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Abstract

High throughput spatial transcriptomics (HST) technologies have allowed for identification
of distinct cell sub-populations in tissue samples, i.e., tissue architecture identification. However,
existing methods do not allow for simultaneous analysis of multiple HST samples. Moreover,
standard tissue architecture identification approaches do not provide uncertainty measures. Fi-
nally, no existing frameworks have integrated deep learning with Bayesian statistical models
for HST data analyses. To address these gaps, we developed MAPLE: a hybrid deep learning
and Bayesian modeling framework for detection of spatially informed cell spot sub-populations,
uncertainty quantification, and inference of group effects in multi-sample HST experiments.
MAPLE includes an embedded regression model to explain cell sub-population abundance in
terms of available covariates such as treatment group, disease status, or tissue region. We
demonstrate the capability of MAPLE to achieve accurate, comprehensive, and interpretable
tissue architecture inference through four case studies that spanned a variety of organs in both
humans and animal models.
Availability: An R package maple is available at https://github.com/carter-allen/maple.
Contact: chung.911@osu.edu
Supplementary information: Supplementary data are available online.

Key Words: Spatial transcriptomics; Multi-sample; Tissue architecture identification; Uncer-
tainty quantification; Conditionally autoregressive models; Mixture models; Graph neural networks;
Bayesian models

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.02.28.482296doi: bioRxiv preprint 

chung.911@osu.edu
https://doi.org/10.1101/2022.02.28.482296
http://creativecommons.org/licenses/by/4.0/


1 Introduction

Spatial transcriptomics was named the 2020 Nature Methods method of the year for its unprece-
dented ability to characterize transcriptomic data and infer the positional context of cells in a
tissue [Marx, 2021]. A recent review has pointed to an urgent need for the improvement of tissue
architecture identification algorithms through the use of the spatial location of cells within a tissue
sample, in addition to gene expression profiles [Rao et al., 2021]. This critical need follows from
the known importance of spatial proximity to cell fate [Barresi and Gilbert, 2019]. Of the avail-
able spatial transcriptomics platforms, high throughput spatial transcriptomics (HST) technologies,
e.g., the 10X Visium platform, showcased their ability to offer transcriptome-wide sequencing with
widespread commercial availability.

Often, it is of great biological interest to compare the relative gene expression abundance of
cell spot sub-populations between different conditions (e.g., knock-out vs. wild type) or groups
(treatment responders vs. non-responders). However, in the context of HST, these approaches
are non-trivial due to the irreconcilable differences in spatial architecture across samples. Further,
while a variety of methods have been proposed for cell spot sub-population identification in spatial
transcriptomics data [Dries et al., 2019, Hao et al., 2020, Pham et al., 2020, Zhao et al., 2021, Chang
et al., 2021b] there are no available methods for multi-sample analysis of HST data. Specifically, no
existing methods simultaneously infer spatially-informed cell spot sub-populations in each sample
while sharing information across samples.

Recently, important advancements have been made in computational approaches for two critical
phases of HST data analysis, namely feature engineering and cell spot sub-population identification.
With regard to feature engineering, gene expression matrices generated by HST platforms are
extremely high dimensional, with roughly 30,000 unique genes being measured at several thousand
cell spots in a tissue sample. This has led to the need for computational methods that derive
a parsimonious set of high-information features for use in downstream analyses [Erfanian et al.,
2021]. SpaGCN [Hu et al., 2021] and scGNN [Wang et al., 2021], among others, have provided deep
learning-based approaches for deriving spatially informed dimension reductions of HST data. These
methods each trains a spatially aware graph neural network to produce low dimension embeddings
of cell spots, and have shown advantages of these spatially-aware features compared to standard
non-spatial embeddings like principal components analysis (PCA) [Chang et al., 2021b, Hu et al.,
2021, Wang et al., 2021].

Following a parallel development, there has been notable sophistication of computational ap-
proaches for discerning cell spot sub-populations in HST (i.e., tissue architecture identification)
while considering both gene expression profiles and spatial locations of cell spots. Most notably,
BayesSpace [Zhao et al., 2021] and SPRUCE [Allen et al., 2021] are Bayesian multivariate finite
mixture models that distinguish cell spot sub-populations using mixture components. One critical
advantage of statistical mixture model-based approaches for identifying cell spot sub-populations
is that they provide a flexible framework for robust characterization of mixture component mem-
bership in terms of available metadata such as spatial information. In the case of BayesSpace,
spatial information is encoded into the prior distribution for mixture component label parameters,
while SPRUCE adopts a spatially correlated random effects approach to induce spatially informed
mixture component assignments. However, no extension has been made from these single-sample
methods to the problem of joint analysis of multiple HST samples, a setting in which it is ex-
tremely natural to use sample-specific covariates such as disease, treatment, or sex to explain cell
spot sub-population abundance. Furthermore, these existing statistical models are limited in that
they model either principal component reductions or normalized gene expression features, and have
yet to be applied to the spatially aware deep learning features discussed previously.
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To address these gaps while leveraging recent advances in HST data analysis methodology,
we developed MAPLE (Multi-sAmple sPatiaL transcriptomics modEl): a hybrid machine learn-
ing and Bayesian statistical modeling framework for multi-sample spatial transcriptomics data.
MAPLE represents a number of marked advantages over existing computational methods for HST
data analysis. First, and most importantly, MAPLE is the first framework developed explicitly
for the simultaneous analysis of multiple HST samples. It includes critical multi-sample design
considerations such as information sharing across samples to aid in parameter estimation, accom-
modation of spatial correlation in gene expression patterns within samples, and an integrated robust
multinomial regression model to explain differences between samples in cell spot sub-population
composition using available covariates. Second, MAPLE is the first computational framework to
leverage the benefits of both deep learning and statistical modeling in HST data analysis, wherein
a graph neural network is used to derive a low-dimension set of spatially aware gene expression
features, and a Bayesian finite mixture model is fit to these features for robust and interpretable
identification of cell spot sub-populations. Finally, MAPLE accompanies cell spot sub-population
labels with uncertainty measures defined in terms of posterior probabilities from the Bayesian finite
mixture model, which can be used to characterize ambiguous cell spot sub-population boundaries
and discern between high and low confidence assignments.

