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Abstract 

Thalamoreticular circuitry is known to play a key role in attention, cognition and the generation 
of sleep spindles, and is implicated in numerous brain disorders, but the cellular and synaptic 
mechanisms remain intractable. Therefore, we developed the first detailed computational 
model of mouse thalamus and thalamic reticular nucleus microcircuitry that captures 
morphological and biophysical properties of ~14,000 neurons connected via ~6M synapses, 
and recreates biological synaptic and gap junction connectivity. Simulations recapitulate 
multiple independent network-level experimental findings across different brain states, 
providing a novel unifying cellular and synaptic account of spontaneous and evoked activity in 
both wakefulness and sleep. Furthermore, we found that: 1.) inhibitory rebound produces 
frequency-selective enhancement of thalamic responses during wakefulness, in addition to its 
role in spindle generation; 2.) thalamic interactions generate the characteristic waxing and 
waning of spindle oscillations; and 3.) changes in thalamic excitability (e.g. due to 
neuromodulation) control spindle frequency and occurrence. The model is openly available and 
provides a new tool to interpret spindle oscillations and test hypotheses of thalamoreticular 
circuit function and dysfunction across different network states in health and disease. 
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1 Introduction 

The thalamus and thalamic reticular nucleus lie at the heart of the thalamocortical system in 
the mammalian brain and are tightly integrated with the neocortex via extensive reciprocal 
connections (Jones, 2007). Thalamic relay cells project to the cortex and form excitatory 
connections with thalamic reticular neurons, which in return send inhibitory projections to the 
thalamus, forming the thalamoreticular circuit (Ohara and Lieberman, 1985; Pinault, 2004; 
Scheibel and Scheibel, 1966). Thalamoreticular circuitry plays a key role in numerous 
functions, such as the transmission of sensory information to the cortex (Steriade et al., 1997) 
and the transition between brain states, including sleep and wakefulness (Jones, 2002; Rikhye 
et al., 2018; Steriade, 2003). Thalamoreticular circuitry has been implicated in attentional 
processes (McAlonan et al., 2008; Wimmer et al., 2015), the generation of the alpha rhythm 
(Hughes and Crunelli, 2005; Nestvogel and McCormick, 2021; Saalmann et al., 2012), and the 
generation of spindle oscillations during sleep (T. Bal et al., 1995; Contreras et al., 1997; 
Fernandez and Luthi, 2019; Steriade et al., 1987; von Krosigk et al., 1993). Alterations in 
thalamic neuron firing and their interconnectivity have been associated with pathological brain 
rhythms, such as those appearing in absence epilepsy (Beenhakker and Huguenard, 2009; 
Huguenard and McCormick, 2007; Makinson et al., 2017; Sohal and Huguenard, 2003; 
Steriade, 2005). Changes in the incidence and density of spindle oscillations during sleep have 
been observed in different disorders, such as schizophrenia (Castelnovo et al., 2018; Ferrarelli 
et al., 2010, 2007; Manoach et al., 2016, 2014), neurodevelopmental disorders (Gruber and 
Wise, 2016), attention deficit hyperactivity disorder (Saito et al., 2019), Alzheimer’s disease 
(Weng et al., 2020), among others. 

Although the properties of thalamic and reticular neurons have been extensively studied in vitro 
(Connelly et al., 2017; Cox et al., 1996; Jahnsen and Llinás, 1984; Lee et al., 2007; Pinault et 
al., 1995; Pinault and Deschênes, 1998; Spreafico et al., 1991), there are still significant gaps 
in our understanding of thalamoreticular circuitry (O’Reilly et al., 2021). Computer models 
and  simulations can facilitate the integration and standardization of different sources of 
experimental data, highlight key missing experiments, while providing a tool to test hypotheses 
and explore the structural and functional complexity of neural circuits (Billeh et al., 2020; 
Einevoll et al., 2019; Markram et al., 2015a). Previous models of small thalamic networks or 
thalamic slices have focused on investigating specific physiological and pathological aspects 
of thalamic microcircuits, wth the level of detail and choice of biophysical mechanisms dictated 
by their hypotheses (Bazhenov et al., 1998; Bús et al., 2018; Destexhe et al., 1996; Golomb et 
al., 1996; Li et al., 2017; Wang et al., 1995).  
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In this work, we follow and extend the reconstruction pipeline presented in (Markram et al., 
2015a) to develop a digital model of a thalamoreticular microcircuit of a portion of first-order 
somatosensory thalamus in the adult mouse, including the ventral posterolateral nucleus (VPL) 
and the corresponding region of the reticular nucleus (Rt). We performed targeted in vitro 
experiments to collect electrophysiological, morphological and synaptic data from the mouse. 
We then used these measurements, combined with systematic curation of data from the 
literature and open access datasets, to build biophysically and morphologically-detailed neuron 
models. We defined the microcircuit geometry and populated it with experimentally-measured 
neuron densities. Three-dimensional morphological reconstructions constituted the basis to 
constrain the detailed connectivity between neurons of the thalamus and the reticular nucleus. 
Synaptic connections comprised chemical synapses with short-term depression and facilitation 
and electrical synapses (gap junctions). Extra-thalamic inputs, were modeled by including 
synapses from sensory afferents (medial lemniscus) and corticothalamic feedback. 

This approach yielded the first morphologically and biophysically-detailed model of a thalamic 
microcircuit, demonstrating that the modeling strategy developed for cortical microcircuitry 
(Markram et al., 2015a) can be applied to other brain regions. Although this model is 
constrained with only cellular and synaptic experimental data, we found that it reproduces a 
number of network-level in vitro and in vivo findings. Where data was missing, we used 
generalization principles and tested whether the model reproduces experimental findings that 
were not used during building (validation process). After validating the model at different 
levels, we studied its dynamics in wakefulness and sleep-like states and rhythm generation 
(spindle-like oscillations). Supercomputer-based simulations of the model recapitulate multiple 
independent network-level experimental findings in wakefulness and sleep including 
spontaneous and evoked activity, stimulus dependent recruitment of thalamic inhibition, 
thalamic surround inhibition, adaptation of thalamic sensory responses, reticular nucleus-
triggered spindle oscillations, and other properties of spindle oscillations during sleep, 
including cellular and synaptic mechanisms that have been previously implicated. Beyond 
recapitulating known properties and mechanisms, we found that the inhibitory rebound of 
thalamic relay cells results in frequency-selective enhancement of thalamic responses during 
wakefulness, in addition to its role in spindle generation during sleep. The characteristic waxing 
and waning of spindle oscillations was found to be generated intrathalamically and is not 
dependent on cortical factors. In addition, differential changes in thalamic and reticular cell 
excitability resulted in altered spindle frequencies and determined the incidence of spindle 
occurrence. This last point is particularly relevant to interpreting the presence or absence of 
spindles in different brain disorders. We provide the experimental data and computational 
models as a free resource for further hypothesis exploration and model development by the 
community.  
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Figure 1. Workflow for the digital reconstruction of thalamoreticular microcircuitry 
(A) Morphological and electrical diversity of thalamic neurons: identify the different 
morphological types (m-types) and electrical types (e-types) and build a large number of unique 
morphologically-detailed neuron models (me-models). (B) Define the microcircuit volume, 
with its horizontal and vertical dimensions. Place the me-models selecting the appropriate 
exemplar that best fits the anatomical constraints and axonal and dendritic distribution. (C) 
Build the connectivity starting from the morphological appositions and pruning them to match 
experimental constraints. Map the synaptic diversity of neurons based on the synaptic 
physiology of characterized pathways. (D) Introduce synapses formed by lemniscal and 
corticothalamic afferents for reproducing experiments in silico and studying emergent network 
dynamics. 

  

2 Methods 

2.1 Constraining and validating the model with experimental data 

The model microcircuit was built by constraining and validating it at multiple levels, using 
experimental data and algorithmic approaches, based on methods published previously 
(Markram et al., 2015a). For validation we performed direct comparison of the model 
properties with experimental measurements that were not used during the model building steps. 
Before describing the details of the reconstruction, validation and simulations, we provide a 
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list of data used for constraining the model, the validation data and further validations at the 
network level. 

2.1.1 Experimental data used to constrain the model 
The following experimental data was used to constrain the model, further details on the 
experimental procedures and literature references are provided below. 

● Three-dimensional reconstructions of neuron morphologies, from in vitro and in vivo 
labeling 

● Ion channel kinetic parameters 

● Electrophysiological data from in vitro patch-clamp recordings (current step stimuli) 

● Neuron densities  

● Fraction of inhibitory and excitatory neurons 

● Fraction of electrical types for each morphological type 

● Axonal bouton densities (i.e. number of boutons per axonal unit length) 

● Volumetric densities of lemniscal boutons (number of boutons per unit volume) 

● Ratio of corticothalamic to lemniscal bouton densities and ratio of corticothalamic to 
thalamocortical bouton densities (volumetric data from the literature) 

● Postsynaptic potential amplitudes and their change in response to trains of presynaptic 
inputs from in vitro paired-recordings (short-term plasticity protocols) 

● Number of neurons connected through gap junctions 

● Synaptic current kinetic parameters 

2.1.2 Experimental data used for model validation 
The following experimental measurements were not used for constraining the model during the 
building process but were used for validation: 

● Electrophysiological data from in vitro patch-clamp recordings (current ramps and 
noise) 

● Number of synapses per connection between interneurons and thalamocortical neurons 
(i.e. number of synapses between each pair of neurons) 

● Synaptic convergence onto reticular neurons 

● Postsynaptic potential amplitudes (different subset of neuron pairs than the ones used 
to constrain the model) 

● Coefficient of variation of first postsynaptic potential amplitudes 

● Distance-dependent gap junction connectivity between reticular neurons 
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● Gap junctions coupling coefficients 

2.1.3 Validations at the network level 
We identified the following network responses during simulated activity as a general validation 
of the reconstruction process: 

● Spontaneous in vivo-like activity, characterized by uncorrelated firing and low firing 
rates in TC and Rt cells (Born et al., 2021; Hartings et al., 2000; Nestvogel and 
McCormick, 2021). 

● Evoked activity with simulated sensory input in TC as well Rt cells (Hartings et al., 
2000). 

● Adaptation to repeated sensory stimuli at different frequencies (Manuel A Castro-
Alamancos, 2002) 

● Corticothalamic inputs counterbalance sensory adaptation (Mease et al., 2014) 

● Increased thalamic bursts after brief stimulation of the reticular nucleus and evoked 
spindle-like oscillations (Halassa et al., 2011) 

● Evoked spindle-like oscillations (Halassa et al., 2011) 

● Initiation of spindle-like oscillations during cortical UP-states (Destexhe et al., 2007; 
McCormick and Bal, 1997; Steriade et al., 1993)  

2.2 Reconstructing the morphological diversity of neurons 

2.2.1 Reconstruction of morphologies 
A subset of 3D reconstructions of biocytin-stained thalamocortical (TC) neurons, reticular 
thalamic (Rt) neurons and thalamic interneurons (IN) were obtained from in vitro patch-clamp 
experiments from 300 μm slices of P14-35 mice (GAD67-eGFP or C57Bl/6J strains) as 
previously described (Iavarone et al., 2019; Markram et al., 2015). During the 
electrophysiological recordings neurons were stained intracellularly with biocytin. In vitro-
stained neurons were mainly located in primary somatosensory nuclei (VPL, and ventral 
posteromedial nucleus - VPM) and the somatosensory sector of the reticular nucleus 
(Clemente-Perez et al., 2017; Lam and Sherman, 2011; Pinault and Deschênes, 1998). 
Reconstructions used the Neurolucida system (MicroBrightField) and were corrected for 
shrinkage along the thickness of the slice. Shrinkage along other dimensions was taken into 
account during the unraveling step (see below). Dendrites were reconstructed with a 100x 
magnification (oil immersion objective) and axons at 60x (water immersion objective). 

In vivo-stained TC and Rt morphologies were obtained through different experimental 
techniques. In some cases, neurons were labeled by injection of replication-defective Sindbis 
virus particles in the thalamus or Rt nucleus in C57Bl/6J adult mice  (Furuta et al., 2001) or 
electroporation of RNA of the same virus (Porrero et al., 2016). The virus labeled the 
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membrane of the neurons thanks to a palmitoylation signal linked to a green fluorescent protein 
(GFP). Brains were cut in 50 μm serial sections and immunostained against GFP  and enhanced 
with glucose oxidase-nickel staining (Shu et al., 1988). Neurons were reconstructed from 
sequentially-ordered slices under bright-field optics using the Neurolucida system 
(MicroBrightField). The complete method is described elsewhere (Rodriguez-Moreno et al., 
2020). 

In vivo-labelled TC morphologies were obtained from the Janelia Mouselight project, from 
sparsely-labeled adult C57/BL6 mice brains; the method is described in detail elsewhere 
(Winnubst et al., 2019) and summarized here. Brains were then delipidated, fluorescence was 
enhanced by immunolabeling and imaged with a 40x oil-immersion objective. This procedure 
generated large datasets of high-resolution image stacks. The 3D reconstructions were 
conducted combining semi-automated segmentation of the neurites, human annotation and 
quality control. Janelia Mouselight reconstructions lacked diameter variations in their neurites, 
which is important for accurate electrical modeling of neurons (Jaeger, 2000). For this reason, 
we only used their axons in order to increase the variability of our axonal reconstructions. We 
obtained 96 morphologies whose soma was located in the thalamus and we visually inspected 
their shape along with 3D meshes of the reticular nucleus of the thalamus using the Janelia 
MouseLight Project (RRID:SCR_016668; http://ml-neuronbrowser.janelia.org/). Since most 
thalamocortical neurons project to the Rt on their path to the cortex (Clascá et al., 2012; Lam 
and Sherman, 2011) we selected the 41 morphologies which gave off collaterals in the reticular 
nucleus. We assumed that neurons without collaterals in the Rt were partially labeled and/or 
reconstructed, since those collaterals are often very thin (Harris, 1987). Given the limited 
number of reconstructed morphologies of neurons in VPL and VPM in the Janelia MouseLight 
dataset, we included 27 axons (with collaterals to Rt) from other thalamic nuclei. To ensure 
that the connectivity would not be impacted, we analyzed the geometrical properties of the Rt 
collaterals and found that the difference within the same nucleus was as high as the difference 
between nuclei.  

For in vivo labeling of reticular neurons virus injections for sparse labeling of whole brain 
neuron morphologies were employed in SSt-Cre;Ai139 adult mice (Daigle et al., 2018; Harris 
et al., 2014). Brains were imaged using fluorescence micro-optical sectioning tomography 
(fMOST) (Gong et al., 2016). Neurons were manually reconstructed from high resolution 
image stacks obtained after slicing. Further details of the method are available in related 
publications (Peng et al., 2021). 

2.2.2 Morphology analysis, alignment and visualization 
Raw morphological data did not have a common orientation along a principal axis, which is 
necessary to place them in the microcircuit volume according to biologically-plausible 
constraints (see below). We thus computed a rotation matrix so that the principal axis of the 
morphology was parallel to the vertical axis of the microcircuit. The principal axis of TC 
morphologies was the one connecting the center of the soma and the center of mass of the axon 
collaterals in the Rt nucleus (see below). For Rt neurons, the principal axis connected the soma 
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and the center of mass of the axonal arborization in the thalamus. After rotating the 
morphologies, we visually validated the results. Rotation of the INs was not performed, since 
no orientation information relative to known landmarks was available. 

For morphology analysis we used the open-source library NeuroM 
(https://github.com/BlueBrain/NeuroM). To identify the TC axon collaterals projecting to the 
Rt we selected the morphological sections which had branch order >= 1 and path distance from 
the soma < 2,500 μm and visually validated the results. For some morphologies, we selected 
those having path distance <= 2,000 μm, because some TC neurons have collaterals projecting 
to other subcortical regions (e.g striatum), see (Clascá et al., 2012).  

Raw morphological data were algorithmically corrected for slicing artifacts and processed to 
generate a large pool of unique morphologies for building the microcircuit and connectivity. 
Spurious sections, which were accidentally introduced during manual reconstruction, were 
identified as those having 0 μm diameter and removed. The details are described in 
Supplemental Experimental Procedure of the neocortical microcircuit model (Markram et al., 
2015), and summarized below. 

The morphology images in Fig. 4 were created using NeuroMorphoVis (Abdellah et al., 2018). 

2.2.3 Unraveling morphologies 
Since we found that 3D reconstructions from in vitro-stained neurons had increased tortuosity 
in their dendrites as a result of tissue shrinkage, we unraveled them using an existing algorithm 
(Markram et al., 2015). This process resulted in an increase of the reach of the morphologies, 
while preserving the original length of the branches. Briefly, unraveling was performed by 
sections and for each section a sliding window composed of a given number of successive 
points was created. The number of points in the sliding window (N) was the only parameter of 
the algorithm and we found that N=5 previously used performed well on thalamic 
morphologies. The general direction of the points in the window was computed using principal 
component analysis (PCA). The segment at the middle of the window was then aligned along 
this direction. It meant that its direction was set to the one of the sliding windows but it retained 
its original length. The sliding window was moved over all points of the section and the 
algorithm was applied to all sections. 

2.2.4 Repairing morphologies 
Most of the in vitro-stained morphologies were truncated at slice edges and in the case of some 
TC morphologies, which have very dense dendritic arborization, this resulted in a significant 
decrease in dendritic mass. We applied an existing algorithm (Anwar et al., 2009; Markram et 
al., 2015) to repair missing dendritic branches. First, the algorithm detects cut points on the XY 
plane, i.e. the plane parallel to the slice, along the Z direction (parallel to the slice thickness). 
The 3D coordinate system was centered on the morphology soma. Although the algorithm was 
designed to detect cut points on two planes, we found that our morphologies were truncated on 
the top plane. We improved the algorithm by searching the cut points before unraveling the 
morphologies and updated their position during the unraveling step. Cut detection required a 
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tolerance parameter to detect terminal points within a certain distance from maximum Z 
extents. We found that 15 μm gave the most accurate results by visual inspection of the 
morphology. Some terminal points were then tagged cut points and dendrites were repaired. 

The dendrite repair process created new dendritic sections starting at the identified cut points. 
Dendrite repair did not aim to recover the initial morphology, but rather recreated it in a 
statistical manner, under the assumption of statistical symmetry of the morphology. This 
method analyzed the behavior of intact branches as a function of branch order and euclidean 
distance from the soma. For each branch order, probability density clouds of branch 
continuation, bifurcation or termination were calculated in a series of concentric spheres (Sholl, 
1953). At each cut point, the behavior of the branch was sampled according to the calculated 
probabilities. The factor governing the direction of the re-grown branches was adjusted to 
achieve final branches tortuosity comparable with our experimental data. To address neurite 
swelling artifacts at cut points, the diameters of the re-grown branches were set to the average 
diameter of the last section. 

2.2.5 Morphology diversification 
We increased the variability of the reconstructed and repaired morphologies to ensure robust 
and invariant connectivity patterns (S. Hill et al., 2012; Ramaswamy et al., 2012). We followed 
a previously published method (Markram et al., 2015a) to generate a unique branching pattern 
for each morphology, while maintaining the general morphological and electrical structure for 
each m-type. In summary, branch lengths and rotations at each bifurcation point were varied 
according to random numbers drawn from Gaussian distributions with mean 0% and standard 
deviation 20% for branch lengths and mean 0° and standard deviation 20° for branch rotations. 
A sample of the resulting morphologies was visually validated, and we did not find significant 
alterations of their structure for any of the m-types (Figure S1). 

