lineage tree can be understood as the expression profile of its parent, plus136

a (positively or negatively signed) differential profile �i that summarizes the complex dynamics of gene137

regulation. The injection of these changes through mitosis is recursive, so that the gene expression of138

every cell is the accumulation of all its ancestral profiles, e.g., c4 = c2 + �4 = (c1 + �2) + �4.139

Consider now the implications of these �’s for the measurement of covariance in gene expression across140

populations of cells. The mitosis of progenitor 1 induces an expression asymmetry �1 = c2�c3 = �2��3141

between its daughters. This asymmetry propagates down the daughter’s two branches of the lineage, and142

is preserved across the two progenies as a quantity denoted as �̂i. In other words, the parental mitosis143

injects a characteristic asymmetry that persists through development into the leaf cells (Figure 3a),144

and this signature could be detectable by an observer (Figure 3b). Every mitosis introduces such an145

asymmetry, so that the overall population of leaf cells, collectively, carry statistical evidence of the146

overall shape of the lineage. How can an observer extract this information? We argue (and demonstrate147
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3.1 Familial Address Space Model 3 RATIONALE

by simulations below) that lineage can be recovered by hierarchical decomposition of gene expression148

covariance.149

Figure 3b sketches the method. Consider first the asymmetry �1 induced by c1. This asymmetry150

propagates down the lineage tree resulting in a trace �̂1 across all the leaf cells. We may estimate �̂1151

by measuring the direction of greatest variance of gene expression, denoted C!ov over the leaf offspring152

of 1. And, in general we expect that C!ovi, measured over the leaf cells of i, will be correlated with the153

original asymmetry �i induced by mitosis of ci. The decomposition begins by measuring C!ov1 (across154

green cells). Then split these cells along C!ov into two the daughter populations (red and blue); repeat155

C!ov for each of these; and so on recursively. This hierarchical decomposition provides an estimate of the156

lineage tree.157

The precise changes in gene expression � are, in general, unknown. But fortunately, detailed knowledge158

about the �’s is not relevant for present purposes, only their general statistics. Figure 3c shows that159

�̂i and �i are strongly correlated when (but not necessarily only when) the �’s are independently and160

normally distributed.161

Our Address Space Model asserts two principles. The first is that the profile of gene expression over162

multiple genes between a parent and daughter does not change on average. Although mitotic division163

may induce different gene expression profiles in the two daughters, both up- and down-regulation of164

any single gene are a priori equally likely. Thus, the expression profile over all genes averaged over165

both mitotic daughters will resemble the expression profile of the parent. This property (illustrated in166

Figure 3 a,b) is maintained recursively over successive cell divisions, such that the average expression167

over a given ancestor’s progeny resembles its own expression. It is this property that permits hierarchical168

decomposition: If we are able to select the progeny of a single progenitor while excluding cells from other169

branches of the lineage tree, then we could measure the asymmetry �̂ induced by the division of that170

progenitor by measuring C!ov over the leaf progeny (see Figure 3b).171

The second principle is that, also on average, the daughters of a mitosis do not stray too far from172

one another in 3D physical space. In this case, we expect that the mitotic lineage will be systematically173

organized across brain space, as seen in the clustering of each daughter’s progeny in Figure 3d. Therefore,174

mitotic asymmetries in gene expression (Figure 3a) are similarly organized in brain space (Figure 3c)175

and so encode a potential lineage address space. This associates a contiguous region in brain space with176

an ancestor in the lineage tree (larger regions correspond to earlier ancestors), and a trajectory through177

the lineage tree with a trajectory through brain space.178
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3.2 Familial Guidance Model 3 RATIONALE

Familial Guidance Model179

First we describe our generic model (Figure 4) for the extension of a single axon arising from a source180

neuron in a cellular mass. Then, in Results we will report the application of this generic model to the181

voxelated case of the ABI data.182

The progeny of a given ancestor contain (on average) that ancestor’s gene expression signature. More-183

over, the expression profiles of cells are related (Figure 4, color gradients) by their ancestral sub-tree184

structure. Therefore, a particular axonal route through space from one cell to another is determined185

by the growth cone’s search over the successive expression signatures of the route through its ancestral186

lineage tree, which connects those two leaf cells (e.g., red path in Figure 4). Since the ancestral signa-187

tures are projected onto the leaf cells, the growth cone can navigate towards its target by maximizing188

the incidence of the successive signatures.189

An axonal growth cone is instantiated by its source neuron. This growth cone extends its axon by190

moving in a direction that increases the match of its locally sensed expression with respect to search191

template. The cone selects as a search template the expression state of a node of the lineage tree. As192

explained above, these nodes represent ancestral expression patterns whose signatures can still be found193

in the current generation of leaf cells. Therefore the selection of a node as a template implies a search194

amongst local cells for that familial signature. The gradient of signature state in the familial address195

space is the frequency of encountered cells that test positively for that signature.196

The lineage tree is implicitly encoded in every cell’s gene regulatory network, and the growth ac-197

cesses templates by manipulating that network. Axonal growth and arborization results from successive198

optimization through growth cone movement, and replacement of the search template through genetic199

regulation in the axon, according to the following simple rules. The growth cone takes as its initial search200

template the leaf state of its source neuron. At each subsequent step of the search process the growth201

cone senses its external environment, and moves in a direction that satisfies its internal search template202

better than its current position. If there are other distinct directions that also increase satisfaction, then203

the growth cone divides and different axonal branches pursue each of those directions.204

All branches of the same neuron are constrained by self-avoidance. In this sense, the paths in brain-205

space of a growing branch are irreversible, and their paths subject to race conditions. Additionally, before206

each step, the cone may replace its current search template with the expression state of any adjacent node207

in the lineage tree, so that the search will now be for a different, but closely related, familial template.208

However, such steps along the lineage tree are irreversible; and so this growth cone and its downstream209

branches will explore only those paths in brain-space and expression space that are coded in sub-tree210
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3.2 Familial Guidance Model 3 RATIONALE

sequences of expression templates. Growth cones terminate (or become dormant) when they can neither211

improve their template match, nor replace their template. The growth cone does distinguish between no212

gradient due to failure, and no gradient due to successfully reaching a peak. The cone will transition to213

the next possible state in both cases. If the cone continues to make progress with its search templates, it214

will ultimately reach a leaf state. If however, the local signals do not offer suitable gradients the growth215

cone will fail after exhausting its options.216

In executing this search algorithm, the initial cone and its clones extend axons along all the routes217

in brain-space that offer contiguity in brain-space of familial expression patterns encoded in the lineage218

tree, and as a result create a particular repeatable axonal arborization from source to target leaf nodes.219
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4 RESULTS

Results220

We sought evidence of expression address maps by performing our hierarchical decomposition of covari-221

ances on experimentally measured gene expression data. We used the gene expression data published by222

the ABI in their Developing Mouse Brain Atlas [51]. Their data are provided as 3D grids of isotropic223

voxels. The expression energies of the ⇠2000 genes were measured by in-situ hybridization and take any224

non-negative value (see Methods).225

Our prediction, leaning on the principles outlined above, was that the measured covariances should226

reveal a dual set of systematic patterns: a hierarchical ordering in expression space, and a nesting of227

region in brain space. Here, ‘expression space’ denotes the abstract multidimensional space in which228

the gene expression profile of a cell can be represented by a point; and ‘brain space’ or ‘space’ denotes229

physical 3D space. We will use ‘profile’ for a fixed relative expression of all genes within a cell or voxel,230

‘pattern’ to denote an evident spatial regularity in gene expression, and ‘organization’ to denote the231

systematic order underlying these patterns.232

Global spatial expression hierarchy233

We performed our hierarchical decomposition (described in the Concept and Methods sections) on the234

experimentally measured spatial gene expression, and consider to what extent that hierarchy could235

constitute an estimate of the mitotic lineage tree. Figure 5 shows the results for P28. Other time points236

from E11.5–P56 are shown in Figures S13–S20.237

The hierarchical decomposition is based exclusively on the gene expression covariance measured across238

unordered sets of voxels: The physical locations of voxels within the brain were not taken into account.239

However, when the voxels are now considered in their correct physical locations, we observe that the sets240

selected during the unordered hierarchical decomposition form nested and spatially continuous regions241

spanning brain space. Thus, the hierarchy of nested voxel sets found by our analysis in expression space242

parallels a hierarchy of spatially continuous regions in brain space, which is not entailed by the analysis.243

