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ABSTRACT4

Objective: Obesity-induced metabolic dysfunction, tissue remodelling, and chronic inflammation in visceral5

white adipose-tissue (WAT) are correlated with insulin resistance, type II diabetes, and metabolic disease6

pathogenesis [1]. In this work, we sought to establish spatio-temporal context of adipose tissue macrophage7

(ATM) reprogramming during obesity.8

Methods: We captured single-cell RNA-sequencing, spatial transcriptomics, and histological imagining9

of murine WAT over the course of diet-induced obesity to study macrophage phenotype dynamics. We10

developed a straightforward mathematical approach to integrating multi-modal data to quantify obesity-11

induced changes to WAT organization. We aligned ATM phenotypes with crown-like structures (CLS)12

in early obesity and used spatial network analysis to uncover signalling mechanisms implicated in CLS13

formation.14

Results: We identified novel diversity of the lipid-associated macrophage (LAM) phenotype, whose tran-15

scriptional profile, signaling mechanisms, and spatial context serve as indicators of CLS formation in early16

obesity. We demonstrated that dysregulation of lipid-metabolic signalling is a critical turning point in the17

monocyte-LAM lineage and identified novel ligand-receptor mechanisms including Apoe, Lrp1, Lpl and App18

that serve as hallmarks of nascent CLS in WAT.19

Conclusions: Multi-modal spatio-temporal profiling demonstrates that LAMs disproportionately accumu-20

late in CLS and are preceded by a transition-state macrophage phenotype with monocytic origins. We21

identified novel ligand-receptor interactions implicated in nascent CLS regions which may guide future22

cellular-reprogramming interventions for obesity-related sequelae.23

Highlights24

- We characterize a novel lipid-associated macrophage (LAM) phenotype along the monocyte-LAM lin-25

eage26

- Integrated imaging, single-cell sequencing and spatial transcriptomics data show that LAMs accumulate27

at nascent CLS28

- Analysis of spatial transcriptomics data reveals a novel set of ligands and receptors that implicate29

immature LAMs in shaping the CLS microenvironment in early obesity30

- We present a simple mathematical framework for studying dynamics of tissue-structure over time31
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1. INTRODUCTION32

Obesity is associated with chronic inflammation and metabolic dysfunction in mice and humans [2, 3, 4, 5].33

Increased metabolic demand requires remodeling of white adipose-tissue (WAT) that results in changes to34

WAT structure and function [6, 7]. Normal WAT function requires coordination between multiple cell types35

including stromal vascular cells, immune cells, and adipocytes, which are the largest cellular constituent of36

WAT by volume [6, 8]. In obesity, WAT composition is dramatically altered and cells undergo dynamic37

changes to their morphology and phenotype that culminate in adipocyte hypertrophy and cell death [6, 9].38

The dynamics of WAT immune cells during obesity are well-documented, but the molecular mechanisms39

regulating immune and metabolic dysfunction and their spatial organization within WAT remain poorly40

understood.41

Immune cells help maintain healthy WAT homeostatic function and participate in WAT remodeling in42

response to changes in metabolic demand. The hallmark of obesity-induced immune dysregulation is in-43

creased abundance and diversity of macrophages in WAT [10, 11, 12]. Both tissue-resident macrophages and44

macrophages derived from recruited monocytes acquire poorly understood activation states during obesity-45

induced WAT remodelling [10, 11, 13, 14]. Changes in the macrophage transcriptional program are critical46

milestones in the development of insulin resistance, type II diabetes, and other metabolic disorders [10, 14]47

and are shown to persist after weight loss [15, 16, 12].48

Previous single cell studies have cataloged WAT cellular composition, thus refining our understanding of49

immune cell phenotypes in obesity [10, 8, 13, 11]. However, single cell molecular profiling does not allow50

for analysis of the spatial patterning of tissue structure. Recent studies in humans have mapped single cell51

genomic profiles onto spatial transcriptomics data in order to characterize spatial patterning WAT cellular52

composition [6, 17]. However, a spatial understanding of obesity-induced WAT-remodelling over the time-53

course of metabolic disruption is lacking.54

We sought to spatially contextualize immune cell phenotype dynamics in early and chronic obesity. In55

this study we sequenced thousands of single cells from murine WAT at di↵erent stages of diet-induced56

obesity and characterized transcriptional dynamics associated with the development of insulin resistance.57

To characterize the spatial context of obesity-driven immune cell dysregulation, we mapped tissue-specific58

genomic signatures to the WAT landscape using spatial transcriptomics. We developed a network approach59

to analyze the spatial organization of immune-dysregulation and used graph-theoretic measures to quantify60

changes to WAT structure.61

We quantified the spatio-temporal dynamics of WAT macrophage infiltration and di↵erentiation and iden-62

tified cellular signalling mechanisms implicated in WAT remodelling. We describe novel diversity of the63

Trem2
+ lipid-associated macrophage (LAM) phenotype, whose transcriptional profile, molecular signalling64

mechanisms, and spatial context suggest a critical role in the formation of CLS in early obesity.65
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2. MATERIALS AND METHODS66

2.1. Animals67

C57BL/6J mice were used for all experiments (Jackson Laboratories 000664). Male mice were fed ad libitum68

a control normal chow diet (ND; 13.4% fat, 5L0D LabDiet) or high-fat diet (HFD; 60% calories from fat,69

Research Diets D12492) for the indicated amount of time starting at 9 weeks old. Animals were housed in70

a specific pathogen-free facility with a 12 h light/12 h dark cycle and given free access to food and water71

except for withdrawal of food for temporary fasting associated with glucose tolerance tests. All mouse72

procedures were approved by the Institutional Animal Care and Use Committee (IACUC) at the University73

of Michigan (Animal Welfare Assurance Number D16-00072 (A3114-01), #PRO00008583), and care was74

taken to minimize su↵ering adhering to the Institute of Laboratory Animal Research Guide for the Care and75