We then applied a mix-and-match procedure to maximize the utilization of good morphological 
reconstruction data. This procedure divided dendrites from axons and allowed us to combine 
good dendritic reconstructions of TC and Rt dendrites from in vitro and in vivo-stained neurons 
and good axonal reconstructions from in vivo-stained neurons. In vitro-stained neurons 
typically lacked reconstruction of the full axon due to the slicing procedure and/or poor 
labeling. For each morphology, we manually annotated which dendrites and axons were to be 
kept. The decision in most cases depended on the labeling method (in vitro vs. in vivo). 

To increase the probability that in vivo-stained morphologies and in particular the axons of TC 
and Rt morphologies were compatible with the microcircuit dimensions (see below) we 
duplicated and scaled the morphologies along their principal axis (Y-axis) by ± 2.5%. 
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2.3 Reconstructing the electrical diversity of neurons 

2.3.1 Electrophysiological data 
The firing patterns of TC, Rt neurons and interneurons (INs) were characterized in vitro from 
brain slices of P14-35 GAD67-eGFP or C57Bl/6J mice and expert-classified into five electrical 
types (see Results). The detailed electrophysiological protocol has been published elsewhere 
(Iavarone et al., 2019a). Neurons were sampled from the ventrobasal complex of the thalamus 
(VPL and VPM nuclei) and the somatosensory sector of the reticular nucleus (Clemente-Perez 
et al., 2017; Lam and Sherman, 2011).  

We used responses to step-like currents to build electrical models, ramp and noise currents to 
validate them (Iavarone et al., 2019a), along with excitatory postsynaptic-like currents (EPSC) 
injected into the dendrites. All the recordings were corrected for liquid junction potential by 
subtracting 14 mV from the recorded voltage. 

2.3.2 Neuron models 
Multicompartmental conductance-based models employed 3D morphological reconstructions. 
Active ion currents and a simple intracellular calcium dynamics model were distributed in the 
somatic, dendritic and axonal compartments. Only the axonal initial segment (AIS) – not the 
complete axon – was modeled (Markram et al., 2015). The axons were substituted by a 60 μm 
stub constituted by two sections, five segments each. For each segment, the diameter was 
extracted from the original axon in order to preserve its tapering. Morphologies were divided 
into compartments of 40 μm maximal length. Specific membrane capacitance was set to 1 
μF/cm2 and specific intracellular resistivity to 100 Ωcm.  

2.3.3 Ion channel models 
We included ion current models whose kinetics were obtained from previously published ion 
current models or published experimental data. All ion channel models were corrected for 
liquid junction potential and for simulation at different temperatures whenever possible. 
Simulation temperature was always set to 34° C.  

The details of the ion channel kinetics and calcium dynamics used for low-threshold bursting 
neurons (TC and Rt) have been described elsewhere (Iavarone et al., 2019a) and are 
summarized here. The type of ionic currents present in TC and Rt were: transient sodium 
current, delayed potassium current and low-threshold calcium from a previous model of TC 
neurons (Alain Destexhe et al., 1998); h-current model was built from published data (Budde 
et al., 1997; Iavarone et al., 2019a; McCormick and Huguenard, 1992; McCormick and Pape, 
1990); persistent sodium, based on an existing models (Amarillo et al., 2014; Hay et al., 2011a) 
and published data (Parri and Crunelli, 1998), A-type transient potassium was taken from an 
existing model (Amarillo et al., 2014), based on published data (Huguenard and McCormick, 
1992); high-threshold calcium was based on published models and data (Amarillo et al., 2014; 
McCormick and Huguenard, 1992), SK-type calcium-activated potassium, was taken from 
previous models and published data (Hay et al., 2011a; Köhler et al., 1996). Intracellular 
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calcium dynamics was modeled with an exponential decay mechanism that linked low-
threshold and high-threshold calcium currents to the calcium-activated potassium. 

Since interneurons had firing patterns similar to cortical ones, we used the same ion channel 
models of the cortical microcircuit model (Markram et al., 2015a), which were based on 
existing models or published data. The type of ionic currents were transient sodium (Colbert 
and Pan, 2002), low-threshold calcium (Avery and Johnston, 1996), h-current (Kole et al., 
2006), persistent sodium (Magistretti and Alonso, 1999), transient potassium (Korngreen and 
Sakmann, 2000), high-threshold calcium (Reuveni et al., 1993) and potassium Kv3.1 (Rettig 
et al., 1992). 

The reversal potential of sodium, potassium and h-current were set to 50 mV, −90 mV and 
−43 mV, respectively. 

Ion channel models were distributed uniformly and with different peak conductance values for 
somatic, dendritic and axonal compartments, except for the h-current in the interneurons, 
whose distribution increased exponentially from the soma to the dendrites  (Markram et al., 
2015a). 

 

2.3.4 Optimization of neuron models 
Five electrical models (e-models), corresponding to each electrical-type (e-type), were fitted 
using a multiobjective optimization algorithm using the Python library BluePyOpt (Iavarone 
et al., 2019a; Van Geit et al., 2016). The free parameters of the model were the peak 
conductances of the different mechanisms, parameters of the intracellular calcium dynamics 
(time constant of decay and percent of free calcium, gamma) and the reversal potential of the 
passive mechanism that contributes to the resting membrane potential. Each e-model was fitted 
with an exemplar morphology.  

The optimization objectives were the electrical features extracted from the electrophysiological 
recordings. The detailed experimental protocol and the type of current stimuli and features are 
described elsewhere (Iavarone et al., 2019a), and summarized here. For all the e-types, two 
hyperpolarizing steps (−20/−40% and −120/−140% of the threshold current) were used to 
constrain passive properties (input resistance, resting membrane potential) and current 
activated by hyperpolarization, e.g. h-current (sag amplitude). Three levels of depolarizing 
steps (150%, 200%, 250% of the threshold current) were used to constrain firing pattern 
(adaptation index or inverse of the first and last interspike intervals, spike count, mean 
frequency) and spike shape-related features (action potential amplitude, depth of the after-
hyperpolarization, action potential duration). All these protocols were applied in combination 
with a hyperpolarizing holding current (to reach stable membrane potential of −84 mV, after 
liquid junction potential correction).  

When low-threshold bursting cells are hyperpolarized compared to their resting membrane 
potential and then stimulated, they fire stereotypical low-threshold bursts. One step (200% of 
firing threshold) on top of a hyperpolarizing current was therefore used to constrain the bursting 
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response, while three depolarizing steps on top of a depolarizing holding current  (to reach −64 
mV) were used to constrain the tonic firing responses, as explained above. For reticular 
neurons, a new feature (initburst_sahp) was added for the afterhyperpolarization after the burst. 
For Rt and TC cells, two additional protocols without any current injection or only holding 
currents were used to ensure that the e-models were not firing without stimulus or with the 
holding current only. 

Electrical features from the experimental recordings and model traces were extracted using 
the open source library eFEL (https://github.com/BlueBrain/eFEL). 

We considered a model a good fit to the experimental data if all the feature errors (i.e. the Z-
scores) were below 3.  

2.3.5 Quality assurance of morpho-electrical models 
After fitting the five e-models, they were combined with the 92,970 morphologies generated 
as output of the morphology diversification step. An automated pipeline tested the e-models in 
combination with the different morphologies (me-models) and filtered out those that deviated 
significantly from the experimental electrical features. To decide which me-model was to be 
accepted, we used the repaired exemplar morphology (i.e. the morphology used during the 
optimization, after being repaired) as a benchmark: a me-model passed if it had all the feature 
errors were below 5 standard deviations of the repaired exemplar (Markram et al., 2015a). To 
account for the input resistance given by the different morphologies, we devised an algorithm, 
based on binary search, to find the appropriate holding and threshold current for each me-model 
(Iavarone et al., 2019a). 

In addition, we first ran this pipeline on a small subset of the morphologies generated after 
morphology repair. In this way, we could visually inspect if the accepted me-models were 
generating biologically plausible firing behavior and the reasons why other me-models had 
high feature errors. In some cases, after inspecting the me-model voltage responses, we set less 
stringent criteria on some features, to ensure that we had enough different me-models for 
building the microcircuit. At the same time, we set more stringent criteria to reject me-models 
that were active without any input, since we did not find neurons that were spontaneously active 
in our experimental recordings. 

2.4 Measuring neuron density 

2.4.1 Immunohistochemistry of Rt and VPL for cell counting 
We complemented the neuron densities values from the Blue Brain Cell Atlas (Erö et al., 2018; 
RRID:SCR_019266) by counting neurons in adult mouse brain slices. The brain was cryosliced 
at 50 μm on the sagittal plane and stained following standard immunohistological procedures 
with antibodies anti-GABA (for inhibitory neurons), anti-NeuN (for neurons) and DAPI (for 
all cells), using an existing protocol (Markram et al., 2015). The slices were imaged with a 
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confocal microscope (Zeiss, 710). The immunohistology and imaging of the region of interest 
(ROI) was completed for one P21 C57B1/6J mouse. 

2.4.2 Semi-automated cell counting and cell densities 
The images were aligned to the Allen Reference Atlas to create proper boundaries for the Rt 
and VPL. We used Imaris® software (Bitmap) to create the ROI, for counting the neurons and 
to estimate the volume for density calculation. For a chosen ROI, the software detected the 
difference of signal intensity, created a 3D shape around the detected cells and extracted 
statistics (e.g. count, positions) following given parameters. These parameters were defined by 
running multiple trials so that the results from semi-automated cell counting were as close as 
possible to those from manual cell counting. The semi-automated counting method results in 
very low error rates compared to manual counting (2.25%) and is less time consuming. A 3D 
shape of the entire ROI was created in order to extract the volume for density calculation. 
Neuron densities were calculated as the ratio between neuron counts in a ROI and the volume 
as calculated in Imaris for each slice. For modeling we used the average cell densities for Rt 
and VPL neurons. 

2.5 Reconstructing the dimensions and structure of a thalamoreticular microcircuit  

Since the thalamus does not have a clear laminar structure, we approximated a thalamic 
microcircuit as a cylindrical volume having its base parallel to a portion of the Rt and its vertical 
dimension (y-axis) running through the VPL and Rt (see Fig. 3A).  

The horizontal dimensions of the microcircuit were calculated from the density of dendritic 
fibers at the center of the circuit, following an approach published previously (Markram et al., 
2015a). For each m-type, we began by considering all the morphologies (after repairing them) 
that had their somata located within 25 μm from the circuit center on the horizontal plane  (XZ). 
We then increased the maximal distance in steps of 25 μm which resulted in an increase of 
dendritic densities at the center. The microcircuit horizontal dimension (radius) resulting from 
this process was 294 μm, corresponding to the distance where 95% of the asymptotical 
maximal density of reticular neuron dendrites was reached. As a comparison, considering only 
thalamocortical cell morphologies would have resulted in a circuit with radius 125 μm, while 
considering only interneurons the radius would have been 279 μm. 

We used hexagonal boundaries with the same area as the resulting circle to facilitate tiling of 
multiple microcircuits, while keeping asymmetrical edge effects minimal. The resulting side 
of the hexagon was 323 μm and the longest diagonal (vertex-to-vertex) measured 646 μm. 

To calculate the vertical dimension of the microcircuit, we extracted a 3D subvolume within 
the VPL and the Rt. We started from the thalamus parcellation of the Allen Brain Atlas version 
3 (25 μm resolution) (Goldowitz, 2010). A spherical coordinate system was fitted to the volume 
of the Rt, which can be approximated by a spheroidal surface. We chose a ROI located 
approximately in the middle of the VPL nucleus and computed the probability distribution of 
widths in the ROI for the VPL and Rt. The widths were calculated along the radius of the 
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spherical coordinate system. The resulting thickness corresponds to the median of the 
distributions, which was 550 μm for the VPL and 250 μm for the Rt. 

2.5.1  Soma positions and me-type model assignment 
The horizontal and vertical extents resulted in a microcircuit having the shape of a hexagonal 
prism, that was 646 μm wide (at the widest point) and 800 μm high; 69% of the volume was 
occupied by the VPL and 31% by the Rt. This volume was then populated by defining somata 
positions according to the experimentally measured neuron densities in the Rt and VPL. The 
positions were distributed according to an algorithm based on Poisson disc sampling (Bridson, 
2007; Tulleken, 2009). This algorithm avoids clustering normally obtained with sampling 
according to uniform distributions, by using a parameter for the minimum distance between 
points. To calculate the minimum distance, we used the cell densities to calculate the expected 
number of cell positions per voxel. Each soma position was assigned an m-type according to 
the excitatory/inhibitory fractions and an electrical model in agreement with the me-types 
composition (Fig. 3). Moreover, each position was associated with a random rotation around 
the y-axis to be applied to each morphology. 

2.5.2 Morphology placement 
Our pool of experimental morphologies and the ones derived from the morphology 
diversification process contained morphologies with different sizes and shapes. Moreover, it 
contained TC morphologies whose somata was not located in the VPL nucleus and Rt 
morphologies whose axons were not arborizing in the VPL nucleus. We adapted a placement 
scoring algorithm (Markram et al., 2015) to ensure that each position was assigned a suitable 
morphology considering its geometrical properties and the microcircuit vertical dimension.  

We thus defined placement rules that took into account the known properties of Rt and TC 
neurons’ arborizations relative to the anatomical boundaries of thalamic nuclei (Harris, 1986; 
Pinault et al., 1995). Each reconstruction of TC and Rt neuron morphologies was manually 
annotated according to the placement rules. For TC cells, we identified the axonal arborization 
projecting to the Rt (and that should be located in the Rt part of the model). For Rt cells, the 
densest part of axonal arborization was annotated, which should be located in the VPL. For IN, 
the only constraint is that the full morphology should be contained within the VPL and not 
crossing into the Rt (Morgan and Lichtman, 2020). Each annotation was automatically carried 
over during the unraveling, repairing and diversification steps. Moreover, we included a stricter 
rule to avoid that Rt morphologies were located outside the top of the circuit boundary, with a 
30 μm tolerance.  

Given the placement rules, each morphology was assigned a score based on the microcircuit 
position and the constraints set by the placement rules  (Markram et al., 2015a). 

2.5.3 Generating different microcircuit instances 
We created five different microcircuit instances to assess the model robustness to different 
input parameters. The experimentally-measured cell densities were jittered by +/- 5%, resulting 
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in microcircuits with different total number of neurons and number of neurons for each m-type 
(see Fig. 4). 

2.6 Reconstructing the synaptic connectivity of a thalamoreticular microcircuit 

2.6.1 Connectivity based on morphological appositions 
After placing the morphologies in the 3D microcircuit volume we generate the first version of 
the connectivity by detecting zones of geometrical overlap (“touches”) using an existing touch 
detection algorithm (Kozloski et al., 2008; Markram et al., 2015a). Briefly, this algorithm sub-
divided the circuit 3D space into sub-volumes ensuring that each sub-volume contained the 
same amount of data, i.e. the same number of morphological segments. Each sub-volume was 
processed in parallel on different cores and written in parallel to disk. All geometrical overlaps 
were considered as touches if their distance was smaller or equal to 1 μm (“touch distance”).  

Touches were then filtered according to biological rules: touches were allowed between all m-
types, except between interneurons and reticular cells, because interneurons are only located 
in the thalamus and are not expected to have neurites extending into the reticular nucleus 
(Morgan and Lichtman, 2020). Touches between VPL neurons were removed, in agreement 
with experimental findings showing that excitatory connection between TC neurons disappear 
during development (Lee et al., 2010).  

Interneurons also form axonal and dendritic inhibitory synapses (Acuna-Goycolea et al., 2008; 
Cox and Sherman, 2000; Zhu and Heggelund, 2001). For all other m-type combinations, 
touches formed between presynaptic axons, postsynaptic dendrites and somata.  

The same algorithm was used to detect touches between Rt_RC dendrites, i.e. the locations of 
putative gap junctions. Since gap junctions are established with close appositions of cell 
membranes, we used a touch distance of 0 μm in this case.  

At the end of this process the resulting contacts (or “appositions”) are normally higher 
compared to experimental findings and are pruned further to arrive at the final functional 
synapses (Reimann et al., 2015). 

2.6.2 Determining functional synapse positions 
We employed an existing algorithm to decide which appositions were to be pruned according 
to biological constraints (Reimann et al., 2015). The main constraints were the experimental 
bouton densities (number of boutons / axonal length) from 3D neuron reconstructions (n=9 TC 
axons and n=2 Rt axons) and the coefficient of variation of number of synapses per connections 
(i.e. the number of functional synapses, between a pair of neurons) from presynaptic INs and 
post-synaptic INs and TCs (Morgan and Lichtman, 2020). 

In the first two steps, the algorithm tried to match the distribution of synapses per connection, 
using the coefficient of variation of appositions per connections and the coefficient of variation 
of synapses per connection. Then, in step 3, it compared the current bouton density to the target 
value and removed multi-synaptic connections until the target value was matched. The number 
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of synapses per connections, Nfunc, was predicted from the number of appositions per 
connections (Napp) resulting from the previous steps, similarly to uncharacterized pathways in 
cortical microcircuitry (Reimann et al., 2015). Nfunc was predicted from Napp according to a 
simple formula (Nfunc = 1 ⋅ Napp) for each m-type to m-type connection. We used a generalized 
coefficient of variation for Nfunc of 0.9 for all connections, c extracted from published data 
(Morgan and Lichtman, 2020, Fig. 3B). The coefficient of variation was combined with the 
predicted Nfunc to calculate its standard deviation, as detailed in (Reimann et al., 2015). At the 
end of this pruning process, we verified that the bouton densities in the model matched the 
experimental ones (see Fig. 4A). The shape of a geometric distribution for Nfunc was a prediction 
from our touch detection process.  

2.6.3 Connections from lemniscal and corticothalamic afferents 
We followed an approach similar to the generation of thalamic input to the cortical microcircuit 
model (Markram et al., 2015) to model afferent synapses in the thalamus from the sensory 
periphery (medial lemniscus) and from the cortex. The algorithm uses volumetric bouton 
densities and the morphologies already placed in a circuit to map synapses from afferent 
“virtual” fibers to postsynaptic morphologies.  

We built medial lemniscus (ML) and corticothalamic (CT) afferents separately for one 
microcircuit. Since data for lemniscal innervation in the mouse VPL was not available we 
calculated volumetric bouton density from data of mouse VPM (Takeuchi et al., 2017), see Fig. 
4C for the exact values. Volumetric bouton densities for the CT pathway were derived from 
known proportions between CT synapses and other synapses onto TC and Rt neurons, as found 
in electron microscope investigations (Çavdar et al., 2011; Mineff and Weinberg, 2000) (see 
Fig. 4C).  

Each synapse was assigned a virtual ML or CT fiber. We estimated a number of 2,601 ML 
fibers; this number took into account the ratio between the putative number of neurons from 
the dorsal column nuclei projecting to the thalamus (Shishido and Toda, 2017) and the number 
of neurons in the VPL (see (Jones, 2007) for a similar calculation). The number of CT fibers 
was 75,325, about ten times the number of thalamocortical fibers in a microcircuit (Crandall et 
al., 2015; Monconduit et al., 2006; Sherman and Koch, 1986). 

To take into account the correlation between synaptic inputs onto postsynaptic neurons 
innervated from the same afferent fiber, the mapping between postsynaptic synapses and fibers 
took into account their respective positions, i.e. synapses that were closer together were more 
likely to be innervated by the same presynaptic fiber. As in the neocortical microcircuit model 
(Markram et al., 2015), the probability (P) that a synapse was assigned to a fiber depended on 
the distance between the synapse and the fiber: 

𝑃$𝑆!"# = 𝑖( ∝ 	 𝑒$
!"#$%&'(!
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where Spre represents the mapping of a synapse S to the presynaptic fiber i, Tpre is its spatial 
location, fi the spatial location of fiber i and ó denoted the degree of spatial mapping, that was 
set to 25 μm.  