To confirm that these patterns are due to intrinsic spatial organization of gene expression rather than244

being induced by the analysis, we performed the same decomposition on voxels with randomly shuffled245

gene expression values (see Methods). After shuffling, all spatial structure vanishes (Figures S13–S20).246

We quantified the degree to which the hierarchy of asymmetries derived from gene expression projects247

into physical brain space by measuring the spatial spread of the voxel set. If the nested voxel sets248

form continuous regions in space beyond the first few generations, then the spread of their constituents249

should decrease over successive generations as the sub-populations become more resolved (and therefore250
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4.2 Hierarchy exists in small gene sets 4 RESULTS

smaller). Otherwise, if the constituent voxels are scattered across space, their spread would remain251

roughly constant. We find that indeed the spread consistently reduces with generation (Figure 5c).252

In addition to spanning brain space, the patterns are consistent over time from E11.5 to P56. The253

temporal consistency cannot be measured directly, because there is no clear map between individual254

voxels of subsequent time points. To side-step this problem we instead project the voxels of one time255

point onto the hierarchy measured at another time point. In Figure 6 the voxels of all available time256

points are projected onto the hierarchy measured at P28.257

To quantify the temporal consistency of the spatial patterns we measure how many voxels are sorted258

into the same hierarchical bin when projected into the hierarchy measured at the original time point259

versus the hierarchy measured at P28. We find that the spatial patterns at the various time points agree260

significantly above chance (Figure 6b).261

We also measure the correlation between the axes of covariance C!ov among the same hierarchical262

node at different time points, and among different hierarchical nodes at the same time point. We find263

that the axes of the same node across time correlate more than the axes of various nodes within a single264

time point (Figure S12).265

Hierarchy exists in small gene sets266

As we have selected genes without bias, the spatio-temporal patterning may be a general property of267

gene expression, rather than the specific property of a particular set of specialized genes. We explored268

this possibility by randomly selecting sets of genes of various sizes, and then measuring how well the269

spatial patterns were maintained.270

From the spatial gene expression data we found that small sets (⇠50) of genes selected randomly from271

the database can already achieve an accuracy (ratio of voxels sorted in the same hierarchical bin) with272

the signal over all genes (Figure 7). So, the lineage identity of a cell may be encoded in the profile of273

any small set of genes.274

Simulated mitosis induces spatial hierarchy275

We verified that our division model is able to explain the above results by simulating the mitotic devel-276

opment of a cell mass from a small pool of precursors (see Methods for a more detailed description of277

the simulation).278

The simulation embodies the constraints of the model. The basic element of the simulation is a space-279

occupying (not a point) cell that expresses a profile of genes. When a cell divides, the expression profiles280
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4.4 Simulated axons traverse the brain 4 RESULTS

of its two daughters are normally distributed variants of the expression of their mother. The cells are281

additionaly positioned in a spatial 3D grid. When a cell divides it pushes a nearby cells in a random282

direction to make space to place the mitotic daughters adjacent to one another (see Methods). In this283

way, we are able to efficiently simulate the growth of a volume of cells, analogous to the embryonic brain.284

A particular lineage tree of cells is generated by recursive application of this division rule.285

The simulation results in a mass of 500,000 cells, each expressing 500 genes, and distributed over286

100 independent lineages. This mass was divided into 21140 voxels of 3x3x3 cells (excepting voxels287

on the outer surface, which may contain fewer cells), to emulate the voxelation of the ABI data. We288

then applied the same hierarchical decomposition as was applied to the experimental data, yielding289

qualitatively similar results (Figure 8). This simulation indicates that the spatial and genetic constraints290

of the model are sufficient to explain the spatial patterns that we observed in the developing mouse291

brain.292

Simulated axons traverse the brain293

We simulate the process of axonal growth to demonstrate that they can use the Familial Guidance Model294

described in the Concept to navigate through the voxels of the ABI gene expression atlas (Figure 9). The295

Guidance Model in the Rationale was described in terms of individual cells and a given lineage tree. In296

applying that model to the experimentally observed ABI data, we have to consider that the expression297

data is voxelated, with each voxel containing many cells; the lineage tree is only estimated, as described298

in the previous section; and we cannot yet predict which exact set of genes participates in the address299

space. So, we need to test whether robust long range guidance is possible at all using our proposed300

mechanism, rather than predict specific projections.301

The growing axons were simulated using a spatial-state graph approach. In this approach, the axon302

traverses a graph where each nodes represents the growth cone at a spatial location (i.e. a voxel) with a303

specific receptor configuration. Two nodes are connected by an edge if they are spatially adjacent and304

represent the same receptor configuration—this represents a move of the growth cone in space; or if they305

represent the same spatial location, and the receptor configurations are adjacent in the lineage tree—this306

represents a transition of the growth cone in state.307

The axon can only traverse an edge to an adjacent node if the gene expression in that node is a better308

fit to its receptors than the current node (i.e. if the currently held ancestral state is more correlated to309

the adjacent node). This ‘biological’ algorithm resembles Dijkstra’s algorithm for finding the shortest310

route between two nodes of a graph [10].311

Simulated axons were found to be able to extend up to about 10µm source-tip distance, with axonal312
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4.4 Simulated axons traverse the brain 4 RESULTS

lengths of up to 16µm (Figure 9b). The axon length is longer than the source-tip covered distance313

because the axons do not move in a straight line. Nevertheless, the relation between path and straight314

distance is close to linear for many axons, particularly those of shorter ranges.315

The axonal guidance is robust against signal noise. We demonstrated this by adding noise to the316

gene expression after the lineage tree was reconstructed, but before the axons began guidance, effectively317

reducing the signal to noise ratio. The added noise does not significantly change the trajectories of318

the axons (Figure 9e). However, when gene expression is shuffled completely, either before or after319

reconstructing the lineage tree, axons fail to navigate beyond 1 or 2 voxels (not shown).320

Similar axon length distributions are found from the fully simulated tissue (Figure 9d). This result321

further supports the hypothesis that simple constraints on mitosis can induce the address space.322

The control case for axonal arborization is a random walk axon of identical total length, whose growth323

cones are still self-avoiding, but able to move in random directions at every step. We find that the random324

walk axons have much lower specificity, robustness, and spatial reach, than the navigating axons (See325

Figure 9e). Note that for the navigation algorithm the total length of the axon is an implicit result, rather326

than a set parameter. Thus, the random walk axon already over-informed compared to the navigating327

axons.328

We generated a typical connectivity matrix by simulating 500 axons rooted in voxels sampled uni-329

formly from the available data, (Figure 9f). The matrix is sparse and block structured, with many330

off-diagonal components (rather than narrow diagonal band), indicating a specific, regionalized, con-331

nection pattern. Remarkably, these typical connections conform to reasonable anatomical patterns, as332

can be appreciated by comparing the block-structured axonal connections with anatomical regions taken333

from the independent annotations of the Allen Brain Institute (Figure 9f. We emphasize that these334

anatomical annotations are not used at any point during simulation or analysis.335
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5 DISCUSSION

Discussion336

The literature describing the progressive organization of vertebrate brains over embryonic and evolution-337

ary time [42, 2] has emphasized local organizational processes and their dependence on a local landscape338

of molecular signals [37, 1]. However, that focus neglects the more global question of how the guidance339

landscapes are themselves established. Long-range migration of neurons, extension of their axons, and340

the formation of their many synaptic connections require a global orchestration of guidance cues [17, 50]341

at various spatial scales.342

In this paper we have explored the hypothesis that the mitotic lineage tree, which is implied by the343

cellular gene regulatory network (GRN), is key to understanding the necessary global orchestration of344

molecular cues. The lineage tree induces a global guidance address space over the embryonic brain that345

is encoded in profiles of expression of multiple genes. Some part of the expression pattern of each cell346

includes the precursor signatures that encode its ancestral path down the lineage tree. The expression347

signatures of early ancestors are broadly spread across the present progeny, whereas the distribution of348

signatures of recent progenitors is more restricted. These systematic differences in location and scale of349

distribution of ancestral expression patterns supports the address space. Because the address reflects350

family lineage, we call it a Familial Address Space (Figure 3).351

We further propose that the address space is navigable by axonal growth cones, which are able to grow352

to specific target addresses by matching local gene expression patterns to those of successive nodes of a353

lineage tree traversal. We call this process Familial Guidance (Figure 4). In other words, the expression354

of the brain, and the growth cone’s ability to exploit it, are dual consequences of the brains developmen-355