Use of Laboratory Animals.76

2.2. Glucose Tolerance Tests77

For glucose tolerance tests (GTT), starting four hours into the light cycle, mice were fasted with ad libitum78

access to water for six hours in clean cages. A 100 mg/mL D-glucose (Sigma G7021) solution was prepared79

in sterile -/- DPBS and injected at 0.7 g/kg of body weight. Area under the curve (AUC) calculations were80

performed using the log trapezoidal method.81

2.3. Stromal Cell Isolation and Immune Cell Enrichment82

Stromal vascular cells (SVCs) were collected from adipose tissues as in [4]. After cardiac perfusion, adipose83

tissues were collected, minced finely to 3-5 mm pieces, and added to ice cold HBSS+Ca/Mg. Up to 1.5 g84

of tissue per sample was digested in 10 ml of 1 mg/mL collagenase II (Sigma C68850) in HBSS+Ca/Mg85

at 37�C for 45 minutes with vigorous shaking. Digests were filtered through bu↵er-soaked 100 micron86

cell strainers and centrifuged at 300 x g at 4C to pellet SVCs. SVCs were enriched for CD45+ immune87

cells using Biolegend MojoSort Mouse CD45 Nanobeads (Biolegend 480027), following the manufacturer’s88

protocol. Briefly, SVC pellets were resuspended in 1 mL MojoSort Bu↵er, pooling the four samples from89

each cohort into a single respective cohort tube (ND, 8w, 14w), then filtered through a 70 micron cell strainer90

and placed in 5 mL polypropylene tubes. After addition of nanobeads, samples were sequentially processed91

for magnetic separation. Three magnetic separations in total were performed on the labeled fractions for92

increased purity. Final cell suspensions were filtered through 40 micron pipette tip filters. Cell viability was93

>80% with <15% aggregation.94

2.4. Feature Barcoding and Single Cell RNA-sequencing Library Preparation95

CD45+ SVCs were feature barcoded using TotalSeqB (Biolegend) antibodies (F4/80, CD11b, Mac-2, CD3,96

CD4, CD19). Library preparation was performed by the University of Michigan Single Cell Sequencing core97

using the 10x Genomics Chromium Single Cell Kit (3’V3, #220103/PN120262). 100 million reads from up98

to 5,000 cells were collected for single cell transcript data, and 25 million reads from up to 5,000 cells were99

collected for feature barcoding data.100

2.5. Spatial transcriptomics tissue and library preparation101

Within 30 minutes of cardiac perfusion, epididymal WAT samples that were contralateral to those used for102

scRNA-seq were pre-soaked in ice cold O.C.T. Compound (VWR 25608-930) and placed in biopsy cryomolds103

(VWR 25608-922) with fresh O.C.T., rapidly frozen by immersion in isopentane cooled using liquid nitrogen,104

and kept on dry ice or at -80°C until sectioning. Fresh tissue sections were cut at 10 µm after 20 minute105

equilibration in a cryochamber set to -26�C or below with specimen arm at -40�C. Sections were placed onto106

the Visium Spatial Gene Expression slide and subsequent processing and library preparation were performed107

by the University of Michigan In Vivo Animal Core pathology laboratory and the Advanced Genomics Core108

according to the manufacturer’s protocol (10x Genomics PN-1000184).109

2.6. Tissue histology and immunostaining110

Hematoxylin and eosin (H&E) and immunostaining were performed in the ULAM In Vivo Animal Core111

pathology laboratory at the University of Michigan. After fixation for 48 hours in 10% neutral bu↵ered112

formalin, tissues were trimmed, cassetted, and processed to para�n in an automated tissue processor (TIs-113
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sueTek, Sakura). Processed tissues were embedded in para�n and sectioned at 4 microns on a rotary114

microtome (Leica Biosystems, Bu↵alo Grove, IL). Tissues were mounted on glass slides and stained with115

hematoxylin and eosin using routine protocols on an automated histostainer (Leica ST5010 Autostainer,116

Leica Biosystems), followed by coverslipping.117

2.7. Data processing118

Single cell RNA-sequencing files were processed using the 10X Genomics CellRanger (version 4.0.0) pipeline.119

The resulting filtered matrices were analyzed using scanpy [18]. Briefly, we filtered out cells that did not120

express at least 500 genes and genes that were not expressed in at least 10 cells, resulting in 13,820 cells121

and 31,053 genes across all diet conditions (1,261 ND cells, 6,123 8w HFD cells, and 6,436 14w HFD cells).122

We normalized read-counts per cell after filtering. Spatial sequencing data were processed using the 10X123

Genomics SpaceRanger (version 1.0.0) pipeline with mouse reference GRCm38, and resulting feature-barcode124

matrices were loaded into scanpy [18] for further analysis. We filtered out capture spots that expressed fewer125

than 5 genes from all subsequent analysis. We normalized read-counts per capture spot after filtering.126

2.8. scRNA-seq clustering and visualization127

Clustering was performed on cells from each time point independently using Algorithm 1. Preprocessing and128

clustering were performed using Python and the single cell gene expression package scanpy [18]. scRNA-seq129

data were normalized and log-transformed before dimension reduction using principal component analysis130

