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Spatial transcriptomics (ST) technologies are rapidly becoming the extension of single-cell RNA sequencing (scR-
NAseq), holding the potential of profiling gene expression at a single-cell resolution while maintaining cellular com-
positions within a tissue. Having both expression profiles and tissue organization enables researchers to better under-
stand cellular interactions and heterogeneity, providing insight into complex biological processes that would not be
possible with traditional sequencing technologies. The data generated by ST technologies are inherently noisy, high-
dimensional, sparse, and multi-modal (including histological images, count matrices, etc.), thus requiring specialized
computational tools for accurate and robust analysis. However, many ST studies currently utilize traditional scRNAseq
tools, which are inadequate for analyzing complex ST datasets. On the other hand, many of the existing ST-specific
methods are built upon traditional statistical or machine learning frameworks, which have shown to be sub-optimal
in many applications due to the scale, multi-modality, and limitations of spatially-resolved data (such as spatial reso-
lution, sensitivity and gene coverage). Given these intricacies, researchers have developed deep learning (DL)-based
models to alleviate ST-specific challenges. These methods include new state-of-the-art models in alignment, spatial
reconstruction, and spatial clustering among others. However, deep-learning models for ST analysis are nascent and
remain largely underexplored. In this review, we provide an overview of existing state-of-the-art tools for analyzing
spatially-resolved transcriptomics, while delving deeper into the DL-based approaches. We discuss the new frontiers
and the open questions in this field and highlight the domains in which we anticipate transformational DL applications.

I. INTRODUCTION

Although multicellular organisms contain a common
genome within their cells, the morphology and gene expres-
sion patterns of cells are largely distinct and dynamic. These
differences arise from internal gene regulatory systems and
external environmental signals. Cells proliferate, differentiate
and function in tissues while sending and receiving signals
from their surroundings. These environmental factors cause
cell fate to be highly dependent on the environment in which
it exists. Therefore, monitoring a cell’s behavior in the resid-
ing tissue is crucial to understanding cell function, as well as
its past and future fate1.

Advancements in single-cell sequencing have transformed
the genomics and bioinformatics fields. The advent of single-
cell RNA sequencing (scRNAseq) has enabled researchers to
profile gene expression levels of various tissues and organs,
allowing them to create comprehensive atlases in different
species2–6. Moreover, scRNAseq enables the detection of dis-
tinct subpopulations present within a tissue; which has been
paramount in discovering new biological processes, the in-
ner workings of diseases, and effectiveness of treatments7–14.
However, high-throughput sequencing of solid tissues re-
quires tissue dissociation, resulting in the loss of spatial
information15,16. To fully understand cellular interactions,
data on tissue morphology and spatial information is needed,
which scRNAseq alone can not provide. The placement of
cells within a tissue are crucial from the developmental stages
(e.g. asymmetric cell fate of mother and daughter cells17)
and beyond cell differentiation (such as cellular functions, re-
sponse to stimuli and tissue homeostasis18). These limitations
would be alleviated by technologies that could preserve spatial

information while measuring gene expression at the single-
cell level.

Spatial Transcriptomics (ST) provide an unbiased view
of tissue organization crucial in understanding cell fate, de-
lineating heterogeneity, and other applications19. However,
many current ST technologies suffer from lower sensitivities
as compared to scRNAseq, while lacking the single-cell res-
olution that scRNAseq provides20. Targeted in situ technolo-
gies have tried to solve the issue of resolution and sensitivity,
but are limited in gene throughput and often require a priori
knowledge of target genes20. More specifically, in situ tech-
nologies (such as in situ sequencing21, single-molecule fluo-
rescence in situ hybridization (smFISH)22–24, targeted expan-
sion sequencing25, cyclic-ouroboros smFISH (osmFISH)26,
multiplexed error-robust fluorescence in situ hybridization
(MERFISH)27, sequential FISH (seqFISH+)28, and spatially
resolved transcript amplicon readout mapping (STARmap)29),
are typically limited to pre-selected genes that are on the order
of hundreds, with the accuracy potentially dropping as more
probes are added29. We will refer to these methods as image-
based techniques.

On the other hand, Next Generation Sequencing (NGS)-
based technologies (such as 10x Genomics’ Visium and its
predecessor30,31, Slide-Seq32, HDST33) barcode entire tran-
scriptomes but have limited capture rates, and resolutions that
are larger than a single cell34 (50 µm - 100 µm for Visium
and 10 µm for Slide-Seq). Moreover, unlike image-based
technologies, NGS-based methods allow for unbiased profil-
ing of large tissue sections without necessitating a set of tar-
get genes35,36. However, NGS-based technologies do not have
single-cell resolution, requiring cellular features to be inferred
or related to the histological scale using computational ap-
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FIG. 1. An overview of Deep Learning methods for spatial transcriptomics presented in this review. We provide a more compre-
hensive list of the state-of-the-art methods for spatial transcriptomics in Table I.

proaches. Many current algorithms use traditional statistical
or medical image processing frameworks that require human
supervision34,37,38, which is not ideal for large-scale analyses.
Additionally, many algorithms are not generalizable across
different sequencing platforms, which limit their utility and
restrict multiomics integration efforts.

Deep Learning (DL) methods can use raw data to extract
useful representations (or information) needed for perform-
ing a task, such as classification or detection39. This qual-
ity makes this class of Machine Learning (ML) algorithms
ideal for applications where the available data is large, higher-
dimensional, and noisy, such as single-cell omics. DL mod-
els have been extensively used in scRNAseq studies (e.g.
preprocessing40,41, clustering42,43, cell-type identification44,45

and data augmentation46,47), and have shown to significantly
improve upon traditional methods10, suggesting the potential
of such methods in ST analysis. Moreover, DL models can
leverage multiple data sources, such as images and text data,
to learn a set of tasks48. Given that spatially-resolved tran-
scriptomics are inherently multimodal (i.e. they consist of
images and gene expression count data) and that downstream
analysis consist of multiple tasks (e.g. clustering and cell-type
detection), researchers have sought to develop ST-specific DL
algorithms.

Spatially-resolved transcriptomics have been utilized

to unravel complex biological processes in many dis-
eases (e.g. COVID-1949,50, arthritis51,52 ,cancer31,33,53–55,
Alzheimer’s56, diabetes57,58, etc.). Continuous improvements
and commercialization of ST technologies (such as 10x’s
Visium) are resulting in wider use across individual labs.
Therefore, scalable and platform-agnostic computational ap-
proaches are needed for accurate and robust analysis of ST
data. So far, DL methods have shown promising results in
handling the scale and multi-modality of spatially-resolved
transcriptomics; however, DL-based models in this space re-
main nascent. Similar to scRNAseq analysis, we anticipate a
suite of DL models to be developed in the near future to ad-
dress many of the pressing challenges in spatial omics field.
This review aims to provide an overview of the current state-
of-the-art (SOTA) DL models developed for ST analysis. Due
to the potentials and accessibility of NGS-based ST technolo-
gies, we primarily focus on methods and techniques devel-
oped for these technologies.