tal process which both creates the Familial Address Space as a consequence of cellular differentiation,356

and then exploits that differentiation for active cellular organization including the formation of axonal357

connections.358

Molecular labels were proposed by Sperry to explain how retinal axons select their targets in the359

tectum [31, 48]. However, it has been unclear in how unique, dynamic, and matching labels could be360

simultaneously presented by the tectum and recognized by axons from the retina [56]. Particularly, in361

these and other explanations of circuit formation [11, 46] it is unclear how the reproducible connectivity362

can be encoded within the genetic budget. Our proposed mechanism resolves this issue by showing363

that the lineage tree can efficiently install unique labels in target tissue, and that navigating axons can364

recognize them due to their shared origin in the cellular GRN. It also extends the scope of comprehensive365

molecular labels from the retino-tectal projection to the brain at large.366

We searched for evidence of such an address space in the ABI mouse brain atlases, because they367
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5 DISCUSSION

provide voxelated (rather than tied to pre-conceived anatomical regions) spatial expression data of de-368

velopmentally relevant genes throughout brain development. Previous analyses of these and related369

atlases have been largely concerned with identifying profiles of co-expression that support anatomical370

organization [37, 39, 38, 34, 51]; and also whether these regional profiles can be explained in terms of the371

known expression of specific cell types [18, 58, 60]. Although there are also systematic transcriptional372

similarities across cortical areas [34, 19], no global map-like organization has been reported as yet.373

Our results now indicate that systematic spatial patterns of gene expression covariance do exist and are374

widespread in the embryonic and postnatal brain. These patterns involve non-specific groups of genes,375

occur on multiple spatial scales across the entire brain and spinal cord, transcend neuroanatomical376

boundaries, and are consistent at least from E11.5 to P56. Interestingly, we found that the primary377

axis of variance corresponds spatially to the dorso-ventral axis of the embryonic brain, rather than the378

antero-posterior axis that is expected on the naive assumption of greater variance along a longer axis.379

This suggests that the patterns do not simply reflect the geometry of the developing embryo, but are380

related to controlled regionalization in embryogenesis itself.381

We explored the embryological origin of these patterns by analyzing the statistical structure of the382

expression covariance [20], rather than the relationship between expression and anatomy [34] or to pheno-383

typic expression of cells [18]. The essence of this structure is that the differential gene expression between384

arbitrary sibling branches of a lineage tree (the asymmetry) in expression space has a dual expression385

as covariance across the region of brain space occupied by the leaf nodes of those sibling branches, as386

proposed in the Rationale section. Indeed, simulations of the Familial Address Space model showed good387

qualitative agreement with the experimental data (Figure 8). They confirm that the differential gene388

expression profiles induced by early divisions can be reconstructed from the gene expressions observed389

in the leaf cells of the lineage tree.390

The covariance patterns indicate only that common gradients of expression exist across sets of genes,391

and seem to be hierarchically organized. Our results do not of themselves indicate which genes contribute392

most strongly to the patterns, nor which, if any, are actually utilized for addressing. It remains to be393

tested whether the spatial organization observed in the current data is restricted only to the ⇠2000 genes394

that the ABI chose for assaying [51], and consequently to the subset of ⇠1, 240 that we have analyzed.395

However, both the experimental data and our simulations indicate that the organization does not arise396

from the expressions of a specific set of genes dedicated to encode spatial structure, but rather can be397

found in the expressions of any sufficiently large (> ⇠50) set of genes. Thus, the spatial hierarchy in398

gene expression depends primarily on the statistics of the induced changes, while the specifics of gene399

function are less relevant to their generation.400
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The range of spatial scales (Figure 5), temporal stability (Figure S11), and near orthogonality (Fig-401

ure S12) of the covariance nesting is suggestive of an address space. This putative address space has an402

interesting property: Because the nested regions are a projection of the lineage tree onto 3D brain space,403

regions composed of cells that are closely related in their respective lineage trees are also close in space.404

Thus, the address map is a systematic arrangement of cells in terms of their ancestral gene-expression,405

and so provides an implicit encoding of cell lineages that could be used as a relative localization mecha-406

nism that can guide tissue organization. For example, migrating cells or individual axonal growth cones407

could steer to their target locations by tracing a sequence of address patterns. These patterns need not408

have evolved with the intention to guide growth cones: It is sufficient that a growth cone recognize the409

pattern and exploit it as a directional cue. Growth cones might recognize these patterns, because they410

are not only the product of the global developmental program, but themselves contain that full program411

in the genetic code of their source cell. Thus, we may expect migrating cells and cellular excrescences412

such as axons to have methods of decoding that and relate to mechanisms by which the expression413

patterns are themselves induced.414

While constructing the address space, the mitotic tree is rooted in the stem state of its gene regulatory415

machinery. However, if the leaf cells root their regulation in their own current states, then their potential416

exploration paths are traversals of regulatory paths to destination states, as seen from their origin state.417

Thus, the exploration paths of the growth cone can be seen as the lineage tree hung from a leaf (with some418

pruning). So, growth cone routes are anti-differentiating up the tree to some ancestral node, followed by419

re-differentiating toward the leaf states accessible from that ancestral node.420

An appealing aspect of this lineage-induced address is that it greatly simplifies the evolution of complex421

spatial organization of cells. The systematic spatial labeling of cells is given as a direct consequence of422

mitotic specialization and cell proximity. Evolution needed only to discover how to exploit this labeling423

for organizational migration of cells and their components (e.g. growth cones). It could opportunistically424

select a set of gene products for axonal growth cone guidance, because most gene sets will encode a425

similar spatial pattern. This generality of the address space could also help to explain the wide range of426

guidance cues that have been documented [50, 28, 45]. The selection of a subset of cell surface markers,427

or diffusible markers would be a convenient choice for growth-cone sensors.428

The Familial Address Space model is entangled by two factors. Firstly, the mitotic root of the429

developing brain is difficult to define exactly. It seems reasonable to consider as starting point a small430

collection of early progenitor cells downstream from the zygote that are committed to formation of431

the neural tube, rather than the single progenitor that we have assumed for simplicity in describing432

the model. Secondly, the experimental data are voxelated and so average over the various cell types433
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5.1 Axonal connections by Familial Guidance 5 DISCUSSION

(possibly derived from different lineage trees) that they contain. These two factors will mix and average434

the effects of the simple model. Nevertheless, if the lineage of mitoses is sufficiently coherent in time435

and brain space, then the statistical signature of the mitotic process remains detectable. The spatial436

patterns persist even when confounding mechanisms, such as symmetric cell division, de-synchronized437

mitotic clocks, data voxelation, and multiple independent lineage trees are introduced to the simulation438

(Figure 8).439

Gene expression is a central aspect of our Familial Address Space model. The gene expression of440

a cell is a 2000-element vector, which encodes the expression energies of the ⇠2000 genes used by the441

ABI atlas. Since the exact expression profile of the root cell is unknown, we assign to it a fixed pseudo-442

random number. The profiles of its progeny are obtained by successive applications of �s, drawn also443

from a frozen generator. These frozen stochastic expression profiles and their transformations are merely444

a convenient proxy for the unknown (deterministic) sequences of gene expression over consecutive cell445

division that occur in individual cells during development. The actual sequences of expression are not446

crucial to the model because it is the induction by mitosis and then the propagation of the statistical447

signal that is of interest here, rather than the absolute expressions of particular genes. We may also allow448

that the stochastic profiles be subject to cell-external or internal factors, provided that these influences449

are reproducibly regulated as part of the developmental process (and thus not due to environmental450

noise external to the embryo).451

Axonal connections by Familial Guidance452

There has been substantial progress in understanding how axonal growth cones respond to local guidance453

cues [5]. They are exquisitely sensitive to local gradients, able to detect gradients on the order of a454

few molecules across their span [41]. However, physical noise, ligand binding, and other signal detection455

considerations indicate that molecular gradients alone are insufficiently robust to explain axonal guidance,456

particularly at longer spatial scales [17, 5]. Over these longer distances the algorithmic rather than the457

reactive aspects of guidance rather relevant.458

Previous models have described network formation in terms of cellular agents containing a small, but459

explicit, program consisting of few developmental primitives [63, 64, 65, 4, 3]. These generative cellular460

programs include physical constraints on development to explain network formation [21]. Our work puts461

such generative algorithms in a broader context, by showing how physical constraints induce an address462

map essentially without any explicit program. The generation of the address map acts as an organizing463

principle that more specialized cellular programs might exploit. Here, we have shown that even a very464

generic axonal algorithm, Familial Guidance, is able to install a basic connectome.465
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The Familial Guidance Model is cast as a growth cone guidance algorithm. The algorithm depends466

on the embedding of the lineage tree in both expression space and brain space (Figure 4). The axon467

navigates by entering a control loop that first uses the inverted developmental program to revisit an468

ancestral expression state, and then configures the receptors in the growth cone to search for marks of469

that expression in the surrounding tissue. When the local optimum is reached, the axon transitions to470

another ancestral state and the process repeats, until another leaf is found. The growth cone’s choice471