(PCA) with r = 50. We constructed the similarity matrix A using k = 9 neighbors and Euclidean distance131

prior to clustering with the Leiden clustering method [19] with resolution parameter � = 0.95. This analysis132

resulted in 18 clusters in ND, 25 in 8w HFD fed mice, and 20 in 14w HFD fed mice. Visualization of133

data was performed using uniform manifold approximation and projection (UMAP) [20]. Dimensionality134

was reduced using PCA (r = 10) on the combined set of genes with non-zero expression at all three time-135

points. Cells were passed to UMAP with the following parameters: n neighbors=50, min dist=0.25 and136

metric=‘euclidean’.137

Algorithm 1: Clustering and Visualization

Input: Data matrix Xm⇥n = (x1, ...,xn) 2 Rm⇥n where m rows are genes and n columns are cells.
Output: Cell clusters and a low dimensional projection

1: Compute the sample mean µn and the centered matrix Xc = X� µn1> where 1 is a vector of ones

2: Compute the SVD of Xc = U⌃V>

3: Construct Pn⇥r =
⇥
v1 v2 . . . vr

⇤
where each column in P is a right singular vector of Xc. Here r

can be chosen using the optimal hard threshold [21] on Xc

4: Construct a similarity matrix An⇥n from P by determining the distance between each row. The choice
of distance measure depends on the data type and user preference. Examples include Gaussian
similarity, Euclidean distance, Manhattan distance (city block distance), Kullbeck-Liebler divergence,
and correlation

5: Perform clustering: spectral or modularity clustering on A with k clusters. k can be chosen using
domain knowledge or by testing multiple values of k and evaluating the best performance. Note: k may
be  r

6: Visualization: t-SNE or UMAP to reduce the dimensions of P and visualize data colored according to
clusters

2.9. scRNA-seq cell type annotation138

Annotation of cell types after clustering was performed using ranked expression of cell-type specific mouse139

markers genes from PanglaoDB [22]. The top 50 most unique marker genes were used for each cell type140

sorted by their ubiquitousness index. Each cluster was assigned to a cell type based on the maximum141

mean rank of marker genes amongst the di↵erentially expressed genes for that cluster. A small set of 165142

CD45+ cells were also identified that did not align with major immune cell populations; this population was143

excluded from subsequent analyses. We performed di↵erential expression analysis on clusters and sorted144
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genes by their Student’s T-Test statistic computed using the scapny.tl.rank genes groups() function145

with method=‘t-test’.146

2.10. Mapping cell-type signatures to spatial transcriptomics data147

We used a conditional autoregressive-based deconvolution (CARD) model (https://github.com/YingMa0107/148

CARD) to spatially deconvolute cell type signatures of our data and estimate the strength of cell type propor-149

tions across tissue capture spots [23]. CARD was chosen over other deconvolution methods for its ability to150

leverage nearby spatial information during cell type proportion estimation using a conditional autoregressive151

modeling assumption, which imposes spatial correlation structure on the outputs. Briefly, each single cell152

was annotated for cell type and scRNA-seq count matrices and spatial transcriptomics count matrices were153

structured according to CARD documentation. Deconvolution was performed using createCARDObject()154

with parameters minCountGene=10, and minCountSpot=20. Outputs were stored as tabular files for down-155

stream analysis. CARD estimates the cell type proportions for k cell types defined given g genes at n tissue156

spots using the following non-negative matrix factorization model:157

X = BV> + E (1)

where X 2 Rg⇥n is the spatial transcriptomics data matrix, B 2 Rg⇥k is a matrix of aggregate cell type158

signatures derived from the scRNA-seq data, V 2 Rn⇥k is a matrix of cell type proportions at each tissue159

spot and E 2 Rg⇥n is a normally distributed error matrix. For further details, see [23].160

2.11. Macrophage continuum analysis161

A linear model was used to quantify cells along a user-defined continuum as in [24] and [25]. The procedure162

from [24] is generalized in Algorithm 2. Briefly, we used Ordinary Least Squares (OLS) to linearize the163

correlation between two states of interest in a given cell population, e.g., ATM-LAM or monocyte-LAM. We164

quantified each cell’s position relative to the states of interest by computing the distance between the cell165

and the each state along the OLS solution. We defined a gene set using DE between the two states with a166

Bonferroni correction for multiple-tests to ↵ = 0.05 (↵̂ = 1.65 ⇥ 10�6) and chose top genes for each pole,167

ranked by their fold change.168
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Algorithm 2: Continuum Quantification

Input:
1. Two state matrices, Sx 2 Rnx⇥m and Sy 2 Rny⇥m where nx, ny rows are the number of cells in

states Sx,Sy respectively and m columns are genes. Note that nx 6= ny, but m is assumed to be
consistent between Sx and Sy. The states Sx and Sy should be chosen as hypothetical poles of a
continuum of biological interest.

2. Data matrix D 2 Rn⇥m where the n rows are cells and the m columns are the genes, consistent
with m above. Cells in D will be quantified along the continuum defined by states Sx and Sy.

Output: Cell continuum values along user-defined axis for cells in D

1: Define signatures, tx, ty 2 Rm for states Sx and Sy. For example, a function f aggregating expression
of each gene over all cells:

t = (f(S))mi=1
. (1)

2: Define gene-set of interest. For example, select the top k di↵erentially expressed genes between Sx, and
Sy over m, ranked by their fold change.

3: Compute the similarity between each cell and the state signatures: dx = similarity(D, tx) and
dy = similarity(D, ty). The choice of similarity measure depends on the data and user preference.

4: Determine the continuum axis with respect to Sx. For example, using ordinary least-squares (OLS),
structure the following minimization problem:

min
w

||Xw � dy||22, (2)

where Xn⇥2 = (dx,1) 2 Rn⇥2 and 1 is a column vector of ones. The solution to Equation 2 is:

w =
�
X>X

��1

X>dy, (3)

where w is a vector containing the slope w0 and the intercept w1 of the line of best fit for the data.