2 Results

2.1 MAPLE offers novel methodology and interactive software for multi-sample
HST analysis

We developed MAPLE as a hybrid framework that includes (i) a graph neural network for extracting
informative features from multi-sample spatial transcriptomics data, and (ii) a Bayesian finite
mixture model for detection of spatially informed cell spot sub-populations and comparison of cell
spot sub-population composition between samples while adjusting for possible confounding factors
in multi-sample experimental designs. A user-friendly R package maple for identification of cell
spot sub-populations in HST data is freely available through GitHub (https://github.com/carter-
allen/maple). The maple package seamlessly integrates with standard Seurat [Hao et al., 2020]
workflows through a unified modeling interface and interactive visualization functions.

As shown in Figure 1, MAPLE accepts multi-sample HST data input in the form of an inte-
grated Seurat data object, where batch correction and adjustment for technical artifacts such as
sequencing depth can be accomplished using standard approaches [Hao et al., 2020, Hafemeister
and Satija, 2019, Korsunsky et al., 2019]. Users may then pass data to scGNN [Chang et al., 2021b,
Wang et al., 2021] to compute low-dimensional cell spot embeddings from raw gene expression data
using a spatially aware graph neural network, or use other standard dimension reduction methods
such as PCA. Given the resultant low-dimension cell spot embedding, MAPLE then implements
a spatial Bayesian finite mixture model [Frühwirth-Schnatter and Pyne, 2010] as detailed in Ma-
terials and Methods. Briefly, MAPLE assumes the presence of K cell spot sub-populations (i.e.,
model mixture components) across the integrated sample. To assign cell spots to sub-populations,
MAPLE assumes that the low-dimensional gene expression embeddings for each cell spot follow
a multivariate normal distribution with sub-population-specific parameters and spatial correlation
in gene expression profiles between spots accounted for through the use of spatially-correlated
random effects [Besag, 1974]. MAPLE then iteratively estimates the parameters of each sub-
population-specific multivariate normal distribution and assigns cell spots to their most probable
sub-population given these estimated parameters. In addition to discrete sub-population labels,
MAPLE provides continuous uncertainty measures defined using Bayesian posterior probabilities
that reflect the model’s confidence in the inferred sub-population for each cell spot. Similarly,
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Figure 1: MAPLE workflow. Panel I: multi-sample HST data yields sample-specific raw gene ex-
pression matrices and associated spatial coordinates. Panel II: gene expression data is fed to a
spatially aware autoencoder graph neural network to produce a low-dimensional embedding of cell
spots. Spatial coordinates are used to construct a neighbors-network between cell spots within each
tissue sample. Data is then passed to a Bayesian finite mixture model that allows for information
sharing between samples while only considering spatial correlation within samples. Panel III: pa-
rameter estimates from the Bayesian finite mixture model are used for annotating cell spots with
sub-population labels, quantifying associated uncertainty of inferred labels, and assessing significant
differences between samples or groups of samples in cell spot sub-population abundances.
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MAPLE provides continuous phenotypes, i.e., continuous measures of propensity for each cell spot
towards each sub-population. Taken together, these uncertainty measures and continuous pheno-
types augment traditional discrete cell spot labels and more closely reflect the continuous nature
of cell type differentiation.

Embedded in the MAPLE framework is an explanatory regression model to assess the effect of
covariates of interest such as treatment group, disease status, or sex on sample-specific cell spot
sub-population membership probabilities. In addition to accounting for spatial correlation in sub-
population labels, this model allows for comparison of sub-population abundance between samples
while controlling for possible confounding factors such as the size of a given sub-population. By
estimating model parameters in a Bayesian framework, we may rigorously assess possible differences
between samples in terms of posterior probabilities.

To aid in usability, we implement the Bayesian model in an interactive R package called maple.
The maple package estimates model parameters using efficient Gibbs sampling routines imple-
mented in C++ using Rcpp [Eddelbuettel and François, 2011], and interactively visualizes the resul-
tant tissue architecture using the Shiny framework [Chang et al., 2021a]. Run-time for a typical
HST data analysis with roughly 5,000 cell spots requires approximately 1 minute per 1,000 itera-
tions on an M1 Apple iMac desktop with 8GB RAM, making it feasible to analyze HST data on
a personal computer. After parameter estimation, users may (i) interactively visualize the inferred
cell spot labels and annotate cell spot sub-populations, (ii) compute and interactively visualize
novel uncertainty scores that allows assessment of confidence in cell spot label, and (iii) visualize
the relative changes between samples or groups of samples in cell spot sub-population abundances,
while accounting for any specified covariates of interest. Taken together, maple offers an unprece-
dented combination of rigorous statistical modeling and interactive visualization capability for the
field of HST data analysis.