2.7 Modeling synapse physiology 

2.7.1 Stochastic synaptic transmission and short-term plasticity 
We used existing models of stochastic transmission at excitatory and inhibitory synapses 
(Markram et al., 2015). They consisted of a 2-state Markov process, with recovered and 
unrecovered states. When a pre-synaptic event occurs (pre-synaptic spike or spontaneous 
release) the synapse will release if it is the recovered state. If there is release, the synapse will 
transition to the unrecovered state. The ensemble average response is equivalent to the 
phenomenological Tsodyks-Markram model (Fuhrmann et al., 2002; Tsodyks and Markram, 
1997). The underlying assumptions were derived from the classical model of quantal synaptic 
release, in which each synapse is assumed to have N independent release sites, each has a 
probability p of releasing a single quantum q (del Castillo and Katz, 1954; Korn and Faber, 
1991). The number of release sites was assumed to be equivalent to the number of synapses 
per connection (Markram et al., 2015). The detailed implementation of the synapse models can 
be downloaded from the neuron model packages in the Neocortical Microcircuit Portal 
(rrid:SCR_022032; (Ramaswamy et al., 2015)).  

We modeled short-term synapse plasticity with depressing (E2 and I2) and facilitating synapses 
(E1), see Fig. 5. In our experimental recordings, in agreement with experimental findings, all 
existing intrathalamic (between TC, Rt neurons and INs) and lemniscal connections were 
depressing (Cox et al., 1997; Gentet and Ulrich, 2003; Miyata, 2007; Mo et al., 2017; Simko 
and Markram, 2021), while corticothalamic ones were facilitating (Crandall et al., 2015; 
Jurgens et al., 2012; Landisman and Connors, 2007; Miyata, 2007; Reichova and Sherman, 
2004). When sufficient experimental paired recordings data were available, the parameters of 
the Tsodyks-Markram model of short-term synaptic plasticity were fitted (see above). The data 
used for fitting were the excitatory postsynaptic potentials (EPSPs) or inhibitory postsynaptic 
potentials (IPSPs) peaks amplitudes (or EPSCs/IPSCs in the case of voltage-clamp recordings), 
evoked by stimulating the presynaptic cell with a train of eight pulses followed by a recovery 
pulse (see Fig. 5A). The parameters were: U - release probability, D - time constant of recovery 
from depression, and F - time constant of recovery from facilitation. Postsynaptic data were 
filtered and deconvolved for easier automatic identification of the peaks (Barros-Zulaica et al., 
2019). A multi-objective optimization algorithm was used to find the values for U, D and F 
(Van Geit et al., 2016).  

Data to fit the UDF parameters was available for some of the pathways: Rt neurons to TCs, IN 
to TCs, INs to INs and ML to INs connections; for all the other pathways we followed these 
generalization rules:  
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● TC to Rt synapses were shown to be strong, reliable and depressing (Gentet and Ulrich, 
2003). We used parameters for L4Exc to L4Exc connections from the neocortical 
microcircuit model (Markram et al., 2015) as they had the highest release probability 
(analogous to the U value in the case of depressing synapses (Ecker et al., 2020). 

● All uncharacterized inhibitory to inhibitory synapses (i.e. Rt to Rt and Rt to IN) had the 
same dynamics of an inhibitory-inhibitory characterized pathway (i.e. IN to IN). 

● CT synapses onto first order thalamic nuclei (e.g. VPL, VPM, dorsal part of the lateral 
geniculate complex) have been consistently reported to be facilitating. As we did not 
have paired recordings to estimate synapse parameters for CT to TCs, CT to INs and 
CT to Rt pathways, we took parameters from excitatory facilitating synapses (E1: 
L5TTPC-L5MC, Markram et al., 2015). 

● ML inputs to first order sensory thalamic nuclei (e.g. VPM) were shown to be 
depressing (e.g. see Mo et al., 2017; Reichova and Sherman, Castro-Alamancos, 2002; 
Miyata, 2007), as shown in our ML to INs recordings. We thus extrapolated  the 
parameters for  ML to TC connections from ML to INs ones (for which data was 
available). 

Synapse dynamic parameters in the model were different for each synapse and drawn for 
truncated Gaussian distributions. 

Spontaneous miniature potentials were modeled as independent Poisson processes at each 
synapse that triggered release at low rates (0.01 Hz). 

2.7.2 Synapse models 
Excitatory synaptic transmission was modeled with AMPA and NMDA receptor kinetics, and 
GABAA receptors were used for inhibitory connections. The rise and decay phases of the 
currents were described using mono-exponential functions. We used time constants from 
thalamic experiments performed at 34-35 degrees C, when available, or from cortical synapses 
models when thalamic-specific ones were missing. The rise time and decay time constants for 
AMPA receptors were 0.2 ms and 1.74 ms, respectively (Häusser and Roth, 1997). For TC to 
Rt connections the AMPA decay time constant was 1.58 ms and CT afferents to Rt was 2.74 
ms (Deleuze and Huguenard, 2016). The rise and decay time constants of the NMDA 
component were 0.29 and 43 ms (Sarid et al., 2007). The magnesium concentration was set to 
1 mM (Jahr and Stevens, 1990) and the reversal potential of the AMPA and NMDA currents 
was 0 mV. Experimentally measured ratios of NMDA and AMPA conductances were gathered 
from the literature and are summarized in Table 4.1 (Arsenault and Zhang, 2006; Deleuze and 
Huguenard, 2016; Miyata and Imoto, 2006). 

Inhibitory synaptic transmission was modeled with GABAA receptor kinetics. The rise and 
decay time constants were 0.2 ms and 8.3 ms, respectively (Markram et al., 2015a). The 
reversal potential of GABAA current was set to −82 mV for all inhibitory pathways, except for 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.02.28.482273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482273


 

 

connections onto postsynaptic TC neurons, where it was −94 mV, consistent with lower 
chloride reversal potentials in TC compared to Rt neurons (Ulrich and Huguenard, 1997). 

2.7.3 Constraining synapse conductance values 
Synaptic conductance values were optimized by performing in silico paired recordings to 
match the postsynaptic potential (PSP) amplitudes measured experimentally whenever data 
was  available, similarly to other morphologically detailed models (Ecker et al., 2020; Markram 
et al., 2015a). For each pathway, 50 neuron pairs were simulated, and each pair was recorded 
for 30 trials. Experimentally characterized values in rodents are summarized in Table 2. For all 
other pathways, we extrapolated the quantal synapse conductances from similar pathways, 
according to the same generalization principles applied for short-term plasticity parameters 
(see Table 1).  

 

Pathway 
Synapse 

type 
gsyn (nS) ôd (ms) 

NMDA/AMPA 
ratio 

USE D F 

Rt_RC to 
Rt_RC 

Inh. Dep. 0.9±0.23 8.3±2.2 NA 0.41±0.14 464±339 54±71 

Rt_RC to 
VPL_TC 

Inh. Dep. 1.1±0.4 8.3±2.2 NA 0.32±0.18 352±46 2±209 

Rt_RC to 
VPL_IN 

Inh. Dep. 0.9±0.23 8.3±2.2 NA 0.41±0.14 464±339 54±71 

VPL_TC 
to Rt_RC 

Exc. Dep. 2.8±0.1 1.58±0.26 0.57 0.86±0.09 671±17 17±5 

VPL_IN 
to 

VPL_TC 
Inh. Dep. 0.4±0.4 8.3±2.2 NA 0.47±0.18 137±46 239±209 

VPL_IN 
to 

VPL_IN 
Inh. Dep. 2.7±0.4 8.3±2.2 NA 0.41±0.14 464±339 54±71 

ML to 
VPL_TC 

Exc. Dep. 1.15±0.12 1.74±0.18 0.41 0.3±0.21 2350±315 1±2 

ML to 
VPL_IN 

Exc. Dep. 1.15±0.12 1.74±0.18 0.41 0.48±0.21 690±315 57±53 

CT to 
Rt_RC 

Exc. Fac. 0.16±0.01
6 

2.74±0.25 0.99 0.09±0.12 138±211 670±830 
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CT to 
VPL_TC 

Exc. Fac. 0.16±0.01
6 

1.74±0.18 1.91 0.09±0.12 138±211 670±830 

CT to 
VPL_IN 

Exc. Fac. 0.16±0.01
6 

1.74±0.18 0.99 0.09±0.12 138±211 670±830 

Table 1. Synapse kinetics and short-term plasticity parameters.  
Synaptic parameters for all pathways in the model. Quantal synaptic conductance gsyn (in 
nanosiemens nS), ôd is the decay time constant of AMPA and GABAA currents for excitatory 
and inhibitory connections. USE (utilisation of synaptic efficacy, analogous to release 
probability), D (time constant of recovery from depression), F (time constant of recovery from 
facilitation) are the short-term plasticity parameters. Values are expressed as mean ± standard 
deviation. All the parameters were fitted to in-house paired-recordings or generalized from 
similar pathways (Fig. 5 and Methods for details). 

   

 
Presynaptic Postsynaptic CV 1st PSP amplitude, 

experiment (mV) 
CV 1st PSP amplitude, 

model (mV) 
Data source 

Rt_RC VPL_TC 0.4600 (n=1) 0.8424 ± 0.3450 (n=47) In-house 

VPL_TC Rt_RC 0.1232 ± 0.0686 (n=11) 0.3089 ± 0.2112 (n=43) (Gentet and 
Ulrich, 2003) 

VPL_IN VPL_TC 0.5479 ± 0.1744 (n=4) 0.8663 ±  0.386 (n=22) In-house 

VPL_IN VPL_IN 0.5028 ± 0.2783 (n=10) 1.0993 ± 0.4132 (n=49) In-house 

ML VPL_IN 0.5466 ± 0.1195 (n=1)  1.4047 ± 0.7389 (n=49) In-house 

Table 2. Coefficient of variation (CV) of first PSP amplitudes. 

CV of first PSP amplitudes values as characterized experimentally through in vitro paired 
recordings. Values are reported as mean ± standard deviation (of multiple pairs). (Related to 
Fig. 5C1). 
 

Presynaptic Postsynaptic PSP amplitude, 
experiment (mV) 

PSP amplitude, 
model (mV) 

Data source 

Rt_RC VPL_TC 1.33 ± 0.36 (n=1)  1.31 ± 1.30 (n=47) In-house 

VPL_TC Rt_RC 7.4 ± 1.5 (n=11) 6.79 ± 1.30 (n=43) (Gentet and Ulrich, 
2003) 

VPL_IN VPL_TC 0.55±0.15 (n=4) 1.16 ± 1.56 (n=22) In-house 
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VPL_IN VPL_IN 1.66±1.44 (n=10) 0.82 ± 0.77 (n=49) In-house 

ML VPL_TC 4.58 ± 0.30 (n=11) 3.62 ± 2.30 (n=49) (Mo et al., 2017) 

CT VPL_TC 0.085±0.008 (n=3) 0.071 ± 0.022 
(n=29) 

(Golshani et al., 
2001) 

Table 3. Postsynaptic potential (PSP) amplitudes.  
PSP amplitude values as characterized experimentally through in vitro paired recordings. 
Values are reported as mean ± standard deviation (of multiple pairs). (Related to Fig. 5C2). 

 

 

2.8 Modeling gap junctions 

Along with excitatory and inhibitory chemical synapses, the microcircuit included detailed gap 
junction (GJ) connectivity established between the dendrites of Rt neurons. We used the same 
touch detection algorithm described above to find appositions between Rt neuron dendrites and 
somata. Since we did not have any experimental data on the number of GJs between connected 
neurons or the density of GJs (number of GJs per unit length of dendrite or volume), in this 
first draft we randomly removed a certain fraction of GJs until we matched data on neuron 
divergence (Fig. 6A). To analyze the number of coupled neurons and their spatial properties 
(Fig. 6), we reproduced the experimental protocol (S.-C. Lee et al., 2014), by analyzing a 
sample of 33 Rt neurons in a 90 μm vertical slice located at the center of the microcircuit.  

Functionally, GJ were modeled as conductances that coupled the membrane potential of the 
adjacent morphological compartments (simple resistors). We predicted the value of gap 
junction conductance for all gap junctions and validated their functional properties by 
comparing coupling coefficient values with experiments (Haas et al., 2011; Landisman et al., 
2002; S.-C. Lee et al., 2014; Long et al., 2004). 

Once the structural properties of gap junctions-coupled neurons were validated, we performed 
in silico paired recordings and measured the coupling coefficients for each pair of neurons. We 
found that the mean coupling coefficients in the model compared well with the experiments for 
gap junction conductance values of 0.2 nanosiemens (nS). 

After adding gap junctions to the circuit, the input resistance of the neurons changed. To 
guarantee that the electrical properties of the neurons did not change, thus changing the 
responses to synaptic inputs, we devised an algorithm to compensate for the change in input 
resistance (Amsalem et al., 2016). The algorithm changed the conductance of the leak current 
(gpas) to restore the input resistance of the neuron before adding gap junctions. This 
compensation resulted in a different gpas value for each neuron.  
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2.9 Simulation methods and conditions  

2.9.1 Simulation software and high-performance computing resources 
The reconstructed microcircuit was simulated using software based on the NEURON 
simulation package ((Hines and Carnevale, 1997); RRID:SCR_005393). A collection of tools 
and templates were written in order to handle simulation configuration, in silico network 
experiments and to save the results. We used the CoreNEURON simulator engine (Kumbhar 
et al., 2019), which has been optimized for efficient large-scale simulations. A typical 
simulation run of a microcircuit for 3,500 ms of simulation time took ~45 minutes on 16 Intel 
Xeon 6140 CPUs (288 cores, with HyperThreading enabled). 

2.9.2 Simulating in vivo-like conditions 
To simulate spontaneous activity in in vivo wakefulness-like states, we activated lemniscal and 
CT fibers with Poisson spike trains at 25 and 4 Hz, respectively. We lowered the extracellular 
calcium concentration from 2 mM (in vitro-like conditions) to 1.2 mM, with the effect of 
reducing synapse release probabilities and PSPs amplitudes (Markram et al., 2015a). PSPs were 
dependent on calcium concentration in the same way as uncharacterized pathways as 
previously published (Markram et al., 2015, Fig. S11 – Intermediate [Ca2+]o dependence). This 
condition was used in all simulations of in vivo wakefulness-like activity, if not stated 
otherwise. 

To simulate cortical UP and DOWN states, we removed the background activity from the CT 
afferents (Figg. 11, 15). 

2.9.3 Simulating lightly-anesthetized in vivo-like conditions 
To simulate lightly anesthetized in vivo-like states, we followed the same methodology as for 
in vivo-like conditions, however the spontaneous firing induced at the thalamus through the 
ML afferents was reduced from 25 Hz to 10 Hz to reflect the presumed hyperpolarizing 
influence of the anesthetic (Fig. 9). 

2.9.4 Simulating in vitro-like conditions 
To simulate in vitro-like states, all neurons were left at their resting potentials (which ranged 
between −75 and −70 mV) and the only source of input was the spontaneous synaptic release 
from intrathalamic, medial lemniscus and corticothalamic synapses (at a rate of 0.01 Hz). The 
extracellular calcium concentration was set to 2 mM. 

2.9.5 Simulating depolarization levels 
As a first approximation of the action of neuromodulators in the VPL and Rt, we applied 
constant current injections to the soma of each neuron. All neurons in the VPL or Rt regions 
were depolarized to the same target baseline membrane potential. The amplitude of the current 
was different for each neuron, to take into account the different input resistance of each 
morpho-electrical model. 
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2.9.6 Simulation analysis 
The spectrogram in Fig. 10D was calculated using the function scipy.signal.spectrogram, with 
inputs the sampling frequency of simulated membrane potential (10 kHz), interval = 5000, 
overlap = 0.99, and the other parameters with the default values. 

Burst probabilities (Fig. 10) were calculated as the ratio between the numbers of spikes 
belonging to a burst and the overall number of spikes. We considered a spike belonging to a 
burst when the interspike intervals were <= 15 ms and the first spike in the burst was preceded 
by a pause >= 50ms. For this analysis, we considered neurons that had a baseline activity 
between 1 and 20 Hz, as shown in corresponding publication (Halassa et al., 2011), Fig. S3. 

To analyze the percentage of neurons firing for each m-type during each cycle of the oscillation 
(Fig. 12) we started by finding the oscillation peaks. The peaks were extracted from the firing 
rate histograms as input, using the scipy.signal.find_peaks function. We then added a peak 
corresponding to the time of the stimulus injected into Rt neurons (cycle 0). Spikes for each m-
type were then assigned to the different cycles if they occurred within 30 ms of the oscillation 
peak.  

Oscillation strength (Fig. 12 and 14) was calculated as the maximal value of the power spectral 
density (PSD). The PSD was obtained using the function scipy.signal.periodogram. 

To calculate the oscillation duration (in ms) we used firing rate histograms for all the neurons 
and extracted their peaks, using the scipy.signal.find_peaks function (Fig. 14). Peaks were 
counted only if they were significantly higher than baseline firing rates. Oscillation duration 
was then calculated as the time difference between the last and the first peak. 

To calculate oscillation frequency (Fig. 14), we computed the normalized autocorrelation of 
the firing rate histograms and extracted the time (oscillation period) corresponding to the first 
non-zero peak (Sohal and Huguenard, 2003). The inverse of the oscillation period 
corresponded to the oscillation frequency. 

2.10 Thalamoreticular Microcircuit Portal and data integration in a FAIR knowledge 
graph 

Experimental data, model entities and metadata are made available in the Thalamoreticular 
Microcircuit Portal (https://identifiers.org/bbkg:thalamus/studios/e9ceee28-b2c2-4c4d-bff9-
d16f43c3eb0f). The portal includes data and model entities, including single neuron models, 
circuit files in SONATA format (Dai et al., 2020) and simulation output. 
 
All data were integrated, and aligned to FAIR principles (Findible, Accessible, Interoperable, 
Reusable) using the Blue Brain Nexus software (RRID:SCR_022029). At the center of Blue 
Brain Nexus lies a knowledge graph which supports W3-standard “linked data” 
(https://www.w3.org/standards/semanticweb/data) storage and indexing. In the context of the 
knowledge graph, W3C (World Wide Web Consortium) Shapes Constraint Language 
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(https://www.w3.org/TR/shacl/) was used to define FAIR data models (i.e. ‘shape’ the data 
and apply constraints). To support indexation of the datasets, specific data models were 
developed. Each individual data type was modeled according to a schema, available from 
Neuroshapes (http://neuroshapes.org/), to ensure standardization across different projects. 
This process made sure existing schemas, semantic markups, existing ontologies and 
controlled vocabularies were used. 
 
For each data type, a minimum set of metadata was required to guarantee reusability of the 
data. We provide a concrete example of integration for an exemplar dataset consisting of 
neuron morphological reconstructions: 

1. Identification of the dataset: 99 morphological reconstructions collected from acute 
brain slices through whole-cell patch clamp recording and biocytin filling, stored in .asc 
Neurolucida (rrid:SCR_001775) file format; 

2. Identification of the metadata: A spreadsheet containing all the information related to 
the specimen, experimental protocol, date of the experiment, human agents involved in 
the experiment and reconstruction; 

3. Creation of a data model: A schematic was developed according to the W3C PROV-O 
specification (https://www.w3.org/2011/prov/wiki/Diagrams), describing how the 
morphology was obtained in the form of a provenance graph; 

4. Vocabulary and ontologies to integrate the dataset and metadata: Cell type terms from 
InterLex (rrid:SCR_016178) were used. InterLex is a dynamic lexicon of biomedical 
terms. For brain region, terms from the Allen Common Coordinate Framework version 
3 were used (Wang et al., 2020; rrid:SCR_020999). To store species information, the 
NCBI organismal classification was used (Federhen, 2012). For storing information 
about strain, the Mouse Genomics Informatics database 
(http://www.informatics.jax.org/downloads/reports/MGI_Strain.rpt) was used. To 
store sex information, the Phenotype And Trait Ontology was used. 