5: Compute the position along the continuum axis for each cell. Let d̄y be the predicted similarity values
obtained from the OLS solution. We obtain a vector of positions along the continuum, d̄y, using
Equation 4:

d̄y = Xw (4)

Let the coordinates for each cell along the continuum axis be Cn⇥2 = (dx, d̄y) 2 R2

6: Compute the distance along the continuum axis for each cell with respect to a reference point, p. For
example, the reference point may be defined as the cell with the highest similarity to either pole. Let
p1⇥2 = (x, y) 2 R2, then the distances, h, are defined by

h = ||p�C||2. (5)

For convenience, we rescale distances h using:

h =
h�min(h)

max(h)�min(h)
(6)
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2.12. Ligand-receptor colocalization169

We obtained mouse ligand-receptor (LR) pairs from [1]. We defined colocalization the simultaneous expres-170

sion of ligand, l and receptor r at a given tissue-capture spot t. The colocalization ‘strength’ or l and r at t171

was quantified using the geometric mean of normalized expression:172

c(l, r)t =
p
ltrt (7)

Where lt and rt are the expression of l at t and r at t respectively. By using the geometric mean we ensure173

that c(l, r) = 0 where either lt = 0 or rt = 0. LR pairs are said to be colocalized wherever c(l, r)t > 0.174

Time-dependent colocalization between LR pairs was taken as a necessary, but not su�cient condition in175

determining possible signalling pathways. We computed the proportion of spots where l and r were localized176

and normalized the proportion to 1k spots to account for di↵erences in tissue-section sizes.177

2.13. Construction and analysis of network models178

We aim to construct a network model that preserves spatial relationships in tissue structure. Let G be a179

finite, simple, and undirected graph with node set V (G) = {1, 2, . . . , n} and edge set E(G) ⇢ V (G)⇥V (G).180

Let eij be an edge between node i and node j. The n nodes of G are chosen from the set of tissue-capture181

spots from the spatial transcriptomics data matrix. Thus, each node i has a specified spatial position in a182

2-dimensional Euclidean plane, pi 2 R2. Edges are defined between nodes as a function of (1) their Euclidean183

distance and (2) their nodal properties determined by the biological question of interest. In the simplest184

case, we may define a radius, r, which is the maximum physical interaction distance between two nodes. The185

strength of the relationship between node i and node j is encoded in the edge weight wij . Edge weights are186

defined by a function, f : V (G)⇥ V (G) ! R.187

wij =

(
f(i, j), if ||pi � pj ||2 < r

0, otherwise.
(8)

A network defined this way captures the spatial patterning of f in the local neighborhood constrained by188

r. It is also useful to define the weighted adjacency matrix of G to be the n ⇥ n matrix A(G) with rows189

and columns indexed by V (G). We will denote A(G) as A and the entry (i, j) of A as A(i, j) = aij . The190

weighted adjacency matrix may be defined:191

aij =

(
wij , if i 6= j

0, otherwise.
(9)

For example, we define LAM-networks based on the harmonic mean of Mac5 CARD estimated proportions192

over neighboring tissue spots [23]. In this case, the choice of the harmonic mean is based on the interpretation193

of CARD outputs as proportions of the tissue spot explained by a given cell type signature [23]. Let mi be194

the proportion of Mac5 cell type at tissue spot i:195

f(i, j) =
2

(1/mi + 1/mj)
(10)

The concept of network centrality is motivated by identification of ‘important’ nodes of a network [26]. We196

focus on two measures of network centrality: degree centrality (Equation 11) and eigenvector centrality197

(Equation 12). Degree centrality is a ‘local’ measure of connectivity whereas eigenvector centrality is a198

‘global’ measure of centrality. Let cdi denote the degree centrality of node i. Degree centrality is the sum of199

all the edge weights of node i,200

cdi =
1

n

nX

j=1

aij . (11)
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The eigenvector centrality of each node, defined here up to a scale factor, is proportional to the sum of the201

eigenvector centralities of its neighbors, that is:202

cei =
1

�

nX

j=1

ai,jc
e
j (12)

where ce is an eigenvector of A and � is the corresponding eigenvalue. The centrality is taken to be an203

eigenvector that corresponds to the largest eigenvalue of A.204

2.14. Adipocyte sizing205

Images of H&E stained adipose tissue (Materials and Methods: Tissue histology and immunostaining)206

were analyzed for adipocyte size using the Python package skimage [27]. Briefly, images were converted to207

greyscale and subjected to an unsharp masking filter with parameters: amount=75 and amount=100. Filtered208

images were filtered again using a median filter with default parameterization followed by morphological209

reconstruction using method=‘erosion’ to enhance contrast between neighboring cells. Finally, images were210

filtered using a Gaussian kernel with simga=3. Processed images were thresholded at the 25th percentile211

before segmentation using the Watershed method. Properties of each segmented cell were obtained using212

measure.regionprops(). We computed the circularity, C of all segmentation using Equation 13.213

C = 4⇡
A

p2
(13)

Where A is the estimated area and p is the estimated perimeter of the segmented cell. We filtered regions214

with 0.4 < C < 0.9 and regions with areas above or below 2.32� from the time-dependant mean.215

