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Abstract

Precision oncology is gradually advancing into mainstream clinical practice, demonstrating

significant survival benefits. However, eligibility and response rates remain limited in many

cases, calling for better predictive biomarkers. Here we present ENLIGHT, a

transcriptomics-based computational approach that identifies clinically relevant genetic

interactions and uses them to predict a patient’s response to a variety of therapies in multiple

cancer types, without training on previous treatment response data. We study ENLIGHT in two

translationally oriented scenarios: Personalized Oncology (PO), aimed at prioritizing treatments
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for a single patient, and Clinical Trial Design (CTD), selecting the most likely responders in a

patient cohort. Evaluating ENLIGHT’s performance on 21 blinded clinical trial datasets in the PO

setting, we show that it can effectively predict a patient’s treatment response across multiple

therapies and cancer types (obtaining an aggregate odds ratio of 2.59). Its prediction accuracy is

better than previously published transcriptomics-based signatures and is comparable to that of

supervised predictors developed for specific indications and drugs, without requiring specific

response data for training. In combination with the IFN-γ signature, ENLIGHT achieves an odds

ratio larger than 4 in predicting patients’ response to immune checkpoint therapy. In the CTD

scenario, we demonstrate that ENLIGHT can potentially enhance clinical trial success for

immunotherapies  and other monoclonal antibodies (mAb) by excluding non-responders, while

overall achieving more than 90% of the response rate attainable under an optimal exclusion

strategy. In sum, in this retrospective study, ENLIGHT demonstrably enhances the ability to

predict therapeutic response across multiple cancer types from the bulk tumor transcriptome.

Introduction

The current paradigm of precision oncology (PO), rooted in the 1990s development of

trastuzumab and imatinib, focuses on matching individual targets to molecularly derived

therapies (Deborah B. Doroshow, 2020; Schwartzberg et al., 2018). In the past 20 years, cancer

therapeutics, driven by treatments developed for specific oncogenes and by the advent of

immunotherapy, has overwhelmingly dominated regulatory drug approvals (Olivier et al., 2021).

For patients with a qualifying biomarker and otherwise limited treatment options, this paradigm

can demonstrate improvement in clinical outcomes (Cutler, 2020; Davies et al., 2002; Paez et al.,

2004; Quinn et al., 2021), as in the I-PREDICT study (Sicklick et al., 2019), which uses DNA

biomarkers to identify novel combination therapies for patients. However, large studies such as

NCI-MATCH demonstrate the limitations of the variant-centered biomarker approach, with less

than 20% of patients ultimately assigned to single-therapy treatment arms (Flaherty et al.,

2020). Response rates in the setting of targeted therapy also show broad ranges, between

25-75% of patients (Gyawali et al., 2020). Although qualification for immunotherapy varies by
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cancer type, often only 20-40% of patients respond to treatment (Sharma et al., 2017; Topalian

et al., 2016).

One strategy to broaden which patients qualify for treatment and to improve response

rates is to leverage omics data beyond genomics, with the main focus of current research being

on transcriptomics. Clinical programs such as University of Michigan’s MIONCOSEQ have sought

to integrate DNA and RNA-based sequencing to validate and support existing biomarkers

(Roychowdhury and Chinnaiyan, 2016; Roychowdhury et al., 2011). WINTHER was a prospective

umbrella trial in which patients received personalized monotherapy or combination therapy

based on genomic or transcriptomic data (Rodon et al., 2019). This was the first clinical trial to

examine the utility of RNA sequencing (RNA-seq) in a prospective clinical setting by targeting

highly expressed cancer-associated genes, demonstrating that the tumor transcriptome could

be used to provide complementary clinical information to DNA.

Other attempts to identify predictors of response from the transcriptome have only

been studied in limited contexts to date (Ayers et al., 2017; Jiang et al., 2018; Slamon et al.,

2001; Van De Vijver Yudong D. He Augustinus AM Hart Mao Mao Hans L. Peterse, 2002).

Notable examples include Sammut et al. (Sammut et al., 2022) who demonstrated the ability of

RNA-seq to improve prediction of pathologic complete response in early breast cancer (a space

where RNA-seq has already demonstrated clinical utility (Cardoso et al., 2016; National

Comprehensive Cancer Network, Accessed Feb, 15 2021; Sparano et al., 2018)) beyond

DNA-seq, pathology imaging and clinical data; Jiang et al. (Jiang et al., 2018) and Cui et al. (Cui

et al., 2021) who built predictors for response to immune checkpoint blockade based on the

tumor’s immune microenvironment, reflected by RNA data; and the OncoTarget / OncoTreat

program at Columbia University that builds on using RNA-seq alone by mapping protein

interaction networks derived from the transcriptome to prioritize cancer drivers for treatment

and was evaluated in pancreatic neuroendocrine tumors (Alvarez et al., 2018). These important

and novel approaches have, however, been limited to highly specific clinical contexts and

treatments and each has different data requirements. Using such approaches in a scenario
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where multiple treatment options per patient exist is therefore a very challenging task (Feng et

al., 2021; Malone et al., 2020; Topalian et al., 2016; Tsimberidou et al., 2020).