3 Results 

3.1 Reconstructing thalamic and reticular morpho-electric neuron types 

3.1.1 Morphological types of thalamic and reticular neurons 
To build a detailed model of thalamic microcircuitry, we started by collecting 157 three-
dimensional reconstructions of neuronal morphologies of thalamocortical neurons, thalamic 
interneurons, and neurons of the reticular nucleus of the thalamus, from the mouse. 

Neuron morphologies were reconstructed from both in vitro and in vivo labeling experiments 
in the mouse and included data from in-house experiments, and from open access datasets, such 
as the MouseLight Project at Janelia  (Winnbust et al., 2019) (see Methods). For the purpose 
of this work, we classified the morphologies into three m-types (Fig. 2A). We grouped all 
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thalamocortical (TC) neuron morphologies in the ventral posterolateral (VPL) nucleus 
microcircuit as one m-type, called VPL_TC, and all interneurons (IN) were grouped as 
VPL_IN. All neurons in the associated reticular nucleus (Rt) were grouped as a single m-type, 
Rt_RC. 

We extended an existing algorithm to statistically recover dendrites from slicing artifacts (H. 
Anwar et al., 2009; Markram et al., 2015a) of in vitro labeled neurons and validated the results 
against in vivo labeled reconstructions. We then used a validated pipeline to generate a large 
dataset of thalamic and reticular morphologies (n = 92,970) that respected the biological 
variability (Markram et al., 2015), in a process called morphology diversification (see 
Methods). 

 

 
Figure 2. Single cell morphological and electrophysiological data and models 

(A) Exemplar 3D reconstructions of three thalamic and reticular morphological types (m-types) 
from the mouse. Axon in blue, dendrites in red, soma in black. For the VPL_TC m-type, the 
axonal projection to the neocortex is not shown. All reconstructions are shown on the same 
scale. (B) Electrical types (e-types) and corresponding electrical models. From left to right: 
exemplar recordings (gray) and models (blue) corresponding to Rt_RC, VPL_TC and VPL_IN 
m-types. For cNAD_ltb and cAD_ltb e-types two distinct firing modes are shown: low 
threshold-bursting (first row) and tonic firing (second row). 
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3.1.2 Electrical types of thalamic and reticular neurons 
We characterized the firing behavior of over 100 thalamocortical neurons, interneurons and 
reticular neurons through patch-clamp recordings in brain slices of the mouse. TC and IN 
neurons were located mainly in the VPL and VPM nuclei of the thalamus and Rt neurons in 
the somatosensory sector of the Rt (Lam and Sherman, 2011; Pinault and Deschênes, 1998). 
VPL_TC and Rt_RC neurons were recorded with the injection of two different holding 
currents, to characterize their two firing modes: low-threshold bursting and tonic firing at 
hyperpolarized and depolarized membrane potentials, respectively.  

We classified TC neurons as adapting (cAD_ltb) and non-adapting e-types (cNAD_ltb) by 
considering their tonic firing responses (Fig. 2B). These e-types were similar to those identified 
in rat TC cells (Iavarone et al., 2019). We found similar adapting and non-adapting responses 
in Rt_RCs. Other firing patterns have been described for reticular neurons, when considering 
low-threshold firing responses (Clemente-Perez et al., 2017; S. E. Lee et al., 2014; Lee et al., 
2007). In our dataset, we mainly observed neurons with an intermediate burst propensity, which 
fired typically 1-2 bursts, followed by tonic firing for higher stimulus amplitude,  similar to the 
“typical burst” type, which is more common in somatosensory sectors of the Rt (Lee et al., 
2007). With our standard set of stimuli protocols (see Methods), interneurons mainly exhibited 
an accommodating firing behavior. Since they tended to initially fire action potentials with 
short interspike intervals, we classified all IN recordings as one e-type, called burst 
accommodating (bAC). When deeply hyperpolarized, some IN responded with rebound bursts 
and, in rare cases, they generated spontaneous oscillations (Simko and Markram, 2021).  

3.1.3 Morpho-electrical models of thalamic and reticular neurons 
We previously demonstrated that a multi-objective optimization pipeline can be applied to 
capture different firing modes of thalamocortical neurons (Iavarone et al., 2019a). We applied 
a similar strategy to build electrical models (e-models) for the e-types shown in Fig. 2B (see 
Methods). In brief, we used a multi-objective optimization algorithm (Druckmann et al., 2007; 
Hay et al., 2011b; Iavarone et al., 2019a) with a set of electrical features (e.g. spike amplitude, 
firing frequency, afterhyperpolarization depth) extracted from the experimental recordings as 
parameters for the objective functions, in combination with an exemplar morphology, to 
optimize for ion channel densities (or peak conductances). All model neurons included models 
of transient sodium, persistent sodium, A-type transient potassium, delayed potassium, low-
threshold calcium, high-threshold calcium, calcium-activated potassium (SK-type), h-current 
ion channel currents.  All cellular compartments (i.e. somata, dendrites and axon initial 
segments) contained active membrane mechanisms. Rt_RC e-models followed the same 
approach as for VPL_TC cells, as previously published (Iavarone et al., 2019a), with the 
additional electrical features to quantify the deeper post-burst afterhyperpolarization observed 
in Rt_RCs (Avanzini et al., 1989; Cueni et al., 2008). To validate and test the generalization of  
the neuron models, we used features from current stimuli not used during the optimization 
phase (see Methods for detail). 
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In this way, we created five e-models, one for each e-type, and combined them with the 92,970 
morphologies generated during the morphology diversification step to generate 142,678 unique 
morpho-electrical models. We assessed the quality of each morphology-electrical model 
combination (me-model) using a battery of test stimuli and rejected those having electrical 
features and firing behavior significantly different from the experimental data (see Methods).  

3.2 Reconstructing thalamoreticular microcircuit structure 

To establish the structure of the thalamoreticular microcircuit, we acquired neuron density data, 
defined the microcircuit volumetric dimensions, reconstructed the neuron numbers and 
composition, and established the soma positions and morphology alignment in the volume. 

3.2.1 Measured neuron densities 
To obtain neuron counts, we used semi-automated cell counting in consecutive sagittal slices 
of a mouse brain and divided those numbers by the calculated volume (see Methods). We found 
an average cell density of 68,750 ± 1,976 cells/mm3 for Rt and 57,467 ± 5,201 cells/mm3 for 
the VPL (mean±std, n=37 slices).  

3.2.2 Defining microcircuit dimensions 
To define the dimensions of a thalamic microcircuit, we started by identifying a subvolume 
spanning a portion of the ventral posterolateral nucleus of the thalamus (VPL) and the reticular 
nucleus of the thalamus (Rt). Its longest (vertical) dimension encompasses the two nuclei, with 
the Rt as the topmost region (Fig. 3). We chose the VPL nucleus because it receives information 
from the hindlimb (Joseph T Francis et al., 2008) and relays it to the somatosensory cortex; the 
corresponding cortical microcircuit was reconstructed in a previous model (Markram et al., 
2015a). The Rt is intimately associated with the different thalamic nuclei and it is the primary 
source of inhibition to the thalamus (Cavdar et al., 2013; de Biasi et al., 1986; Houser et al., 
1980; Pinault, 2004). Since the VPL does not have a clear modular organization, we followed 
a previously published approach to define the microcircuit radius and its height (Markram et 
al., 2015a). 

To constrain the dimensions, we used the 3D reconstructed morphologies of the Rt_RCs to 
calculate the horizontal dimension of the microcircuit and the vertical dimension of VPL and 
Rt from the Allen Brain Atlas for its height (Goldowitz, 2010). The dendrites of Rt_RCs were 
used as they have the largest reach along the horizontal dimension (see Methods).  

The estimated dimensions correspond to a microcircuit with a volume of ~0.22 mm3, a base of 
323 μm in length, and a total height of 800 μm (250 μm corresponds to the Rt and 550 μm to 
the VPL, see Methods for details).  
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Figure 3. Reconstructing neuron densities, microcircuit dimensions and composition, 
neuron counts and morphology placement 
(A) Mean neuron densities in the Rt and VPL nucleus of the thalamus. Confocal imaging of an 
exemplar slice after staining with anti-GABA (red), anti-NeuN (green) and DAPI (blue). Brain 
regions outlines were drawn after the alignment of the slice with the Allen Reference Atlas. 
The gray box represents a thalamic microcircuit. (B) Microcircuit dimensions (lateral and 
vertical dimensions). Left: the lateral dimension was the smallest circle for obtaining saturated 
Rt_RC dendritic density at the center of the microcircuit. The cut-off radius at 95% of the 
plateau density was 294 μm. Middle: hexagonal boundaries were adopted for tiling and vertical 
dimensions of the Rt and VPL regions were calculated from the Allen Reference Atlas (see 
Methods). Right: excitatory/inhibitory fractions and m-types composition. Inhibitory fractions 
as reported in the Mouse Cell Atlas (Erö et al., 2018). (C) Fraction of e-types corresponding to 
each m-type as found in our single cell recordings. (D) Predicted neuron numbers and soma 
positions in the microcircuits (mean and std of the five microcircuit instances). (E) 
Morphologies placed in the microcircuit, only ~10% of the neurons are shown (left) and axons 
are omitted for clarity. Right: one exemplar Rt_RC axon (red) is shown innervating the VPL. 

 

3.2.3 Reconstructing neuron numbers and composition 
Having established the model microcircuit volume, we distributed the neurons according to 
densities and excitatory/inhibitory ratios measured experimentally (Fig. 3).  

We next collected information on the inhibitory and excitatory neuron ratios in the microcircuit 
regions (Fig. 3.2C). As reported in many studies (de Biasi et al., 1986; Houser et al., 1980; 
Pinault, 2004), 100% of neurons in Rt were inhibitory. In this first draft, we included 0.5% of 
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inhibitory cells in the VPL, according to the estimates in the Blue Brain Cell Atlas 
(RRID:SCR_019266), an open-access cell atlas for the mouse brain (Erö et al., 2018). This 
atlas is a resource that integrates whole brain Nissl and gene expression stains to predict neuron 
densities and positions.  

As a result, the microcircuit was populated with 4,909 ± 283  Rt_RCs, 8,952 ± 517 VPL_TCs 
and 47 ± 2 VPL_INs, for a total of ~14,000 neurons. The numbers correspond to the mean and 
standard deviation of the different microcircuit instances (see Methods). 

Once we had obtained the inhibitory and excitatory cells densities, the morphological and 
electrical types composition (me-composition) was directly determined (Fig. 3.2D): the 
reticular nucleus (Rt) had 100% of neurons of m-type Rt_RC. Each Rt_RC neuron had one of 
two e-types (57% cAD_ltb and 43% cNAD_ltb). In the VPL, all inhibitory neurons 
corresponded to the VPL_IN m-type and bAC e-type. The excitatory neurons in VPL, which 
corresponded to thalamocortical cells (m-type VPL_TC), had e-type cAD_ltb (64%) or 
cNAD_ltb (36%). The percentage of e-types for each m-type (e-type fractions) were derived 
from our in vitro electrophysiological recordings. 

 

3.2.4 Soma positions and morphology placement 
After establishing the dimensions and the number of neurons for each me-type, we generated 
somata positions using an algorithm to fill the space, ensuring that somata did not overlap  and 
that neurons were uniformly spaced between each other (Fig. 3E,F). Once neuron positions 
were defined, we used a second algorithm to select the morphology that best fulfilled the 
anatomical constraints of the microcircuit (see Methods). The logic followed was based on 
experimental findings showing that the axons of reticular neurons project towards the different 
thalamic nuclei of the thalamus (Pinault and Deschênes, 1998) and that thalamocortical cells 
have axonal collaterals in the reticular nucleus (Harris, 1987; Monconduit et al., 2006). To 
choose the best morphology for each position, we manually annotated these patterns on each 
reconstructed morphology and calculated their overlap with the microcircuit subregions (see 
Methods). 

3.3 Reconstructing and validating synaptic connectivity 

The detailed connectivity between individual neurons in the microcircuit was built by adapting 
an existing algorithm (Markram et al., 2015a; Reimann et al., 2015). Detailed anatomical 
studies found a linear relation between the available dendritic surface in the thalamus and the 
bouton numbers on reticular axons (Pinault and Deschênes, 1998). This finding suggested that 
potential synaptic locations in the thalamus between Rt and TC neurons can be predicted by 
the statistical overlap between neurites (S. L. Hill et al., 2012).  

To establish synaptic connectivity (Fig. 4), we used neuron morphologies placed in the 
microcircuit and the available data on axonal bouton densities from 3D reconstructed 
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morphologies (number of boutons/axonal length) as constraints. We included synapses from 
ML and CT afferents by using volumetric bouton densities as constraints (number of 
boutons/tissue volume). 

We found that the model reproduced findings from electron microscope studies that had not 
been used as constraints. We compared the synapse convergence onto reticular neurons (Liu 
and Jones, 1999) and the distribution of number of synapses per connections (Morgan and 
Lichtman, 2020)) and both gave results comparable to the experimental counterpart (Fig. 4D). 

3.3.1 Reconstructing intrathalamic connectivity 
Potential synaptic locations were identified by computing all appositions between the neuron 
morphologies, i.e. potential synapses, filtering using additional experimental constraints (see 
Methods for detail). Along with the physical surface area available on the morphologies, we 
used as a constraint the bouton densities (number of boutons / axonal length) on the axons of 
Rt_RCs and VPL_TCs (Fig. 4A). In our experimental dataset, we found that TCs had on 
average 0.102 ± 0.021 boutons / μm (n = 9 axons) and Rt neurons 0.124 ± 0.002 boutons / μm 
(n = 2 axons).  

Synaptic connections in the model were formed between all m-types, except for VPL_TCs to 
VPL_TCs and from VPL_TCs to VPL_INs. Connections between VPL_TCs are likely to 
disappear during development (Lee et al., 2010), while we did not find any experimental 
evidence of connections between TCs and INs, neither in the ventrobasal thalamus, nor in the 
visual thalamus, where INs are present in higher proportions (Arcelli et al., 1997; Evangelio et 
al., 2018; Jager et al., 2021). Connections between all m-types were formed by presynaptic 
axons and postsynaptic dendrites and somata, while those formed by INs were largely 
established by presynaptic dendrites (Fig. 4B), as shown in the visual thalamus (Morgan and 
Lichtman, 2020; Sherman, 2004).  
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Figure 4. Reconstructing and validating intrathalamic and thalamic afferent connectivity 

(A1-2) Constraining intrathalamic connectivity using neuron morphologies and bouton 
densities. (A1) As a first step, axodendritic appositions are used as location of putative 
synapses. The connectivity based on these appositions is characterized by high numbers of 
bouton densities (number of boutons / axonal length). Left: the location of putative synapses is 
shown for an exemplar Rt_RC neuron (red: dendrites, blue: axon, black: soma). Right: 
distribution of bouton density for 1,000 Rt_RC morphologies in the model and mean and std 
in the experiment (n=2 Rt_RC morphologies). (A2) The experimental bouton densities are used 
as a constraint to remove a fraction of axodendritic appositions (see Methods for details). (B) 
Example of the resulting mono- and multi-synapse connections between pairs of neurons in the 
model. Black dots represent the location of functional synapses. (C) Volumetric bouton 
densities (numbers reported in boutons/μm3) was used as a constraint to add synapses from 
medial lemniscal (ML) and corticothalamic (CT) afferents. (D1) Validation of the distribution 
of synapses per connection. The model was compared to findings from an EM reconstruction 
of 1 interneuron in the mouse (Morgan & Lichtman, 2020), 47 VPL_IN in the model (columns 
are the mean and bars the std). (D2) Validation of synapse convergence onto Rt_RC neurons 
in the model was validated against electron microscope (EM) experiments in the rat (N=2, Liu 
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& Jones (1999), black dots). Bars and vertical lines show mean and standard deviation for all 
Rt_RCs in the model (N=4,909).  

An important difference between the reconstruction of connectivity in the cortical microcircuit 
(Reimann et al., 2015; Markram et al., 2015) and the present model is that we did not explicitly 
remove connections between neurons if they shared only one contact, as we did not have any 
evidence of this constraint. Rather, a recent electron microscope reconstruction of an IN in the 
visual thalamus, showed that most connections from INs involve only one functional synapse 
(Morgan and Lichtman, 2020). 

The resulting distributions of the number of functional synapses per connection, i.e. the number 
of functional contacts between a pair of neurons, followed geometric distributions, similar to 
the one shown in Fig. 4D1. Most of the m-type to m-type connections had 60-70% of pairs 
with one synapse, with the exception of Rt_RCs to VPL_TCs, where most of the connections 
had 2 (30%) or more synapses (70%).  

3.3.2 Reconstructing connectivity from lemniscal and corticothalamic 
afferents 

We included synapses from extrathalamic sources, i.e. from the sensory periphery through the 
medial lemniscus (ML) and cortex (corticothalamic afferents, CT). We used as experimental 
constraints the volumetric bouton densities of lemniscal synapses in the mouse VPM (Takeuchi 
et al., 2017), since data for the VPL was not available (Fig. 4C). For CT afferents, we used the 
relative proportions of corticothalamic to lemniscal synapses onto TCs in the VB (around 12) 
and the ratio of CT to TCs synapses in the reticular nucleus (around 2.8) (Çavdar et al., 2011; 
Mineff and Weinberg, 2000). Lemniscal synapses were assigned to 2,601 virtual fibers (see 
Methods for details); this number was estimated by taking into account the number of TCs in 
the model, the number of VPL neurons and number of dorsal column nuclei (DCN) projecting 
to the thalamus (Shishido and Toda, 2017). We used a mouse cell atlas (Erö et al., 2018) to 
determine the number of excitatory neurons in the VPL and DCN. The number of CT fibers 
was 75,325, consistent with data reporting a ratio of ~10 between CT afferents and the 
corresponding TC neurons (Crandall et al., 2015; Monconduit et al., 2006; Sherman and Koch, 
1986). 

3.3.3 Predicted synapse numbers, afferent, and efferent neuron numbers 
This microcircuit model is a tool to predict the convergence and divergence of the different 
thalamic m-types. We found that each neuron in the microcircuit projected on average to 246 
± 88 other neurons (mean ± std, sample of 1,000 neurons); each Rt_RC neuron projected to 64 
± 28 Rt_RCs and 136 ± 60 VPL_TCs; each VPL_TC projected to 34 ± 46 Rt_RC neurons; 
VPL_IN sent efferents on average to 220 VPL_TCs (± 78.0). The total number of intra-
thalamic synapses in a microcircuit was 4.77 million. Afferent lemniscal fibers made a total of 
17,998 synapses in the VPL portion of the microcircuit, while synapses from corticothalamic 
fibers were 40,905 (sum for VPL and Rt in the microcircuit). In a mesocircuit, comprised of a 
central microcircuit and surrounded by six others (see Fig. 6A), we found a total of 44.2 million 
synapses. Each neuron received inputs on average from 203 ± 41.0 other neurons. Each Rt_RC 
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neuron receives inputs from 28 ± 15 other Rt_RCs and 74 ± 28 VPL_TCs, while VPL_TCs are 
contacted on average by 75 ± 32.0 Rt_RCs.  

In a preliminary investigation, we determined the relative proportions of closed and open-loop 
configurations between Rt_RCs and VPL_TCs. We found that closed-loops were present in 
our model and that they were a minority of the connections, in qualitative agreement with 
experimental findings  (Gentet and Ulrich, 2003; Pinault and Deschênes, 1998; Shosaku et al., 
1989). As a starting point for this analysis, we considered all connected VPL_TC to Rt_RC (or 
Rt_RC to VPL_TC) pairs and for each presynaptic neuron we counted how many among its 
postsynaptic neurons it received input from. In this way we found that the percentage of closed-
loops was always lower than 10%. 