The remainder of this manuscript is organized as follows:
We provide an overview of common scRNAseq and ST tech-
nologies in Section II, followed by a general description of
common DL architectures used for ST analysis in Section
III. Section IV is dedicated to the current DL methods de-
veloped for analyzing spatially-resolved transcriptomics. We
conclude, in Section V, by discussing our outlook on the cur-
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rent challenges and future research directions in ST domain.
Table I provides the reader with a list of current SOTA meth-
ods for ST analysis. Given the pace of advancements in this
field, the authors have compiled an online list of current DL
methods for ST analysis on a dedicated repository(https:
//github.com/SindiLab/Deep-Learning-in-Spatial
-Transcriptomics-Analysis), which will be maintained
and continuously updated.

II. BIOLOGICAL BACKGROUND

A. Single-Cell RNA Sequencing (scRNAseq)

RNA sequencing (RNA-seq) provides comprehensive in-
sights on cellular processes (such as identifying genes that
are upregulated or downregulated, etc.). However, traditional
bulk RNA-seq is limited to revealing the average expression
from a collection of cells, and not disambiguation single-cell
behavior. Thus, it is difficult to delineate cellular heterogene-
ity with traditional RNA-seq, which is a disadvantage since
cellular heterogeneity has been shown to play a crucial role in
understanding many diseases82. Therefore, researchers have
turned to single-cell RNA-seq (scRNAseq) in order to identify
cellular heterogeneity within tissues. ScRNAseq technologies
have been instrumental in the study of key biological pro-
cesses in many diseases, such as cancer83, Alzheimer’s84, car-
diovascular diseases85, etcetera (see82 for more details). RNA
sequencing of cells at a single-cell resolution, scRNAseq, gen-
erally consists of four stages:

(i) Isolation of Single-Cells and Lysing: Cells are
selected through laser microdirection, fluorescence-
activated cell sorting (FACS), microfluidic/microplate
Technology (MT) or a combination of these methods86,
with MT being highly complementary to NGS-based
technologies87. MT encapsulates each single-cell into an
independent microdroplet containing unique molecular
identifiers (UMI), lysis buffer for cell lysis (to increase
the capturing of as many RNA molecules as possible),
oligonucleotide primers, and seoxynucleotide triphos-
phates (dNTPs) in addition to the cells themselves. Due
to MT’s higher isolation capacity, thousands of cells can
be simultaneously tagged and analyzed, which is benefi-
cial for large-scale scRNAseq studies.

(ii) Reverse Transcription: One challenge in RNA se-
quencing is that RNA can not be directly sequenced from
cells, and thus RNA must first be converted to com-
plementary DNA (cDNA)88. Although dist technolo-
gies employ different techniques, the reverse transcrip-
tion phase generally involves capturing mRNA using
poly[T] sequence primers that bind to mRNA ploy[A]
tail prior to cDNA conversion. Based on the sequenc-
ing platform, other nucleotide sequences are added to
the reverse-transcription; for example in NGS protocols,
UMIs are added to tag unique mRNA molecules so that
it could be trace back their originating cells, enabling the
combination of different cells for sequencing.

(iii) cDNA Amplification: Given that RNA can not be di-
rectly sequenced from cells, single-stranded RNAs must
first be reverse-transcribed to cDNA. However, due to
the small amount of mRNA in cells, limited cDNA is
produced which is not optimal for sequencing. There-
fore, the limited quantity of cDNA must be amplified
prior to library preparation and sequencing89. The am-
plification is often done by either PCR (exponential am-
plification process with its efficiency being sequence de-
pendent) or IVT (a linear amplification method which
requires an additional round of reverse transcription of
the amplified RNA) before sequencing88,90. The final
cDNA library consists of adaptor-ligated sequencing li-
brary attached to each end.

(iv) Sequencing Library Construction: Finally, every
cell’s tagged and amplified cDNA is combined for
library preparation and sequencing similar to bulk
RNA sequencing methods, followed by computational
pipelines for processing and analysis.91.

Fig. 2(A) illustrates an example of the workflow for scR-
NAseq. For more details of each stage and various scRNAseq
workflows, we refer the reader to references90,92–94.

B. Spatial Transcriptomics Technologies

More recently, technologies that profile gene expression
while retaining spatial information have emerged. These tech-
nologies are collectively known as spatial transcriptomics
(ST). The various ST technologies provide different advan-
tages and are chosen based on experimental factors such as
size of tissue to be assayed, the number of genes to be probed,
a priori knowledge of taget genes, cost, etcetera. In general,
ST technologies can be divided into two broad categories:
imaging-based and next generation sequencing (NSG)-based
technologies. In this section, we provide an overview of
popular techniques, with more emphasis on NGS-based ap-
proaches. For a more comprehensive and technical reviews of
ST technologies, we refer the reader to Asp et al.95 and Rao
et al.20.

1. Imaging-Based Technologies

Imaging-based technologies are be broadly subdivided into
in situ hybridization (ISH)-based, in situ sequencing (ISS)-
based methods, or methods that borrow elements from both of
these approaches. Unlike RNAseq methods described above,
ISH and most ISS-based techniques require labeled probes.
This means that the target genes must be known in advance
and, moreover, the number of genes that can be measured is
limited20.
In Situ Hybridization (ISH)-based Approaches: ISH-based
methods aim to detect the absence or presence of target RNA
(or DNA) sequences while localizing the information of the
desired sequences to specific cells or chromosomal sites96,97.
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FIG. 2. Example Single-Cell RNA Sequencing and Spatial Transcriptomics Workflows. (A) A general overview of the single-cell
RNA sequencing workflow (which we describe in section II A). (B) A visualization of the steps for next-generation sequencing based
spatial transcriptomics (described in Section II B).

ISH-based techniques use labeled probes (usually made with
DNA or RNA) which bind to desired sequences in fixed cells
or tissue, therefore detecting the desired sequence through
the hybridization of a complementary probe. The hybridized
probes are then visualized through isotopic and nonisotopic
(fluorescent and nonfluorescent) approaches97. The ISH-
based techniques have been limited by the number of dis-
tinguishable transcripts, however, recent innovations have re-
sulted in ample multiplexing capabilities20.