In a recent effort to overcome these limitations and develop a uniform systematic

approach for stratifying patients to multiple therapies based on the tumor transcriptome, Lee et

al. (Lee et al., 2021) have demonstrated that synthetic lethality (SL) and synthetic rescue (SR)

interactions can be leveraged to predict treatment response via the transcriptome. An SL

interaction between two genes means that the simultaneous inactivation of both genes reduces

the viability of the cell while the individual inactivation of each does not (Lord and Ashworth,

2017; Shen and Ideker, 2018). An SR interaction is one in which the inactivation of one gene

reduces cell viability, but an alteration of another gene's activity, termed the rescuer, restores

(rescues) viability (Eischen et al., 2001; Velimezi et al., 2018). Their framework, SELECT, mines

large-scale in-vitro and TCGA patient data to computationally infer putative pairs of Genetic

Interactions and uses these interactions to predict drug response and prioritize a variety of

treatments. It showed that tumor expression could be analyzed systematically to predict

patients’ response to a broad range of targeted therapies and immunotherapies in multiple

cancer types with high accuracy. However, SELECT has a few notable limitations, which we have

set to remedy.

To this end, here we substantially extend the work of Lee et al. and present ENLIGHT, a

transcriptomics-based precision oncology pipeline based on the GI-networks approach. First,

our work has been motivated by a survey we have conducted, where we evaluated the ability of

SELECT to identify GI networks for the genes that are inhibited by 105 FDA approved targeted

and immunotherapies, finding that it could build such GI networks for only 67% (70/105) of

them, thus limiting its possible use in clinical settings. Addressing this challenge with a new

GI-based scoring algorithm that considers different types of GIs concomitantly, ENLIGHT

successfully extends the scope of SELECT to all these 105 therapies. Second, SELECT had focused

on maximizing the area under the ROC curve (AUC) – a measure commonly used in data science

but not directly applicable in clinical settings. In contrast, ENLIGHT’s design and parameter

optimization is aimed at maximizing its performance on three key translational tasks: (i) Drug
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coverage – determining the range of drugs for which predictions can be obtained and extending

the prior range of SELECT; (ii) Personalized oncology – evaluating and prioritizing multiple

candidate treatment options for individual patients. Since a variety of treatment options are

considered in this scenario, a good test should primarily have a high Positive Predictive Value

(PPV, also known as precision) taking priority over sensitivity (recall), which can be moderate;

(iii) And finally, improving Clinical Trial Design (CTD) by excluding patients that are unlikely to

respond to the treatment by employing a test that has a high Negative Predictive Value (NPV).

To evaluate ENLIGHT’s performance, we analyzed 21 new cohorts not analyzed in the

SELECT study, overall spanning 697 patients receiving 15 different drugs in 11 cancer indications,

and importantly, kept them blinded for evaluation purposes. We find that while SELECT is

reassuringly predictive on the subset of those datasets for which it could produce results,

ENLIGHT still performs better when evaluated using clinically relevant performance measures.

We show that (i) ENLIGHT produces predictions for all the drugs used in these cohorts; (ii) High

ENLIGHT-Matching Scores (EMS) are associated with better response (odds ratio (OR) = 2.59;

95% confidence interval [1.85, 3.55]; p=3.41e-8). (iii) ENLIGHT can be used to successfully

exclude patients from clinical trials, achieving overall more than 90% of the response rate

attainable under an optimal exclusion strategy for both immunotherapies and targeted

monoclonal antibody (mAb) treatments. Finally, we find that ENLIGHT performs as well as

supervised tests developed for specific indications and drugs and better than other known

transcriptomics-based predictive and prognostic signatures. These results showcase the

effectiveness of ENLIGHT as a tool to improve translational oncology research.