 

3.3.4 Reconstructing and validating synapse physiology 
After establishing the anatomically constrained connectivity, we modeled synapse physiology 
with available data from in-house experiments and the literature on short-term plasticity, post-
synaptic potential amplitudes (PSPs), time constant of synaptic currents and reversal potentials 
(Fig. 5).  

We identified three short-term synaptic plasticity types: inhibitory depressing (I2), excitatory 
depressing (E2) and excitatory facilitating (E1) (Ecker et al., 2020; Markram et al., 2015a). We 
used synapse models featuring stochastic transmission and short-term plasticity,  (Fuhrmann et 
al., 2002; Markram et al., 2015a) and constrained the parameters of the Tsodyks-Markram 
model of short-term plasticity with available thalamic data (see Table 1 and Fig. 5A-B). In this 
way, we provide a first comprehensive map of synapse types in a thalamic microcircuit with 
the main external afferents (Fig. 5B).  For instance, we took into account that synapses between 
VPL_TC and Rt_RC depress more quickly than synapses between Rt_RC and VPL_TCs are 
more rapidly depressing than those between  VPL_TCs and Rt_RCs (Cox et al., 1997; Gentet 
and Ulrich, 2003) (Fig. 5D). Connections from presynaptic interneurons have never been 
characterized in the somatosensory thalamus of the rodent and we found that they were 
depressing as well (Simko and Markram, 2021). Interestingly, synapses from corticothalamic 
afferents were described as being facilitating in first-order thalamic nuclei and in the reticular 
nucleus (Connelly et al., 2016; Crandall et al., 2015; Cruikshank et al., 2010; Jurgens et al., 
2012; Landisman and Connors, 2007; Miyata, 2007). For some connections, such as extrinsic 
synapses from CT fibers, we found information in the literature regarding their short-term 
plasticity types, but experiments were limited to the analysis of the first 2-4 consecutive EPSPs. 
In those cases, parameters were predicted from similar pathways from our recordings or from 
the neocortical microcircuit model (see Methods for details, Fig. 5B). 

Similarly, we used available paired-recording data and generalization principles (see Methods) 
to assign synaptic conductance values (gsyn) to match experimentally recorded PSP amplitudes. 
We predicted that single gsyn from inhibitory neurons are in general small (e.g. 0.9 ± 0.23 nS 
for VPL_IN to VPL_IN), while conductances from VPL_TCs and lemniscal afferents are larger 
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(>2 nS), consistent with being “driver” synapses (Mo et al., 2017; Sherman and Guillery, 1998) 
(Mo et al., 2017; Sherman and Guillery, 1998), while corticothalamic synapses have small gsyn 
(<0.5 nS), but are facilitating (Fig. 5D). 

To model synapse kinetics, we used existing models of synaptic currents (Markram et al., 2015) 
and included literature findings on decay time constants, reversal potentials and the relative 
contribution of AMPA, NMDA, GABAA and GABAB currents, summarized in Table 1 
(Arsenault and Zhang, 2006; Deleuze and Huguenard, 2016; Miyata and Imoto, 2006; Warren 
et al., 1994; Zhu et al., 1999). In the case of inhibitory synapses, we included only GABAA 
currents in this first draft, since our existing GABA model does not take into account the non-
linear dependence of GABAB activation on presynaptic activity (Destexhe and Sejnowski, 
1995; Kim et al., 1997; Wang et al., 1995).  

We found that the model was able to reproduce data that were not used so far: the stochastic 
nature of synaptic release was assessed against the coefficient of variation of the first PSP 
amplitudes (Table 2 and Fig. 5C1). Moreover, when we performed in silico paired-recording 
on neuron pairs that were not considered when assigning the gsyn values, we found that they 
reproduced very closely the experimental counterpart (Table 3 and Fig. 5C2). This validation 
was particularly important, since PSP values emerge not only from the specific gsyn values, but 
also from the dendritic properties of the single neuron models, the distance of the synapses 
from the soma and the initial synapse release probability.  
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Figure 5. Reconstructing and validating short-term synaptic plasticity and postsynaptic 
potential (PSP) amplitudes 
(A) Top: illustration of in vitro paired recordings, used to constrain the parameters of the 
Tsodyks-Markram model of short-term plasticity. A presynaptic neuron (black pipette) was 
stimulated with 8 pulses at 40 Hz followed by a recovery stimulus. The response in a 
postsynaptic neuron (gray pipette) was recorded and used to constrain the model parameters 
(U, D, F). (B) Map of short-term plasticity types in the model. Green: in-house experimentally-
characterized pathways (as in A), green checked: pathways for which the synapse type was 
derived from literature and parameters were generalized from similar pathways (see Methods 
for details), orange: pathways for which paired recording data was not available. (C1) 
Validation of the coefficient of variation (c.v.) of first PSP amplitudes, quantifying the trial-to-
trial variability for 5 in vitro characterized pathways (see Table 4.3). (C2) Comparison of PSP 
amplitudes in the model for 7 characterized pathways in-house or in the literature (see Table 
4.2). Dots and error bars show mean and standard deviation, dashed line shows the regression 
fit. (D) Example of in silico paired recordings for different pathways. For each pathway, the 
somatic membrane potential of the postsynaptic neuron is shown (gray: trials; blue and red: 
mean traces for inhibitory or excitatory connections). All recordings are shown on the same 
scale for easy comparison of PSP amplitudes in different pathways. 
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3.4 Reconstructing and validating gap junction connectivity 
Neurons in the reticular nucleus of the thalamus are functionally connected through electrical 
synapses, providing a basis for neuronal synchronization in thalamic networks  (Haas et al., 
2011; Landisman et al., 2002; S.-C. Lee et al., 2014; Long et al., 2004). Different studies in 
rodents estimated that gap junctions-coupled neurons represent between 30-50% of the total 
neuron population in the Rt (Crabtree, 2018; Deleuze and Huguenard, 2006; Lam et al., 2006; 
S.-C. Lee et al., 2014). Along with intra-thalamic GABAergic synapses, they play a crucial 
role in the balance between synchronization and desynchronization in thalamic networks and 
rhythm generation (Beenhakker and Huguenard, 2009).  

Our computational model provides a basis to study the functional impact of gap junction 
connectivity on network dynamics and rhythm generation, overcoming important limitations 
of experiments in the slice. For instance, difficulties in detecting the activity of gap junctions 
that are remote from the recording site in the soma or loss of dendritic mass due to slicing 
artifacts (Long et al., 2004).  

3.4.1 Gap junction connectivity between reticular neurons is predicted by 
dendrodendritic appositions 

We identified gap junction locations (GJs) by following a similar approach as was used to 
identify synapse locations. We started by finding all possible appositions between Rt_RCs 
dendrites and somata. By doing so, the resulting neuron divergence (number of first-order 
postsynaptic neurons) was significantly higher than values reported in the literature (Lee et al., 
2014) (Fig. 6A1). Moreover, the mean number of GJs per neuron was higher than values 
reported in other species or brain regions of ~300 per neuron  (Amsalem et al., 2016). We 
therefore removed a random fraction of appositions until we matched the experimental neuron 
divergence (Fig. 6A2). We found that the model best matched the experimental data when 
retaining 30% of the potential dendrodendritic appositions.  

We then validated the resulting connectivity by comparing the extent of anatomical coupling 
in the model with available dye-coupling data in the mouse Rt (Lee et al., 2014). Consistent 
with the experiment findings, we find that, in the model, each neuron is directly coupled with 
2-20 other neurons and that the majority of coupled neurons was at 50-100 μm from the primary 
injected neuron (Fig 6B). When analyzing single model neurons, most of the coupled neurons 
were located at 40-120 μm, as found experimentally (Fig. 6B). Rarely, coupled neurons can be 
found at distances of 300-400 μm, consistent with the extent of some Rt_RC neuron 
morphologies and the experimental findings (Fig. 6B). These results indicate that many aspects 
of GJ connectivity, in particular its distance-dependence, can be predicted by the 
morphological properties of Rt_RC dendrites. 

We assumed a gap junction conductance of 0.2 nS based on prior work (Amsalem et al., 2016). 
To validate the coupling strength, we computed the coupling coefficients (CCs) between pairs 
of neurons with simulated paired recordings (Fig. 6C). In the model, we found that electrically 
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coupled Rt_RC neurons had CCs values of 0.023 ± 0.008 (mean ± standard deviation, Fig. 6C) 
and that the mean value fell within the reported variability in mouse Rt neurons (Landisman et 
al., 2002). 
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Figure 6. Reticular nucleus gap junction connectivity is predicted by dendrodendritic 
overlap 
(A1) Potential connectivity based on dendrodendritic (and somatic) appositions between 
Rt_RC dendrites. Left: view of the microcircuit from the Rt side showing the location of a 
sample of 500 Rt_RC neurons (gray dots), a “target” Rt_RC morphology (2D projection, 
dendrites in red) and the location of Rt_RC neurons connected to the target Rt_RC (blue dots). 
Middle: neuron divergence (number of postsynaptic neurons) in the model and literature (N=33 
for both experiment and model). Each dot represents one target neuron. Right: distribution of 
potential connectivity divergence (number of appositions per neuron, for a sample of 1000 
Rt_RC neurons in the model). (A2) Predicted gap junctions (GJ) after randomly removing 
dendrodendritic appositions to match average GJ divergence. Left: as in A1. Middle: neuron 
divergence in the model matches experimental findings. Right: the resulting GJ divergence is 
reduced by an order of magnitude. Note different maximal values in A1 and A2. (B) 
Validations of distance dependent GJs connectivity. Right: In silico dye-injections were 
performed in the model to reproduce dye-coupling experiments (n=500 neurons in the model, 
n=33 experiment, mean and standard deviation are shown). (C) Validation of GJs functional 
properties. Left: example of in silico paired recordings, where a Rt_RC is stimulated with a 
hyperpolarizing current step, its somatic potential is recorded, along with the somatic potential 
of all coupled neurons (only a sample is shown). The ratio of the voltage response between a 
coupled neuron and the stimulated neuron is the coupling coefficient (CC). Right: comparison 
of CC values in the model (n = 50 pairs, each one represented by a dot) with paired recordings 
from the literature. Dots: mean, error bars: standard deviation. (D) Resulting GJ connectivity. 
Example of clusters of 4 Rt_RC neurons coupled by GJs and GJ locations. Each neuron 
morphology is represented by a different color, axons are omitted for clarity. Green dots show 
the detailed morphological location of GJs that each of the neurons receive from the 3 others 
and from other Rt_RC neurons not shown here. 

 

3.5 Spontaneous and evoked activity in the model thalamoreticular microcircuit 

We first explored spontaneous and evoked activity in the microcircuit in a simulated in vivo 
wakefulness-like condition (Fig. 7, see Methods). In this condition, the model reproduces the 
distribution of firing rates in first-order thalamic and reticular nucleus neurons during quiet 
wakefulness, characterized by low firing rates (<10 Hz)  (Born et al., 2021; Hartings et al., 
2000; Nestvogel and McCormick, 2021). The simulation exhibits uncorrelated firing activity 
in all m-types, with higher firing rates in VPL_INs due to their lower spiking threshold in the 
model (Fig. 7A and Methods).  Single cell activities are dominated by single tonic spikes (Fig. 
7B), consistent with their predominance over low-threshold bursts in wakefulness-like states 
(Urbain et al., 2015).  

We then compared spontaneous activity with sensory evoked responses with brief activation 
of a subset of ML fibers, simulating a whisker flick or a brief electrical stimulation to the 
hindlimb (Kimura, 2017). We found increased population firing rates in VPL_TC neurons, 
with a peak in firing in a short time window (5-10 ms) following the stimulus (Fig. 7 and Video 
1). This activity is followed by a period of silence in some cells, lasting 100-200 ms Fig. 7B). 
Rt_RCs exhibit an increase in firing rate compared to their spontaneous activity as a result of 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.02.28.482273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482273


 

 

the excitation they receive from VPL_TCs (Fig. 7B). The increased activity in Rt_RCs lasts 
for 50-100 ms after the stimulus and gradually decreases to baseline levels, resulting in a clear 
hyperpolarization of VPL_TCs (Fig. 7A). The longer activation of Rt_RCs is in line with 
experimental findings and suggests an important role of the Rt in limiting sensory responses 
and focusing them on rapid perturbations (Hartings et al., 2000). Single neuron membrane 
potentials of VPL cells show heterogeneous responses (spikes, associated or not with IPSPs 
from the Rt, IPSPs only) (Fig. 7C). 

 

 

 
Figure 7. Spontaneous and sensory-evoked activity in the simulated thalamoreticular 
microcircuit (in vivo wakefulness-like condition) 
Simulating wakefulness-like spontaneous and evoked activity (A) Population voltage raster 
showing the membrane potential of a sample of 50 active neurons per m-type. Each row 
represents the activity of a single neuron and is sorted according to microcircuit depth. Note 
the uncorrelated membrane fluctuations along the depth of the microcircuit and the increased 
responses with the sensory stimulus in both Rt and VPL and visible hyperpolarization in the 
VPL after the stimulus.  (B) Firing rate histograms and spike rasters showing uncorrelated 
spiking activity in all m-types. VPL_IN have higher firing rates due to their lower spiking 
threshold. Note that Rt_RCs show increased activity for a longer time after the stimulus 
compared to VPL neurons. (C) Exemplar single cell recordings for 5 neurons for each m-type. 
Note the variability in spiking and subthreshold activity between different cells of the same m-
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type. For instance, VPL neurons respond to the stimulus with spikes, spikes followed by 
hyperpolarization or hyperpolarization alone. In this and following figures spikes are truncated 
at −25 mV. 

 
3.5.1 Increasing sensory stimulus size increases surround inhibition in the 

thalamus   
 

Receptive fields in the VPL vary in size and are more focal in subregions representing 
individual digits and broader for regions representing the body or limbs (Joseph T. Francis et 
al., 2008). Inhibition from the Rt comprises an important contribution in shaping the temporal 
and spatial properties of thalamic receptive fields (Born et al., 2021; Lee et al., 1994; Shosaku, 
1986; Shosaku et al., 1989; Soto-Sánchez et al., 2017). Therefore, we explored the effect of 
inhibitory feedback from the Rt on network responses by simulating sensory stimuli of 
increasing size. 

We simulated the activation of an increasing number of afferent ML fibers, and identified a 
threshold for minimal activation (increased population responses) of both Rt and VPL of 60 
ML fibers. Further increasing the number of afferent fibers, increased the population responses 
in the Rt and VPL, with marked Rt-mediated hyperpolarization when 160-260 fibers were 
activated (Fig. 8A). Both response latency and its variability decreased with increasing 
stimulus size, indicating increasingly synchronous responses (Fig. 8B). Interestingly, 
population firing rates in the Rt increased more than in the VPL when more than 260 ML fibers 
were activated (Fig. 8A), confirming the high responsiveness of reticular neurons to sensory 
stimuli (Hartings et al., 2000). The model shows that not only cells directly activated by the 
lemniscal input exhibit stimulus size-dependent responses, but also the indirect inhibition from 
Rt_RC cells is stimulus size-dependent: at increasing stimulus size more Rt_RCs are recruited 
and cause greater hyperpolarisation in the VPL (Fig. 8A, C).  

We then investigated the impact of the recruitment of VPL and Rt neurons at the topographical 
level (Fig. 8D and Video 1). Central VPL cells were depolarized or spiked, while the activation 
in the Rt was broader, with some degree of VPL-mediated depolarization in the periphery of 
the Rt. This result suggests that receptive fields in the Rt are somewhat larger than in the VPL, 
yet they provide topographically aligned inhibition to the thalamus in a focal manner, as shown 
for visual reticular neurons (Born et al., 2021; Soto-Sanchez et al., 2017). The activity in the 
Rt results in broad inhibition of the VPL, extending beyond the area directly activated by the 
stimulus (surround inhibition). This result unveils an important role of the Rt in the control of 
receptive field size, which does not strictly require extra-thalamic inputs, such as cortical 
feedback. The Rt contributes to precise responses in the VPL not only by rapidly inhibiting 
directly responding neurons, but also by limiting the response in the surrounding area. 
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Figure 8. Stimulus-dependent recruitment of reticular nucleus neurons and surround 
inhibition of thalamic neurons (in vivo wakefulness-like condition). 

(A) Simulated sensory inputs with brief activation of increasing numbers of medial lemniscal 
fibers (ML). Top: voltage rasters show Rt and VPL responses of a sample of 150 active 
neurons, sorted by their vertical position in the microcircuit. Bottom: spiking responses (firing 
rate histograms and spike rasters). Note that stimulus-evoked responses in the VPL as well as 
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the following hyperpolarization increase with increasing stimulus size. (B) Stimulus-response 
curves. Response latency decreases with stimulus size (left), while peak firing rates increase 
the VPL, as well as in the Rt (right). Mean (lines) and standard deviation (shaded areas) are 
shown. The peak firing rate is calculated in the 100 ms following the stimulus and response 
latency as the time to first spike after the stimulus (n=1,000 neurons). (C) Stimulus-dependent 
hyperpolarization in the VPL. The mean and deepest hyperpolarization in VPL cells are shown 
(lines: mean, shaded areas: standard deviation). Note that with increasing stimulus size more 
VPL cells are inhibited by Rt neurons and the hyperpolarization becomes stronger. The 
hyperpolarization is calculated in a time window of 40-200 ms after the stimulus (same sample 
as in B, n=1,000). (D) Topographical activity in a slice through the VPL and Rt showing the 
average membrane potentials at different time windows before, during and after the stimulus, 
as indicated by colored ticks in A (middle panel), 160 fibers were activated. Time windows of 
10 ms starting at the time indicated were used for the average activity. Note that increased 
activity is confined to the central part of the VPL in response to the stimulus (t=5 ms), which 
triggers spiking activity in the Rt (t=50 ms) in central as well as in peripheral neurons. This 
result suggests that the Rt has larger receptive fields compared to the VPL. Consequently 
(t=50ms), the central part and the surround in the VPL is inhibited (blue points at t=50ms). 

 
3.5.2 Thalamic responses to sensory input exhibit adaptation and cortical 

enhancement 
Numerous studies have shown adaptation to sensory stimuli in the lemniscal pathway due to 
short-term depression of lemniscal EPSPs (Manuel A Castro-Alamancos, 2002; Manuel A. 
Castro-Alamancos, 2002; Diamond et al., 1992; Martin-Cortecero and Nuñez, 2014; Simons 
and Carvell, 1989). In the model, we were able to reproduce sensory adaptation at different 
frequencies and a recent study showing that depressed responses in the somatosensory 
thalamus can be enhanced by cortical activation in anesthetized mice  (Mease et al., 2014).  

We studied the model responses to repetitive sensory stimuli and with activation of the 
corticothalamic afferents before and during the sensory stimuli (Mease et al., 2014). Activating 
the lemniscal fibers with trains of stimuli at 8 Hz, results in high response probability to the 
first stimuli, while subsequent EPSPs exhibit decreased amplitudes (Fig. 9A). The activation 
of cortical afferents, 200 ms before the sensory stimulus with noisy input at a mean firing rate 
of 4 Hz, increased the firing probability to all the other stimuli in the train, thus 
counterbalancing the adaptation, at least in part (Fig. 9B), as shown in the corresponding 
experiment (Mease et al., 2014).  