(i.e. reconfiguration) points reflect transitions through the ancestral lineage tree: The growth cone knows472

how to reconfigure its receptors appropriately because it is able traverse (in expression space) the lineage473

tree.474

To find its target an axon must trace a route through physical brain space. Growth cones at the475

tips of axonal branches guide the extension of axons by receptors in their membranes. These receptors476

recognize morphogenic cues [50], and also membrane bound makers [28], and either promote or prevent477

the extension of the axon in the direction of increasing cue concentration or prevalence. The cones478

dynamically change the profile of receptors in their membrane so as to change the criteria for direction479

sensing at discrete way-points [45]. In our model, these growth cone receptor profiles correspond to480

expression signatures (‘marks’) of ancestral cells. That is, the receptors recognize these ‘marks’ in481

current cells that they have acquired by virtue of being the progeny of those ancestors. A guidepost cell482

would then be an early born cell, in which these marks are still strongly expressed. Figure 3 explains how483

expression covariance patterns are induced at cellular level as � changes in ci, but that the global address484

space arise is observed over whole populations of cells as �̂. And in this paper we have emphasized the485

experimental observations of lineage address space composed of the ordered �̂. But, of course, to make486

use of this lineage address space for guidance, individual grow cones will have access only to the local ci,487

and their resultant guidance cues secreted into the extracellular space or exposed on cellular surfaces.488

The model asserts that the navigation sequence can be generated if the axon inverts its developmental489

program to anti-differentiate to precursor expression states, and thereby traces a route through the490

lineage tree. There is evidence that cells and also neurons are able to de-differentiate as a whole [14, 30,491

57]. However, we require only that de-differentiation occur on some subset of the genome relevant the492

familial marks. While there is as yet no systematic work on this question, there is nevertheless clear and493

growing evidence that growth-cones used elaborate local context-dependent mRNA processing during494

their guidance behavior [55, 25, 9].495

Our guidance algorithm requires that axons perform a virtual traversal through the neuronal lineage496

tree to generate a physical route map. This conformity is possible only if (1) the tissue retains a persistent497

record of the lineage tree, so that expression signatures of ancestral cells can be recognized in their progeny498
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after the ancestors have vanished (through mitosis), and (2) routes through the lineage tree are indeed499

matched (at least in relevant cases) by continuous routes of adjacent progenies through the tissue. We500

found evidence for these two conditions in voxelated gene expression data. The forward projection of501

a hierarchy measured at an early embryonic age matches that measured at later age (Figure 6, S11)502

indicating that the gene expression of cells holds a persistent record of their ancestral gene expression503

profiles. And secondly, the voxels of the grand lineage tree estimated without regard for location, are504

nevertheless grouped together in space at each tier of the hierarchy so forming adjacent and contiguous505

regions (Figure 5, S13–S20), indicating that lineage paths may indeed form continuous trajectories in506

the tissue.507

We tested the Familial Guidance algorithm in the original voxelated data. Because we do not have508

access to the true mouse lineage tree and its genetic states, we used the reconstructed lineage tree509

obtained by hierarchical decomposition of the voxelated data as an estimate the growth cone reconfig-510

uration transitions. The growing axons were simulated using a spatial-state graph approach. These511

simulations confirmed that axons do indeed grow to more specific and longer range targets than the512

random walk model, and that an arbitrary collection of axons reproduce qualitatively the sparse and513

block structured connection matrix of the kind observed in experimentally observed connectomes. These514

typical connections conform to reasonable anatomical patterns, as can be appreciated by comparing the515

block-structured axonal connections with anatomical regions taken from the independent annotations516

of the Allen Brain Institute (Figure 9f. Although this general agreement is in itself remarkable, the517

particular connectome is not yet a proper prediction of actual connectivity. Several issues will need to518

be resolved in order to improve the prediction. Obviously, the range and resolution of experimental data519

must be improved: the ABI data offers only subset of genes, and even these data degraded by averaging520

over voxels and brains. Furthermore, the address space was inferred from the set of all genes. However,521

this set is only one of many possible sets of genes that support the true address space (Figure 7). It is522

likely that evolution has selected a particular set of genes to establish a particular address space that523

supports well evolution’s preferred connectivity. Unfortunately, this particular set of genes is as yet un-524

known to us, although there are some strong candidates for inclusion [24]. Furthermore, the simulations525

themselves are restricted. Guidance was only simulated at one time point, consequently the trajectories526

are generated as if development were frozen in the P28 geometry and gene expression. Of course, other527

trajectories will be possible at different developmental times. And for reasons of computational resource,528

sampled axon sources were a randomly sampled subset of all voxels, so many trajectories are omitted:529

It would take prohibitively long to simulate all sources.530

Overall though, the address space induced by mitosis, as well as the guidance process that it supports,531

is consistent with reasonable axonal projection pattern. Full agreement between our simulations and532
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experimentally observed projections will depend on the agreement between our estimated differential533

gene expression model, and the true differential gene expression generated by the actual gene regulation534

network of the mouse. These simulations also confirm at least a partial projection of the expression535

space onto brain space. This conformity is not self-evident, because the high dimensional expression536

space cannot be faithfully projected into the lower, three dimensional brain-space. Even in the best537

embedding, the pairwise distances between the embedded nodes in 3D Euclidean space cannot exactly538

match the pairwise path distances between nodes in the tree. The error can be made arbitrarily small in539

the limit of many dimensions. This limit is not relevant for 3D physical space because its dimensionality540

is fixed; but for gene expression space it is relevant because the dimension can be increased by recruiting541

genes for the embedding. Fortunately, constraints on mitotic daughter migration will result in at least542

some regions of continuity in the lineage tree embedding. Thus, although not all traversals through the543

lineage tree will be matched by traceable paths in brain space, those traversals whose embedding in544

brains space provides for continuity of expression signals will be successful. This property is reflected545

in that our connectivity matrix is not fully connected or diagonally structured, but sparse and block-546

structured (Figure 9f). The manifold of traceable paths, and so connection probabilities, will no doubt547

be influenced by the anatomical distortions imposed on the growing cell mass by factors such as relative548

mitotic rates, cell size, asynchronous axonal outgrowth, ventricular volumes etc.549

Note that our algorithmic approach differs from more usual methods for the generation connections,550

such as a connection table of source destination pairs, or a graph generation rule (e.g. Erdős–Rényi)551

that connects nodes according to a statistical model. For example, a common connectome generating552

rule is that Euclidean distance between pairs of neurons be inversely proportional to their connection553

probability. In this case, two nearby neurons are more likely to connect than distant neurons [13]. A554

typical implementation of this rule would involve measuring the Euclidean distance between two neurons,555

and then deciding whether a connection exists between them by evaluating a probability distribution.556

This method will establish suitable entries in a table, but does not explain how these connections should557

be grown in space. To satisfy the rule by a developmental algorithm the growth cones must perform a558

random walk in space, governed by a fixed probability of extension; and connect to encountered neurons559

also with some fixed probability. This simple connection algorithm closely reproduces the empirically560

observed axonal length distributions. However, because the behavior of these parameterized stochastic561

models depend on random data (rather than fixed data), they are also unable to explain the repeatability562

(across individuals) patterns of axonal trajectories and connectivity observed in biology. Repeatability563

would require that the ‘random’ walk be decided by a frozen random number generator, so simulating a564

deterministic guidance mechanism, whose data is that frozen random number.565

A traversal of axons through the lineage tree explains the experimental finding that cortical excitatory566
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cells seem to preferentially target their clonal siblings [8, 27, 59], rather than simply nearby targets.567

Our axonal growth simulations are only for pioneer axons. Many other axons may reach their remote568

target through fasciculation with a pioneer axon than by pure pioneering themselves [47]. However,569

these follower axons could still use the same guidance mechanism as pioneers to make decisions for570