In Situ Sequencing (ISS)-based Approaches: ISS-based ap-

proaches aim to sequence the RNA content of a cell in situ us-
ing DNA balls that amplify the RNA signals: RNA is first re-
verse transcribed to cDNA, followed by circular amplification
(to increase the number of transcripts) and sequencing98. Al-
though the transcript can be localized at subcellular resolution,
micrometer- or nanometer-sized DNA balls are often used to
amplify the signals to reach sufficient signal for imaging95.
Initially, the first ISS-based method99 used targeted padlock
probes (a single-stranded DNA molecule containing regions
complementary to the target cDNA) followed by sequence-
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TABLE I: A list of relevant methods for the analysis of spatial transcriptomics data. The italicized boldfaced methods are
the ones which utilize deep learning (or elements closely aligned). We review these methods in depth in this paper.

Category Method Year Framework Language Software Availability
Spatial Reconstruction Seurat59 2015 Statistical R https://github.com/satijalab/seurat

novoSpaRc60 2019 Optimization/Statistical Python https://github.com/rajewsky-lab/novosparc
DEEPsc61 2021 Machine Learning MATLAB https://github.com/fmaseda/DEEPsc

Alignment and Integration Spatial Backmapping62 2015 Scoring Scheme R https://github.com/jbogp/nbtspatialbackmapping
Tangram34 2021 Machine Learning Python https://github.com/broadinstitute/Tangram
GLUER63 2021 Machine Learning Python https://github.com/software-github/GLUER

Spot Deconvolution Stereoscope64 2020 Statistical Python https://github.com/almaan/stereoscope
DSTG65 2021 Machine Learning Python, R https://github.com/edward130603/BayesSpace
SPOTlight66 2021 Machine Learning R https://github.com/MarcElosua/SPOTlight
RTCD67 2021 Statistical R https://github.com/dmcable/RCTD
SpatialDWLS68 2021 Optimization/Statistical R https://github.com/RubD/Giotto
DestVI69 2021 Machine Learning Python https://github.com/YosefLab/scvi-tools
Cell2location70 2022 Statistical Python https://github.com/BayraktarLab/cell2location

Spatial Clustering HMRF71 2018 Statistical R , Python , C https://bitbucket.org/qzhudfci/smfishhmrf-py/
SpaCell72 2019 Machine Learning Python https://github.com/BiomedicalMachineLearning/SpaCell
BayesSpace73 2021 Statistical R , C++ https://github.com/edward130603/BayesSpace
SpaGCN74 2021 Machine Learning Python https://github.com/jianhuupenn/SpaGCN

Spatially Variable Genes Identification Trendsceek75 2018 Statistial R https://github.com/edsgard/trendsceek
SpatialDE76 2018 Statistical Python https://github.com/Teichlab/SpatialDE
Spark77 2020 Statistical R , C++ https://github.com/xzhoulab/SPARK

Cell-Cell Communication SpaOTsc78 2020 Machine Learning Python https://github.com/zcang/SpaOTsc
StLearn79 2020 Machine Learning Python https://github.com/BiomedicalMachineLearning/stLearn
MISTy80 2020 Machine Learning R https://github.com/saezlab/mistyR
Giotto81 2021 Statistical R https://github.com/RubD/Giotto

by-ligation21 to detect desired genes. This method pro-
vided a subcellular resolution and an ability to detect single-
nucleotide variants (SNVs). This ISS protocol is targeted and
yields a detection efficiency of approximately 30%100. Sev-
eral ISS protocols have built upon this approach to mitigate
the number of cells that can be discriminated simultaneously,
as well as to improve certain experimental aspect of the pro-
tocol. For example, a recently developed method, barcode in-
situ targeted sequencing (BaristaSeq)101, uses sequencing-by-
synthesis and has led to increased read lengths, enabled higher
throughput and cellular barcoding with improved detection
efficiency compared to the initial ISS approach101. Another
ISS-based technique is Spatially Resolved Transcript Ampli-
con Readout Mapping (STARmap)29 that reduces noise and
avoids the cDNA conversion complications by utilizing im-
proved padlock-probe and primer design; STARmap adds a
second primer to target the site next to the padlock probe in
order to circumvent the reverse transcription step. STARmap
also uses advanced hydrogel chemistry and takes advantage
of an error-robust sequencing-by-ligation method, resulting in
detection efficiency that is comparable to scRNAseq methods
(around 40%)29,95. Although most ISS approaches (includ-
ing the ones mentioned here) are targeted, ISS-based methods
could also be untargeted25,102 but this typically leads to much
lower sensitivity (around 0.005%) and molecular crowding,
affecting the rolling-circle amplification bias102,103.

In imaging-based approaches, the generated image is seg-
mented and processed to produce a cell-level gene-expression
matrix. The gene-expression matrix is generated through pro-
cessing the generated image(s), which can be done manually
or automatically. However, given the biased and laborious na-
ture of manual segmentation, there has been a shift towards

designing general and automated techniques104. The accurate
and general automation of this process still remains a chal-
lenge, therefore motivating the application of recent machine
learning and computer vision approaches to this field104–106,
which have shown improvements compared to the traditional
methods107. Although this manuscript focuses on methods
for NGS-based technologies, many of those techniques (in-
cluding ones in Section IV C and IV F) can be extended to
image-based technologies as well.

C. Next Generation Sequencing (NGS)-Based Technologies

Due to the unbiased capture of mRNA, NGS-based tech-
nologies can shed light on the known and unknown morpho-
logical features using only the molecular characterization of
tissues1. This unbiased and untargeted nature of NGS tech-
nologies makes them ideal for studying and exploring new
systems20, a major advantage compared to most image-based
technologies which require target genes a priori. While NGS-
based approaches differ in the specifics of the protocols, they
all build on the idea of adding spatial barcodes before library
preparation, which are then used to map transcripts back to the
appropriate positions (known as spots or voxels). An exam-
ple workflow of NGS-based spatial sequencing is depicted in
Fig. 2(B). In the following subsections, we provide a general
overview of the four most common spatial transcriptomics
technologies. For a more complete review of these technolo-
gies, we refer the readers to references20,95.

Ståhl et al.31 were the first to successfully demonstrate the
feasibility of using NGS for spatial transcriptomics (this initial
approach is often referred to Spatial Transcriptomics). Their
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innovation was to add spatial barcodes prior to library prepara-
tion, enabling the mapping of expressions to appropriate spa-
tial spots. More specifically, Ståhl et al. positioned oligo(dT)
probes and unique spatial barcodes as microarrays of spots on
the surface of slides. Next, fresh frozen tissue slices were
placed on the microarray and processed to release mRNA
(using enzymatic permeabilization), which then hybridized
with the probes on the surface of the slides. This approach
consists of (i) collecting histological imaging (using standard
fixation and staining techniques, including hematoxylin and
eosin (HE) staining) for investigating morphological charac-
teristics and (ii) sequencing spatially barcoded cDNA to pro-
file gene expressions. In the initial experiments, each slide
consisted of approximately 1000 spots, each of diameter 100
µm with 200 µm center-to-center distance1. This approach
provides researchers with an unbiased technique for analyzing
large tissue areas without the need for selecting target genes
in advance20,35,108.