With ML stimulation only, we also found that the adaptation was minimal at 2 Hz (firing 
probability ~0.8 for all the stimuli), but was already evident at 4 Hz (firing probability of ~0.6 
for the 3rd- to the last stimuli in the train) (Fig. 9B). For a cell, a firing probability of 0.8 means 
that it fired in response to the stimulus in 20 out of the 25 trials tested. Sensory adaptation is 
thus frequency dependent, as was already shown in experiments (Manuel A Castro-Alamancos, 
2002; Martin-Cortecero and Nuñez, 2014). Not only VPL_TCs, but also Rt_RCs receive input 
from cortex and inhibit VPL_TCs cells when indirectly activated by sensory inputs, as shown 
previously (Fig. 8) and could potentially suppress thalamic activity.  
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We thus wondered why the net effect of cortical activation was enhancement (and not 
suppression) of sensory responses. We found that Rt activity was marked in response to the 
first two-three stimuli in the train and tended to decrease with successive stimuli (Fig. 9C), as 
a result of synaptic depression in the synapses between VPL and Rt neurons (Fig. 5). Moreover, 
we found that the topographical properties of the Rt-mediated inhibition were affected by CT 
activation, with an increase of the extent of surround inhibition in the VPL when the cortex 
was activated (see Video 2). This result shows how the cortex can shape thalamic receptive 
fields, via direct excitation of the thalamus and indirect inhibition via the Rt.  

The model also reproduces the  experimental results with single sensory stimuli (Fig. S2). We 
found that VPL_TCs respond to lemniscal activation with subthreshold EPSPs, single or 
multiple spikes (Fig. S2A). The increased depolarization, caused by the activation of CT 
afferents, results in a decrease in EPSP amplitude, suggesting a contribution from the low-
threshold Ca2+ current at baseline (Fig. S2B-E) (Fig. 9C).  
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Figure 9. Frequency-dependent sensory adaptation and cortical enhancement of sensory 
responses 
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Control condition (lightly-anesthetized in vivo-like state, see Methods) (cfr. Mease et al., 2014) 
(A) Left: example of a VPL_TC cell response (3 out of 25 repetitions) to a train of sensory 
stimuli (8 stimuli at 8 Hz, green). Note the adapting response: the cell responded only to the 
first stimuli in the train. Cortical activation at a mean firing rate of 4 Hz (blue rectangle) 
decreased the sensory adaptation by decreasing the distance from firing threshold. Right: 
comparison of VPL_TCs firing probability in response to the sensory stimulus and to the 
sensory stimulus with cortical activation (n=50 cells, 25 repetitions each). Note the increased 
firing probability with cortical activation (blue line). The markers show mean probability in 
response to each stimulus, vertical line the standard deviation. (B) The adaptation in the VPL 
to sensory responses increases with increasing frequency of sensory stimulus as shown by the 
response probability (each line represents the mean and error bars the standard deviation of 50 
cells, 25 repetitions each). (C) Population voltage rasters in control condition and with cortical 
activation. Note that in control condition as well as with cortical activation the Rt responds to 
the first 2-3 stimuli in the train, with visible hyperpolarization in the VPL, which decreases 
from the 4th stimulus. (D) Left: effect of different mean firing rate of cortical input to response 
probabilities for sensory stimuli at 10 and 20 Hz. Increasing cortical mean firing rates are 
represented by darker blue tones. Right: map showing the efficacy of cortical input in 
counterbalancing sensory adaptation for different sensory frequency and cortical mean firing 
rates. The efficacy was measured as the mean difference between the curves on the right. (E) 
Schematics explaining why cortical enhancement is greater for sensory stimuli ~10 Hz than 
higher frequencies (~20 Hz). Sensory stimuli around 10 Hz are well-timed with post-inhibitory 
rebounds and activation of low-threshold Ca2+ and cause larger EPSPs that can reach firing 
threshold with cortical activation. For higher stimulus frequency, EPSPs decrease in amplitude 
due to synaptic depression and cortical inputs are no longer sufficient to reach the firing 
threshold and counterbalance the adaptation (see also Fig. S2F-G). 
 

3.5.3 Cortical enhancement of sensory responses is frequency dependent and 
frequency selective 

Corticothalamic effects on thalamic activity are dynamic and depend on the mean firing rate 
and pattern of cortical activation (Crandall et al., 2015; Kirchgessner et al., 2020). We thus 
explored how the results above, showing net cortical enhancement of sensory responses, 
generalized to different frequencies of sensory and cortical activation.  

Above, we saw that when sensory stimuli of elevated frequencies are presented (e.g. 10 - 20 
Hz) thalamic responses are highly depressed with a greatly reduced probability (~0.1) of firing 
(Fig. 9B). We then tested cortical activation at different mean firing rates and found that 
increased cortical firing corresponded to an increased efficacy of CT inputs in counterbalancing 
sensory adaptation, i.e. increase in firing probability (Fig. 9D). Surprisingly, this happens for 
sensory stimuli up to 10 Hz, while at 20 Hz the input from CT afferents is no longer sufficient 
to counterbalance the adaptation, and maximal firing probabilities were <0.5.  

We found that cortical enhancement was frequency selective and maximal when both ML and 
CT afferents were activated at ~10 Hz (Fig. 9D). The enhanced gain of thalamic input at 10 Hz 
ML inputs is due to Rt inhibition and the properties of subthreshold responses in TCs (Fig. 9E 
and Fig. S2F-G). Around 10 Hz, the stimuli are well-timed with the indirect inhibition coming 
from the Rt and activation of the low-threshold Ca2+ current in TC cells. For higher frequency 
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of sensory inputs EPSPs decrease in amplitude, due to synaptic short-term depression and 
limited activation of the low-threshold Ca2+ current, and the cortical input is less effective in 
counterbalancing sensory adaptation (Fig. 9E). Furthermore, increased activation of the Rt also 
contributes to inhibiting VPL_TCs responses to 20 Hz ML stimuli.  

3.6  Spindle-like oscillations emerge in the thalamoreticular microcircuit model 

It is well established that sleep spindles are generated through Rt and TC reciprocal interactions 
(Steriade et al., 1985; von Krosigk et al., 1993), and numerous in vivo, in vitro, and in silico 
studies have explored the thalamoreticular mechanisms underlying the generation of spindle-
like oscillations (T. Bal et al., 1995; Destexhe et al., 1993, 1996; Golomb et al., 1996; Kim et 
al., 1995; von Krosigk et al., 1993; Wang et al., 1995). Spindle generation entails the activation 
of Rt neurons which hyperpolarize TC cells via Rt-TC inhibitory connections (Sanchez-Vives 
and McCormick, 1997; Steriade et al., 1985). This hyperpolarization primes TC cells for 
rebound bursts (via intrinsic pacemaker Ih and low-threshold Ca2+ currents), which perpetuate 
the spindle cycle through a “ping-pong” interaction between the Rt and TC (Sohal et al., 2006). 
These cellular and synaptic interactions can all be influenced by CT afferent inputs and diverse 
neuromodulatory contributions (Fernandez and Luthi, 2019). Recent technical advances have 
enabled the study of spindle oscillations using optogenetic activation of the Rt in vivo (Halassa 
et al., 2011; Kim et al., 2012; Thankachan et al., 2019). We use these prior studies to validate 
that the model recapitulates known spindle generation mechanisms, without having been 
explicitly built to do so. 

3.6.1 Activating the reticular nucleus increases thalamic bursting and 
initiates spindle-like oscillations 

The Rt nucleus has long been recognized as the spindle pacemaker for its ability to generate 
oscillations in thalamic networks, acting in concert with post-inhibitory thalamic bursts (T Bal 
et al., 1995; Jahnsen and Llinás, 1984; Steriade et al., 1985). We thus investigated whether the 
model can reproduce experimental findings, showing that optogenetic activation of Rt neurons 
results in increased thalamic bursting and spindle oscillations (Halassa et al., 2011).   

We activated a subset of neighboring Rt_RC cells in the model with a 20 ms current pulse, to 
simulate a brief optogenetic activation of the reticular nucleus (Fig, 10).We activated 750 
central Rt_RCs in the in vivo-like condition (see Methods). We found that activation of the Rt 
results in brief (~250 ms) oscillatory responses in both Rt and VPL cells (Fig. 10A). Local field 
potential (LFP), calculated in the VPL (Fig. 10B) resemble the average membrane potential of 
VPL_TCs (Fig. 10A) and reveals oscillations at ~10 Hz (Fig. 10C), consistent with the spindle 
frequency range (7-15 Hz) in vivo (Halassa et al., 2011). Single cell responses show increased 
bursting in Rt_RCs as well as VPL_TCs (Fig. 10D) 

We found that Rt_RC cells respond to the stimulus with increased spiking activity, followed 
by a second peak ~125 ms after the stimulus (Fig. 10E). The second peak is mainly generated 
by the post-inhibitory rebound responses in VPL_TCs. In line with the experimental findings, 
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we found an increase in VPL_TCs burst in the 100 ms following the Rt stimulus (Fig. 10F). 
While the firing rate in VPL_TCs cells does not increase significantly after the stimulus, the 
firing mode changes, with increased burst probability after the stimulus (Fig. 10G). 

 

 

Figure 10. Activating the reticular nucleus increases thalamic bursts and initiates spindle-
like oscillations (in vivo wakefulness-like condition).  
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Spindle-like oscillations are evoked by localized pulse (20 ms) activation of 750 Rt_RC cells 
located at the center of the microcircuit. (A) Left: voltage rasters showing spindle-like activity. 
A sample of neighboring 25 neurons per each m-type is shown and color-coded according to 
their membrane potential. Right: topographical map of activity showing average membrane 
potential of Rt and VPL neurons in a 10 ms time window starting at the time indicated. (B) 
LFP recording from a central site in the VPL. Note the increased oscillatory activity after the 
stimulus applied to the Rt (not shown here). (C) Frequency-time analysis of the LFP in C 
showing increased power in the 8-10 Hz frequency range. (D) Example of single cell recordings 
for 3 cells per m-type. Note the burst responses in Rt_RCs and the IPSPs-rebound sequences 
in VPL_TCs. (E) Left: spike rasters and PSTHs showing the activity of one exemplar Rt_RC 
neuron (50 trials). Note the increased activity in response to the stimulus (black dot, 20 ms 
pulse) and a second peak, generated by network interactions. Right: Same as in A, for one 
example VPL_TC, note the post-inhibitory rebound response ~100 ms after the Rt stimulation. 
(F) Histogram showing increased burst probability following the stimulus in VPL_TC (n=100 
VPL_TC), as shown in experiments (Halassa et al., 2011). (G) Left: burst probability in 
VPL_TCs increases as a result of Rt_RC stimulus (each dot corresponds to one cell, the same 
sample as in F, n=100). Right: analysis of firing rates of VPL_TCs before and after the 
stimulus, as shown in experiments (Halassa et al., 2011). Pre-stim./post-stim. data were 
calculated in the 1s preceding/following the stimulus. 

 

3.6.2 Simulated cortical UP and DOWN states initiate spindle-like 
oscillations 

The correlation between cortical and thalamic oscillatory activity has been extensively studied 
in vivo in anesthetized animals and, more recently, in naturally sleeping rodents (Contreras and 
Steriade, 1996, 1995; Fernandez et al., 2018; Slézia et al., 2011; Steriade, 2006; Urbain et al., 
2019). Spindles often occur during cortical UP states, when cortical neurons are more active 
(Destexhe et al., 2007; McCormick and Bal, 1997; Steriade et al., 1993). Synchronous Rt bursts 
are often initiated by inputs from layer 6 cortical neurons, which provide a major source of 
excitatory input to the Rt (Fuentealba et al., 2005; Fuentealba and Steriade, 2005). The 
simulations in the previous section confirmed that spindle-like oscillations can be initiated by 
directly activating the reticular nucleus. Here, we show that cortical UP states, that provide 
excitation to the Rt as well as the VPL, can generate thalamic spindle-like oscillations. 

We simulated a transition from a wakefulness-like to NREM-like state characterized by 
alternating DOWN and UP states. We simulated the DOWN and UP states by periodically 
removing the firing background from the cortical afferents for 500 ms and reactivating it for 
another 500 ms to the same level as the one used for our standard in vivo wakefulness-like 
condition (Fig. 11 and Video 3).  

Interestingly, during the DOWN state Rt_RCs are highly hyperpolarized (< -₋70 mV), while 
VPL_TCs are less affected (Fig. 11A). This result showed that, in the model, the major drive 
of activity in the Rt is coming from CT afferents. Moreover, although Rt activity is markedly 
reduced, thus removing inhibitory inputs to the VPL, the net effect of a cortical DOWN state 
is mild hyperpolarization of the VPL. This suggests the contribution of cortical activity, along 
with spontaneous lemniscal firing, in driving activity in the VPL. During the simulated cortical 
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UP state, Rt_RCs fire robustly, predominantly low-threshold bursts, causing deep IPSPs in the 
VPL_TCs, that in turn often respond with post-inhibitory rebound bursts, the hallmark of 
spindle-like activity in the thalamus (Fig. 11B).  

Taken together, these results show that cortical input has a dramatic impact on thalamic and 
reticular activity, depending on its temporal structure: when it provides continuous drive, it 
promotes uncorrelated firing, such as the one we observed during wakefulness-like states. 
During periodic activity, causing an alternation of hyperpolarization and depolarization in the 
Rt, for example during DOWN and UP states, it promotes synchronous spindle-like 
oscillations. Prolonged hyperpolarization in the reticular nucleus has been shown to precede 
spindle sequences in anesthetized cats (Fuentealba et al., 2004).  
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Figure 11. Spindle-like oscillations emerge in response to simulated cortical UP and 
DOWN states 
The network is simulated in an in vivo-like condition (see Methods) for the first 1000ms. 
Afterwards, the background activity from CT afferents is removed (for 500ms), to approximate 
a cortical DOWN state and then re-activated (for 500 ms), to simulate an UP state. (A) Voltage 
rasters. A sample of 25 neurons per each m-type is shown and color-coded according to its 
membrane potential. The DOWN state results in a marked hyperpolarization in the Rt, while 
spindle-like oscillations emerge during the UP states. (B) Sample of single cell recordings from 
the neurons shown in A. Note the change in firing mode during the NREM-like phase, where 
Rt_RC and VPL_TC fire mainly low-threshold bursts. Spikes are truncated at −25 mV. 
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3.6.3 Spindle-like oscillations are maintained by “ping-pong” interactions 
between the reticular nucleus and thalamus 

After verifying that the model was able to generate spindle-like oscillations after stimulation 
of the Rt and with simulated cortical UP and DOWN states, we dissected the mechanisms 
underlying their initiation, duration and termination, in the isolated thalamoreticular network 
(without firing activity from ML and CT afferents).  

Without firing from the afferents, all the neurons are hyperpolarized (Fig. 12). We began by 
simulating the network at rest with spontaneous synaptic release as the only source of input 
and activating a set of neighboring Rt_RCs with a 20 ms pulse as before (see Fig. 10 and Video 
4). We confirmed that synchronized burst firing in Rt cells is a potent trigger of spindle 
oscillations. Synchronous bursts in Rt_RCs cells cause large amplitude IPSPs in VPL_TCs that 
last ~100 ms, which have the optimal duration to remove the inactivation of the low-threshold 
Ca2+ current in VPL_TCs and activate the Ih current that, in turn, fire post-inhibitory rebound 
spikes and bursts. This result confirms the important role of these intrinsic neuronal 
mechanisms in the generation of spindle-like oscillations (Astori et al., 2011; Liu et al., 2011; 
Pellegrini et al., 2016; Talley et al., 1999, Bal et al., 1995; Jahnsen and Llinas, 1984). 
Furthermore, the negative reversal potential for Cl- in the thalamus contributes to large 
amplitude GABAA-mediated IPSPs (Huguenard and Prince, 1994; Ulrich and Huguenard, 
1997). All these intrinsic and synaptic properties were taken into account in our neuron and 
synapse models (see Methods). 

We then varied the synapse release probability (Prel) in the connections between VPL_TCs and 
Rt_RCs and vice versa. The back-and-forth of activity lasts longer for in vitro-like Prel and 
generates network oscillations at a frequency of ~5-6 Hz, visible as increased peaks of activity 
in the average membrane potentials (Fig. 12 B2). The frequency is similar to some of the 
barrages of IPSPs in TC cells recorded during spindle waves in ferrets in vitro (T. Bal et al., 
1995).  

These results confirmed that the “ping-pong” of activity is necessary to generate spindle-like 
oscillations in thalamic networks for a wide range of synapse efficacy in the Rt to VPL 
connections. While the reliable excitation of the Rt from the thalamus has been investigated in 
vitro (Gentet and Ulrich, 2003), we further show that a minimal degree of synaptic efficacy of 
the Rt_RC to VPL_TC connections is necessary to initiate the oscillation. 

3.6.4 The duration of spindle-like oscillations is determined by the efficacy of 
reticulothalamic connections  

We found that a number of synaptic mechanisms, or instance Prel and short-term synaptic 
depression, have an effect on the duration of spindle-like oscillations. To the best of our 
knowledge, this is the first account of how synapse efficacy between the Rt and the thalamus 
can affect the duration of spindle-like oscillations. 
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The release probability of Rt to TC connections has a marked effect on the oscillation duration, 
which lasted less than 500 ms for Prel corresponding to in vivo-like conditions and 700-800 ms 
for Prel corresponding to the in vitro-like condition (Fig. 12B). The PSD peak, calculated from 
the firing rate histograms (see Methods), increased smoothly when increasing Prel between Rt 
and VPL (Fig. 12A).  

Short-term synaptic depression causes Prel to decrease over time and its recovery is governed 
by the recovery time constant from synaptic depression (τRecDep). When we varied τRecDep in both 
connections between Rt_RCs and VPL_TCs (and vice versa), we found again a predominant 
effect of the Rt_RC to VPL_TC connection, with long oscillations when τRecDep was small. 
Unlike the variation of the PSD peak with Prel, in the case of τRecDep the change was 
discontinuous, in particular when we varied the value in the Rt_RCs to VPL_TCs connections. 

3.6.5 Gap junctions increase the duration of spindle-like oscillations by 
propagating low-threshold bursts across the reticular network 

Gap junctions (GJs) between reticular neurons can efficiently transmit low-threshold bursts 
between cells, promote spiking correlations when the  coupling is strong and synchronize the 
activity in the reticular nucleus in vitro (Landisman et al., 2002; Long et al., 2004). GJs have 
been hypothesized to contribute to the maintenance of network oscillations, through network 
synchronization (Beenhakker and Huguenard, 2009; Fernandez and Luthi, 2019). Here we 
show a direct contribution of GJs to the duration of spindle-like oscillations, along with the 
spatial properties of the Rt recruitment. 

Starting from the in vitro-like Prel condition used previously (Fig. 12B2), we studied the effect 
of removing GJs on spindle-like oscillations (Fig. 13). We then activated a central subset of 
Rt_RC with a current pulse as before. When the GJs conductance was set to 0 the activation of 
a subset of Rt_RCs was not sufficient anymore to elicit spinde-like oscillations. When we 
compared the spiking activity of Rt_RCs we found that, when GJs are present, there is some 
extra activity after the stimulus (see arrow in Fig. 13A). 

We then compared the spatio-temporal activities in the Rt and VPL in the two conditions 
(control and GJs removed, see Video 5). While the responses during the stimulation period are 
comparable, with only the central Rt_RCs being active, the spatio-temporal activity is different 
after 40-50 ms (Fig. 13B). When GJs are present, cells that are not directly stimulated are 
recruited and cause extra spiking activity in the Rt. When we analyzed the membrane potential 
along the lateral dimension of the microcircuit in the two conditions, we found that the 
excitation in the Rt spreads to more lateral neurons and lasts for a longer time, with 
corresponding increased inhibition in the VPL, thus increasing the probability of rebound 
responses in VPL_TCs (Fig. 13C-D). This lateral spread in the Rt propagates from central cells 
to peripheral ones with the latter being activated later after the stimulus (Fig. 13C,E). Slow 
signals, such as low-threshold spikes are transmitted efficiently via GJs, and their amplitude 
decreases in more peripheral cells (Fig. 13E). When GJs are present, the IPSPs from the Rt are 
visible in central as well as more peripheral cells in the VPL, indicating that the activity 
propagates broadly along the Rt axons. 
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We have shown previously that GJs connect neurons that are up to 250-300 μm apart (see Fig. 
6). These simulations further highlight that GJs have functional effects along the lateral extent 
of the microcircuit. Low-threshold spikes are transmitted along the dendrites of Rt_RCs and 
contribute to the maintenance and duration of spindle-like oscillations. 