(de-)fasciculation, so avoiding additional encoding as to when to fasciculate with which other axon. (If571

such a fasciculation specific route encoding were necessary, it would probably require on the same order572

of information as the naive wiring diagram, depending on how prominent fasciculation is.) An elegant573

solution would be that each axonal segment maintains the expression state of the growth cone when it574

created that segment. In this case the growth cone is seen as any other axonal segment, except that575

the growth cone is motile. In this way the axon segments become strong markers, expressing the signal576

that other growth cones can follow. Their signals would be exceptionally strong because the growth cone577

imparts to each segment the ground-truth ancestral signature obtained from source genetic information,578

rather than the a noisy signature that has been projected through generations of progeny. This address579

efficiency could explain the observation that the growth cone of a fasciculated axon is only a fraction of580

the size of a pioneering axon’s growth cone. Such an Ariadne mechanism would permit late growing axons581

to traverse areas whose geometric continuity with the lineage tree existed earlier during development,582

but has since been disrupted.583

Genetic encoding of Familial Guidance584

The genetic (and epigentic) information required for instantiating the physical neuronal network is largely585

limited by the roughly 1GB information capacity of the original zygote. Evidently, the detailed physical586

network arise through a decompression of this information, resulting in the connections summarized587

by the connection matrix. A naive encoding of this matrix for mouse brain connectome would require588

roughly 10TB. However, viewing the connectome as a generic connection matrix considers too many589

possible configurations, and consequently overestimates the information necessary to specify the brain’s590

connectome among them. No doubt there are regularities in axonal construction that can express var-591

ious arborization types using simple codes [64, 22], and there are means to generate connectomes from592

compressed codes that do not suffer from the constraints of the construction process [26]. However, the593

many disparate long range pathways of the brain would require more elaborate codes and co-ordinate594

systems. The Familial Guidance principle shows how the implicit, compressed, representation of the595

target connectome can be decompressed through the very construction of the neurons to be connected.596

Self-replication, with its inherent constraints, organizes the growing mass of cells in a family hierarchy597

whose parent-child relations manifest as spatial gradients of differential expression. These gradients act598

as a network of roads that axons explore to reach their targets. The directions for axons to establish a599
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default wiring in this familial landscape are simple: grow and branch along every accessible road. The600

final network and the landscape are hand in glove. In this view, growing the landscape is at least as601

relevant as axonal outgrowth. But fortunately the growth of the fundamental landscape follows very di-602

rectly from simple constraints mitosis, and so has low informational cost. In this view, the 1GB genome603

contains no compressed 10TB connectomic blueprint for the brain. Rather, the genome encodes the604

host cell, which is essentially a self-replicating physical machine [33] whose execution (or decompression)605

generates the wired brain. Therefore, the size of the brain’s blueprint is not limited by the size of the606

genome, just as the uncompressed size of the output of a computer program is not limited by the size of607

its source code.608

22

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.26.482112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.26.482112
http://creativecommons.org/licenses/by/4.0/


6 CONCLUSION

Conclusion609

Our analysis of gene expression in embryonic and postnatal mouse brains reveals a hierarchy of spatial610

patterns of expression covariance that extend over the entire brain, and are stable over the available611

data. This organization is present across the 1240 genes analyzed. However, they are also present in the612

expressions of random subsets of as few as 50 genes. The organization is consistent with a multi-scale613

address space that could be exploited for cell migration or growth cone guidance. Our simulation studies614

confirm that this organization can be generated by persistent asymmetries of gene expression introduced615

by the successive mitoses of the lineage trees that give rise to the brain, provided that mitotic daughters616

do not stray too far from one another after their birth.617

Due to the generality of these mitotic constraints, it is likely that similar map-like structures exist618

also in other tissues, and may provide a fundamental scaffold for cell migration and tissue organiza-619

tion. However, the Familial Address Map has particular relevance for neurons, whose many stereotyped620

connections cover distances up to the scale of the whole brain.621

We conclude that the fundamental wiring of brain can be compactly encoded and expressed through622

the mitotic lineage implied by the genetic code of its embryonic stem cells, because the arborizations of623

axons are just the available search paths through lineage tree. So, paradoxically, (cell) division may be624

the key to uniting the neurons of the brain. The resolution of the paradox is that division in reverse is625

unification.626

Future work must establish: which specific sub-set of genes is used for axon navigation; how the627

growth cone reverts its host’s differentiation and how receptors are generated to recognize an ancestral628

state; and how the address space, that is the geometry of the brain and spatial gene expression, are629

tuned to realize a specific observed connectivity.630

Contrary to the prevailing reductive approaches to understanding the wiring of the brain, this paper631

has taken a more global synthetic view. While much more effort will be required to confirm the var-632

ious implications of our approach, the theory and available data are remarkably consistent; and offer633

the prospect that the connectome and its functioning can be more readily understood in terms of the634

global mechanisms that generate it, rather than from interpretation of the final wiring diagram, just as635

inspecting source code is more revealing of principles of operation than inspecting the compiled program.636
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Figure 1: The connectome is the result of a constructive process that starts ultimately with the zygote,
and involves the two aspects of first generating a mass of cells with various types, and then routing
axons through this mass to their proper targets. An observer’s description of the resulting detailed mouse
connection matrix (right bottom) takes at least 10TB to encode. However, as development occurs largely
in isolation, all instructions to construct this connectome must fit into the 1GB of genetic material of the
zygote. This implies that neural progenitors have efficient methods for expanding the highly compressed
wiring instructions into axonal trajectories. To do this, they need to, as they proliferate and differentiate,
install a space of molecular addresses that axons can exploit for navigation.
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Figure 2: As progenitors divide they progressively differentiate their gene expression until they reach
their post-mitotic neuronal states at the leaves of the lineage tree (a: top left). Constraints on mitosis
(see text) embed the global neuronal lineage tree (a) into both gene expression (b) and physical space
(c), so that cells of related differentiation have similar expression profiles (similar colors) and are nearby
one another physically. Consequently, a trajectory from one leaf node to another through the lineage
tree (a: red arrow) often corresponds to an unbroken trajectory through both gene expression space
(b: red arrow) and physical brain space (c: red arrow). An axon navigates by inverting its source neuron’s
instance of the global genetic differentiation program (a: top right). This inversion generates a sequence
of expression profiles that correspond to ancestral states and so act as guidepost profiles. d The axonal
branch configures its growth cone to match the sensed expression to the internally generated expression,
and so moves to the direction that improves that match . When the match can no longer be improved by
moving, the axon updates the its internal state to the next ancestor, and repeats. If the match between
internal and external expression can be improved by moving into multiple different directions, or by
transitioning to multiple different states, the single axonal branch is split into two new branches that
continue to execute the same algorithm, but whose independent states may subsequently diverge. When
an axonal branch arrives at a leaf state, both in expression and physical space, navigation of that branch
is complete and local synapses are formed.
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6 CONCLUSION

Figure 3: a Cells are points positioned in high-dimensional expression space, where each axis represents
the expression of one gene. Here, this high-dimensional space is reduced to 2D dimensions for plotting
purposes, so that their 2D distance approximates their high-dimensional distance. In our division model,
the differential expression between a parent cell c1 and its daughters c2, c3 is a normally distributed
random vector representing the genetic state transition from parent to daughter, denoted �2 = c2 � c1.
(Here we use the division of the root progenitor 1 as a running example for any division.) The differential
expression between two siblings, which we call the parent’s asymmetry, is denoted �1 = c3�c2 = �3��2.
As a result, the correlation in gene expression between two cells reflects their distance through the lineage
tree. (See c for verification of this process by numerical simulation.) b The expression of a progenitor
can be estimated as the mean expression over its leaf progeny; and the asymmetry of a progenitor can
be measured as the main axis of variance across its progeny. The diagram shows only the leaves of
the lineage tree show in a—they have identical positions in embedded expression space. Each nested
contour encloses the progeny of a progenitor; lines within the countour indicate the main axis of variance
across the enclosed progeny; and dotted circles the average expression across the progeny. The sets
of progenies for individual progenitors can be obtained by iteratively splitting the progeny along their
main axis of variance, so with a decision boundary (black line with arrow) orthogonal to this axis. c
Numeric simulation of expression profiles induced by our division model, and subsequent reconstruction
of expression profiles and mitotic asymmetries from the leaves of the simulated tree. The root expression
c1 is drawn from a normal distribution with zero mean and unit variance. The expression profiles of
other cells are generated recursively by adding differential expression patterns �i, which are also normally
distributed. (All random number are drawn independently.) The determination (squared correlation) was
measured between between the true and reconstructed asymmetries (blue), and true and reconstructed
expressions (orange). d Progenies group naturally in brain space according to their ancestry. Shown is
a 2D simulation of growing tissue, started from a single root, only constrained to not detach from one
another and not pass through each other.
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6 CONCLUSION