After the initial success of Spatial Transcriptomics, 10x Ge-
nomics subsequently improved the resolution (shrinking the
spot diameters to 55 µm with 100 µm centre-to-centre dis-
tance) and sensitivity (capturing more than 104 transcripts per
spot) of the approach, and eventually commercializing it as
Visium30,109). The development and commercialization of
the spatial transcriptomics resulted in relatively rapid adop-
tion across fields, such as cancer biology110,111, developmen-
tal biology112,113, neuroscience114,115. The histological imag-
ing and gene expression profiling of Visium are similar to the
initial approach: the staining and imaging of the tissues are
through traditional staining techniques, including HE staining
for visualizing tissue sections using a brightfield microscope
and immunofluorescence staining to visualize protein detec-
tion in tissue sections through a fluorescent microscope. Vi-
sium protocol allows for both fresh frozen (FF) or Formalin-
Fixed Paraffin-Embedded (FFPE) tissues. For FF tissues, sim-
ilar to Ståhl et al.31, the tissue is permeabilized, allowing the
release of mRNA, which hybridizes to the spatially barcoded
oligonucleotides present on the spots. The captured mRNA
then goes through a reverse transcription process that results
in cDNA, which are then barcoded and pooled for generating
a library116. For FFPE tissues, tissue is permeabilized to re-
lease ligated probe pairs from the cells that bind to the spatial
barcodes on slide, and the barcoded molecules are pooled for
downstream processing to library generation116.

Building on the Spatial Transcriptomics, Vickovic et al.33

proposed High-Definition Spatial Transcriptomics (HDST)
which improved the resolution to about 2 µm. Similar to
the other approaches, HDST also employs specific barcodes
ligated to beads that are coupled to a spot (prior to lysis),
so that expressions are mapped to the tissue image. How-
ever, the innovation of HDST include the use of 2 µm beads
places in hexagonal wells, enabling accurate compartmen-
talization and grouping of the biological materials in the
experiment33. Simultaneously, Rodriques et al.32 introduced
SlideSeq which utilizes slides with randomly barcoded beads
to capture mRNA, also increasing the resolution (to 10 µm)
and sensitivity (500 transcripts per 54 bead) spatial-resolved
sequencing compared to Ståhl et al.31. However, SlideSeq

placed the barcoded beads in rubber and onto glass slides, as
opposed to HDST’s hexogonal beads, and determines the po-
sition of each random barcode by in situ -indexing20,32.

Despite the differences, all NGS-based technologies use
spatial barcodes to tag released RNAs, which then go through
conventional processes for sequencing similar to scRNAseq.
After sequencing, the data is processed to construct the spa-
tial location of each read (using the spatial barcode) and to
construct a gene-expression matrix (mapping the reads to the
genome to identify the transcript of origin). Given that most
technologies have resolutions larger than a single-cell (com-
monly having expression for 3 to 30 cells in each spot), the
data processing and analysis procedures are relatively simi-
lar.

III. MACHINE LEARNING AND DEEP LEARNING
BACKGROUND

With the technologies now defined, we next describe com-
mon Machine Learning (ML) methods used to analyze ST
data. in this section, we first provide a discussion of the al-
gorithmic development of ML and Deep Learning (DL) mod-
els, and then discuss common architectures used for spatially-
resolved transcriptomics (and scRNAseq data).

ML refers to a computer algorithm’s ability to acquire
knowledge by extracting patterns and features from raw
data117. All ML algorithms depend on data, which must
be available before the methods can be used, and a defined
mathematical objective. ML models’ lifecycle consists of
two phases, namely training and evaluation. During train-
ing, ML algorithms analyze the data to extract patterns and
adjust their internal parameters based on optimizing their ob-
jectives (known as loss function). In the evaluation (or infer-
ence) stage, the trained model makes predictions (or performs
the task it was trained to do) on unseen data.

There are two main types of ML algorithms: supervised and
unsupervised. An ML algorithm is considered to be unsuper-
vised if it utilizes raw inputs without any labels to optimize its
objective function (an example would be the K-Means clus-
tering algorithm118). Conversely, if an algorithm uses both
raw data and the associated labels (or targets) in training, then
it is a supervised learning algorithm. Supervised learning is
the most common form of ML39. An example of supervised
learning in scRNAseq analysis would be classifying cell sub-
populations using prior annotations: this requires a labeled set
of cell-types for training (the available annotations), an objec-
tive function for calculating learning statistics (“teaching” the
model), and testing data for measuring how well the model
can predict the cell-type (label) on data it has not seen before
(i.e. generalizibility of the model). Another common example
of supervised learning is regression, where a model predicts
continuous values as opposed to outputting labels or categor-
ical values in classification. For supervised tasks, a model is
trained on the majority of the data (known as training set) and
then evaluated on held-out data (test set). Depending on the
size of our dataset, there can also be a third data split known as
a validation set, which is used to measure the performance of
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FIG. 3. Examples of Deep Learning Architectures. Models depicted in (A), (B), (C), (D) are examples of supervised learning, and
networks shown in (E), (F) are unsupervised. (A) An example of an FFNN architecture with gene expression count as its input. (B)
An example of CNN architecture, where the model passes the inputs through the three stages of a CNN (with non-linear activation not
depicted) to extract features. Then, outputs are flattened and fed into a fully connected layer (or layers). (C) The general training flow of
an RNN, with the unrolled version showing the timestep-dependent inputs, hidden state, and outputs. The inputs to RNNs need to have a
sequential structure (e.g. time-series data). (D) An illustration of a ResNet. In traditional ResNets, there are identity mappings (or skip
connections) that pass the input of a residual block to its output (often through addition). (E) Here we show the general architecture of a
trained denoising AE in inference stage, with a noisy histology slide as its input, yielding a denoised version of the input image. (6) A
depiction of a traditional VAE in inference stage. VAE’s aim to generate synthetic data that closely resemble the original input. This is
done through regularizing the latent space of an AE with the use of a probabilistic encoder and decoder.

the model throughout training to determine early stopping119:
Early stopping is when we decide to stop the training of a
model because its overfitting (or over optimization) on the
training set. Overfitting on training data worsens the gener-
alizability of the model on unseen data, which early stopping
aims to avoid119. In addition to supervised and unsupervised
algorithms, there are also semi-supervised learning, where a
model uses a mix of both supervised and unsupervised tasks,
and self-supervised, where the computer algorithm generates

new or additional labels to improve its training, or to learn a
new task.