 

3.6.6 The termination of spindle-like oscillations is determined by short-term 
depression and buildup of intra-reticular inhibition 

Different intra-thalamic cellular and synaptic mechanisms have been shown to play a role in 
spindle termination, including Ca2+-dependent upregulation of Ih current in TC cells (Bal and 
McCormick, 1996; Lüthi and McCormick, 1998), progressive hyperpolarization of reticular 
neurons for the activation by Na+- and Ca++-dependent K+ current in ferret (Kim and 
McCormick, 1998). External inputs, such as desynchronized cortical activity and noradrenergic 
input from the locus coeruleus could play a role as well (Aston-Jones and Bloom, 1981; 
Bonjean et al., 2011). 

In our model, we found additional cellular and synaptic mechanisms that are sufficient to cause 
the termination of spindle-like oscillations, that have not been directly investigated so far. All 
intrathalamic connections in the model are governed by depressing synapses (Fig. 5), which 
contributes to the decrease in efficacy between Rt and VPL neurons over time. By 
systematically scaling the time constant of recovery (from short-term synaptic depression) 
between 0 (no depression) and 1 (normal depression) we found that at 85% of the control value 
(299±39 ms) in the Rt_RC to VPL_TC connections, the oscillation no longer terminates (Fig. 
12D-E). On the other hand, short-term depression in the VPL_TC to Rt_TC pathway has very 
limited effect on the termination and could be even removed (scale value of 0 in Fig. 12D), if 
it is still present between Rt_RCs and VPL_TCs.  

We saw that the bursting activity of Rt_RCs is one of the key determinants in the initiation and 
duration of spindle-like oscillations. However, Rt_RCs cells inhibit each other through 
GABAergic synapses and this can contrast their activity. The importance of inhibition between 
reticular neurons has been already suggested in experimental work (Beenhakker and 
Huguenard, 2009; Makinson et al., 2017; Sohal and Huguenard, 2003), although some studies 
have questioned the existence of inhibitory Rt-Rt synapses (Hou et al., 2016). In the model, we 
were able to directly study the impact of Rt-Rt inhibition on network oscillation. We show that 
decreasing the conductance in these synapses results in non-terminating oscillations (Fig. 12F). 
When comparing the firing activity, we found that the percentage of Rt_RC cells participating 
in each oscillation cycle increases when mutual inhibition is reduced (Fig. 12F). 

3.6.7 Waxing and waning of spindle-like oscillations emerges due to intrinsic 
cellular and synaptic mechanisms 

 
Waxing and waning are defining characteristics of spontaneous sleep spindles recorded at the 
cortical level in the EEG, local field potential and in thalamic recordings (T. Bal et al., 1995). 
Despite this characteristic pattern of activity, the mechanisms underlying the spindle-shaped 
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oscillation, is not completely clear (Clawson et al., 2016) A line of research has proposed that 
cortical feedback is necessary in the first cycles of the oscillation (waxing), when the 
involvement of TC cells is still small. During the waxing, increasing activity of TC neurons 
would cause progressive activation of cortical neurons and subsequent stronger CT thalamic 
feedback and synchronous activity in the thalamus (Kandel and Buzsáki, 1997; Lüthi, 2014). 
During the waning phase, cortex would provide desynchronizing input to the thalamoreticular 
network (Bonjean et al., 2011; Timofeev et al., 2001). 

Although the bidirectional interaction between thalamus and cortex can contribute to the 
waxing and waning of the oscillation, in our model we found that it can also be sustained by 
the thalamoreticular microcircuit alone (Fig. 12G left). Specifically, the waxing of a spindle 
oscillation is created by the rhythmic recruitment of additional neurons, first in the reticular 
nucleus, and second through the “ping-pong” interaction with the thalamus - each “ping” from 
the Rt successively recruits additional neurons and generate a stronger “pong”, via low-
threshold bursts in VPL_TC cells. Gap junctions play a key role in this process through their 
ability to rapidly recruit Rt neurons. To generate the ping-pong, a minimum degree of inhibition 
from the Rt is necessary, as we have shown when we varied the release probability in the Rt_RC 
to VPL_TC connections (Fig. 12A), along with reticular low-threshold bursts. In the model, 
only a small fraction (<10%) of VPL_TCs is active in each cycle (Fig. 12F), however their 
excitatory impact on Rt_RC cells is sufficient to maintain the “ping-pong” interaction between 
the populations. 

The waning of the spindle-like oscillation is a result of the progressive reduction in the 
probability of synaptic release (due to short term synaptic depression), the subsequent decrease 
in PSP amplitudes, and the consequential reduction in recruitment of neuron firing during the 
“ping-pong” interaction between Rt and VPL neurons. At the same time, mutual inhibition 
between Rt_RCs progressively builds up, as more Rt_RCs are recruited, and prevents the 
spread of the activity, acting as a self-limiting mechanism. We showed that when we compared 
the number of Rt_RCs participating in each cycle of the oscillation in control condition and 
when mutual inhibition was reduced (Fig. 12F). The greatest difference was at the 5th cycle of 
the oscillation: while in both cases the firing tended to decrease compared to the previous cycle, 
the activity was enough to start a new cycle of waxing and prevent the termination of the 
oscillation, when mutual inhibition was reduced. 

From the perspective of different connections, we found that the excitatory pathway between 
VPL_TCs and Rt_RCs increases the oscillation, while mutual inhibition in the Rt decreases it 
(Fig. 12G right). The inhibition from Rt_RCs to VPL_TCs has positive or negative effects on 
the oscillations depending on the firing mode and timing of Rt_RCs: while synchronous 
bursting generated IPSPs with the optimal amplitude and duration for rebound responses in 
VPL_TCs (see above), single tonic spikes would just inhibit VPL activity, especially if Rt 
activity is not synchronized between cells. GJs contribute to the waxing of the oscillations, in 
particular when only a subset of Rt_RCs is active (e.g. at the start of the oscillation, see also 
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Video 5). By contributing to the build up of inhibition inside the Rt, they also play an indirect 
role in the waning. 

 

Figure 12. Waxing and waning of spindle-like oscillations emerges from intrinsic cellular 
and synaptic dynamics (in vitro-like condition) 
In this figure, the circuit is in an in vitro-like condition, thus membrane potentials are relatively 
hyperpolarized and synaptic interactions are stronger, as shown in A. A subset of 1000 Rt_RC 
cells located at the center of the microcircuit are stimulated with a 20 ms current pulse. (A) 
Parameter map showing the effect of synapse release probability between Rt_RC and VPL_TC 
cells on oscillation strength. Note that release probability in Rt_RC to VPL_TC connections is 
key for generating oscillations, which fails to terminate if its value is too high or cannot be 
generated if too low. (B) Right: voltage rasters showing spindle-like activity with in vitro-like 
synapse release probability, corresponding to parameter set 2 in panel A. A sample of 25 
neurons per each m-type is shown and color-coded according to its membrane potential. This 
is the control condition used for this and the following figures. (C)  Single cell recordings of a 
sample of 2 cells for each m-type (D) Parameter map showing the effect of short-term synaptic 
depression on evoked spindle-like oscillations. Smaller scale values mean faster recovery from 
short-term depression (τ=0 indicates no depression). Note that for faster recovery time 
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constants in Rt_RC to VPL_TC synapses the oscillations fail to terminate (region of the 
parameter space at the left of the dashed line). (E) Voltage rasters showing oscillations in the 
control condition (1) and oscillations that fail to terminate (2), for the corresponding parameter 
sets shown in D. (F) The strength of inhibitory connections between Rt_RC cells plays a role 
in the termination, as shown by the PSTHs and spike rasters. The conductance of Rt_RC to 
Rt_RC synapses was reduced to 75% of the original value. This connection decreases the 
spiking activity in response to the stimulus (as shown by the cycle-by-cycle analysis of active 
Rt_RC cells, cycle number 0) and the minimum number of active cells to sustain the oscillatory 
ping-pong between Rt_RCs and VPL_TCs. (G) Left: schematic of the cellular and synaptic 
mechanisms underlying the waxing-and-waning of spindle-like oscillations observed in the 
model. The ping-pong of activity between the Rt and the VPL and GJs contribute to the waxing, 
while short-term synaptic depression (between Rt and VPL and vice-versa) and GABAergic 
inhibition between Rt cells contribute to the waning. Right: each connection can have a positive 
(↑) or negative (↓) effect on the oscillation or both, depending on network and single cell 
activity. 

 

 

Figure 13. Gap junctions enhance spindle-like oscillations by spatial recruitment of low-
threshold spikes in reticular cells. 
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In this figure, the circuit is in an in vitro-like condition. A subset of 1000 Rt_RC cells located 
at the center of the microcircuit are stimulated with a 20 ms current pulse. (A) Spindle-like 
oscillation in control conditions (left) and with gap junctions (GJs) between Rt_RCs removed 
(right). Population responses are shown (from top to bottom) with voltage rasters, firing rate 
histograms and spike rasters. Note that when GJs are removed Rt_RCs fire only in a short time 
window after the stimulus (arrows). (B) Topographical activity maps in the Rt showing the 
membrane potential averages in 10 ms windows at 10 ms and 40 ms after the stimulus. Note 
that when GJs are removed, the activity at 40 ms is confined to the central part of the circuit. 
(C) Membrane potential along the lateral extent of the microcircuit for the simulations shown 
in A and B. Each row represents the membrane potentials of Rt and VPL neurons sorted by the 
distance from the center of the circuit. Note that with GJs, Rt_RC cells are recruited in a 
distance dependent-manner in the 40-100ms following the stimulus (arrow). (D) Same as in C, 
for VPL_TC cells. Note that without GJs the initial hyperpolarization is shorter in time and a 
smaller number of cells is hyperpolarized. (E) Single cell recordings of Rt_RC from the center 
and sides of the microcircuit are shown. Note that low-threshold spikes (arrows) are effectively 
transmitted through GJs and this is the mechanism contributing to the spatial recruitment of 
Rt_RCs. (F) Same as in E for VPL_TCs. Note that with GJs (control) the hyperpolarization is 
deep and slow enough for generating low threshold spikes.  

3.6.8 Depolarizing the reticular nucleus decreases spindle-like oscillation 
duration 

Spindle oscillations in naturally sleeping (i.e. non-anesthetized) rodents are more easily evoked 
when thalamic activity is mildly synchronized and thalamic neurons are less active (Barthó et 
al., 2014; Halassa et al., 2011). Their features, such as frequency and duration, evolve during 
NREM episodes (Barthó et al., 2014; Urbain et al., 2019). In the model we show that the 
duration can vary as a result of membrane potential dynamics in the thalamus and the reticular 
nucleus. 

We explored how the membrane potential level in the Rt and VPL affects the duration, 
frequency and peak firing during spindle-like oscillations (Fig. 14), starting from the in vitro-
like condition (as in Fig. 12-13). We studied network dynamics over a wide range of 
depolarization levels in the Rt and VPL, through noisy current injection into Rt_RCs and 
VPL_TCs (see Methods), as an approximation of neuromodulatory influences onto thalamic 
and reticular activity (McCormick, 1992). The baseline potentials explored, went from 
hyperpolarized (resting membrane potential of the in vitro-like condition), mildly depolarized 
to close to firing threshold. As in previous simulations, 750 Rt_RCs located at the center of the 
microcircuit were stimulated with a 20 ms current pulse, which resulted in different spiking 
responses depending on the depolarization levels. 

We first studied how oscillation duration and frequency were affected when the Rt or VPL 
alone were depolarized. When Rt_RCs are depolarized from their resting potential the duration 
of evoked spindle-like oscillations decreases (Fig. 14A). This result is in agreement with 
experimental findings showing how initial network state influences spindle duration, through 
the activity of reticular neurons (Barthó et al., 2014). Depolarization of Rt_RCs decreases their 
firing in response to the stimulus, as a result of decreased burst occurrence or a smaller number 
of spikes per burst (Fig. 14B). An increase in membrane potential, as small as 2-3 mV, is 
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sufficient to observe this effect. The result is reduced inhibition to the VPL and decreased firing 
probability of VPL_TCs. Furthermore, the waxing-and-waning in firing responses tends to 
become a predominantly waning response when the Rt is depolarized (Fig. 14A). 

3.6.9 Depolarizing the thalamus increases spindle-like oscillation duration 
and frequency 

When the membrane potential in the Rt is held constant (around −76 mV) and the VPL is 
depolarized, the oscillation increases in duration and frequency (Fig. 14C). VPL depolarization 
results in deeper and faster IPSPs (Fig. 14D). Deeper IPSPs result in stronger post-inhibitory 
rebound responses in VPL_TCs, which in turn excite more Rt_RCs causing a longer period of 
“ping-pong” interactions between the two populations, increasing the oscillation duration. 
Faster repolarization after the IPSPs is associated with post-inhibitory rebound responses 
occurring at shorter intervals, driving the “ping-pong” of activity at higher frequencies.  

3.6.10 Differential depolarization of the reticular nucleus and thalamus 
modulates spindle properties 

For each combination of membrane potentials in Rt_RCs and VPL_TCs, we calculated 
oscillation duration, frequency and peak firing (Fig. 14E). The oscillation duration map shows 
that clear spindle-like oscillations  (duration >= 500 ms) can only be evoked in a region, where 
Rt_RC membrane potentials are below −75 mV and VPL_TCs are more depolarized than 
Rt_RCs. If we assume that VPL_TCs neurons are in general more depolarized during 
wakefulness than during sleep, and that Rt_RC neurons are more hyperpolarized, this result 
suggests that spindle-like oscillations are easier to evoke at the transition between wakefulness-
like to sleep-like states. When both VPL_TCs and Rt_RCs are at their baseline membrane 
potential, the frequency decreases to 5-6 Hz.  

Modulation of spindle frequency and duration in the somatosensory cortex has been shown to 
vary during non-REM sleep in naturally sleeping mice; more specifically, the frequency 
decreases during NREM sleep along with TC neurons membrane potentials (Urbain et al., 
2019) as shown in our simulations (Fig. 14D-E). Our results suggest that this modulation of 
frequency is already present at the thalamic level and can be transmitted to the cortex via 
thalamocortical projections. We also found that the Rt depolarization has a negligible effect on 
oscillation frequency (Fig. 14E). 
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Figure 14. Depolarization levels modulate the properties of spindle-like oscillations 
(A) Population voltage rasters, spike raster and firing rate histograms showing the effect of 
increasing Rt_RCs depolarization, while VPL_TCs are mildly depolarized. Note the decrease 
in oscillation duration with increasing Rt depolarization. (B) Single cell recordings of an 
exemplar Rt_RC showing that depolarizing the Rt resulted in fewer spikes per burst. (C) Same 
as in (A) for increasing depolarization of VPL_TCs. Note the increase of oscillation duration 
and frequency. (D) Same as in B, for an exemplar VPL_TC. Depolarization of the VPL resulted 
in higher probability of rebound responses (as a consequence of deeper IPSPs) and faster 
responses (shorter inter-rebound intervals, IRI), which resulted in increased oscillation 
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frequency. (E) Parameter maps showing the effect of depolarizing the VPL and Rt on 
oscillation duration. The membrane potentials explored went from rest to close to firing 
threshold. Oscillation duration increased with VPL depolarization and decreased with Rt 
depolarization. (F) Same as in E, for oscillation frequency. Depolarizing the VPL has a stronger 
effect on the frequency than depolarizing the Rt. (G) Same as in E for the peak firing rate and 
its power spectrum density (PSD). Depolarizing the VPL increased the peak of the PSD, while 
depolarizing the Rt decreased it.  

 

3.6.11 Simulating the effects of neuromodulation on thalamic and reticular 
neurons causes spindle-like oscillations to cease 

Sleep spindles are a defining characteristic of stage 2 non-REM sleep, and appear less 
frequently in deeper stages of NREM sleep  (Purcell et al, 2017, Cox et al., 2017; Fernandez 
and Luthi, 2019). The change in the incidence of spindles are due, at least in part, to 
neuromodulatory changes (Destexhe et al., 1994a; Osorio-Forero et al., 2021; Vyazovskiy et 
al., 2004). Our previous simulations, in the in vitro-like condition, showed that membrane 
potentials have a strong effect on oscillation duration and frequency (Fig. 14). They also 
indicated that when the VPL is hyperpolarized and the Rt is depolarized, spindles are less easy 
to evoke. We hypothesized that such differential polarization levels of the Rt and VPL would 
resemble the transition to deeper stages of NREM sleep, and result in decreased incidence of 
spindles. 

We tested this hypothesis with the model in the in vivo-like condition using simulated cortical 
UP and DOWN states (as in Fig. 11).  We then progressively depolarized the Rt and 
hyperpolarized the VPL, approximating the differential effect of neuromodulators on thalamic 
and reticular populations (Beierlein, 2014; Boucetta et al., 2014; McCormick and Prince, 
1987).  These simulated neuromodulatory changes cause the spindle-like oscillations to occur 
with reduced amplitude then to cease, while the cortically-generated up-down states continue. 
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Figure 15. Spindle-like oscillations cease when simulating the effect of neuromodulation 
on thalamic and reticular neurons (A) Simulated UP and DOWN states evoke reticular and 
thalamic depolarizations through afferent input, resulting in the “ping-pong” generation of 
spindle-like oscillations (as seen in Fig. 11). To approximate the differential effects of 
neuromodulators (e.g. acetylcholine) onto Rt_RC and VPL_TC we applied constant currents 
to depolarize Rt_RC and hyperpolarize VPL_TC cells. This resulted in spindle-like oscillations 
(left) being abolished (right). (B) Example single cell recordings from the simulation in A, note 
that while Rt_RC cells fire preferentially low threshold bursts during the cortical UP states 
(left), they transition to single spike modes when depolarized (right). The change in Rt_RC 
firing mode and hyperpolarization of VPL_TC cells resulted in a significant decrease of large 
amplitude IPSPs in VPL_TC cells and rebound bursts. 
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4 Discussion 

We developed the first morphologically and biophysically detailed model of a thalamoreticular 
microcircuit, and validated its behavior across different simulated conditions, including 
wakefulness and sleep. It was constructed and validated using experimental data by extending 
a workflow previously used to model cortical microcircuitry (Markram et al., 2015). The 
microcircuit model integrates experimental measurements of the detailed anatomy and 
physiology of single neurons, the three-dimensional organization of the reticular and VPL 
nuclei, neuron densities, synaptic anatomy and physiology, and electrical connectivity 
mediated by gap-junctions. The model gives rise to network-level phenomena observed in in 
vivo studies, including sensory adaptation, cortical enhancement, and rhythm generation 
(spindle-like oscillations), although the model was only fit to cellular and synaptic data. We 
found key roles for short-term synaptic plasticity, mutual inhibition within the reticular nucleus 
in the termination of spindle-like oscillations. We demonstrated that gap junctions, 
corticothalamic feedback, and membrane potentials play a key role in modulating the duration 
and frequency of spindle-like oscillations in the model. This model provides a comprehensive 
account of thalamoreticular network dynamics across different states, providing a tool to 
interpret alterations in corticothalamic feedback and rhythm generation in the thalamoreticular 
microcircuit at cellular and synaptic levels in health and disease. The full circuit model and its 
accompanying data are openly available (See Data and Model Availability below) to facilitate 
integration of new data and accelerate future studies. 