2.2 Integrative analysis allows for improved tissue architecture detection

To demonstrate the integrative analysis available with MAPLE, we considered four sagittal mouse
brain samples sequenced and made publicly available through 10X Genomics [10x Genomics, 2019].
The experimental design consisted of paired anterior-posterior samples, resulting in two sagittal
anterior and two sagittal posterior samples. We integrated the samples and normalized gene ex-
pression features using standard approaches [Butler et al., 2018, Stuart et al., 2019] and embedded
cell spots in a low-dimensional space using principal components analysis. We then applied MAPLE
to infer tissue architecture while sharing information between samples.

In Figure 2A, we present the inferred cell spot labels obtained by MAPLE. These results illus-
trate one important advantage of MAPLE, namely the ability to identify cell spot sub-populations
that are shared across samples. In particular, MAPLE identifies cell spot sub-populations 1 and
3 as being sub-populations that are bisected by the anterior-posterior divide of the experimental
design. This provides a distinct advantage over non-integrative methods, which fail to implement
information sharing across samples. In Figure 2B we present associated uncertainty measures,
which quantify our confidence in the cell spot labels presented in Figure 2A. We notice that higher
uncertainty often occurs (i) between bordering cell spot sub-populations, such as the border be-
tween sub-populations 3 and 6 in the anterior region, or (ii) where a “satellite” group of cell spots is
located far from the majority of cell spots of the same label, such as the group of sub-population 1
cell spots located in the top half of the posterior samples and contained within a larger surrounding
region of sub-population 3.

While manual ground truth annotations are not available for this data set, we compared the
sub-populations identified by MAPLE with known anatomy of the mouse brain made available
by the Allen Brain Atlas [Daigle et al., 2018], a reproduction of which we provide in Figure S2.
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Figure 2: MAPLE results from 4-sample sagittal mouse brain analysis. Experimental design con-
sisted of 2 healthy anterior brain sections and 2 healthy posterior brain sections. Panel A: Cell
spot labels obtained by MAPLE. Panel B: Uncertainty measures for cell spot labels.
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After consulting Figure S2, we may label each cell spot sub-population with relevant anatomical
regions. For instance, in the anterior section, sub-population 2 found in anterior 1 and 2 samples
corresponds clearly to the main olfactory bulb of the mouse brain. Likewise, in the posterior
section, sub-populations 8 and 9 correspond to a region of cerebellum and grey matter. Meanwhile,
more heterogeneous sub-populations were found, such as sub-population 1, which encapsulates the
medulla, pons, and midbrain.

2.3 Differential analysis identifies distinct tissue architecture in ER+ vs. triple
negative breast tumors

Accounting for roughly 25% of all non-dermal cancers in women, breast cancer ranks as by far
the most common non-dermal female-specific cancer type, and narrowly the most common cancer
type across both sexes [WCRF, 2020]. Breast cancers are commonly classified according to their
estrogen and progesterone receptor status, in addition to their production of the HER2 protein
signaled by the ERBB2 gene [Hammond, 2014]. While it is known that estrogen receptor positive
(ER+) or progesterone receptor positive (PR+) tumors generally feature more favorable patient
outcomes than triple negative tumors (TNBC) (ER-/PR-/HER2-) due to their responsiveness to
hormone therapies, little is known about differences between these cancer sub-types in terms of
tissue architecture [Wu et al., 2021]. While HST technology provides the opportunity to conduct
spatially resolved transcriptome-wide sequencing of tumor samples, comparative analyses between
sub-types has been limited by the lack of multi-sample HST analysis methods.

To address this gap, we applied MAPLE to the analysis of ER+ vs. TNBC primary tumor
samples sequenced with the 10X Visium by Wu et al. [2021]. To achieve a balanced design, we
considered 3 ER+ tumor sections and 3 TNBC tumor sections, totaling N = 2187 cell spots across
all sections. We pre-processed raw cell spot RNA read-counts through normalization, embedding
with scGNN, and batch correction with Harmony [Korsunsky et al., 2019]. Using annotations
available from Wu et al. [2021], we identified K = 7 distinct cell spot sub-populations in the
integrated sample (Figure 3A). Associated measures of uncertainty are visualized for each cell spot
sub-population label in Figure 3B. Using visualization functions included in maple, we illustrate
ER+ vs. TNBC tumor differences via alluvial plots (Figure 3C), allowing for comparison of the
relative sub-population compositions of each cancer sub-type.

