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Abstract

Single Cell transcriptomic analysis has become a widespread technology of choice when
it comes to understanding the differences at a transcriptomic level in heterogeneous
samples. As a consequence, a plethora of analysis tools have been published to tackle
the different analysis steps from count matrix generation to downstream analysis. Many
of them provide ways to generate visualizations of the data. While some design choices
are made, it is a common practice to provide the user with visualizations as raw as
possible so that they can be customized to the user needs. However, in many cases these
final customization steps are either time consuming or demand a very specific set of
skills. This problem is addressed by SCpubr, which sacrifices some of this initial freedom
of choice in aesthetics to provide the user a more streamlined way of generating high
quality Single Cell transcriptomic visualizations.

Introduction 1

The field of Single Cell transcriptomics is currently evolving at an incredible speed. Over 2

the course of several years, a wide range of analysis tools has emerged and consolidated 3

as reference tools for general use. Examples of this are scanpy [1] for python and 4

Seurat [2] for R. While this field of research is in constant improvement, a set of key 5

visualizations has been established as standard and is applied transversely across any 6

analysis performed on Single Cell data sets. Examples of this include the ability of 7

visualizing the cells in a dimensional reduced embedding such as UMAP [3] either as 8

categorical or continuous variables, displaying the expression profile of genes as violin 9

plots or dot plots — if a second variable such as the cells expressing the gene in the 10

group is present — or even querying the cell type composition of a single cell data set 11

using a bar plot. 12

These types of visualizations are considered basic, and are therefore implemented in 13

many of the available software (packages), even when their end goal is focused on the 14

analysis part rather than the visualization. In this context, a package solely dedicated 15

to improving the aesthetics of these widely used visualizations has yet to be designed or 16

to gain popularity. While aesthetics is mostly a subjective topic, it is a matter of fact 17

that achieving great aesthetics in figures in a programmatic way requires a reasonable 18

investment of time, for which SCpubr has been designed. As an R package, it is fully 19

compatible with Seurat objects and produces high quality visualization of the most 20

common visualizations in Single Cell transcriptomics. 21
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Methods 22

For this publication, a publicly available data set from 10X Genomics [4] containing 23

10000 human peripheral blood mononuclear cells (PBMC) was used. Count matrix was 24

generated using cellranger v6.1 [5] and analyzed using Seurat v4. Cells for which the 25

number of unique molecular identifiers (UMIs) was lower than 1000, the number of genes 26

was lower than 500 and the percentage of mitochondrial RNA was higher than 20% were 27

excluded from the analysis. Gene expression was normalized using Regularized Negative 28

Binomial Regression (RNBR) [6] and underwent dimensional reduction by computing a 29

principal component analysis (PCA) [7, 8]. The first 30 principal components (PC) were 30

used as basis for a second dimensional reduction using UMAP. Clusters were identified 31

using Louvain [9] algorithm. Regarding the package creation, all the code has been 32

developed in R and designed to be used with Seurat objects. While some of the figures 33

are created from scratch, many act as a wrapper of other packages, taking as input the 34

figure object being outputted by the package that is wrapped, and further modifying it 35

using ggplot2 [10], ggpubr [11], patchwork [12], colortools [13], among other packages. 36

Results 37

In this section, each of the different functions provided by the package will be presented 38

as results. For each function, the major changes and improvements will be presented. 39

Dimensional reduction plot 40

Dimensional reduction plots are one of the signature features of Single Cell transcriptomic 41

analyses. It allows to represent the cells in a two-dimensional reduction, commonly 42

being UMAP. This is implemented in Seurat by the function Seurat::DimPlot(). This 43

function offers a wide range of possible outcomes depending on the user’s input. The 44

major changes implemented in SCpubr::do DimPlot() are at the aesthetic level. Apart 45

from providing a custom color map, axes have been removed in the case of using UMAP 46

reductions, as they always represent the first UMAP component in the X axis and 47

the second on the Y axis. Cells are shuffled by default and a bigger dot size has been 48

implemented (Fig. 1, A-B). Another relevant change is when trying to split the resulting 49

figure into multiple panels according to a group variable. In Seurat, this results in the 50

cells belonging to each value in the group being separated into different panels, but the 51

overall UMAP silhouette of all the cells is lost. This, in certain cases, can be critical 52

information. In SCpubr::do DimPlot(), the silhouette remains as grey-colored cells (Fig. 53