Results

Tuning and Evaluation Datasets

To tune the parameters for ENLIGHT, including the GI network size and a decision threshold on

the EMS, that is used for predicting a favorable response (see below), we selected eight tuning
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sets – six datasets (Dieci et al., 2016a; Guarneri et al., 2015; Kakavand et al., 2017; Pinyol et al.,

2019a; Riaz et al., 2017; Rizos et al., 2014) already analyzed in Lee et al. (Lee et al., 2021) along

with two other datasets (Prat et al., 2014; Watanabe et al., 2011) from the public domain. These

were selected as they span a range of different treatments, therapeutic classes, response rates

and sample sizes, reflecting diverse real-world data, covering five targeted therapies and one

immune checkpoint blockade (ICB) therapy.

To study the value of ENLIGHT on real world data, which was not previously analyzed by

either SELECT or ENLIGHT, we surveyed the public domain (GEO (Edgar et al., 2002),

ArrayExpress (Athar et al., 2019), CTRDB (Liu et al., 2022) and the broader literature) for

available datasets of patients receiving targeted or immunotherapies, containing both

pre-treatment transcriptomics and response information. In addition, we publish here a new

dataset of breast cancer patients who received Alpelisib or Ribociclib that was obtained as part

of a collaboration with Massachusetts General Hospital (MGH). Overall, we identified, obtained

and set aside 21 datasets (Ascierto et al., 2016; Atwood et al., 2015; Birkbak et al., 2018; Bossi

et al., 2016; Byers et al., 2013; Cui et al., 2021; Dieci et al., 2016b; Foà et al., 2014; Hsu et al.,

2021; Lassman et al., 2022; Liu et al., 2012; Magbanua et al., 2021; Pentheroudakis et al., 2014;

Pinyol et al., 2019b; Pusztai et al., 2021; Raponi et al., 2007, 2008; Sammut et al., 2022; Shen et

al., 2012; Verstraete et al., 2015; Zhao et al., 2019) – the evaluation sets – as unseen data for

evaluation. See Table S1 and STAR Methods for full details.

Overview of the ENLIGHT Pipeline

ENLIGHT’s drug response prediction pipeline generally follows the flow of SELECT (Lee et al.,

2021) which comprises two steps (Figure 1a): (i) Given a drug, the inference engine identifies

the clinically relevant GI network of the drug's target genes. As was done in SELECT, we start
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with a list of initial candidate SL/SR pairs by analyzing cancer cell line dependencies with RNAi,

CRISPR/Cas9, or pharmacological inhibition, based on the principle that SL/SR interactions

should decrease/increase tumor cell viability, respectively, when activated (e.g., in the SL case,

when both genes are downregulated). Among these candidate pairs, we select those that are

more likely to be clinically relevant by analyzing a database of tumor samples with associated

transcriptomics and survival data, requiring a significant association between the joint

inactivation of a putative SL gene pair and better patient survival, and analogously for SR

interactions. Finally, among the candidate pairs that remain after these steps, we select those

pairs that are supported by a phylogenetic profiling analysis (see STAR Methods for more

details). When considering combination therapies, ENLIGHT computes a GI network based on

the union of all the drug targets. (ii) The drug-specific GI network is then used to predict a given

patient's response to the drug based on the gene expression profile of the patient’s tumor. The

ENLIGHT Matching Score (EMS), which evaluates the match between patient and treatment, is

based on the overall activation state of the genes in the drug target’s GI network, reflecting the

notion that a tumor would be more susceptible to a drug that induces more active SL

interactions and fewer active SR interactions. An important prerequisite for a drug to be

analyzed by this approach is that the gene targets are well defined. Thus, in this work we focus

on targeted therapies and ICBs.

In developing ENLIGHT, we have extended and improved this basic framework, by

introducing the following adaptations (see Supplementary Note 1 for more details): (i)

ENLIGHT’s GI networks include both SL and SR interactions that are concomitantly inferred for

each drug, thereby considerably increasing drug coverage relative to SELECT, which utilizes only

one type of interaction per network (for immunotherapy, where SELECT had no coverage

limitation, we use the same SR interactions as in Lee et al., see Figure 5a in (Lee et al., 2021) for

details). (ii) To improve the inference engine, we follow the idea presented in Lee et al. (Lee et

al., 2018) and Sahu et al. (Sahu et al., 2019) and add a depletion test (not present in SELECT),

requiring that the joint inactivation of a candidate SL pair is under-represented in tumors (and

analogously for SR partners). (iii) SELECT has used a Cox proportional hazard test on categorized
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expression data to identify candidate SL/SR pairs that confer favorable/unfavorable patient

survival when the interaction is active. To increase robustness and statistical power, ENLIGHT

applies a fully parametric test, based on an exponential survival model, on continuous

expression data. (iv) ENLIGHT GI networks are considerably larger than those of SELECT to

reduce score variation across drugs and indications. (v) To improve the prediction engine, for

immunotherapy and other mAbs, which are highly target-specific, the EMS incorporates the

expression of the target as an additional score component. The ENLIGHT pipeline is described in

detail in STAR Methods, where we also describe a web service enabling researchers to apply

ENLIGHT to RNA expression data.