Raw experimental data typically contains noise or other un-
wanted features, which present many challenges for ML al-
gorithms. Therefore, it is often necessary to carefully pre-
process data or to rely on domain-specific expertise in order
to transform raw data into some internal representation from
which ML models can learn39. Deep Learning (DL) algo-
rithms, however, aim to use only raw data to automatically
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extract and construct useful representations required for learn-
ing the tasks at hand. In a broad sense, DL models are able
to learn from observations through constructing a hierarchy of
concepts, where each concept is defined by its relation to sim-
pler concepts. A graph representation of the hierarchy of con-
cepts (and learning) will consist of many layers, with many
nodes and edges connecting the vertices, somewhat resem-
bling humans’ neural network. This graph is referred to as
an Artificial Neural Network (ANN). ANNs are composed of
interconnected nodes ("artificial neurons") that resemble and
mimic our brains’ neuronal functions. An ANN is considered
to be a DL model if it consists of many layers–often more than
three, hence being called deep.

Many tasks that humans perform can be viewed as map-
pings between sets of inputs and outputs. For example, hu-
mans can take a snapshot image of their surroundings (in-
put) and detect the relevant objects (the outputs). DL, and
more generally Artificial Intelligence, aims to learn such map-
pings in order to model human-level intelligence. Mathe-
matically, ANNs are universal function approximators, mean-
ing that, theoretically, they can approximate any (continous)
function120–122. Cybenko120 proved this result for a one-layer
neural network with arbitrary number of neurons (nodes) and
a sigmoid activation function by showing that such architec-
ture is dense within the space of continuous functions (this re-
sult has now been extended to ANNs with multiple layers121).
While constructing arbitrarily-long single-layer ANNs is not
possible, it has been shown that ANNs with many many layers
(deeper) generally learn faster and more reliably than ANNs
with few wide (many neurons) layers123. This has allowed re-
searchers to employ deep networks for learning very complex
functions through constructing simple non-linear layers which
can transform the representation of each module (starting with
the raw input) into a representation at a higher, slightly more
abstract level39.

DL models’ ability to approximate highly non-linear func-
tions has revolutionized many domains of science, including
Computer Vision124–126, Natural Language Processing127–129

and Bioinformatics130–133. DL is becoming increasingly in-
corporated in many computational pipelines and studies, spe-
cially in genomics and bioinformatics, including scRNAseq
and spatial transcriptomics analysis. In the following sections,
we provide a brief overview of essential deep learning archi-
tectures that have been used in spatial transcriptomics and
scRNAseq analysis. In Fig. 3, we present illustrations of the
architectures discussed in the following sections. Note that for
simplicity, we have categorized all Graph Convolution Net-
works (GCN)134 as DL models; this is because (i) GCNs can
easily be extended to include more layers (deeper networks),
and (ii) lack of other existing methods which incorporate some
elements of DL. A more comprehensive description of each
architecture can be found in the seminal textbook by Goodfel-
low et al.117.

A. Feed Forward Neural Network (FFNN)

FFNNs, the quintessential example of Artificial Neural Net-
works (ANNs), aim to approximate a function mapping a set
of inputs to their corresponding targets (see Fig. 3(A)). More
specifically, given an input x ∈Rn and a target y ∈Rm, where
n,m ∈ R, FFNNs aim to learn the optimal parameters θ such
that y= f (x;θ). FFNNs are the building blocks of many more
advanced architectures (e.g. convolutional neural networks),
and therefore, of paramount importance in the field of ML117.
As mentioned previously, ANNs are universal function ap-
proximators, and they represent a directed acyclic graph of
function compositions hierarchy within the network. Each
layer of a FFNN, f (i)(x;θ) (i ∈ N being the i-th layer), is
often a simple linear function: For example, we can have a
linear function for outputting y ∈ R of the form Eq. (1), with
weight parameters w ∈ Rn and a bias b ∈ R:

y = f (1)(x;θ) = f (1)(x;w,b) = xT w+b. (1)

However, a model composed of only linear functions can
only approximate linear mappings. As such, we must con-
sider non-linear activation functions to increase model capac-
ity, enabling the approximation of complex non-linear func-
tions. In the simplest case, Neural networks (NNs) use an
affine transform (controlled by learned parameters) followed
by a non-linear activation function, which, theoretically, en-
ables them to approximate any non-linear function135. More-
over, we could compose many of such non-linear transforma-
tions to avoid infinitely wide-neural networks when approx-
imating complex function. However, in this context, finding
a set of optimal functions f (i) : Rqi → Rdi (qi,di ∈ R) is a
practically impossible task. As such, we restrict the class of
function that we use for f (i) to the following form in Eq. (2):

f (i)(x(i−1);θ(i)) = σ
(i)(W (i)x(i−1)+b(i)), (2)

where superscript i enumerates the layers, σ(·) is a non-
linear activation function (usually a Rectified Linear Unit136),
x(i−1) ∈ Rqi denotes the output of the layer (i− 1) (with x(0)
indicating the input data), weights W ∈ Rdi×qi and biases
b(i) ∈Rdi . Note that because of the dimensionality of the map-
ping, W (i)X (i−1) ∈ Rdi and we must have a vector of biases
b(i) ∈Rdi ). FFNNs are composed of such functions in chains;
to illustrate, consider a three-layer neural network:

y = f (x;θ) (3a)

= f (3)( f (2)( f (1)(x;θ(1));θ(2));θ(3)) (3b)

= f (3)
(

h(2)
(

h(1)
(

x;w(1),b(1)
)

;w(2),b(2)
)

;w(3),b(3)
)
.

(3c)

with h representing the hidden states or hidden layers.
FFNNs find the optimal contribution of each parameter (i.e.

weights and biases) by minimizing a desired objective. The
goal is to generalize the task to data the model has never seen
before (testing data). Although the non-linearity increases the
capacity of FFNNs, it causes most objective functions to be-
come non-convex. In contrast to convex optimization, non-
convex loss functions do not have global convergence guaran-
tees, and are sensitive to initial starting point (parameters of
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the network)137. Therefore, such optimization is often done
through stochastic gradient descent (or some variant of it).
Moreover, given the sensitivity to initial values, weights are
typically chosen to be small random values, with biases ini-
tialized to zero or small positive values117,138,139.

Almost all neural networks use iterative gradient descent
(GD)-based optimizers to train. GD has three main variants,
which differ in the amount of data utilized to calculate the gra-
dients for updating the parameters. The classic GD variant, re-
ferred to as batch GD, uses all data points to make the updates
to the parameters in one iteration. However, this approach is
generally not feasible, since the amount of data required for
training DL models almost never fits in memory140. The sec-
ond variant of GD is stochastic gradient descent (SGD) where
the parameters are updated for every training datum. Compu-
tationally, it has been shown that the noise in SGD accelerates
its convergence compared to batch GD, but SGD also has the
possibility of overshooting, specially for highly non-convex
optimization functions140,141. The third variant, and the most
frequently used one for deep learning, is mini-batch GD which
updates the parameters for every batch of training data–if
batch size is one then this variant is just SGD, and if batch size
is the entire dataset then it is equivalent to batch GD. Conven-
tionally, optimization of NNs is done through gradient descent
performed backwards in the network, which itself consists of
two components: a numerical algorithm for efficient compu-
tation of the chain rule for derivatives (backpropagation142)
and a GD-based optimizer (e.g. , Adam143 or AdaGrad144).
The optimizer is an algorithm that performs gradient descent,
while backpropagation is an algorithm for computing the ex-
pression for gradients during the backward pass of the model.