We further quantified ER+ vs. TNBC tissue architecture differences using MAPLE’s em-
bedded multinomial regression model. Briefly, to explain the propensity of cell spots towards
sub-populations as a function of cancer sub-type, we specified

πik ∝ b0k + xiβk + ψik, (1)

where πik is the probability of cell spot i belonging to sub-population k, for i = 1, ..., 2187 and
k = 1, ..., 7, b0k is an intercept to account for heterogeneous global sub-population sizes, xi is
TNBC indicator equal to 1 if cell spot i belongs to a TNBC tumor section and 0 otherwise, βk is a
coefficient measuring the effect of TNBC status on propensity towards sub-population k relative to
ER+, and ψik is a spatially correlated random effect detailed in Section 4. Setting sub-population
k = 1 as the reference category, we visualize box plots of the empirical posterior distributions of
coefficients b02, ..., b07 in Figure 3D (i). These parameters measure the global (i.e., across all ER+
and TNBC tumor slices) differences in cell spot sub-population sizes relative to sub-population
1, which was found to encompass n1 = 345 cell spots. We see that sub-populations 2 and 3 are
not significantly smaller or larger than sub-population 1, while sub-population 4 was significantly
smaller than sub-population 1, and sub-populations 5, 6, and 7 are significantly larger than sub-
population 1. These global differences in sub-population sizes establish a baseline for comparison
of sub-population abundances between ER+ and TNBC tumor slices.

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 14, 2022. ; https://doi.org/10.1101/2022.02.28.482296doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482296
http://creativecommons.org/licenses/by/4.0/


To assess such differences between ER+ and TNBC tumor slices while accounting for global
sub-population sizes, we display the empirical posterior distributions of coefficients β2, ..., β7 in
Figure 3D (ii). These coefficients imply significantly higher abundances of sub-population 2, 5, 6,
and 7 in TNBC tissue samples relative to ER+ tissue samples, while sub-population 4 was found
to be significantly less represented in TNBC tumor slices relative to ER+, adjusting for baseline
sub-population sizes. While the sub-populations derived from MAPLE are at first abstract entities,
we may add biological annotations by investigating marker genes of each sub-population. Using
the Wilcoxon Rank Sum test, we found the top 5 marker genes for each sub-population. Of
particular interest were sub-populations 4 and 5. Sub-population 4 featured marker genes that
have been found to be associated with tumor suppressive tendencies, such as KRT19 [Saha et al.,
2018], as well as marker genes that have been associated with significantly longer patient survival
such as TPT1 [Uhlén et al., 2015b] and NPY1R [Uhlén et al., 2015a]. Sub-population 4 was also
significantly enriched in ER+ relative to TNBC, as seen negative estimate of the β4 coefficient in
Figure 3D (ii). Meanwhile, sub-population 5 was marked by genes that are associated with more
aggressive and TNBC tumors, such as TMSB15A [Darb-Esfahani et al., 2012] and FABP7 [Liu
et al., 2012]. Further, sub-population 5 was enriched in TNBC compared to ER+, as evidenced
by the positive estimate of the β5 coefficient shown in Figure 3D (ii). Overall, these results are
indicative of MAPLE capturing previously documented differences between ER+ and TNBC, but
through the novel lens of tissue architecture derived from HST data. Detailed results from each
differential expression analysis are provided in Table S2 and Figure S4.

Based on these observations from Figure 3, sub-populations 3, 4, 5, and 6 indicated significant
changes of conserved tissue architectures shared by ER+ and TNBC. Specifically, MAPLE sub-
populations 3 and 4 had a higher proportion in the ER+ sample, while MAPLE sub-populations 5
and 6 occupied a higher proportion in TNBC. Therefore, we further investigated the pathological
differences based on the H&E image observations from the previous study [Wu et al., 2021].

In the ER+ sample (Figure 4A), we observed spots from sub-populations 3 and 4 had a higher
proportion compared to sub-population 5 and 6, and showed a complex tissue composition, includ-
ing tumor, stroma, pure lymphocytes site, and tumor-infiltrating lymphocytes, indicating potential
responsiveness to treatment and higher survival outcome [Wang et al., 2016, Karn et al., 2020].
On the other side, spots from sub-populations 3 and 4 showed a lower proportion in TNBC (Fig-
ure 4B), and their tissue composition lacked tumor-infiltrating lymphocytes, indicating a potential
non-responsiveness to treatment and poor survival rate. Regarding sub-populations 5 and 6, the
results indicated the non-invasive tumor and normal tissue were enriched in the TNBC sample, re-
spectively. By the H&E pathological features and sub-populations, we concluded that significantly
differential proportion in shared sub-populations from two cancer subsets could reflect a different
tissue composition, which may contribute to capturing the region with unique pathological features
of two samples.