We emphasize that the GI networks are inferred without using any treatment response

data. Notably, the parameters of ENLIGHT, namely the network size and thresholds for the

inference tests, are optimized on the tuning datasets, but their values are then held fixed to

predict all treatment outcomes across all 21 evaluation sets. These conservative procedures

markedly mitigate the risk of deriving overfitted predictors that would not predict response in

new datasets.

Setting the ENLIGHT Decision Threshold for Personalized Oncology Based on the Tuning

Cohorts

To define an ENLIGHT-based test for the personalized oncology scenario, we define a uniform

decision threshold on the EMS, above which the probability of a patient to respond is high. The

chosen decision threshold should maximize the proportion of true responders among those

predicted to respond (the PPV), while the proportion of true responders identified by the test

(termed its sensitivity, or recall) does not have to be very high since multiple treatment options

are usually considered. In other words, in a real-life setting a physician needs to choose one of

multiple treatment options, hence our objective is to maximize the PPV of the

recommendations given that at least one match would be found for, ideally, each patient.

Importantly, the decision threshold, set on the tuning cohorts, is fixed, and is used as is in

evaluating ENLIGHT’s performance on all cohorts and treatments. The EMS distributions in the
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tuning cohorts show that the EMS are significantly higher among responders compared to

non-responders (Figure 1b), testifying to its discriminatory power. Figure 1c shows that a

decision threshold of 0.54, which will be used henceforth, maximizes the PPV while still

maintaining a reasonable sensitivity on the tuning cohort (for the dataset-specific PPV and

sensitivity curves see Figures S1 and S2). ENLIGHT’s performance is evaluated using the odds

ratio (OR) for response, which denotes the odds to respond when the treatment is

recommended (ENLIGHT-matched, i.e., EMS above the decision threshold), divided by the odds

when it’s not. As shown in Figure 1b, ENLIGHT obtains an aggregate OR of 2.98 on the tuning

cohorts (aggregation based on individual patients; 95% confidence interval [1.8, 5]; p=4e-05).
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Figure 1: The ENLIGHT Pipeline and its tuning for Personalized Oncology.

(a) ENLIGHT's pipeline starts by inferring the GI network of a given drug. The GI

network and omics data from patients are then used to predict treatment

response. (b) ENLIGHT matching scores in responders (orange) are higher than in

non-responders (blue), across the tuning cohorts. The 3 BRAFi cohorts are very

small (N = 16, 17 and 20), so their results are presented in aggregate. The ‘All’

column presents the results for all patients aggregated together. p-values were

calculated using a one-sided Mann-Whitney test. The horizontal line marks the

EMS decision threshold. The odds ratio of ENLIGHT-matched cases appears on top

of each pair of bars, with brackets indicating the 95% confidence interval. The

number of patients in each cohort is provided in parentheses. (c) The PPV

(precision) and sensitivity (recall) on the aggregate tuning cohort (y axis) as a

function of the decision threshold (x axis).

ENLIGHT Successfully Predicts Patients Treatment Response in 21 Different Test Datasets

We next turned to evaluate how ENLIGHT performs in identifying the true responders in the 21

unseen patient cohorts that we have collected, spanning ICBs, mAbs, and targeted small

molecules. Notably, the response data for all evaluation cohorts was unblinded only after

finalizing the ENLIGHT pipeline including fixing the decision threshold and calculating EMS for all

patients. Figure 2a shows that ENLIGHT-matched treatments are associated with better patient

response (OR > 1) in all cohorts except for two (Sorafenib2 and one ICB cohort), with an

aggregate OR of 2.59 (95% confidence interval [CI], 1.89 to 3.55; p=3.41e-8, N=697).

Correspondingly, Figure 2b shows that the overall PPV obtained for ENLIGHT-matched cases is

markedly higher than the overall response rate (52% vs 38%, a 36.84% increase, p=3.30e-13,

one sided proportion test, and see Table S2 for a more detailed account). Interestingly, ENLIGHT

is more accurate in immunotherapies and other mAbs vs. targeted small molecules, which aligns

with its reliance on drugs that have accurate targets. More specifically, within the small

molecules class, ENLIGHT is only less predictive in drugs with many targets (Sorafenib, a broad
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tyrosine kinase inhibitor and MK2206, a pan-AKT inhibitor). Notably, when a patient received a

combination of targeted and chemotherapy agents (see cohorts marked with a cross), the EMS

was calculated for the targeted agent alone, however, remarkably, the performance is still

maintained.