Figure 4: Navigation of an axon (red branching arrow) through the familial address space. Throughout
the figure, similarity in color denotes similarity in gene expression profile. a The axon traverses the brain
by traversing a sequence of familial states of the lineage tree that is implicit in its genome. The growth
cone uses the sequence of familial states as successive search templates in brain space, and so navigates
from a source leaf node to a number of target leaves. Familial states (colored circles) correspond to
nodes of the encoded lineage tree. For purpose of explanation, the tree is hung from the leaf state
corresponding to the axon’s source neuron, rather than from its root node as in 3b. Terminal states of
leaf (existant) nodes have a solid circumference, while ancestral states in the interior of the tree have a
dotted circumference. Transitions between states occur downward, along the arrowed arcs, beginning at
the source leaf (red encircled) and ending at (some) other leaves. The original tree root can be recognized
as the only state having two edges, rather than three (since the root progenitor has no mitotic parent). b
Various decision scenarios that the axon encounters during traversal. Each familial state is characterized
by a profile of gene expression, whose distribution across all cells peaks at one or more locations in brain
space. The gradient of a state in the familial address space is the frequency of encountered cells that
test positively for a familial state. By selecting a particular familial template, the growth cone tunes
into the corresponding expression gradient and filters out the others. If the tuned gradient is in range,
the growth cone follows it to arrive at one of that gradient’s peaks (case indicated by [1]). If the tuned
gradient is not in range [3], the axonal branch of that growth cones fails. When the axon arrives at
a peak, its growth cone tunes to the next downstream familial state, and so on, until a leaf state is
found. If multiple downstream states are in range, the axon branches [2], with each branch tuned to one
of the possible downstream states. The axon also branches if the gradient is bifurcated by a valley, so
that the axon can follow an upward gradient in multiple directions [4]. Each branch pursues a different
direction, but in this case they are tipped with growth cones in the same state (unlike the branches in
scenario [2].) When a growth cone reaches a leaf state, guidance terminates [5]. c Cells have composite
genetic identities, with one component (small inner circle) inherited from each ancestor state. The overall
state of a leaf cell is the aggregation of these components (3). A growth cone can test whether a cell
possesses a component by selecting the familial state template corresponding to that component, and
then matching the internally produced gene expression to that of the tested cell. d Various regions of
the brain correspond to branches of the mitotic lineage tree. Consequently, the regions are nested and
each marked by the component of the genetic identity code corresponding to the common progenitor of
the region.
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6 CONCLUSION

Figure 5: Hierarchical decomposition of covariance in gene expression space brain is mirrored
by a matching decomposition in brain space. Here the results are for postnatal (P) day 28. The
results from further time points can be found in the Supplementary figures. (a) Expression Hierarchical
decomposition on the collection of voxels in expression space, independent of source location in brain.
Decomposition is performed by measuring the first principal component of covariance; then sorting all
voxels into two bins, (competing bins indicated by dotted arrows) based on their individual projection
coefficients. This process is repeated recursively on each of the resulting bins, until a bin contains only
a single voxel remains (Figure shows only the first 3 generations of the resulting hierarchy). Physical
Space Same voxel bins and coloring, but voxels now positioned at their source locations in brain. Coronal
and horizontal sections are shown: the color of each pixel indicates the most common bin in the occluded
direction for that pixel. Horizontal section (labeled top) is drawn at a smaller scale. Multi-scale spatially
coherent covariance patterns are present. Two example branches of the hierarchy are indicated with
red and black curves. (b) Hierarchy of bins of the hierarchical decomposition. The bins are colored to
represent the hierarchy: the parent bin has the average hue of the child bins. This coloring is applied
throughout the paper. (c) Although regions are nested by construction (hierarchical decomposition), we
quantified the extent to which the regions are also continuous by measuring their spatial spread (average
distance from the region centroid) as a function of their depth in the hierarchy. At the root of the
hierarchy the spatial spread covers the entire brain, and we expect that as the depth increases the spatial
spread (i.e. the mean distance from the region centroid to the constituent voxels) decreases. To make the
different time points and simulation comparable we present the spreads as a fraction of the root spread.
The solid line indicates the median spread over all regions at that depth, and the gray area the first
(below) and third (above) quartiles. As expected, the mean distance from the centroid decreases as the
regions become more resolved at with depth.
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Figure 6: The root asymmetry measured at P28 is projected to the other available embryonic and post-
natal developmental time points, and compared to the root asymmetry measured at the respective time
point. (a) First division of the hierarchy, but the direction of variance used to sort the bins is derived
from P28, rather than from the data of the time point itself (except Original P56). This temporally
projected pattern only has small differences with the patterns derived from the original data (compare
Original P56 to Projected P56). When the expression data is shuffled over voxels and genes, maintaining
pooled expression statistics but destroying covariance structure, all spatial patterning disappears. Images
are proportional to their actual brain sizes. (b) Quantification of the agreement between the original
and projected hierarchy, measured as the proportion of voxels in matching bins, at different levels in the
hierarchy. (Although the images in a are 2D, quantification is done on the 3D voxels.) The number of
possible bins grows exponentially with tree depth, and so chance level decreases inverse-proportionally
(dashed line), quantitatively verified by the shuffled case (yellow line). P28 projects onto itself, and
is hence in perfect agreement. The other time points show an agreement consistently above chance.
Consider that a mismatch at a shallow depth cannot be corrected at a deeper depth, and so mismatch
can only accumulate.
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Figure 7: Random sets of genes of various sizes from embryonic age E11.5 were selected, and the spatial
hierarchy they exhibit was compared to the hierarchy exhibited by the grand set of all genes at hierarchy.
To compare hierarchies all voxels are projected onto both hierarchies. For each matching choice the score
is incremented proportionally to the depth of the bin. As such, 1 indicates that the all voxels are sorted
into corresponding nodes of the hierarchies, and the dotted line indicates the score if all voxels were
sorted into hierarchical bins randomly (as in the shuffled case). The hierarchy established from a set of
20 random genes already agrees largely above chance with the original pattern.
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Figure 8: Hierarchical decomposition of expression data generated by simulation of the model (see text)
proposed to explain the results. Simulated ‘brain’ sphere composed of voxelated leaf cells was generated
by 300,000 mitoses distributed over 10 independent lineages. Cells express 500 genes. Asymmetrical
mitoses induce differential changes in gene expression. Each voxel contains 3⇥ 3⇥ 3 = 27 adjacent cells.
Similar to experimental results, the hierarchical decomposition of covariance in gene expression voxels
independent of location (left), is mirrored by matching decomposition in space (right).
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Figure 9: Simulated axons use familial guidance to navigate through the voxels of the ABI Developing
Mouse Brain gene expression atlas. a Arborizations of 50 example axons, show in a sagittal projection
of the ABI atlas. Each arbor is the collection of all branches that an axon could potentially navigate
using this gene expression space. Each axon is colored according to its source region. The colorings
correspond to those of Figure 5b. b Straight-line distance between the beginning of a branch (soma) and
end of that branch (top) versus the actual path length. Branches are points sorted in hexagonal 2D bins,
whose color intensity indicates the number of branches in that bin. c Same as a but on a tissue grown in
simulation (as in Figure 8). d As b, but for the simulated tissue of c. e The dissimilarity between axons
beginning from the same voxel (measured as average minimum distance), under varying levels (10% or
30%) of expression noise. (Because the navigation algorithm is deterministic the 0% noise case produces
identical neurons.) The familial guidance dissimilarity is compared against a random walk axon of the
same path length. f Connectivity matrix corresponding to the connections made by the axons of a. The
connections conform to reasonable anatomical patterns. The anatomical regions marked on the matrix
are taken from the annotations of the Allen Brain Institute. They are not used for the analysis.
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A METHODS

Methods798

Experimental Data799

The analyzed gene expression data were published by the ABI in their Developing Mouse Brain Atlas [51].800

The data are provided as 3D grids of isotropic voxels of various sizes. The expression energies of the801