2.15. Histological crown-like structure quantification216

Tissue images captured during spatial transcriptomics tissue preparation (Materials and Methods: Spatial217

transcriptomics tissue and library preparation) were analyzed using a segmentation algorithm to classify each218

pixel into one of four categories: CLShi, CLSmid, Other, and Adipocyte based on 3-channel pixel intensity val-219

ues. Briefly, we used the Python package skimage to perform Multi-Otsu Thresholding on the 14 week RGB220

image tensor [27]. We then extracted basic features using feature.multiscale basic features() with the221

following parameters: intensity=True, edges=False, texture=True, sigma min=1, and sigma max=16. We222

developed a Random Forest segmentation model with 50 estimators using the Python package sklearn. We223

then used the segmentation model to analyze the remaining diet conditions. Regions surrounding spatial224

capture spots were segmented, and the proportion of pixels in each category were computed and com-225

pared.226
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3. RESULTS227

3.1. Dynamic remodeling of adipose tissue is concurrent with glucose intolerance in early obesity228

Our model of diet-induced obesity included mice fed a normal chow diet (ND) or a 60% high fat diet (HFD)229

for 8 or 14 weeks. HFD feeding increased body weight and epididymal white adipose tissue (eWAT) mass as230

expected (Figure 1B-D). Mean adipocyte area and frequency of large adipocytes increased at 8 and 14 weeks231

(Figure 1G-H, Methods 2.14). Glucose tolerance tests showed increased area under the curve (AUC) starting232

at week 1, with the largest AUC and variability at weeks 7 and 8 (Figure 1E-F), suggesting development of233

insulin resistance.234

3.2. Single cell profiling235

It is well established that obesity induces changes in adipose tissue immune cells [10, 8], including accumula-236

tion of ATMs that promote metabolic dysfunction [2, 3]. However, the dynamics of these phenotypes remain237

incompletely understood. To examine immune cell dynamics in early and chronic obesity we performed238

single cell RNA-sequencing (scRNA-seq) on CD45+ cells from perigonadal (eWAT) fat pads of mice fed ND239

or fed a HFD for 8 or 14 weeks (n=4 per cohort).240

Clustering and annotation of 13,820 single cells identified six broad immune cell populations: monocytes, T241

cells, B cells, dendritic cells, adipose tissue macrophages (ATM), and natural killer (NK) cells (Figure 2A),242

Methods Section 2.8). Antibody feature barcodes for select surface proteins that were used with scRNA-243

seq confirmed immune cell annotations (Figure S3, Methods Section 2.4). Annotations were additionally244

confirmed by comparison to cell type-specific gene expression profiles from public databases and published245

single cell genomic datasets (Figures S4-S6).246

Immune cells were then evaluated for changes across diet conditions. ATMs increased as expected with247

obesity, comprising 28%, 36%, and 60% of CD45+ cells in mice fed ND, 8 weeks of HFD, and 14 weeks of248

HFD, respectively (Figure 2E, Figure S1A). Dendritic cell and monocyte populations also increased with HFD249

feeding, while the T cell population was highest at 8 weeks and decreased by 14 weeks of HFD feeding.250

Altogether, our data capture expected WAT immune cell population dynamics in obesity progression and251

highlight myeloid cell accumulation in chronic obesity.252

3.3. ATM heterogeneity spans five subtypes across early obesity253

To define ATM heterogeneity, clustering was performed on ATMs from all diet-conditions (Methods Section254

2.8). Five ATM subclusters were identified corresponding to resident (Mac1), proinflammatory (Mac2,255

Mac3), and lipid-associated (Mac4, Mac5) macrophages (Figure 2C, Methods Section 2.8).256

Consistent with previous reports, resident ATMs (Mac1) expressed Lyve1, Timd4, Mrc1/Cd206, and Stab1257

(Figure 2C-E,G and Figure S9) [28, 29, 11].258

Proinflammatory ATMs (Mac2, Mac3) were identified based on expression of genes encoding proinflammatory259

cytokines including Il1b, Tnf and Il6 and low expression of e↵erocytosis markers (Mertk, Axl, Cd163,260

Trem2 ). Among proinflammatory ATMs, Mac2 was enriched for additional proinflammatory genes Tnf,261

Il1b, Ccl2, Nlrp3 and the M2 marker Mrc1 (Cd206). Mac3 had high expression of Itgax/Cd11c and antigen262

presentation genes (H2-Ab1, H2-Eb1, Cd74 ) and was low in Adgre1 (F4/80), suggesting an antigen presenting263

ATM similar to [30]. Importantly, Mac3 was low in ATDC markers including Zbtb46, Clec9a, and Cd24a264

(Figure S10) [11]. Taken together, these data indicate the presence of proinflammatory macrophages that265

participate in monocyte recruitment and activation of T cells.266

Finally, Mac4 and Mac5 ATMs emerged with HFD feeding and expressed genes consistent with lipid-267

associated macrophages (LAM) including Trem2, Cd9, and Gpnmb (Figure 2G) [10]. Despite transcriptional268

similarities, Mac4 and Mac5 di↵ered in magnitude of LAM marker expression (Figure S8, Figure 2G).269

Overall, these data highlight an increase in ATM diversity with HFD feeding.270

3.4. Lipid-associated ATMs overtake proinflammatory ATMs in chronic obesity271

Next, we examined ATM phenotype dynamics during HFD feeding. To asses broad changes in the ATM tran-272

scriptional program, we examined expression of gene sets associated with phenotypic shifts in macrophages.273
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Figure 1: Diet-induced obesity and adipose tissue remodeling. (A) Time course for mice fed a 60%
high-fat diet (HFD) for 8 weeks (8w) or 14 weeks (14w), versus normal diet (ND) controls. (B) Total body
weight by week on HFD. (C) Final body weight at time of tissue collection. (D) Epididymal adipose tissue
(eWAT) weight (top) and eWAT as a percentage of body weight (bottom). (E) Glucose tolerance test data
showing area under the curve (AUC). (F) Glucose measurements for cohorts one week prior to endpoint
tissue collection. (G) Frequency distribution and average adipocyte size in eWAT of ND, 8w, and 14w
cohorts. (H) H&E images of adipose tissue sections at ND, 8 and 14 weeks on HFD.