In addition to pathological level analysis and due to low resolution of Visium spatial data, we
next investigated the cell level composition information via deconvolution analysis based on the
RCTD framework [Cable et al., 2021]. First, sample-matched scRNA-seq data were collected from
the same data source (CID4535 for ER+ and CID44971 for TNBC) [Wu et al., 2021]. Then, we used
the RCTD framework to deconvolute cell spots and obtain the cellular composition (nine major cell
types in the tumor microenvironment). The results (Figure 4C) indicated that sub-population 3 in
the ER+ sample had a higher T cell proportion than the TNBC sample while the T cell proportion
was decreased in the same TNBC sub-population, supporting the pathological evidence. Interest-
ingly, the sub-population 6 in ER+ tumor showed cancer epithelial dominant proportion, but this
sub-population was enriched with normal epithelial cells in TNBC. The significant difference in
cellular compositions from a shared sub-population further demonstrated differential proportion in
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from MAPLE. (B) Uncertainty quantification. (C) Alluvial plot of differential sub-population
abundance between ER+ and TNBC sample. (D) Sub-Population abundance model assessing
TNBC sample effect adjusting for baseline sub-population sizes.
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samples. (A) Alluvial plot indicating the pathological composition (derived from H&E image
observation) of the shared regions in ER+ cancer, including sub-populations 3, 4, 5, and 6. For
example, MAPLE cluster 3 in the ER+ sample contains a more complex component, including
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tissue. Node length (bars on the two sides) indicates the number of spots, meaning a longer bar
representing more spots. (B) Figure showing similar information with Panel A, but the sample
is TNBC. (C) Bar plot showing the cell type composition (derived from the RTCD deconvolution
method) in terms of sub-populations 3, 4, 5, and 6 for ER+ and TNBC samples. (D) Bar plot
indicates the relationship between uncertain measurement and cell-type compositions.
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Figure 3C might reflect various cell components in the shared sub-populations of the two samples.
Lastly, we explained the biological insights of uncertainty measurement. As a result, Figure 4D

indicates a spot uncertainty value responded to tissue composition diversity regarding ER+ sample.
For instance, more than 80% of cell-type proportions in low uncertainty value were dominated
by cancer epithelial cells. However, spots identified with a higher uncertainty value potentially
indicated a more diverse cell composition, and, in this case, T cells and B cells were enriched in
higher uncertainty spots compared to low and intermediate uncertainty spots. We conclude that
uncertainty measurement can reflect cellular diversity. Overall, MAPLE could integrate multiple
spatial transcriptomics samples from cancer, and differential proportion analysis indicated diverse
regions with multiple cell types, contributing to identifying unique pathological features.

2.4 Spatiotemporal analysis reveals anatomical development trends of chicken
hearts

To demonstrate the capability of MAPLE to accommodate spatially and temporally resolved HST
experiments, we considered data from Mantri et al. [2020], who sequenced developing chicken
hearts at four time points using the 10X Visium platform. A total of 12 heart tissue samples were
sequenced, with 5 hearts sequenced on day 4, 4 hearts sequenced on day 7, 2 hearts sequenced on day
10, and 1 heart sequenced on day 14. At each time point, Mantri et al. [2020] annotated anatomical
regions of the heart with a total of 10 distinct cell spot sub-populations, including prominent
regions like the atria, valves, and left and right ventricles (Figure 5A). Using the proposed MAPLE
framework, we integrated all 12 samples [Hao et al., 2020], performed batch correction [Korsunsky
et al., 2019], and identified 10 distinct cell spot sub-populations (Figure 5B) using the top 16 batch-
corrected principal components as feature inputs, where the number of sub-populations was chosen
according to annotations by Mantri et al. [2020]. We visualized associated uncertainty measures
derived from MAPLE in Figure 5C, which distinguished between areas of high and low confidence in
the identified tissue architecture. We then tracked changes in sub-population abundance throughout
the developmental window using the alluvial plot in Figure 5D.

A number of observations may be gleaned from Figure 5. Generally, MAPLE identified both
horizontally and vertically distinct regions of the heart, consistent with the well known anatomical
structure of the organ in both chicks and humans [Wittig and Münsterberg, 2016, 2020, Mar-
tinsen, 2005]. Notably, using only spatially-resolved transcriptomic data, MAPLE was able to
accurately recover manually-labeled anatomical regions over the course of the developmental pe-
riod (ARI = 0.42). Prominent regions such as the atria were identified clearly at each time point
by MAPLE (sub-population 1), and were found to have consistent representation in cell spot abun-
dance throughout the developmental period, as evidenced by the stable dynamics of sub-population
1 in Figure 5D. MAPLE also identified irregular sub-population patterns such as the epicardium
cell spots present on the boundaries of each tissue sample after day 4 (sub-population 4).

2.5 Spatially aware feature engineering facilitates accurate tissue architecture
detection

We sought to compare the effect of using spatially aware gene expression features generated from
scGNN for tissue architecture identification versus standard spatially unaware features such as
principal components (PCs). We considered the set of 16 manually annotated human brain sam-
ples analyzed in Chang et al. [2021b], and for each data set we computed multi-dimensional cell
spot gene expression embeddings using PCA, SpaGCN, and scGNN, while varying the number of
dimensions from 3 to 18. We quantified agreement between ground truth expert annotations and
MAPLE cell spot labels using the adjusted Rand Index (ARI) [Hubert and Arabie, 1985]. In Figure
6A, we present the smoothed trends of tissue architecture identification as measured by ARI vs.
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Figure 5: Results from developmental chicken heart analysis. (A) Manual anatomical annotations.
(B) Sub-population labels from MAPLE. (C) Uncertainty quantification. (D) Alluvial plot of sub-
population dynamics of heart tissue over time.
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dimensionality of cell spot embeddings for each of the three dimension reduction methods. When
smoothed over the 16 human brain data sets, we found that use of scGNN features for the MAPLE
model led to the highest agreement between expert annotations of cell spot labels and cell spot
labels predicted by MAPLE. This trend persisted as the dimensionality of cell spot embeddings
increased from 3 to 18, although at higher dimensions (i.e., above 14), the results of each dimension
reduction method converged to within the margin of error. For low-dimensional embeddings (i.e.,
less than 8), PC features performed significantly worse than the other two spatially aware dimension
reduction methods. This result implies the ability of spatially aware feature engineering methods
such as scGNN and SpaGCN to more accurately capture tissue architecture heterogeneity in low-
dimensional settings compared to spatially unaware approaches such as PCA. In addition to these
quantitative results, the tissue architecture identifications obtained from application of MAPLE to
SpaGCN and scGNN features demonstrated a marked improvement in spatial smoothing relative
to PC features: a characteristic of the ground truth expert annotations – an observation supported
by the average trends of Moran’s I statistic shown across all 16 data sets in Figure 6B. This trend
further supports the need for spatially aware feature engineering methods for downstream HST
data analysis.