⇠2000 genes were measured by in situ hybridization and take any non-negative value, while -1 indicates an802

invalid measurement in that voxel. ‘Expression energy’ is a combined measure of density and intensity.803

The voxel dimensions are 80µm, 100µm, 120µm, 140µm and 160µm for developmental time points804

E11.5, E13.5, E15.5, E18.5, and P4, respectively, and at later time points, i.e. P14, P28 and P56, the805

voxel dimension remains constant at 200µm [51]. Every voxel thus contains the cumulative expression806

of many (probably thousands) cells.807

The atlas data was retrieved through the API provided by ABI. The ABI expression grids were used as808

published, without performing any additional re-sampling or interpolation (see below for preprocessing).809

Thus, the voxel sizes were maintained as published by the ABI.810

Only measurements from sagittal sections that were not labeled as failed images were used (omitting811

failed and coronal sections). When multiple successful experiments were available for a particular gene812

at a particular time point, one of the experiments was selected arbitrarily.813

From the 3D expression grids, only those voxels labeled (by the ABI) as part of the neural plate were814

selected. This includes all developmental derivatives of the neural plate, i.e. voxels of brain and spinal815

cord tissue, but omits those of ventricles and empty space. All individual voxels that have more than816

20% invalid measurements and all genes that have more than 20% invalid values across all remaining817

voxels at every of the developmental time points (in that order) were removed from the analysis. In this818

way, the same set of 1240 genes was selected for each of the time points. The number of selected voxels819

are 7377, 12266, 11869, 11639, 21348, 24224, 28476, and 60129, for the time points E11.5, E13.5, E15.5,820

E18.5, P4, P14, P28, and P56, respectively.821

To avoid the introduction of spatial confounds, the ABI recommendation to spatially interpolate822

remaining invalid expression values was not applied. Instead, missing values were replaced with the823

mean expression value of that gene over all voxels at that developmental time. Thus, when the data is824

later centered for analysis the invalid expression values become 0.825

In order to make the gene expression energy levels roughly comparable across genes, the expression826

values were normalized to unit variance and zero mean over the voxels at that developmental time.827
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A.2 Hierarchical Decomposition A METHODS

Hierarchical Decomposition828

The voxels measured at one time point are sorted into the leaves of an estimated lineage tree through our829

hierarchical decomposition procedure. The procedure starts at the root of the tree, to which all voxels830

are initially assigned. Each iteration of the procedure evaluates the voxels assigned to a node of the tree,831

and reassigns each voxel to one of the node’s two daughters. The procedure stops once every leaf node832

is assigned exactly a single voxel.833

An iteration considers the gene expression of the voxels assigned to a node. The collected expression834

can be expressed as a matrix X, where each row corresponds to a voxel and each column to a gene. The835

voxels will be split over the daughter nodes along the axis of greatest variance.836

The axis of greatest variance is the eigenvector corresponding to the greatest eigenvalue of the covari-837

ance matrix. The covariance matrix is computed by first centering the data by subtracting the empirical838

mean from each column X 0
ij = Xij �

P
k Xkj/n, where Xij is expression of the jth gene (column) in the839

ith voxel (row), and n is the total number of voxels (rows). The covariance matrix is then Q = X 0TX 0.840

The main axis of covariance is the eigenvector C!ov corresponding to the largest eigenvalue � such that841

Q C!ov = � C!ov. The eigenvector C!ov corresponds to the first principal component of gene expression842

covariance.843

The coefficient wi per voxel i, obtained by projecting the original data onto the axis of greatest844

covariance w = X 0C!ov corresponds to the agreement of the voxel’s expression content with the axis C!ov.845

Based on these coefficient we sort the voxels into two subsets, namely one set (arbitrarily denoted L for846

left) with L = {i|wi < 0}, and R = {i|wi > 0}. These voxels of these sets are assigned to the left and847

right daughter nodes, respectively. The decomposition procedure is then repeated recursively on these848

two daughter nodes.849

If a node is assigned only a single voxel, the process terminates for that branch. The process as a850

whole terminates when all branches have terminated.851

Controls852

Controls were performed to ensure that the observed spatial patterns are due to the spatial distribution853

of experimental gene expression rather than being due to any inherent properties of the analyses. The854

null-hypothesis for the spatial patterning of expression covariance is that gene expression covariance is855

not spatially organized. In our control case, all gene expression values were permuted randomly across856

voxels and genes. This ensures that the overall statistics of gene expression remained identical, while857

removing all spatial structure from the source data. When the analytic workflow was applied to this858
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synthetic data we obtained the results. These results confirm that the development of the mouse brain859

is associated with a systematic spatial organization of measured gene expression covariances, and that860

this organization is consistent over the period E11.5 through P56 (see Figures 6,S13-S20).861

Simulation of Mitotic Model862

Our model of cell division was simulated numerically to confirm that constraints on gene regulation and863

mobility during cell division indeed induce a hierarchical gene expression address space. It also form one864

of the two substrates—next to the gene expression data grids from the ABI—for our simulations of axon865

navigation.866

The division model has three components: a model of gene regulation that determines the expression867

profiles of the mitotic daughters at mitosis; a mitotic clock that initiates mitosis at some interval, and868

exits the cell cycle after some condition is met; and a rule for the placement of post-mitotic daughter869

cells in 3D space. In the minimal version of the model used here, a global clock initiates mitosis after870

an interval drawn from a Poisson distribution from the birth of the cell, and the daughters are born871

alongside one another along a randomly selected axis in the spatial simulation system described below.872

A total of 200,000 mitoses distributed over 100 lineage trees, were simulated as follows. First, the873

topologies of 100 lineage trees were generated; next gene expressions were assigned to all cells; and874

finally the lineages were instantiated in model space. We chose this staged approach to the simulation875

for convenience of verification, and analysis. Simulations were written in the Python and C/C++, and876

run on a laptop computer. Code and documentation will be available upon publication.877

A.4.1 Cellular Gene Expressions878

Each model cell has a profile of gene expression, consisting of 500 genes. This profile is expressed879

mathematically as a vector of 500 values. For convenience, these values can be both positive and880

negative, which can be interpreted as positive or negative deviations from a base expression level.881

Algorithm 1 describes the assignment of profiles in detail. In brief, the expression profile of each cell882

is a random variant of its parent’s expression profile.883

Although randomness is used to establish the expression profiles, the (frozen) random deviations are884

used as deterministic process with statistics that are indistinguishable from a random process. This is885

analogous to fixing the seed of a random number generator: when the seed is fixed, the exact sequences886

of numbers is reproduced, but the statistics still seem random.887

Of all cell divisions, 20% are symmetric (i.e. the gene expression of the daughter is equal to gene888
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expression of the parent), and the others are asymmetric.889

Algorithm 1: Gene expression
Data: Set C of cells organized in a lineage tree; Root cell r 2 C; Number of genes N = 500;

Gaussian random vector NN (µ = 0,� = 1);
Draw X (r) ⇠ NN ;
F  {r};
while |F | > 0 do

Choose arbitrary c 2 F ;
if c is not a leaf node then

for daughter d of c do
if with probability 0.2 then

�x 0;
else

Draw �x ⇠ NN ;
X (d) X (c) +�x;
F  F [ {d};

F  F � {c};
Result: Mapping of cell gene expression profiles X : C ! RN

A.4.2 Mitotic clock890

The mitotic clock mechanism generates the lineage trees by deciding when individual cells divide. It891

is described in Algorithm 2. When a cell is born, it draws a cell cycle duration from an exponential892

distribution (so that the process is Poisson). The division of that cell is then scheduled at the current893

global time, plus the drawn duration. At each iteration, the global timer progresses to the cell that894

divides next. The algorithm terminates when a fixed number of divisions is reached. Because the895

cycle durations are randomly drawn, resulting trees of varying number of nodes and with a generally896

unbalanced topology (i.e. branches have different sizes).897

(The mitotic clock is thus independent of gene expression.)898

To create multiple lineage trees, the algorithm is still performed only once, but starting not from one,899

but from multiple root nodes. So, the total number of divisions is possibly divided unequally over the900

lineage trees.901

A.4.3 Cellular Locations902

The cells of the lineage tree are positioned spatially by Algorithm 3, as illustrated in Figure 10. We903

developed this algorithm because it is simpler and more tractable than a direct simulation of soft (or904

solid) body physics.905

44

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.26.482112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.26.482112
http://creativecommons.org/licenses/by/4.0/


A.5 Simulation of Axons A METHODS

Algorithm 2: Mitotic clock
Data: Set c 2 C with |C| = 100 cells; Number of divisions D = 200, 000; Mapping of division

times T : C ! R+;
T (c) 0 for all c 2 C;
D  D � |C|;
while D > 0 do

cmin  argminc T (c);
Create two daughters cl and cr of cmin;
C  (C � cmin) [ {cl, cr};
Draw �t,�t0 ⇠ Poisson(� = 1);
T ({cl, cr}) T (c) + {�t,�t0};
D  D � 1;

Result: Collection of lineage trees with time stamped divisions

�������� ����
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Figure 10: Illustration of cell placement. Although the illustration is 2D, the placement is the same for
3D. When a cell divides a random division axis is drawn uniformly from a unit circle (in 2D) or sphere
(in 3D). Then, the sequence of cells that intersect the division axis are shifted along the sequence to
create a free slot next to the dividing cell. The mitotic daughters take the original slot of the parent,
and the newly created free slot.