B. Convolutional Neural Network (CNN)

Learning from images, such as detecting edges and identi-
fying objects, has been of interest for some time in computer
science145. Images contain a lot of information, however, only
a small amount of that information is often relevant to the task
at hand. For example, an image of a stained tissue contains
both important information, namely the tissue itself, and irrel-
evant pixels, such as the background. Prior to DL, researchers
would hand-design a feature extractor to learn relevant infor-
mation from the input. Much of the work had focused on the
appropriate feature extractors for desired tasks (e.g. see the
seminal work by Marr and Hildreth146). However, a main goal
in ML is to extract features from raw inputs without hand-
tuned kernels for feature extraction. CNNs147,148 are a spe-
cialized subset of ANNs that use the convolution operation
(in at least one of their layers) to learn appropriate kernels
for extracting important feature beneficial to the task at hand.
Mathematically, convolution between two functions f and w
is defined as a commutative operation shown in Eq. (4)

( f ∗w)(x),
∫

∞

−∞

f (s)w(s− x)ds. (4)

Using our notation, we intuitively view convolution as the area
under f (s) weighted by w(−s) and shifted by x. In most appli-

cations, discrete functions are used. As an example, assume
we have a 2D kernel K that can detect edges in a 2D image
I with dimension m× n. Since I is discrete, we can use the
discrete form of Eq. (4) for convolution of I and K over all
pixels:

E(i, j) = (I ∗K)(i, j) = ∑
m

∑
n

I(m,n)K(i−m, j−n). (5)

However, since there is less variation in the valid range of m,n
(the dimensions of the image) and the operation is commuta-
tive, most algorithms implement Eq. (5) equivalently:

E(i, j) = (K ∗ I)(i, j) = ∑
m

∑
n

I(i−m, j−n)K(m,n). (6)

Typical CNNs consist of a sequence of layers (usually
three) which include a layer performing convolution, hence
called a convolutional layer (affine transform), a detector
stage (non-linear transformation), and a pooling layer. The
learning unit of a convolutional layer is called a filter or ker-
nel. Each convolutional filter is a matrix, typically of small di-
mensions (e.g. 3x3 pixels), composed of a set of weights that
acts as an object detector, with the weights being continuously
calibrated during the learning process. CNNs’ objective is to
learn an optimal set of filters (weights) which can detected the
needed features for specific tasks (e.g. image classification).
The result of convolution between the input data and the fil-
ter’s weights is often referred to as a feature map (as shown
in Fig. 3(B)). Once a feature map is available, each value of
this map is passed through a non-linearity (e.g. ReLU). The
output of a convolutional layer consists of as many stacked
feature maps as the number of filters present within the layer.

There are two key ideas behind the design of CNNs: First,
in data with grid-like topology, local neighbors have highly
correlated information. Second, equivariance to translation
can be obtained if units at different locations share weights.
In other words, sharing parameters in CNNs enabled the de-
tection of features regardless of the locations that they ap-
pear in. An example of this would be detecting a car. In
a dataset, a car could appear at any position in a 2D im-
age, but the network should be able to detect it regardless
of the specific coordinates145. These design choices provide
CNNs with three main benefits compared to other ANNs: (i)
sparse interactions, (ii) shared weights, and (iii) equivariant
representations147.

Another way of achieving equivariance to translation is to
utilize pooling layers. Pooling decreases the dimension of
learned representations, and makes the model insensitive to
small shifts and distortions39. In the pooling layers, we use
the outputs of the detector stage (at certain locations) to cal-
culate a summary statistic for a rectangular window of values
(e.g. calculating the mean of a 3x3 patch). There are many
pooling operations, with common choices being max-pooling
(taking the maximum value of a rectangular neighborhood),
mean-pooling (taking the average), and L2 norm (taking the
norm). In all cases, rectangular patches from one or several
feature maps are inputted to the pooling layer, where seman-
tically similar features are merged into one. CNNs typically
have an ensemble of stacked convolution layers, non-linearity,
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and pooling layers, followed by fully connected layers that
produce the final output of the network. The backpropagation
of gradients through CNNs is analogous to FFNNs, enabling
the model to learn an optimal set of filters for the task(s) at
hand. CNNs have been effectively used in many applications
in computer vision and time-series analysis, and are being in-
creasing utilized for analysis of ST data, since spatial-omics
are multi-modal, with one of the modalities being images (as
we discuss in Section IV).

C. Recurrent Neural Network (RNN)

Just as CNNs are specialized to process data with a grid-like
toplogy, RNNs’149 special characteristics make them ideal for
processing sequential data X = {x(1),x(2), · · · ,x(n)}, where x(i)
denotes the i-th element in the ordered sequence X . Examples
of such sequence-like structure include times series and nat-
ural language. RNNs process sequential inputs one at a time
and implicitly maintain a history of previous elements of the
input sequence. We present an illustration of the conventional
RNN architecture in Fig. 3(C). Similar to FFNNs or CNNs,
RNNs can be composed of many layers, with each layer de-
pending on the previous hidden state, h(t−1), and a shared set
of parameters, θ. A deep RNN with n hidden states can be
expressed as follows:

h(n) = f (x(n),h(n−1);θ);θ) (7a)

= f (x(n), f (x(n−1),h(n−2);θ);θ) (7b)

= f ( f (· · · f (x(2),h(1)(x(1);θ);θ) · · · ;θ);θ). (7c)

The idea behind sharing θ in RNN states is similar to
CNNs: parameter sharing across different time points al-
lows RNNs to generalize the model to sequences of variable
lengths, and share statistical strengths at different positions in
time117,150. Similar to FFNNs, RNNs learn by propagating
the gradients of each hidden state’s inputs at discrete times.
This process becomes more intuitive if we consider the out-
puts of hidden units at various time iterations as if they were
the outputs of different neurons in a deep multi-layer network.
However, due to the sequential nature of RNNs, the back-
propagation of gradients shrinks or grows at each time step,
causing the gradients to potentially vanish or blow up. This
fact, and the inability to parallelize training at different hidden
states (due to the sequential nature of RNNs) makes RNNs no-
toriously hard to train, specially for longer sequences127,151.
However, when these issues are averted (via gradient clip-
ping or other techniques), RNNs are powerful models and
gain state-of-the-art capabilities in many domains, such nat-
ural language processing. The training challenges combined
with the nature of scRNAseq data have resulted in fewer de-
velopments of RNNs for single-cell analysis. However, re-
cently some studies have used RNNs and Long Short-Term
Memory152 (a variant of RNNs) used for predicting cell types
and cell motility (e.g. see Kimmel et al.153).