To further characterize the effect of each feature engineering method on tissue architecture
predictions obtained by MAPLE, we studied one particular human brain sample (sample 18-64)
in detail. In Figure 6C, we plot manually annotated cell spot layers for this human brain sample.
In Figures 6D-6F, we show the predicted cell spot labels from MAPLE using 3-dimensional cell
spot embeddings derived from each feature engineering approach. We find that in this very low-
dimensional setting, MAPLE is unable to identify any tissue architecture using PC features (ARI
= 0.01). However, 3-dimensional cell spot embeddings derived from SpaGCN and scGNN lead to
moderate detection of the tissue architecture patterns identified by manual annotations (ARI =
0.39, and ARI 0.45, respectively). This pattern persisted for 8-dimensional embeddings (Figures
6G-6I) and 18-dimensional embeddings (Figures 6J-6L).

3 Discussion

We have developed MAPLE: a hybrid deep learning and statistical modeling framework for identi-
fication of spatially resolved sub-populations in multi-sample HST experiments. MAPLE extends
previous developments for single-sample HST analysis [Allen et al., 2021] to the multi-sample case,
allowing for robust and interpretable characterization of cell spot sub-populations across multiple
tissue samples. MAPLE includes a flexible embedded multinomial regression model that allows for
assessment of the effect of experimental factors such as disease status or treatment effect on the
relative abundance of sub-populations of interest in HST samples. While MAPLE is completely
compatible with standard dimension reduction techniques such as principal components analysis,
it allows for the option of using a recently developed spatially aware cell spot embedding method,
scGNN, which we found to provide higher quality embeddings in highly organized tissues like the
human brain. As a result, MAPLE is a one of a kind framework capable of handling a wide variety
of HST analyses.

In Section 2.2, we demonstrated the advantage of multi-sample analysis with MAPLE on four
sagittal mouse brain tissue samples. We found that MAPLE was not only able to recover well
known mouse brain structure with 10 distinct cell spot sub-populations, but it was also able to
reconstruct shared sub-populations between anterior and posterior brain tissues. Next, in Section
2.3, we applied MAPLE to the analysis of six breast tumor samples to elucidate differences between
ER+ and TNBC tumors using spatially resolved transcriptomics. We identified 7 distinct cell spot
sub-populations shared between three ER+ and three TNBC tumor slices. MAPLE’s differential
analysis framework identified an enriched sub-population of cell spots marked by genes associated
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Figure 6: Results from comparison of dimension reduction techniques on recovery of expert anno-
tations of human brain layers. Panel A: manual annotation recovery accuracy from MAPLE using
each dimension reduction method applied to 16 human brain data sets for dimensionality from 3
to 18. Panel B: spatial autocorrelation in cell spot sub-population labels. Panel C: ground truth
expert annotations for individual sample 18-64. Panels D-F: 3D predicted cell spot labels. Panels
G-I: 8D predicted cell spot labels. Panels J-L: 18D predicted cell spot labels.
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with aggressive cancer sub-types, such as TMSB15A and FABP7. In Section 2.4, we illustrated
how the multi-sample analysis framework introduced by MAPLE allows for accommodation of
longitudinal experimental designs, which may be especially useful to areas such as developmental
biology. Finally, in Section 2.5, we showed how combining recently developed deep learning methods
for cell spot embedding with the MAPLE’s Bayesian finite mixture model for tissue architecture
identification leads to improved performance in recovery of expert annotations across 16 human
brain tissue samples.

Despite the many advantages to MAPLE outlined in this work, there are still certain drawbacks
to our approach. First, MAPLE is limited by the current resolution of commercially available HST
platforms such as Visium, which was the platform used for all case studies in this paper. While the
notion of cell spot sub-populations are extremely useful in a variety of settings, direct inference of
cell types will require true cell-level resolution HST platforms. Second, while the novel inferential
capabilities such as uncertainty quantification and sub-population abundance modeling introduced
by MAPLE are critical for robust HST analysis, they come at a computation price. As with any
model-based method, inference with MAPLE is more computationally time consuming than com-
mon heuristic approaches such as k-means, hierarchical clustering, or graph clustering. However,
model-based analysis, especially in a Bayesian framework, is often more robust and transparent
than heuristic methods. For these reasons, we argue the benefits of MAPLE relative to these
methods are well worth the added computational complexity. Finally, as with any multi-sample
experiment, the validity and reproducibility of differential analyses across groups will depend on the
number of samples in each group. As HST sequencing platforms advance to accommodate larger
sequencing slides, multi-sample experimental designs should begin to include more tissue samples,
increasing the validity and reproducibility of inferences obtained with MAPLE. In short, MAPLE
establishes a definitive HST analysis framework that will only improve in utility along with the
ongoing maturation of HST sequencing technologies.