ATMs showed progressively increased gene expression related to lipid metabolism, migration, catabolism, and274

cell death (Figure 2B), supporting altered metabolism and survival processes in response to obesity.275

We found that resident ATMs maintained a stable population over the course of HFD feeding (Figure 2C-276

E). Proinflammatory macrophages were present in lean eWAT through 8w of HFD feeding but decreased277

substantially after 14w of HFD feeding (Figure 2C-E). In contrast, LAMs emerged with HFD feeding and278

continued to accumulate in chronic obesity (Figure 2C-E).279

Given that other immune cells also have imbalanced subtypes in obesity and to provide additional context280
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Figure 2: Single cell data on macrophage phenotypes in obesity. (A) immune cell population
changes over the course of diet-induced obesity. (B) Changes in expression in expression of genes in select
KEGG pathways in the macrophage subpopulation. (C) UMAP visualization of ATM clusters from scRNA-
seq data. (D) Proportions of each ATM cluster at each time point. (E) The number of cells per gram
of adipose tissue for each cell type in each diet-condition.(F) ATMs subtypes per gram per cohort. (G)
Expression of key genes across ATM clusters. (H) Trem2 expression in ATMs.

for ATM phenotypes during the time course, we further analyzed the single cell data for subtypes of T cells,281

monocytes, and dendritic cells. Known subtypes that change in adipose tissue with obesity were identified282
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including decreased regulatory T cells and increased conventional T cells and type 2 conventional dendritic283

cells (Figure S7) [10, 11].284

Taken together, these data show that while proinflammatory ATMs increase during adipose tissue hypertro-285

phy, LAMs become the most prominent ATM subtype in chronic obesity.286

3.5. LAM subtypes form a monocytic lineage287

We observed that between Trem2+ LAMs, Mac4 outnumbered Mac5 at 8w (Figure 2D, F), but Mac5 were288

higher at 14w of HFD feeding (Figure 2D, F). Since LAMs are reported to be monocyte-derived [10], we289

hypothesized that cells in the Mac4 cluster were in transition along a monocyte-LAM lineage. Examining290

DE genes, 287 distinguished Mac4 and monocytes, while 834 distinguished Mac5 and monocytes (Figure291

S5), suggesting increasing divergence across monocytes, Mac4, and Mac5. We then queried monocytes,292

Mac4, and Mac5 for expression of genes related to monocyte di↵erentiation and macrophage maturity. The293

monocytes markers Cx3cr1 and Ly6c2 were decreased in the Mac4 cluster, but were consistently higher in294

Mac4 compared to Mac5 (Figure 3A). Cells the Mac4 cluster also showed intermediate expression of LAM295

marker genes Lgals3, Trem2 and Ctsl (Figure 3B). Mac4 also expressed Ms4a7, a marker of monocyte-296

macrophage di↵erentiation, more highly than both monocytes and Mac5 [31].297

To further examine the hypothesis that Mac4 cells are pre-LAMs, we correlated them with resident ATMs298

(Mac1 in ND), monocytes, and chronic obesity LAMs (Mac5 in 14w). We found that Mac4 cells have299

intermediate correlation with the LAM and monocyte signatures, but low correlation with the resident ATM300

signature (Figure 3C).301

Taken together, our data support that Mac4 cells are recently di↵erentiated macrophages that are in process302

of acquiring the LAM phenotype.303

Figure 3: Emergence of the LAM phenotype. (A) Normalized expression of monocyte marker genes
for key myeloid cell types. (B) Normalized expression of LAM marker genes for key myeloid cell types. (C)
Three-dimensional profiling of monocytes, resident ATMs (Mac1), and LAMs (Mac4/Mac5). Cell position
represents simultaneous correlation with gene expression signatures derived from monocytes (MN, yellow
axis), resident ATMs (rATM, purple axis), and LAMs (green axis).
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3.6. Spatial transcriptomics captures LAM dynamics in obesity304

The spatial context of ATM reprogramming within WAT remains poorly understood. Thus, to establish305

the spatial dynamics of LAM emergence with obesity, we performed spatial transcriptomics (Methods 2.5)306

on eWAT sampled from mice fed ND or fed a HFD for 8 or 14 weeks. We analyzed a total of 7,424 tissue307

capture spots across diet conditions.308

Immune cell transcriptome profiles were mapped onto tissue-specific locations using conditional autoregressive-309

based deconvolution (CARD) (Methods 2.10) [23, 32]. We found strong emergence of the LAM phenotype310

across tissue spots in chronic obesity, consistent with our single cell data (Figures 4A-B, 5B, Figures S12A-311

B). Monocytes also increased in spatial transcriptomics data in early obesity (Figures 4A-B, 5B, Figures312

S12A-B). While pre-LAM spots were highest in early obesity, LAM spots were highest in chronic obesity313

(Figure S12B). Further, pre-LAMs and LAMs were highly spatially correlated at 8w (r = 0.6) but not at314

14w (r = 0.2) (Figure S14), suggesting that LAM dynamics are spatially coordinated. Taken together, these315

results support LAM accumulation in WAT via di↵erentiation from circulating monocytes.316

3.7. LAM networks are hubs of cell death317

LAMs are associated with development of ‘crown-like structures’ (CLS), which are in turn correlated with318

development of insulin resistance [33, 34, 14]. CLS are well-studied [9, 35], though a spatio-temporal under-319

standing of the drivers of CLS formation is lacking. We observed CLS as early as 8w, which prompted us320

to characterize the transcript patterns associated with early CLS formation. We developed cell type-specific321

network models based on spatial gene expression patterns and used the models to understand the dynamics322

of adipose tissue organization in obesity (Figure 5A, Methods 2.13).323

Network models represent local tissue regions where a given cell type is highly localized. In the models,324

nodes represent tissue capture spots and edges represent interactions between adjacent nodes. Edges were325

defined by the harmonic mean of CARD-predicted proportions between all adjacent pairs of nodes for a326

given cell type (Methods 2.13). The structural properties of the cell type networks were quantified using327

graph-theoretic measures, which in turn revealed properties of tissue organization (Figure 5A, Methods 2.13)328