D. Residual Neural Network (RestNet)

As mentioned above, deep RNNs may suffer from van-
ishing or exploding gradients. Such issues can also arise in
other deep neural networks as well, where gradient informa-
tion could diminish as the depth increases (though approaches
such as Batch Normalization154 aim to help with gradient is-
sues). One way to alleviate vanishing gradients in very deep
networks is to allow gradient information from successive
layers to pass through, helping with maintaining information
propagation even as networks become deeper. ResNets155

achieve this by skip (or residual) connections that add the in-
put to a block (a collection of sequential layers) to its output.
For a FFNN, consider function f in Eq. (2). Using the same
notation as in Eq. (2), ResNet’s inner layers take the form
shown in Eq. (8):

f (i)(x(i−1)) = x(i−1)+σ
(i)(W (i)x(i−1)+b). (8)

The addition of x(i−1), the input of the current layer (or the
output of (i−1)-th layer), to the current i-th layer output is the
skip or residual connection helps flow the information from
the input deeper in the network, thus stabilizing training and
avoiding vanishing gradient in many cases155,156. Indeed, this
approach can be contextualized within the traditional time in-
tegration framework for dynamical system. For example, con-
sider Eq. (9):

ẋ(t) =
dx
dt

= F (t,x(t)), x(t0) = x0. (9)

In the simplest case, this system can be discretized and ad-
vanced using x(tn) and some scaled value of F (tn,x(tn)), or a
combination of scaled values of ẋ(tn). Forward Euler, perhaps
the simplest time integrator, advances the solution as shown
through the scheme in Eq. (10)

xn+1 = xn +hF (tn,yn), (10)

where h is a sufficiently small real positive value. ResNets use
this idea to propose a different way of calculating the trans-
formations in each layer, as shown in Eq. (8).

ResNets consist of residual blocks (also called modules),
each of which containing a series of layers. For visual tasks,
these blocks often consist of convolutional layers, followed by
activation functions, with the skip connection adding the input
information to the output of the residual blocks (as opposed to
the individual layers inside). ResNets have different depths
and architectures, with a number usually describing the depth
of the model (e.g. ResNet50 means there are 50 layers [there
are 48 convolution layers, one MaxPool and one AveragePool
layers]).

ResNets have transformed DL by enabling the training of
very deep neural networks, setting the state-of-the-art perfor-
mance in many areas, particularly in computer vision155. The
pre-trained ResNets on ImageNet dataset157 are widely used
for transfer learning, where the network is either used as is or
further fine-tuned on the specific dataset. Pre-trained ResNet
models have also been used in spatial transcriptomics analy-
sis, as we discuss later in this manuscript.

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.02.28.482392doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.28.482392
http://creativecommons.org/licenses/by-nd/4.0/


Deep Learning in Spatial Transcriptomics 11

E. Autoencoder (AE)

AEs158,159 are neural networks that aim to reconstruct (or
copy) the original input via a non-trivial mapping. Conven-
tional AEs have an "hour-glass" architecture (see Fig. 3(E))
consisting of two networks: (i) an encoder network, Enc(·),
which maps an input x ∈ Rn to a latent vector z ∈ Rd where,
ideally, z contains the most important information from x in a
reduced space (i.e. d� n), (ii) the decoder network, Dec(·),
which takes z as input and maps it back to Rn, ideally, recon-
structing x exactly; i.e. x = AE(x) = Dec(Enc(x)). AEs were
traditionally used for dimensionality reduction and denoising,
trained by minimizing a mean squared error (MSE) objective
between the input data and the reconstructed samples (outputs
of the decoder).

Over time, the AE framework has been generalized to
stochastic mappings, i.e. probabilistic encoder-decoder map-
pings, pEnc(z|x) and pDec(x|z). A well-known example of
such generalization is Variational Autoencoders (VAEs)160,
where by using the same hour-glass architecture, one can
use probabilistic encoders and decoders to generate new sam-
ples drawn from an approximated posterior. Both traditional
AEs and VAEs have practical applications in many biologi-
cal fields, and have been used extensively in scRNAseq (see
reference10 for an overview of these models), and are becom-
ing more frequently employed in spatial transcriptomics anal-
ysis, which we overview later in this work.

F. Variational Autoencoder (VAE)

One can describe VAEs160 as AEs that regularize the encod-
ing distribution, enabling the model to generate new synthetic
data. The general idea behind VAEs is to encode the inputs
as a distribution over the latent space, as opposed to a single
point (which is done by AEs). More specifically, VAEs draw
samples z from an encoding distribution, pmodel(z), and subse-
quently feed the sample through a differentiable generator net-
work, obtaining Gen(z). Then, x is sampled from a distribu-
tion pmodel(x;Gen(z)) = pmodel(x|z). Moreover, VAEs utilize
an approximate inference network q(z|x) (i.e. the encoder) to
obtain z. With this approach, pmodel(x|z) now is considered a
decoder network, decoding z that comes from q(z|x). VAEs
can take advantage of gradient-based optimization for training
through maximizing the variational lower bound, L , associ-
ated with x. Fig.3(F) depicts the architecture of traditional
VAEs.

Mathematically, we can express the objective function as in
Eq. (11):

L (q) = Ez∼q(z|x) log pmodel(z,x)+H (q(z|x)) (11a)

= Ez∼q(z|x) log pmodel(x|z)−KL(q(z|x)||pmodel(z)) (11b)

≤ log pmodel(x) (11c)

where H (·) denotes entropy and KL is the Kullback-Leibler
divergence. The first term in Eq.(11c) is the joint log-
likelihood of the hidden and visible variables under the ap-
proximate posteriors over the latent variables. The second

term of Eq. (11c) is the entropy of the approximate poste-
rior. This entropy term encorages the variational posterior to
increase the probability mass on a range of z which could have
produced x, as opposed to mapping to a one point estimate of
the most likely value117.

Compared to other generative models (e.g. Generative Ad-
versarial Networks (GANs)161), VAEs have desirable math-
ematical properties and training stability117. However, they
suffer from two major weaknesses: (i) classic VAEs create
"blurry" samples (those that adhere to an average of the data
points), rather than the sharp samples that GANs generate due
to GANs’ adversarial training. (ii) The other major issue with
VAEs is posterior collapse: when the variational posterior and
actual posterior are nearly identical to the prior (or collapse
to the prior), which results in poor data generation quality162.
To alleviate these issues, different algorithms have been de-
veloped, which have been shown to significantly improve the
quality of data generation163–168. VAEs are used extensively
for the analysis of single-cell RNA sequencing (see Erfanian
et al.10), and we anticipate them to be applied to a wide range
of spatial transcriptomics analysis as well.