Additionally, we evaluated ENLIGHT as a personalized oncology tool in a multi-arm

clinical trial setting, by analyzing data from the WINTHER trial, a large-scale prospective clinical

trial that has incorporated genetic and transcriptomic data for cancer therapy decision making

in adult patients with advanced solid tumors (Rodon et al., 2019). ENLIGHT was able to provide

predictions for all patients, except four (see Supplementary Note 2). The EMS of the responders

were significantly higher than those of non-responders (p = 4e-04, Figure 2c). The odds ratio of

ENLIGHT-matched treatments is 11.15 (p = 8e-04, Figure 2c), and the PPV is more than two

times higher than the overall response rate (Figure 2d). Further analysis shows that responders

had significantly higher EMS than non-responders also for the 24 patients treated with a

combination of drugs (Figure S3a) and that ENLIGHT-matched treatments were associated with

better response, without being hampered by the background of chemotherapy treatment

(Table S3). Figure S3b depicts the landscape of different treatment alternatives with high EMS

scores for each patient. We observe that 91/96 patients (94.8%) had at least one treatment with

which they were ENLIGHT-matched, highlighting the potential coverage of ENLIGHT in

real-world cases.
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Figure 2: ENLIGHT’s ability to stratify patients for therapy (a) The bar graphs

show the odds ratio for response of ENLIGHT-matched cases in the 21 evaluation

cohorts (OR values appear on top of each bar; all eight patients predicted to

respond in the Bevacizumab2 cohort responded to the treatment, resulting in an

infinite OR), along with the OR for the aggregation of all cohorts and aggregation

based on therapeutic-class. Sample sizes are denoted in parentheses. cohorts for

which OR is significantly larger than 1 according to Fisher’s exact test are denoted

with asterisks. “Anti-PD1” encompasses three different drugs (Nivolumab,

Pembrolizumab and Durvalumab) - see details in Table S1. (b) Analogous to (a) but

presenting the sensitivity and PPV of ENLIGHT-matched cases vs. the overall

response rate for the evaluation cohorts and their aggregations. Significant

differences between PPV and response rate according to the one-sided proportion

test are denoted with asterisks. (c) In the WINTHER trial, responders (orange) have

significantly higher EMS than non-responders (blue); p-value was calculated using

a one-sided Mann-Whitney test. The horizontal line marks the decision threshold

(0.54). (d) The sensitivity and PPV of ENLIGHT-matched cases vs. overall response

rate in the WINTHER trial. [✝: Patients in these cohorts received a combination of

targeted and chemotherapy; *: p<0.1; **: p<0.05]

Except for tuning very few parameters on the tuning cohorts, as described above,

ENLIGHT is essentially an unsupervised prediction method that relies on a series of biologically

motivated statistical tests that underlie the inference of GIs and their utilization and is not

trained on treatment outcome data. We next turned to compare its predictive power to that of

transcriptomics-based biomarker signatures generated via supervised machine learning on

specific training cohorts. To this end, we have studied four of the evaluation datasets, for which

a supervised classifier was presented in the original publication and data enabling us to perform

this comparison was provided (Figure 3a). In one of these datasets, Sammut et al. (Sammut et

al., 2022) used supervised learning to predict response to chemotherapy with or without
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Trastuzumab among HER2+ breast cancer patients. We focused on the subset of 56 patients

who received Trastuzumab and for which the model’s scores were published. ENLIGHT achieved

a slightly higher AUC than that reported in the original study, without ever training on these

data, nor on any other data of response to Trastuzumab, and without using any clinical features.

Similarly, Cui et al. (Cui et al., 2021) developed a biomarker for response to anti-PD1 in

melanoma (see Anti-PD15 in Table S1) and Raponi et al. (Raponi et al., 2007) and Raponi et al.

(Raponi et al., 2008) developed biomarkers for response to Tipifarnib in AML to which we

compared ENLIGHT’s performance. Overall, In three of the four datasets, ENLIGHT’s predictive

performance is comparable to that of the biomarkers developed using a supervised approach

for a specific treatment and indication. However, in one of these datasets (“Raponi et al.

Blood”), while ENLIGHT has a slightly higher PPV, its sensitivity is much lower than that achieved

by the supervised method. Taken together, these results demonstrate the remarkable predictive

power of ENLIGHT as a pan-cancer and pan-treatment response predictor, which quite

successfully competes with supervised models specifically trained for narrow predictive

scenarios.