[26].329

Network models showed higher local concentrations of adaptive immune cells (B cells, T cells) in week 8 than330

in lean tissue or week 14, which coincided with the emergence of proinflammatory ATMs (Figure 5E). In331

addition, proinflammatory Mac3 had high spatial correlation with T cells at 8w (r = 0.6) (Figure S14). These332

results suggest T cell activation, which is supported bythe emergence of T conv at 8w (Figure S7).333

In contrast, local LAM concentrations increased monotonically over the course of HFD feeding, further sup-334

porting that ATM reprogramming toward the LAM phenotype is spatially coordinated. To further investigate335

LAM spatial patterning, we randomly sampled tissue spots from all three diet conditions and constructed336

150-node networks around the sampled spot (Figure 5C). As expected, high local LAM concentrations were337

absent in lean tissue (Figure 5C, E). With HFD feeding, LAM concentration increased (Figure 5C, Figure338

S16). We then performed di↵erential expression analysis between regions of high and low LAM concentra-339

tions and found that regions of high LAM concentrations were enriched in genes related to phagocytosis,340

autophagy, and cell death including Ctsl, Ctss, Lamp1, Ctsd, and Ctsb (Figure 5D). Altogether, these results341

identify spatially coordinated accumulation of LAMs that are engaged in clearance of excess lipids and dead342

adipocytes.343

3.8. LAM networks map onto histologically identified CLS344

CLS are defined by an accumulation of fibrotic and necrotic material from dead or dying adipocytes and345

ATMs [35, 9]. To determine the degree to which the LAM network was spatially aligned with CLS, we first346

developed an image segmentation algorithm to classify CLS regions from H&E images captured in parallel347

with spatial transcriptomics data (Figure 6A, Methods 2.14). The algorithm identified CLShi and CLSmid348

regions of fibrotic and necrotic material that increased with obesity (Figure 6B). In contrast, area identified349

as adipocytes was largest in week 8 and decreased in week 14 (Figure 6C), which is consistent with adipocyte350

expansion in early obesity. We then aligned CLS regions with spatial transcriptomics data and found that351

significant colocalization of LAMs with CLS in both early and chronic obesity (Figure 6D). In contrast,352

pre-LAMs colocalized with CLS regions only in early obesity (Figure 4, Figure S12).353
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Figure 4: Spatial patterning of the monocyte-LAM lineage. (A) Spatial patterning of monocytes,
pre-LAMs (Mac4) and LAMs (Mac5) over the course of HFD feeding. Edge weights are the harmonic mean
of CARD proportions for neighboring capture spots. Histograms show the distribution of edge weights for
the whole tissue section and are colored according to the mean edge weight on the same color scale. (B)
Edge weight distribution by cell type and diet condition.

Beyond correlation, we sought to characterize the physical organization of immune cell types within WAT354

and their relationship to CLS. We used eigenvector centrality, a global measure of nodal importance in a355
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network, to quantify cell type-specific structure within the tissue [26]. We then correlated per-spot centrality356

for each immune cell type network with per-spot CLS prevalence (Figure 6G). We found that critical hubs357

of innate immune cells aligned with early CLS in week 8 (Figure 6G). Central nodes in pre-LAM and LAM358

networks aligned with CLS both in early and chronic obesity (Figure 6E-G). In contrast, adaptive immune359

cell types (B cells, T cells) exhibited negative correlation with CLS in all diet conditions.360

Taken together, these results capture the dynamic, large-scale reorganization of immune cells in early obesity361

and the spatial concentration of LAMs in CLS regions in chronic obesity.362

3.9. Myeloid signaling shapes nascent CLS363

Given the early presence of CLS and reorganization of myeloid cell types in week 8, we sought to characterize364

intracellular signaling during formation of CLS. We therefore quantified spatially colocalized expression of365

ligand-receptor (LR) pairs throughout WAT and within the monocyte-LAM lineage.366

We first cataloged tissue-wide changes in LR expression. We identified the LR pairs that increased in early367

obesity and chronic obesity (Figure 7A-B) and the LR pairs that decreased in early and chronic obesity368

((Figure 7C-D, Methods 2.12). As expected, global LR analysis revealed increased metabolic activation369

(Lrp1, Lpl, App, Apoe), regulation of cellular migration (Adipoq, Igf1, Thbs1, Apoe), regulation of tissue370

remodeling (Cola1, Cola2 ) and regulation of immune response (Cd36, Cd81, C3 ) (Figure 7A-D, Figure S15)371

as predominant biological processes associated with obesity-induced WAT remodeling.372

To identify the myeloid-specific signaling that may contribute to the emergence of CLS, we investigated LR373

pairs that were both di↵erentially expressed in a myeloid cell subtype and colocalized with one another in374

the spatial transcriptomics data (Figure 7E, Methods 2.12). Pre-LAMs expressed multiple ligands for LAM375

receptor Lrp1, including App, Plau, Lpl, Apoe, Calr and C1qb. Additionally, pre-LAMs expressed ligands376

App, Plau, Apoe that had multiple receptors throughout the monocyte-LAM lineage.377