1, C-D). 54

Feature plots 55

Feature plots are the counter part of dimensional reduction plots. While the latter focuses 56

on coloring the cells by categorical variables, feature plots color them by continuous 57

variables such as the number of Unique Molecular Identifiers (UMIs), number of genes, 58

expression of a given gene, dimensional reduction coordinates, enrichment scores, etc. 59

This is implemented in Seurat by the function Seurat::FeaturePlot(). Same as with 60

Seurat::DimPlot(), this function is able to cope with almost any query from the user. 61

From an aesthetic point of view, SCpubr::do FeaturePlot() focuses on removing the 62

axes and making the legend bold for better readability. The color gradient has been 63

substituted by the viridis [14] color scale (Fig. 2, A-B). Also, new functionalities are 64

added such as being able to select a subset of cells to plot, while re-scaling the color 65

gradient to contain only the values from the selected cells (Fig. 2, C). While it is also 66
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possible in Seurat::FeaturePlot() to split the feature plot into different panels according 67

to a variable defining groups, it once again loses the UMAP silhouette. Furthermore, 68

the color scale applied to all panels is the same, therefore making the colors comparable 69

across panels, but the legend showing the range of values is lost. This is addressed in 70

SCpubr::do FeaturePlot(), by greying out the not selected cells while maintaining the 71

same color gradient across panels (Fig. 2, D-E). 72

Nebulosa plots 73

Nebulosa plots [15] are a complementary visualization to feature plots. While the latter 74

colors the cells based on a continuous variable, Nebulosa plots computes the density of 75

this variable for each cell. This density value increases depending on the expression of the 76

queried variable in the surrounding cells according to the dimensional reduction. Minor 77

modifications are needed for the output of Nebulosa package, only the removal of the 78

axis and making the legend bold. Most of the value added by SCpubr::do NebulosaPlot() 79

come at either allowing the user to retrieve only the joint density panel or allowing the 80

modification of individual panels’ title (Fig. 3, A-B). 81

Bee swarm plots 82

Bee swarm plots are a really interesting concept for data visualization. It involves ranking 83

a variable for plotting. This is, for a given variable such as a dimensional reduction 84

coordinate, expression values, or enrichment scores, cells are ranked by giving them an 85

order from lowest to highest value. This is then plotted as a modified scatter plot by 86

the ggbeeswarm [16] package, separated according to the groups of interest, in which 87

some modifications are made to avoid overplotting of dots, therefore clearly reflecting 88

the density of cells across the range of the ranks. It allows for easy evaluation of the 89

ordering of the cells in the groups along a given variable. It is a visualization that 90

becomes really handy for variables such as pseudotime [17]. Based on this concept, 91

SCpubr::do BeeSwarmPlot() generates this visualization and lets the user decide how to 92

group the cells and whether to color them categorically based on the groups or based on 93

the continuous variable being ranked (Fig. 4, A-B). 94

Violin plots 95

Violin plots are another set of widely used data visualizations across research fields. 96

They allow to inspect the distribution of a given variable across different groups of 97

data. In Single Cell transcriptomic analysis, this allows to easily perform quality control 98

(QC) on the different data sets by visualizing the number of UMIs or genes, or querying 99

the expression of given genes across cell identities. A function to represent them is 100

implemented in Seurat::VlnPlot(). This function returns a violin plot with dots plotted 101

on top of the violin shapes, leaving it up to the user to decide which size the points 102

should have, if any (Fig. 5, A). In SCpubr::do VlnPlot() the output of Seurat::VlnPlot() 103

is used as input and dots are removed by default. Instead, a boxplot is added inside the 104

violin shapes to represent the different quantiles of the data [18]. In addition, it provides 105

the user with an easy way to introduce a horizontal line to indicate cutoffs that were 106

applied during QC (Fig. 5, B). 107

Dot plots 108

Dot plots are another common visualization, in which values are represented as dots 109

and the size of the dots is mapped to a second variable. The way they are defined in 110