We next turned to compare ENLIGHT’s performance to (a) that of its predecessor,

SELECT, (b) several known transcriptomics-deduced metrics (IFN-γ signature (Ayers et al., 2017),

proliferation signature (Whitfield et al., 2006), cytolytic index (Rooney et al., 2015), and the drug

target expression levels) and, finally (c) several GI-based scores. This comparison was done

comprehensively on all the 21 evaluation cohorts (see STAR Methods). Finally, (d) we added a

comparison to three ICB specific biomarkers (exhausted T-cell (Wherry et al., 2007), TIDE (Jiang

et al., 2018) and CD8+T-cell abundance (Newman et al., 2015)) on the immunotherapy datasets.

The performance of ENLIGHT could not be compared to that achieved by DNA-based markers

such as TMB or MSI, since all evaluation datasets available include only mRNA data. We note

that several of the widely used biomarkers included in these comparisons do not provide

differential scoring for different drugs, i.e., they cannot be used to guide therapy (e.g.
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proliferation signature), while others are specific to predicting response to ICB (e.g. exhausted

T-cell). Nevertheless, all are included for completeness.

As all biomarkers other than SELECT and TIDE do not suggest a threshold for determining

favorable treatments, we set the decision threshold for those using the tuning sets to match

ENLIGHT’s recall (see STAR Methods). For TIDE, we used the threshold of 0, as suggested in

Jiang et al. (Jiang et al., 2018) and for SELECT, we used 0.44 as suggested in Lee et al. (Lee et al.,

2021). For 11 of the 21 evaluation cohorts (N=400), the GI networks produced by SELECT were

too small to produce robust predictions (having less than 4 GIs). Figure 3b compares the odds

ratio of ENLIGHT and SELECT on the remaining 10 cohorts (N = 297). While SELECT provides a

beneficial discriminatory power on the evaluation cohorts to which it could be applied,

especially for ICBs (Figure 3d), ENLIGHT can analyze a wider range of treatments than SELECT,

with overall higher precision. Figures 3c and 3d compare ENLIGHT’s performance to all the

biomarkers enumerated above. This is presented separately for non-ICB cohorts (N = 512, the

Selinexor dataset was excluded since IFN-γ, cytolytic index and target expression could not be

calculated on this dataset due to missing data) and for the ICB cohorts (N = 152, the Anti-PD1 +-

Anti-CTLA4 dataset was excluded since missing data prevented calculation of the proliferation

signature), since three of the markers are ICB-specific, and since SELECT could only be applied to

a few of the non-ICB datasets, as described above. Table S4 contains the detailed statistics of all

comparisons. In short, ENLIGHT has significantly higher OR than SELECT on the datasets for

which SELECT could produce predictions (Figure 3b, p = 0.0487). In addition, ENLIGHT has

higher OR than all other markers, with the improvement being statistically significant in all

non-ICB datasets (Table S4).

In light of the high predictive power of several ICB-specific markers (namely, proliferation

signature, cytolytic index and IFN-γ signature), we studied if ENLIGHT’s combination with these

biomarkers can further enhance the overall predictive power for response to ICB. To this end,

we tested the predictive power of new combined biomarkers computed as the geometric mean
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of: (i) ENLIGHT and each of the three individual markers; (ii) ENLIGHT and all three biomarkers;

and (iii) the three markers without ENLIGHT (for comparison). For each of these combined

biomarkers, we optimized the decision threshold as explained in STAR Methods. We found that

the combination of ENLIGHT with each of the three biomarkers is more predictive than either

ENLIGHT or any of them on their own, with the combination of ENLIGHT and IFN-γ being

superior to all other combinations and individual markers, achieving an OR of 4.07 in the ICB

cohorts (Figures 3d and S4). Notably, in the non-ICB cohorts ENLIGHT on its own is superior to

the combined biomarkers (Figures 3c and S5).

Overall, these results provide strong support for the ability of ENLIGHT to provide clinical

benefit in the precision medicine scenario with superior performance over known markers,

spanning a variety of different treatments and cancer types.
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Figure 3: ENLIGHT’s predictive accuracy vs. other biomarkers (a) Comparison of

ENLIGHT’s performance to that of biomarkers developed using supervised methods.