Thus, we identify a novel set of signaling molecules expressed in early obesity along the monocyte-LAM378

lineage that may significantly influence the nascent CLS microenvironment.379
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Figure 5: LAM networks and Hubs of Cell Death. (A) Workflow schematic. Network models are
defined based on properties of neighboring tissue-spots. Analysis of network structure reveals principals of
tissue organization. Di↵erential expression analysis may be used to characterize the transcriptional signature
of niches. (B) CARD-predicted cell type proportions for myeloid cell types over the course of HFD feeding.
(C) Nine randomly sampled 150-node networks based on LAM signature (Mac5) over time. (D) Top 10
KEGG pathways for di↵erentially expressed genes from LAM networks at 8 weeks and 14 weeks, compared
to neighboring spatial capture spots. (E) Connectivity of tissue-wide networks for all immune cell types
over time. Connectivity is the distribution of network edge weights, defined as harmonic mean of CARD
predicted proportions between neighboring spots. Three asterisks denote that comparison between each time
point (ND vs. 8w, 8w vs. 14w and ND vs. 14w) was significant (↵ = 0.05); a single asterisk denotes that
the specific comparison was significant (↵ = 0.05).
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Figure 6: Histological Quantification of Crown-Like Structures (CLS). (A) H&E images captured
during spatial transcriptomics library preparation (top) and segmentation results quantifying crown-like
structures (bottom). (B) Segmentation class label proportions of 100 randomly sampled 500µm regions
from each diet condition. (C) Adipocyte area from images regions in (B). (D) Spot correlation between
myeloid cell type proportions and segmentation results from a 150µm region around each capture spot.
Asterisks denote significant Pearson correlation values (↵ = 0.01). (E) Spot importance in global cell type
networks (eigenvector centrality) in HFD feeding conditions. Eigenvector centrality highlights regions of
densely localized cells in the tissue. (F) CLShi segmentation results in 150µm regions around each capture
spot at 8 and 14 weeks. (G) Spot correlation between CLShi segmentation results and eigenvector centrality
for each diet-condition, by cell type. Asterisks denote significant Pearson correlation values (↵ = 0.01).

19

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted April 20, 2023. ; https://doi.org/10.1101/2022.02.26.482134doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.26.482134


Figure 7: WAT ligand-receptor signaling dynamics. (A) Ligand-receptor (LR) pairs with most in-
creased colocalization during the first 8 weeks of HFD feeding. Dot sizes are LR colocalization per 1k capture
spots (same as x-axis) and dot colors indicate diet-condition. (B) LR pairs with most increased colocaliza-
tion during the last 6 weeks of HFD feeding. (C) LR pairs with most decreased colocalization during the
first 8 weeks of HFD feeding. (D) LR pairs with most decreased colocalization during last 6 weeks of HFD
feeding. (E) Di↵erential expressed myeloid LR pairs with non-zero colocalization in spatial data.
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4. DISCUSSION380

Changes in mammalian adipose tissue immune cells persist even in weight loss [15, 12], highlighting the381

need to better understand mechanisms that promote adipose tissue dysfunction. Our study elucidates ATM382

phenotype dynamics in their spatial context in early and chronic obesity by combining single cell RNA-seq,383

spatial transcriptomics, and imaging over time.384

Our work supports increased phenotypic diversity in ATMs with obesity that is consistent with other single385

cell work [10, 24, 35, 11]. Our data captured the dramatic increase in ATMs that were phenotypically386

distinct from resident ATMs in lean tissue (Figure 3H), and ATMs overall showed metabolic and catabolic387

activation in obesity (Figure 3A). We also show that the LAM phenotype became dominant among ATMs388

in chronic obesity [10, 8, 14] 3B-G). These data are consistent with other work demonstrating that ATMs389

acquire non-classical activation states in obesity [36, 37, 14, 24].390

LAMs are reported to be anti-inflammatory, tissue-remodeling macrophages that are highly metabolically391

active; their transcriptional signature is associated with phagocytosis and endocytosis [13] and they have392

elevated expression of markers such as Trem2, Lgals3 and Ctsl [10]. Our data agree with these findings and393

additionally identify a novel population of pre-LAMs as a closely related precursor to LAMs (Figure 3H).394

Significant appearance of pre-LAMs precedes accumulation of LAMs and coincides with initial formation of395

CLS. Spatial analyses further support pre-LAM localization to CLS in early obesity and suggest pre-LAM396

signaling through App, Apoe, Lpl, and Lrp1 as drivers of CLS formation.397

These molecules implicate disruption of lipid processing pathways in development of tissue dysfunction. Dys-398

regulated lipid processing is associated with oxidative and ER stress that alters cell survival and macrophage399

phenotype [38, 39, 40, 41], which are in turn hallmarks of disease progression in type II diabetes and neuro-400

logical disorders [42, 41].401

Limitations of this study include low cell numbers in our single cell data (1.2k-6.4k cells), which limits402

identification of rare but functionally important cell types. Although we identified multiple ATM subtypes,403

other immune cell subtypes were less identifiable, potentiality due to low cell numbers. Known shifts in404

subtypes include increased CD8+ T e↵ector and CD4+ TH1 cells and decreased regulatory T cells in obesity405

[43, 44, 45]. In addition, spatial transcriptomics data included only one tissue section per diet condition406

and were relatively low depth with a median of 91-173 genes identified per capture spot. We therefore used407

nearby capture spots to improve cell type identification at each spot used nearby capture spots to infer cell408

type proportions at each capture spot [23]. Finally, data were only collected from male mice which limits409

comparisons based on sex.410

Conclusions411

Our data revise current understanding of ATM phenotypic shifts in obesity. We identify important mile-412

stones in monocyte-LAM development and provide spatial context for myeloid signaling that is implicated413

in metabolic dysfunction. Our study provides novel clarity on the cell types and signaling involved in CLS414

formation and accumulation, including the spatial dynamics of lipid-associated macrophage development in415

obesity.416
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