The model differs from previous ones in several aspects, including scale (in terms of number 
of neurons), the level of biological detail and scope (Bazhenov et al., 2000; Bonjean et al., 
2011; Brown et al., 2020; Bús et al., 2018; A. Destexhe et al., 1998; Destexhe et al., 1996, 
1994b; Golomb et al., 1996). Prior models have largely used single compartment neurons, 
while this model uses reconstructed 3-dimensional neuron morphologies to constrain the 
biophysical models. The neuron morphologies provide further constraints on this model, highly 
constraining synaptic connectivity, rather than assigning an average connection probability. 
This model is additionally constrained by 3-dimensional estimates of Rt and TC cell density 
and the relative proportions of cell types in the context of an anatomical atlas, whereas prior 
models typically used 1-dimensional or 2-dimensional arrangements of cells and connectivity.  

This model should be considered a first-draft reconstruction of thalamoreticular microcircuitry, 
and is made openly available to facilitate future refinements. Different thalamic nuclei have 
different mixtures of excitatory cells that have unique project characteristics to the cortex 
(Clascá et al., 2012; Jones, 2009). This model is representative of a primary somatosensory 
microcircuit and, therefore, includes only the “core” cells characteristic of sensory thalamic 
nuclei that preferentially target cortical layers III and IV. Higher-order thalamic nuclei contain 
additional excitatory cell populations that send “matrix” projections that preferentially target 
supragranular layers (I-III). As such, the present model represents a thalamic nucleus 
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dominated by neurons with “core”, rather than “matrix” projections to the cortex. Future 
refinements could integrate additional such excitatory populations and their properties. 

The cellular e-types in the present model do not capture the full diversity of known ion channels 
implicated in bursting behavior in reticular neurons or dendritic properties of thalamic 
interneurons. Inclusion of additional and more specific ion channel mechanisms, (e.g. variants 
of low-threshold Ca2+ Cav3.1, Cav3.2, and Cav3.3) in TC and Rt neurons could more accurately 
reproduce differences in bursting behavior in thalamic and reticular neurons, as well as 
dendritic properties of thalamic interneurons (Acuna-Goycolea et al., 2008; Astori et al., 2011; 
Huguenard and Prince, 1992; Lüthi and McCormick, 1998; Pellegrini et al., 2016).  

Further refining the definition of morphological types and modeling the distribution of different 
me-types within both thalamic and reticular domains, could constrain further our derived 
connectivity (Deleuze and Huguenard, 2006; Krahe et al., 2011; Martinez-Garcia et al., 2020; 
Spreafico et al., 1991). Also the heterogeneity and laminar structure of the Rt can be taken into 
account in future refinements (Li et al., 2020; Martinez-Garcia et al., 2020). With such 
refinement, additional validation of the total neurite densities and synapses densities in the 
model could be used to further validate the connectivity (Kubota et al., 2018; Yin et al., 2020). 

We found that many properties of intra-thalamic connectivity can be predicted by the 
axodendritic and dendrodendritic overlap of neuron morphologies, such as the distribution of 
synapse locations and the number of synapses per connections established by thalamic 
interneurons, as well as the convergence of synapses from thalamocortical axon collaterals, 
other reticular neurons, and corticothalamic afferents onto reticular neurons. An electron 
microscope study showed that most of the connections established by thalamic interneurons 
consist of single synaptic contacts (Morgan and Lichtman, 2020). The model showed the same 
characteristic, while accurately recreating the full distribution of single and multi synaptic 
connections accounting for different fractions of the connections depending on the specific 
pathway (e.g. 70% of connections between Rt and VPL neurons had more than two contacts, 
while for the other pathways, single synapse contacts were the majority). 

Interestingly, the model recapitulates distance-dependent connectivity between Rt neurons as 
observed in dye-coupling experiments (Lee et al., 2014). We found that dendrodendritic 
appositions provide a sufficient basis for determining gap-junction locations and that the 
distance-dependent distribution of gap junctions between reticular neurons was determined by 
the extent of their dendrodendritic overlap.  

We explored network dynamics in the model starting from spontaneous and sensory-evoked 
activity in wakefulness-like states. Our model makes it possible to simultaneously record direct 
and indirect sensory responses in the thalamus as well as in the reticular nucleus. Responses to 
stimuli were clearly visible in the reticular nucleus, as shown experimentally with sensory, 
auditory or visual stimuli (Hartings et al., 2000; Kimura, 2017; McAlonan et al., 2006). We 
found that robust inhibition from the Rt generates strong surround inhibition in the VPL. We 
found that cortical activation sharpens the spatial properties of sensory inputs, by evoking 
stronger Rt-mediated surround inhibitions, as recently shown in the visual thalamus (Born et 
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al., 2021). This can contribute to the precise timing of VPL sensory responses, which were 
suppressed for ~100 ms following the stimulus and in shaping the spatial properties of thalamic 
receptive fields, with the inhibition of the surrounding neurons. 

As previously reported in anesthetized animals, the responses to trains of sensory stimuli were 
adapting for relatively low frequencies of 4-5 Hz, and the degree of adaptation increased with 
the increase of stimulus frequency (Diamond et al., 1992; Simons and Carvell, 1989; Castro-
Alamancos 2002). The adaptation was reduced by simulated cortical activation, approximating 
cortical activity during activated states, allowing the transmission of high frequency inputs 
(Mease et al., 2014).  

We found that the thalamoreticular microcircuit exhibits frequency-selective cortical 
enhancement. When simulating different frequencies of input and corticothalamic activation, 
we found peak enhancement of thalamic responses occurs for lemniscal inputs around ~10 Hz. 
This enhancement occurs because cortical activation recruits sufficient Rt inhibition to activate 
Ih and low-threshold Ca2+ currents, resulting in enhanced gain of input to TC cells at ~10 Hz. 
This is striking, because rhythmic activity around this frequency emerges in thalamocortical 
networks during different behavioral states, such as sleep spindles and alpha oscillations during 
attention (Chen et al., 2016). Our simulations suggest that ~10 Hz rhythms are intrinsic to 
thalamoreticular networks, and could be responsible for enhanced gain of sensory inputs and 
thalamocortical activity around that frequency. These results are consistent with the 
observation of overlapping thalamic mechanisms between sensory processing, attention, and 
sleep (Chen et al., 2016). The model, therefore, provides a self-consistent account of common 
cellular and synaptic mechanisms underlying thalamic gain and spindle generation across 
states. 

This model gives rise to evoked spindle-like oscillations, without being explicitly built for this 
purpose. Although we did not optimize the model to reproduce spindle-like oscillations, they 
do emerge in the model and are robustly generated for parameters within experimentally 
plausible ranges. Furthermore, although the model was mainly based on in vitro findings, many 
aspects closely resemble thalamic activities during spindle oscillations in vivo in rodents 
(Barthó et al., 2014; Rovó et al., 2014; Urbain et al., 2019).  

Consistent with previous experimental and modeling studies, spindle oscillations in the model 
are generated through a combination of intrinsic mechanisms, namely low-threshold calcium 
bursting in reticular neurons (Astori et al., 2011; Pellegrini et al., 2016) and the synaptic 
interactions between reticular and thalamocortical neurons (Destexhe et al., 1993, 1996; Li et 
al., 2017).  

The model also provides novel insights into the mechanisms underlying the generation of sleep 
spindles in thalamic networks, including the role of TC-Rt synapse efficacy, short-term 
synaptic depression, mutual inhibition between Rt neurons and gap junctions in the thalamic 
generation of waxing-and-waning spindle-like oscillations..  
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Dendrodendritic gap junctions between reticular neurons have been known to transmit low-
threshold bursts between cells, promote spiking correlations and synchronized activity 
(Landisman et al., 2002; Long et al., 2004).  The model shows that gap junctions also influence 
spindle duration. Furthermore, the spatial organization of Rt dendrites and their connections 
through gap junctions also shows a clear functional role in propagating the stimuli along the 
horizontal dimension of the microcircuit and enhancing spindle-like oscillations. 

The model accounted for spindle termination through synaptic mechanisms alone, and 
therefore did not require specific ionic mechanisms, such as Ca2+-dependent upregulation of 
the Ih current in TC cells or desynchronizing cortical input (Bonjean et al., 2011; Bús et al., 
2018; Destexhe et al., 1996, 1998). We show that the modeled cells and circuit have 
mechanisms that limit the duration of the oscillation, including short-term synaptic depression 
and mutual inhibition between reticular neurons. While the role of mutual inhibition has been 
already hypothesized based on experimental findings (Beenhakker and Huguenard, 2009; 
Fogerson and Huguenard, 2016; Kim et al., 1995; Makinson et al., 2017; Sohal and Huguenard, 
2003), short-term synaptic depression has not previously been proposed (to the best of our 
knowledge) as a mechanism that contributes to spindle termination. Based on the role of Rt-Rt 
mutual inhibition, which decreases spindle duration and GJs, that tend to prolong it, we propose 
that contribution of Rt cells to spindle oscillations could have self-limiting factor: on the one 
hand, through GJs coupling, they promote synchronized IPSPs and post-inhibitory excitatory 
responses from the TCs, thus recruiting more and more Rt neurons; on the other hand, when a 
critical recruitment in the Rt is reached, the overall excitation is overcome by reciprocal 
inhibition between Rt neurons, short-term synaptic depression, and the oscillatory activity 
would limit itself. 

The gradual increase in amplitude (waxing) and the gradual decline (waning) of spindle 
oscillations has been hypothesized to be due to changes in cortical activity impinging on the 
reticular nucleus and thalamus (Bonjean et al., 2011; Kandel and Buzsáki, 1997; Lüthi, 2014; 
Timofeev et al., 2001). However, the model demonstrates that cellular and synaptic 
mechanisms of thalamoreticular circuitry that underlie the increased recruitment of additional 
neurons during each cycle of a spindle can produce the waxing phenomena, while synaptic 
depression and the buildup of inhibition within the Rt are sufficient to explain the waning 
phenomena. 

We also found that the isolated reticular nucleus was able to sustain spindle-like oscillations 
(not shown), if it was depolarized, simulating the presence of neuromodulators or if the 
inhibitory synapses between Rt_RCs were stronger, as suggested in previous models (Destexhe 
et al., 1994a). We also found that increased gap junction coupling can contribute to the 
generation of spindle-like oscillations in the isolated Rt (not shown). It may be that strong 
inhibitory interactions and gap-junctions coupling are prevalent in the specific foci of Rt 
(Fuentealba and Steriade, 2005), where spindles can be recorded when this nucleus is isolated. 

We found that the depolarization level of thalamic and reticular neurons had a direct effect on 
oscillation frequency, duration, strength, and incidence of spindle-like oscillations. In the intact 
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brain, different mechanisms contribute to modulate the membrane potential of thalamic 
neurons, such as neuromodulators or corticothalamic feedback. Although our depolarization 
paradigm is an approximation of the dynamic change of thalamic network states at the 
transition between wakefulness and sleep, this result builds upon known mechanisms of action 
of neuromodulators, such as acetylcholine (ACh). ACh neurons projecting to the thalamus and 
reticular neurons are particularly active during wakefulness, arousal and REM sleep (Boucetta 
et al., 2014), while NREM sleep is associated with a decrease in ACh release in the thalamus 
and Rt. Interestingly, ACh has opposite effects on thalamocortical neurons, where it is 
depolarizing, and in reticular neurons, where it causes hyperpolarization (Beierlein, 2014; 
McCormick and Prince, 1987). The decrease in ACh during transition from wakefulness to 
NREM sleep would be thus associated with hyperpolarization of the Rt and depolarization of 
the thalamus, as shown in our simulations. Noradrenaline (NA), has also been shown to 
depolarize thalamic and some reticular neurons in vitro (Lee and McCormick, 1996). Recently, 
NA levels have been found to fluctuate during NREM sleep in vivo, resulting in depolarized 
membrane potentials that impact the low-threshold bursting activity that underlies sleep 
spindles (Osorio-Forero et al., 2021). This NA-mediated depolarization reduces the incidence 
of spindles (Osorio-Forero et al., 2021). Other alterations in thalamic and reticular excitability 
could be caused by increases or decreases in the rate of synaptic activity impinging on thalamic 
and reticular cells, as well as  the plasticity of corticothalamic and corticoreticular projections. 

These findings have important implications when considering alterations of sleep spindles 
frequency, density and amplitude as a potential biomarker of disease. The model could serve 
as a tool to assess causal mechanisms affecting spindle oscillations and their properties during 
sleep in schizophrenia (Castelnovo et al., 2018; Ferrarelli et al., 2010, 2007; Manoach et al., 
2016, 2014), neurodevelopmental disorders (Gruber and Wise, 2016), attention deficit 
hyperactivity disorder (Saito et al., 2019), Alzheimer’s disease (Weng et al., 2020), among 
others. For instance, spindle densities have been found to decrease in patients with Parkinson’s 
disease, while their density and duration are known to be sensitive to Alzheimer’s disease, 
along with other parameters quantifying their time-varying microstructure (Christensen et al., 
2014; Kam et al., 2019; Ktonas et al., 2009; Weng et al., 2020). Furthermore, alterations to fast 
(12-15 Hz) spindles appeared to be more common in Alzheimer’s disease compared to slow 
spindles (9-12 Hz) (Weng et al., 2020). Previous studies have suggested that cortical 
mechanisms are required for the generation of fast and slow spindles (Timofeev and Chauvette, 
2013), however the model shows that the thalamus itself can modulate the frequency of spindle-
like oscillations, suggesting that thalamic mechanisms may be sufficient to generate the two 
classes of spindles. 

In summary, we have developed a first-draft large-scale model of thalamic and reticular 
microcircuitry. Although it is, to the best of our knowledge, the most detailed model of its kind 
created so far, it is only a first step. Future studies will further refine the thalamoreticular model 
to take into account newly observed cellular and synaptic properties (Li et al., 2020; Martinez-
Garcia et al., 2020), and explore thalamoreticular contributions to other functions, such as 
attention and the generation of the alpha rhythm  (Ahrens et al., 2015; Chen et al., 2016; Gu et 
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al., 2021; Makinson and Huguenard, 2015; Nestvogel and McCormick, 2021), when 
considered in the broader context of the thalamocortical loop.  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted April 14, 2022. ; https://doi.org/10.1101/2022.02.28.482273doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482273


 

 

Data and model availability 

The experimental data, ion channel models, single neuron models, synapse models, and 
circuit model are all available under an open access license. The portal includes data and 
model entities, including single neuron models, circuit files in SONATA format (Dai et al., 
2020) and simulation output. The Thalamoreticular Microcircuit Portal is accessible at: 
(https://identifiers.org/bbkg:thalamus/studios/e9ceee28-b2c2-4c4d-bff9-d16f43c3eb0f).  

Supplementary figures 

 

Figure S1, related to Figure 2. Morphology diversification.  

(A) The reconstructed neuron on the left was diversified to generate a sample of unique 
morphologies, by introducing variability (jittering in f branch lengths of 0 ± 20% and jittering 
in branch rotations of 0° ± 20°, mean ± standard deviation, see Methods) to the branch lengths 
and angles (see Methods.) 
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Figure S2. Cortical activation decreases sensory adaptation by depolarizing VPL_TCs 
and enhances responses to stimuli at ~10Hz preferentially. 

(A) Left: Single cell recording of a VPL_TC neuron (3 of 25 repetitions are shown) that 
responded to the sensory stimulus (green) with a burst of two spikes. The sensory stimulus was 
generated with brief synchronous activation of 160 ML afferent fibers. Right: activation of the 
CT afferent fibers (blue) stimulus depolarized the cells and shifted their responses to single 
spikes. VPL_TC #2 showed a marked IPSP (arrow) following the stimulus-evoked spike, 
which was reduced with cortical activation. CT fibers were activated with noisy input at 4 Hz, 
200 ms before the sensory stimulus to approximate the optogenetic protocol in Mease et al., 
2014. (B) Illustration of different metrics used to quantify subthreshold responses (in a time 
window of 50 ms after the stimulus to the sensory stimuli (cfr. Mease et al, 2014). (C) 
Population analysis of VPL_TC cells (n=50, values are median of the 25 repetitions for each 
cell) showing the decrease of EPSP amplitude with cortical activation (EPSPL6). This effect is 
due to partial inactivation of the low-threshold Ca2+ conductance, but inhibition from the Rt 
can’t be excluded. (D) The amplitude of the EPSPs (both with and without cortical activation) 
is negatively correlated with the resting potential of the cell (r=−0.8). This is due to a greater 
availability of ionic currents activated at hyperpolarized potentials and greater driving force of 
excitatory conductances (whose reversal potential is 0 mV). (E) Correlation between the 
magnitude of sensory response change (EPSPL6 − EPSP with sensory stimulus only) and the 
depolarization induced by the cortical activation. The line shows the best fit (r=−0.8). This 
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shows that greater cortical activation corresponds to decreased responses to sensory input (for 
single stimulation). (F) Single cell recordings of a VPL_TC neuron (3 of 25 repetitions are 
shown) with sensory stimulus at 10 Hz (left) and 20 Hz (right). Note the smaller amplitudes of 
the EPSPs in response to the 20 Hz stimulus. (G) Same cell as in F, with activation of cortex 
(noisy input at 5 Hz). Note a higher number of spiking failures (red ticks) with 20 Hz sensory 
stimulation. With 10 Hz stimulus, cortical activation made the cell fire in response to each 
pulse of the stimulus (green ticks). 

 

Movies  

 
Video 1: Evoked sensory activity, in vivo-like condition (related to Fig. 8):  
Simulation of evoked sensory activity with brief activation of 160 lemniscal fibers located at 
the center of the microcircuit. The microcircuit is displayed from the VPL side. 
 
 
Video 2: Sensory adaptation, control vs. cortical input, in vivo-like condition (related to 
Fig. 9):  
Simulation of sensory adaptation and the enhancement of sensory responses by cortical 
activation. The microcircuit is displayed from the VPL side. The stimulus consists of brief 
activation of 160 lemniscal fibers, repeated 8 times at 8 Hz (left). On the right, the same 
stimulus is delivered during cortical activation (4 Hz of noise stimulus from the corticothalamic 
fibers). 
 
Video 3: Transition from wakefulness-like states to simulated cortical UP and DOWN 
activity, with spindle-like oscillations appearing during the UP state (related to Fig. 11) 
At the start of the simulation the network is in an wakefulness-like state, with spontaneous 
activity generated by spiking from lemniscal and corticothalamic fibers. The microcircuit is 
displayed from the front side, the upper part corresponds to the Rt and the lower one to the 
VPL. A cortical DOWN phase is simulated by interrupting the spiking from the corticothalamic 
fibers, while it is reactivated during the UP phase. During the UP state, spindle-like oscillations 
emerge in the microcircuit as activity “ping-pong” between the Rt and the VPL. 
 
Video 4: Spindle-like oscillations, in vitro-like condition (related to Fig. 12) 
Simulation of the in vitro-like condition, without activity from the lemniscal and 
corticothalamic fibers. The microcircuit is displayed from the front side, the upper part 
corresponds to the Rt and the lower one to the VPL. A brief pulse of current is delivered to the 
center of the Rt and generates the ping-pong of activity between the Rt and VPL. 
 
Video 5: Spindle-like oscillations, control vs. gap-junctions removed (related to Fig. 13): 
Simulation in the in vitro-like condition. The microcircuit is displayed from the Rt side and 
Rt_RC dendrites are shown (5% of their density). A pulse of current is delivered to the center 
of the Rt in the control condition (left, with gap-junctions present) and with gap junctions 
removed (right). 
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