Algorithm 3: Tissue growth
Data: Unbounded 3D grid G with slots indexed by i, j, k 2 Z; Collection of lineage tree root

cells c 2 C; Mapping of division times T : C ! R+;
Select arbitrary c0 2 C;
Put c0 at G000 ;
for c 2 C � {c0} in arbitrary order do

Put c in a free slot adjecent to a filled slot;
for c 2 C in order of ascending T (c) do

if c is not a leaf node then
Cast a ray R from G(c) in a direction drawn from a sphere’s surface;
for filled slot Gijk intersecting R in reverse order do

Move the cell in slot Gijk to the next slot along R;
cl, cr  daughters of c;
Put cl in the free slot adjacent to c along R; Replace c with cr;

Result: 3D Grid G of cells
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Simulation of Axons906

Our Familial Guidance model is simulated virtually, either on the voxel grid of measured expression, or907

on a grid of simulated cells.908

The axon begins in some chosen leaf voxel, and takes as its initial template the expression state of909

its leaf voxel. Then, at each step, the growth cone senses the expression of the voxel it occupies, as910

well as expressions of the immediately adjacent voxels. The cone then moves into the adjacent voxel911

whose expression is most similar to its current template, so extending a new axonal segment between912

the traversed voxels. If multiple adjacent voxels contain a favorable expressions, then the growth cone913

is cloned, and the axon branches into all of those favorable voxels. Additionally, a cone can change914

(irreversibly) its present expression template to a that of an adjacent state up or down the ancestral915

lineage tree. The growth cone then repeats its search for favorable translations, on the basis of this new916

template. Each cone is constrained not to re-visit voxels already occupied by the cell’s axonal arbor917

(self-avoidance), and not to re-visit lineage states that it has already visited. The guidance process918

terminates when the growth cone can neither move to a more favorable adjacent voxel, nor change lineal919

state.920

In executing this search algorithm, the initial cone and its clones extend axons along all the routes921

in brain-space that offer contiguity in brain-space of familial expression patterns encoded in the lineage922

tree (Figure 4).923

For our axonal simulations brain space is discretized: Each spatial position corresponds to a (measured924

or simulated) voxel. Spatially adjacent voxels are connected by an edge. These nodes and edges form925

a graph encoding the geometry of the brain. The 3D positions of the nodes are used to establish the926

spatial graph, but ignored thereafter.927

The adjacency of nodes is established through a Gabriel tessellation, which is a subgraph of the928

Delaunay tessellation [15]. In a Gabriel tessellation a edge of the Delaunay tessellation is kept only if the929

sphere of which the edge is the diameter contains no other points. This criterion ensures the spatial graph930

is connected, but that there are no edges across large empty spaces, such as ventricles and contours. This931

is an improvement over the vanilla Delaunay tessellation, which always contains the convex hull of the932

points, and therefore connects, for example, the rostral tip of the olfactory bulb to the cortex.933

To navigate, axons follow signals on the spatial graph. A signal on a graph is a scalar value associated934

with each node, and the gradient of the signal is a value associated with an edge, that is the difference935

between the values of the nodes. The gradient depends on the direction the edge is traversed, and swaps936
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sign if the edge is traversed in the reverse direction.937

The signal for a growth cone depends on the current state of the growth cone, and the expression of938

the nodes of the graph. The state of the growth cone is a profile of gene expression that corresponds to939

a node in the lineage tree. The signal over the nodes of the spatial graph relative to a growth cone state940

is the correlation between the growth cone state’s expression profile, and each node’s expression.941

For efficiency, the signal is only allowed to exist in the progeny of the ancestor whose state the growth942

cone has adopted. This constraint reduces the search space of the growth cone significantly, without943

significantly changing the routes taken by the growth cones.944

The prominent action of the growth cone is to climb this signal by spatially moving across the graph,945

each time moving in the direction of positive gradient. If the signal value cannot be improved through946

moving, the growth cone has reached a (local) optimum.947

In addition to moving, the growth cone can also change state. The state machine governing the948

transitions the growth cone can take is (isomorphic to) the lineage tree, which is estimated through our949

hierarchical decomposition. So, the growth cone can only transition to the parent state, or either of the950

daughter states, of its current state.951

To simulate this process, a spatial-state graph is constructed. The nodes of the spatial-state graph952

are the Cartesian product of all spatial nodes, and all states. The nodes of this graph are connected if953

either the nodes are spatially adjecent, and have identical states, or if the nodes are spatially identical954

and have adjecent states in the lineage tree.955

On the spatial-state graph there is only a single guidance signal, attributing to each node the corre-956

lation between the node state’s expression profile and node’s expression.957

The navigation of an axon starting from a voxel is simulated by executing Dijkstra’s algorithm [10]958

from a source node in the spatial-state graph to all possible nodes containing leaf states, allowing only959

movements along positive gradients. For graph implementations the igraph library with python bindings960

was used (https://igraph.org).961

Axons were visualized using threejs (https://threejs.org)962
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Supplementary Figures963
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Figure S11: Hierarchical decomposition, as in Figure 5, but for all available time points. Only
depth 3—the lowest tile in Figure 5—is shown, but other depths can be inferred by grouping similar
colors. Decompositions were performed independently of one another (unlike Figure 6, where established
hierarchies are projected across time points). The spatial spread of hierarchical regions goes down with
hierarchy depth at each measured time point.
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Figure S12: Asymmetry profiles identifying regions of the hierarchical decomposition are poorly cor-
related within the hierarchy, but correlated across time points. Upper triangle Pairwise correlation
coefficient between the estimated asymmetries C!ov measured at the root of the hierarchies at various
time points. Altough the asymmetry measurement is done independently at each time point, the main
direction of covariance across all voxels is correlated. Generally, nearby time points are more correlated
than distant time points. This correlation is surprising a priori, because the absolute gene expression
changes from E11.5 to P56. Lower triangle Pairwise correlation coefficient between the estimated
asymmetries C!ov at the root of a hierarchy and other asymmetries within the same hierarchy. (Each
column represents a time point, and each row a depth of the hierarchy, with the root at zero depth.) In
contrast to standard principal component analysis, orthogonality between components is not enforced
by our hierarchical decomposition. Nevertheless, we find that many pairs of components are poorly
correlated. This implies that the direction of strongest covariance is not along any single direction for all
subsets of voxels, but is rotated in high-dimensional expression space at each iteration of the decomposi-
tion. The model assumes that differential gene expression vectors �, and consequently the asymmetries
�̂ are independent. This matches the observation in the experimental data that the successive C!ovi are
poorly correlated in expression space. The poor correlation is not by construction, because unlike PCA
(Principal Component Analysis), orthogonality is not enforced by our decomposition.
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Figure S13: Hierarchical decomposition at E11.5. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S14: Hierarchical decomposition at E13.5. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S15: Hierarchical decomposition at E15.5. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S16: Hierarchical decomposition at E18.5. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S17: Hierarchical decomposition at P4. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S18: Hierarchical decomposition at P14. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)

57

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 27, 2022. ; https://doi.org/10.1101/2022.02.26.482112doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.26.482112
http://creativecommons.org/licenses/by/4.0/


B SUPPLEMENTARY FIGURES

Figure S19: Hierarchical decomposition at P28. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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Figure S20: Hierarchical decomposition at P56. Analysis and depiction as in Figure 5. Bottom right
matrix shows pairwise correlation coefficient among components within the hierarchy at the displayed
depths. (Similar to the bottom triangle in Figure S12.)
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