4 Materials and Methods

Spatially Aware Feature Mining

We extract spatially aware gene expression features using scGNN: a novel graph neural network
framework for single-cell RNA-Seq analyses proposed by Wang et al. [2021] for use in the context
of HST data. The cell spot embedding component of scGNN consists of two phases, as depicted in
Figure S1. First, cell spot coordinates and the top spatially varying gene expression features are
reconciled into a single spot-spot adjacency network with homogeneous node degree of six via a
positional variational autoencoder [Zhong et al., 2021]. Then, this network object is passed to multi-
layered graph convolutional networks (GCNs) that are structured to create a graph autoencoder,
where the focus is on reconstruction of a cell spot-cell spot similarity nearest neighbors graph using
a G-dimensional learned latent embedding, with penalty functions chosen to incorporate both gene
expression profiles and spatial coordinates of cell spots. For more details on scGNN refer to Wang
et al. [2021].

Cell Spot Sub-Population Identification

We detect spatially informed cell sub-populations in each tissue sample using a Bayesian multivari-
ate finite mixture model with prior distributions specified to induce correlation in mixture compo-
nent assignments between neighboring cell spots within each sample. First, we let l = 1, ..., L index
the individual tissue samples in a given spatial transcriptomics data set, where the total number
of cell spots sequenced in each sample is denoted nl. We index each cell spot in the multi-sample
data set as i = 1, ..., N , where the total number of cell spots present in the experiment is given by
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N =
∑L

l=1 nl. For each cell spot, we denote gene expression features with the length-g vector yi.
We assume yi arises from a K component finite mixture model given by

f(yi) =
K∑
k=1

πikf(yi|ηik,Σk), (2)

where πik is a mixing weight that represents the probability of cell spot i belonging to mixture
component k, and f(yi|ηik,Σk) denotes a g-dimensional multivariate normal density with length-g
location vector ηik and g × g variance-covariance matrix Σk. To allow for spatial heterogeneity in
average gene expression profiles within sub-populations, we model ηik as

ηik = µk︸︷︷︸
Cell spot sub-population k effect

+ φi︸︷︷︸
Spatial effect

, (3)

where µk is a length-g mean gene expression profile for mixture component k, and spatial au-
tocorrelation in features among neighboring cell spots is achieved through assuming multivariate
conditionally autoregressive (MCAR) priors [Besag, 1974] for the spot-specific random effects φi.
That is, we assume

φi|φ−i,Λ ∼ Ng

 1

mi

∑
l∈δi

φl,
1

mi
Λ

 , (4)

where φ−i denotes the spatial random effects for all spots except spot i, Λ is a g × g variance-
covariance matrix for the elements of φi, mi is the number of neighbors of spot i, and δi is the set of
all neighboring spots to cell spot i. We enforce Cov(φi,φj) = 0 when spots i and j are from different
tissue samples. As described in Banerjee et al. [2014], we ensure a proper posterior distribution
for each φi by enforcing a sum-to-zero constraint on the elements of each φi for i = 1, ..., n.
We complete a fully Bayesian model specification by assuming conjugate priors for the mixture
component-specific multivariate normal model as µk ∼ Ng(µ0k,V0k) and Σk ∼ IW(ν0k,S0k).
By default, we specify weakly-informative priors [Gelman et al., 2013] by setting µ0k = 0g×1,
V0k = S0k = Ig×g, and ν0k = g + 2, which gives E(Σk) = Ig×g.

Models (2) and (3) features a number of desirable properties in the context of multi-sample HST
data analysis. First, information sharing between samples is achieved by common cell spot sub-
population parameters µk and Σk, thus supporting the utility of integrated multi-sample analysis
relative to sample-specific analyses. Relatedly, in addition to inferring cell spot sub-population la-
bels, we may characterize sub-populations using posterior estimates of µk and Σk, which represent
the average gene expression profile and gene-gene correlation of each sub-population, respectively.
Additionally, the contribution of each observation yi to each cell spot sub-population is governed by
the continuous probabilities πi1, ..., πiK . These parameters allows for (i) uncertainty quantification
of inferred cell spot sub-population labels and (ii) explanation of cell spot sub-population member-
ship in terms of available covariates. Finally, we note that while we focus this work on modeling
continuous features derived from feature mining approaches, our proposed framework may be ex-
tended to accommodation of normalized gene expression values directly by allowing for multivariate
skew-normal mixture component densities as detailed in [Allen et al., 2021] and implemented in
the R package maple.

To facilitate posterior inference, we introduce the latent cell spot sub-population indicators
z1, ...zn, where zi ∈ {1, ...,K} denotes to which cell spot sub-population cell spot i belongs. We
assume zi ∼ Categorical(πi1, ..., πiK). We assign cell spots to discrete cell spot sub-populations
using the maximum a posteriori estimates ẑ1, ..., ẑn. However, unlike existing methods, we accom-
pany the discrete estimates ẑ1, ..., ẑn with continuous uncertainty measures to account for (i) the
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semi-continuous nature of cell type differentiation and (ii) the statistical uncertainty inherent to
cell spot sub-population identification.