Comparison was performed on the performance measure presented in the respective

publication. (b) Odds Ratio (OR, y-axis) of ENLIGHT (blue) and SELECT (orange)

calculated for the 10 cohorts (N = 297) for which SELECT was able to generate a

prediction. (c) OR (y-axis) of ENLIGHT (blue) and other transcriptomic and

interaction-based biomarkers described in the text (See STAR Methods), calculated for

all non-ICB targeted therapies (N = 512). (d) OR (y-axis) of ENLIGHT (blue) and the
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other biomarkers detailed in panel c, as well as SELECT and three ICB-specific

transcriptomic biomarkers, calculated for the ICB cohorts (N = 161). Biomarkers

denoted by ‘X & Y’ (e.g. ‘ENLIGHT & IFN-γ’) were calculated as the geometric mean of

X and Y. ‘Predictive biomarker’: a biomarker that is drug-specific, i.e., yields a different

prediction per drug. ‘Prognostic biomarker’: a biomarker that is drug-agnostic, i.e., it is

predictive of patient survival/general inclination of response but can not be used to

guide therapy. ‘Predictive biomarker - ICB specific’: a biomarker that is used to predict

general response to immunotherapy but without differentiation between treatments.

Asterisks represent the corrected p value for a one-sided test of an OR greater than 1:

* p<0.1; ** p<0.05.

ENLIGHT Enables Near Optimal Exclusion of Non-responding Patients in Clinical Trial Design

In the Clinical Trial Design scenario, we are interested in identifying a sub-population

of non-responding patients who could be excluded from the trial a priori, thereby

allowing smaller studies to achieve higher response rates with adequate statistical

power. Figure 4 (top row) depicts the proportion of true non-responders among those

predicted not to respond (NPV) as a function of the percent of patients excluded,

where patients are excluded by order of increasing EMS. For both Immunotherapy and

other mAbs, ENLIGHT’s NPV curve is considerably higher than the NPV expected by

chance, i.e., the percentage of non-responders, testifying to its benefit. For targeted

small molecules, however, it is unable to reliably identify non-responders, an issue

that should be further studied and improved upon in future work.
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Figure 4: ENLIGHT can facilitate the exclusion of non-responding patients in

Clinical Trials. Each of the three columns depicts ENLIGHT’s results on the

aggregate of all evaluation cohorts from a given therapeutic class. Panels on the

top row display the NPV (percent of true non-responders out of those predicted as

non-responders) as a function of the percentage of patients excluded. The

horizontal line denotes the actual percent of non-responders in the corresponding

aggregate cohort (i.e., the NPV expected by chance). Panels on the bottom row

display the response rate among the remaining patients (y axis) after excluding a

certain percentage of the patients (x axis). The horizontal line denotes the overall

response rate in the aggregate cohort. The dotted-dashed line represents the

upper bound on the response rate, achieved by the “all knowing” optimal classifier

excluding only true non-responders.

The bottom row of Figure 4 depicts the response rate in the remaining cohort

after excluding patients with EMS below the decision threshold. As evident,

ENLIGHT-based exclusion considerably increases the response rate among the

remaining patients (middle, solid line). The dotted-dashed line represents the limit

performance of an optimal “all-knowing” classifier that excludes all non-responders,

retaining only true responders (correspondingly, the x axes end when this optimal
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classifier excludes all true non-responders, achieving the optimal response rate of

100%). Focusing on a practical exclusion range of up to 25% of the patients (shaded

area), ENLIGHT-based exclusion achieves 87%-97% and 90%-99% of the optimal

exclusion response rate, for both Immunotherapy and other mAbs, respectively – see

Table 1. It is important to acknowledge that the ENLIGHT-based exclusion strategy

assumes knowledge of the EMS distribution in the trial, which may not be known a

priori, but could be estimated using historical transcriptomics data from a reference

population of the pertaining cancer indication and clinical characteristics.

% patients excluded 5% 10% 15% 20% 25%

% of optimal

response

rate

Immunotherapy (n = 161) 97% 97% 93% 90% 87%

mAb (n = 321) 99% 98% 96% 94% 90%

Table 1: The performance of ENLIGHT’s exclusion strategy in Clinical Trial Design

compared to the optimal upper bound. For each percent of patient exclusion

(columns), the response rate among the remaining patients when excluding based

on increasing EMS, is given as a percentage of the upper bound response rate

achieved by the “all knowing” optimal classifier that excludes only true

non-responders.