Seurat::DotPlot() could be described as a heatmap visualization in which the expression 111
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of the genes is displayed in the color scale and instead of cells, we have dots of varying 112

size depending on the percentage of cells in the different groups plotted that express 113

the selected feature. Given the fact that this visualization is really specific for a given 114

purpose, there is not much room for improvement. In SCpubr::do DotPlot(), the output 115

of Seurat::DotPlot() is used as input and minor modifications to the color scales, axes 116

and legend are applied (Fig. 6, A-B). 117

Bar plots 118

Bar plots are one of the most basic data visualizations. Yet, they convey a reliable way 119

of displaying numerical data, either in the form of absolute numbers if only one variable 120

is mapped, or also as proportions if a second variable is used to further subdivide each 121

of the bars. In SCpubr::do BarPlot(), simple bars are plotted when a single variable is 122

used and these bars are further divided if a second variable is provided. Furthermore, 123

bars can be shown as absolute numbers or as relative proportions of the groups within 124

each bar (Fig. 7, A-B). As an additional feature, if a second variable is provided, it is 125

also possible to rearrange the bars according to either the descending absolute number 126

or the proportion of a given item of the within-bars groups (Fig. 7, C). Bars can also be 127

displayed either vertically or horizontally. 128

Conclusions 129

SCpubr is an R package aimed at Single Cell transcriptomic analysis. It uses a Seurat 130

object input for all its functions and returns a high quality visualization. While some 131

aesthetic aspects have been fixed, SCpubr offers a wide range of customization features 132

to further tailor the resulting plot to meet the user needs. 133

Package availability 134

SCpubr is publicly available for installation in https://github.com/enblacar/SCpubr and 135

a complete reference manual can be found in https://enblacar.github.io/SCpubr-book/. 136

A future release in CRAN is planned. 137
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Figure 1. Dimensional reduction plots. A. Standard output from Seurat::DimPlot().
B. Standard output from SCpubr::do DimPlot(). Color map has been modified, axes
are removed, dots are bigger in size by default, cells are shuffled by default to avoid
identities being plotted in order. C. Standard output of Seurat::DimPlot() splitting
the plot by another variable. D. Standard output from SCpubr::do DimPlot() when
splitting by another variable. Not selected cells are greyed out and the UMAP silhouette
is preserved across panels.
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Figure 2. Feature plots. A. Standard output from Seurat::FeaturePlot(). B.
Standard output from SCpubr::do FeaturePlot(). Color map has been modified to viridis
scale, axes are removed, dots are bigger and legend has bold letters. C. Output from
SCpubr::do FeaturePlot() when selecting a subset of cells. Cells that are not selected
are greyed out and not taken into account when computing the limit of the color scales.
D. Standard output from SCpubr::do FeaturePlot() when splitting by another variable.
UMAP silhouette is lost. E. Output from SCpubr::do FeaturePlot() when splitting by
another variable. UMAP silhouette is preserved and the legend with the minimum and
maximum value is shown.
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Figure 3. Nebulosa plots. A. Standard output from Nebulosa::plot density(). B.
Standard output from SCpubr::do NebulosaPlot(). Axes are removed and legend has
bold letters.
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Figure 4. Bee swarm plots. A. Side by side comparison of a dimensional reduction
plot from SCpubr::do DimPlot() using the PCA dimensional reduction embedding and the
output from SCpubr::do BeeSwarmPlot() ranking for PC 1 and coloring by a categorical
variable such as the different clusters in the sample. B. Side by side comparison of
a feature plot from SCpubr::do FeaturePlot() using the PCA dimensional reduction
embedding and the output from SCpubr::do BeeSwarmPlot() ranking for PC 1 and
coloring by a continuous variable such as the value of the cells for the PC 1.
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Figure 5. Violin plots. A. Output from Seurat::VlnPlot() using the number of UMIs
as variable to plot. B. Output from SCpubr::do VlnPlot() using the number of UMIs as
variable to plot and setting a QC cutoff to 30000 UMIs.
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Figure 6. Dot plots. A. Output from Seurat::DotPlot() using a collection of marker
genes and grouping it by each cluster. B. Output from SCpubr::do DotPlot() using the
same marker genes and groups.
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Figure 7. Bar plots. In all panels, arbitrary data sets with different proportions are
used. Panel B uses the original inferred clusters while C modifies the proportions. A.
Output from SCpubr::do BarPlot() using a single variable, in this case the number of
cells per data set. B. Output from SCpubr::do BarPlot() using two variables. Within
each bar, different groups according to the number of cells in each different cluster are
drawn. C. Output from SCpubr::do BarPlot() using two variables and ordering by the
values of cluster 1.
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