Cell Spot Sub-Population Membership Models

To quantify the effect of sample-level covariates on tissue architecture, we use an embedded multi-
nomial logit regression model for the spot-level mixture component probabilities πik:

πik =
exp(b0k + xTi βk + ψik)∑K
h=1 exp(b0h + xTi βh + ψih)

for k = 1, ...,K, (5)

where b0k is an intercept to adjust for varying cell spot sub-population sizes, xi is a p-length vector
of covariates specific to spot i, βk an associated p-length vector of regression coefficients for mixture
component k, and ψik is a spatial random effect allowing spatially-correlated variation with respect
to wT

i βk. Since specification of a reference category is necessary to ensure an identifiable model
formulation in terms of K − 1 non-redundant categories, we specify mixture component 1 as the
reference category and fix b01 = 0, β1 = 0p×1, and ψi1 = 0 for all i = 1, ..., N accordingly. To
introduce spatial association into the component membership model, we assume univariate intrinsic
CAR priors for ψik:

ψik|ψ−ik, ν2
k ∼ N

 1

mi

∑
l∈δi

ψlk,
ν2
k

mi

 , for k = 2, ...,K, (6)

where ν2
k is a mixture component-specific variance for ψik, and Cov(ψik, ψjk) = 0 for all k = 2, ...,K

when cell spots i and j are from different samples. This ensures that spatial correlation in mixture
component assignments is not introduced between distinct spatial entities (i.e., tissue slices).

The utility of model (5) lies largely in its generalizability to arbitrary spatial transcriptomics
experimental designs, where spot-level covariates xi may be specified based on available metadata
of a given experiment. By adopting a regression approach, we may assess the effect of experimental
covariates such as treatment group or disease status, while adjusting for possible sample-specific
confounders like sex, age, or batch identifiers.

πik︸︷︷︸
P (zi=k)

∝ b0k︸︷︷︸
(i) Intercept

+ xTi βk︸ ︷︷ ︸
(ii) Covariate effects

+ ψik︸︷︷︸
(iii) Spatial effect

(7)

Intuitively, as shown above in equation (7), we construct model (5) to serve three important func-
tions: (i) adjustment for varying cell spot sub-population sizes through the intercept b0k to ac-
count for the fact that we do not necessarily wish for the probability of a randomly selected cell
spot belonging to a certain cell spot sub-population to be proportional to the size of that sub-
population; (ii) assessment of covariate effects or adjustment for any other confounders of cell
spot sub-population membership probability through xTi βk; and (iii) the introduction of spatial
correlation among neighboring cell spots within the same tissue sample via ψik. Critically, by
adopting a multinomial regression approach, we avoid the pitfalls of univariate comparison of cell
spot sub-population proportions across samples such as unaccounted for negative bias in cell spot
sub-population proportions within samples [Buettner et al., 2020].

Uncertainty Quantification

Existing approaches for assigning cell spots to sub-populations in HST data fail to account for the
inherent uncertainty in cell spot sub-population identification that may be introduced by a variety
of sources, including biological, technical, or statistical factors. Biologically speaking, while the
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notion of discrete cell spot sub-populations is useful for describing complex tissue samples, it is
known that cells move between states in a more continuous fashion than is implied by discrete
clustering algorithms [Fang et al., 2018]. Technically, HST sequencing platforms are known to
suffer from a number of technical limitations, including resolution and sequencing depth. The issue
of resolution leads to each sequencing unit (i.e., cell spot) containing possibly more than one cell,
while the sequencing depth issue refers to the non-uniform distribution of the number of genes
sequenced across all sequencing units of a tissue sample. Both of these factors introduce technical
noise into the gene expression profiles derived from each cell spot. Finally, statistical uncertainty
results from the fact that despite their utility, all models are approximations of reality.

While addressing these sources of uncertainty is an problem for the field of spatial transcrip-
tomics [Burgess, 2019], we argue that computational methods for cell spot sub-population identi-
fication should at least attempt to reflect these sources of uncertainty in reported cell spot sub-
population assignments. To this end, we propose an uncertainty score defined in terms of Bayesian
posterior probabilities. For each cell spot i = 1, ..., N , let ẑi be the maximum a posteriori (MAP)
estimate of zi. We define ui, the associated uncertainty score of such assignment as

ui = 1− f(yi|η̂iẑi , Σ̂ẑi)π̂iẑi/

K∑
h=1

f(yi|η̂ih, Σ̂h)π̂ih, (8)

where f(yi|η̂iẑi , Σ̂ẑi) denotes a g-dimension multivariate normal density with mean vector η̂iẑi and
variance-covariance matrix Σ̂ẑi evaluated at yi, and η̂iẑi and Σ̂ẑi are the MAP estimates of ηik
and Σk as defined in equations (3) and (2), respectively. Likewise, π̂iẑi represents the estimated
propensity of cell spot i towards sub-population ẑi according to the cell spot sub-population mem-
bership model defined in equation (5) evaluated using β̂ẑi , the MAP estimate of βzi . Intuitively, ui
represents the residual affinity of cell spot i towards all other cell spot sub-populations besides ẑi.
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