Discussion

Here we present ENLIGHT, an algorithmic platform that leverages synthetic lethality and rescue

interactions to predict response to targeted therapies and immunotherapies. ENLIGHT is an

unsupervised approach that, like its predecessor, SELECT, leverages large-scale data in cancer to

infer GI networks associated with drug targets on a whole genome scale, and then uses the

activation patterns of the genes comprising these networks, as measured in the tumor, to
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generate a matching score for each possible treatment. In difference from its predecessor,

ENLIGHT has been designed and evaluated with two real-world clinical scenarios in mind:

personalized oncology, where one matches the best treatment to a patient based on a fixed

decision threshold, and clinical trial design, where the goal is to a priori exclude non-responding

patients in the best possible manner. Testing ENLIGHT on 21 unseen clinical cohorts showed

that patients whose treatments were recommended by ENLIGHT have markedly better odds of

response than the others. ENLIGHT is a promising systematic approach that, in a comprehensive

retrospective analysis, is shown to provide clinically relevant benefits across a broad array of

treatments and indications. Despite this broad applicability and its general unsupervised nature,

its performance is comparable to that of supervised classifiers trained and predictive on very

narrow and specific treatment cohorts. This comparison is of much interest since, in theory,

given sufficiently large datasets, such supervised methods are expected to yield higher

performance on unseen datasets than unsupervised methods like ENLIGHT. However, if the

training sets available are small (as is regrettably the case with the vast majority of the data

currently available), practice may differ from theory and supervised methods may overfit and

underperform.

ENLIGHT is also more predictive than its predecessor, SELECT, and other

transcriptomics-based biomarkers. Some of the biomarkers in these comparisons are prognostic

in nature, i.e., provide information about the patient's overall cancer outcome, regardless of

therapy (e.g. proliferation signature) or are specific to predicting response to ICB (e.g. T-cell

exhaustion). Unlike ENLIGHT, such markers cannot add information when one aims to choose

between various treatments. Specifically, IFN-γ had an odds ratio comparable to that of

ENLIGHT on the ICB datasets, which are almost exclusively anti-PD1. However, unlike ENLIGHT, it

will not be able to offer differential scoring as more ICB treatments enter the clinic, since its

score is not treatment-dependent. The combination of ENLIGHT and IFN-γ has increased

predictive performance for ICB therapy, obtaining an impressive OR of 4, and offering

differential scoring per treatment, due to ENLIGHT’s predictive nature. Finally, ENLIGHT can
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enhance clinical trial design, by efficiently excluding non-responsive patients while attaining

more than 90% of the maximum attainable response rate in targeted mAbs and ICB cohorts.

In the past several years, bulk RNA-seq has become increasingly available and reliable,

opening the door for translational and clinical applications (Byron et al., 2016). The Pan-Cancer

Analysis of whole genomes demonstrated how the majority of classical driver genes exhibit

alterations that were potentially better characterized via RNA than DNA (Calabrese et al., 2020).

Beyond developing drugs for new targets, we must consider ways to expand eligibility criteria

for existing targeted therapies and immunotherapies. Data from ENLIGHT can provide a

biologically informed basis to test strongly prioritized off-label therapies for specific patient

populations through Phase II trials. This may be especially helpful in rare cancer types or

challenging clinical scenarios, where hypothesis generation will only require access to relevant

RNA-seq samples. Second, building on the “Clinical Trial Design” capacity of ENLIGHT, the tool

can offer simulations focused on a given therapeutic option and its performance across multiple

types of patient populations—a computational version of the resource-challenging yet exciting

basket trial design.

The current study mainly establishes ENLIGHT’s power to predict monotherapies.

However, in clinical practice, identifying combination therapy is often desirable. Notably in this

context, ENLIGHT shows promising results when predicting response to targeted therapy on the

background of chemotherapy, suggesting that a clinician could use ENLIGHT to identify

favorable immune/targeted therapy and combine it with chemotherapy as deemed fit clinically.

Like any response prediction approach, ENLIGHT has several limitations that should be

acknowledged. First, as it operates on the drug target level, it has very limited utility in

predicting response to chemotherapies, and more generally, its prediction accuracy depends on

the accuracy with which the targets of a given drug have been identified. While current

applications of ENLIGHT have focused on bulk tumor transcriptomics, future work is needed to

study its application to analyze single-cell tumor transcriptomics, to build predictors that
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consider the heterogeneity of tumors, and the important interplay between a tumor and its

immune microenvironment.

While ENLIGHT’s performance is evaluated here on a broad array of unseen clinical trial

datasets, its performance should obviously be further evaluated in prospective studies. Indeed,

based on the results obtained so far by SELECT and ENLIGHT, the design of such a multi-arm

study – SYNTHESIS – is now underway at the National Cancer Institute’s Center for Cancer

Research. We hope that the results presented here will elicit additional prospective studies in

other clinical centers across the globe and we are committed to facilitating such studies.
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