IV. DEEP LEARNING MODELS FOR
SPATIALLY-RESOLVED TRANSCRIPTOMICS ANALYSIS

In the following sections, we describe the use of ML and
DL to problems emerging from spatial transcriptomics.

A. Spatial Reconstruction

Prior to the advancement of spatial transcriptomics, several
studies aimed to reconstruct spatial information using gene
expression data, with most of these works using a statistical
framework. As perhaps one of the most influential models
in this space, Satija et al.59 introduced Seurat: a tool which
utilized spatial reference maps constructed from a few land-
mark in situ patterns to infer the spatial location of cells from
corresponding gene expression profiles (i.e. scRNAseq data).
This approach showed promising results: Satija et al. tested
seurat’s capabilities and performance on developing zebrafish
embryo dataset (containing 851 cells) and a reference atlas
constructed from colorigenic in situ data for 47 genes59, con-
firming Seurat’s accuracy with several experimental assays.
Additionally, they showed that Seurat can accurately identify
and localize rare cell populations. Satija et al. also demon-
strated that Seurat was a feasible computational solution for
handling stochastic noise in omics data, and finding a corre-
spondence between ST and scRNAseq data.

Although Seurat proved to be successful in some appli-
cations, it had the limitation of requiring spatial patterns of
marker genes expression60. To alleviate Seurat’s limitations,
newer methods that did not require spatial reference atlases
were developed. A more recent and an influential model in
this space is novoSpaRc60, with the ability to infer spatial
mappings of single cells de novo. For novoSpaRc, Nitzan et
al.60 assume that cells which are closer to one-another physi-
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cally have similar gene expressions as well, therefore search-
ing for spatial arrangement possibilities which place cells with
similar expressions closer in space. Nitzan et al. formulate
this search through a generalized optimal-transport problem
for probabilistic embedding.

NovoSpaRc shows very promising results when it is applied
to spatially reconstruct mammalian liver and intestinal epithe-
lium, and embryos from fly and zebrafish from gene expres-
sion data60. However, novoSpaRc (and similar models) use a
generic framework and can not be easily adapted to specific
biological systems, which may be required given the vast di-
versity of biological processes and organisms. For this reason,
many have utilized ML algorithms to specifically adapt to the
biological system by learning from the data, as opposed to
using pre-defined algorithms that remain unchanged. Indeed,
we anticipate that DL models will soon play a salient role in
spatial reconstruction of scRNAseq, given their ability to ex-
tract features from raw data while remaining flexible across
different applications. In this section, we review DEEPsc61, a
system-adaptive ML model which aims to impute spatial in-
formation onto non-spatial scRNAseq data.

DEEPsc is a spatial reconstruction method which requires
a reference atlas (see Fig. 4). This reference map can be ex-
pressed as a matrix Mspatial ∈Rnpositions×ngenes where npositions ∈
N is number of spatial locations and ngenes ∈ N the number of
genes. Maseda et al. start by selecting common genes be-
tween Mspatial and the gene expression matrix, Mexpression ∈
Rmcells×mgenes (where mcells ∈ N is the number of cells and
mgenes ∈ N the number of genes), resulting in a spatial matrix
S ∈Rnpositions×g and an expression matrix E ∈Rmcells×g, where
g ∈ N is the common genes between the two matrices. Next,
S is projected into a lower dimension using principal compo-
nent analysis (PCA), and the same PCA coefficients are used
to project E into these principal components. In the last step
of processing, both matrices are normalized by their largest el-
ements, resulting all elements of the matrices E and S to be in
[0, 1]. Let us denote the normalized and PCA-reduced spatial
and gene expression matrices as S̃ and Ẽ, respectively.

DEEPsc requires known spatial expression to learn the
correct spatial positions, given the gene expression. More
specifically, Maseda et al. construct training vectors of size
Inpi j = [posi; pos j] ∈ R2N (with N being the number of fea-
tures preserved in the reduced matrix S̃). The first N elements
of Inpi j correspond to the spatial expression at the i-th po-
sition , and the last N elements correspond to some position
j in the reference atlas, including the position j = i. Dur-
ing training, DEEPsc’s goal is produce the highest likelihood
when j = i (meaning that Inpi j = [posi; posi]), and assign low
likelihood when j 6= i. DEEPsc also adds Gaussian noise to
posi (the first N elements of Inpi j), which aims to preserve ro-
bustness and avoid overfitting. The addition of noise can lead
to DEEPsc learning a complex nonlinear mapping between
the spatial positions in the reference atlas rather than a simple
step-like function which activates when an exact match is in-
putted. During inference stage (i.e. after DEEPsc is trained),
posi is replaces with the gene expression feature vector, which
are the elements of Ẽ, and the goal is to predict the likelihood
of the expression vector being originated from all possible po-

sitions j.
DEEPsc’s network is a FFNN with two hidden layers, with

each h(1),(2) ∈ RN , mapping to an y ∈ [0,1], where y can be
viewed as a likelihood that the input cell originated from the
input spatial position169. Given that for each training data
Inpi j there will be npositions− 1 non-matches (labels of zero)
and only one match for when j = i, the training labels will
have many more zeros than ones. Therefore, Maseda et al.
propose a non-traditional objective function which accounts
for the imbalance between zeros and ones in the training data.
This objective function is shown in Eq. (12)

L (Y true,Y pred) =
p

∑
i=1

(ytrue
i − ypred

i )

1.001− ytrue
i

, (12)

where ypred
i is the networks predicted outputs and ytrue

i is the
true target (ytrue

i = 1 if it exactly matches, and ytrue
i = 0 other-

wise). This allows DEEPsc to avoid producing trivially zero
outputs, which is important given the sparsity of the data.
Maseda et al. also employ strategies in data splitting which
helps to account for the inherent sparsity in the targets61. It
is important to note that Maseda et al. also formulate a novel
system-adaptive scoring scheme to evaluate the performance
of DEEPsc using the spatial reference. However, the scoring
scheme does not fall within the scope of this manuscript.

Maseda et al. apply DEEPsc for spatial imputation of
four different biological systems (Zebrafish59, Drosophila170,
Cortex171 and Follicle172), achieving accuracy comparable to
several existing models while having higher precision and
robustness61. DEEPsc also shows better consistency across
the different biological systems tested, which can be attributed
to its system-adaptive design. In addition, the authors attribute
the performance and generalizibility of DEEPsc to the use of
FFNN (which have been noted before in other biological ap-
plications as well45,47) and the various strategies for robust-
ness used during the training of DEEPsc. On the other hand, a
weakness of DEEPsc is its training time, which depends non-
linearly on the number of locations available. However, this
issue can be potentially mitigated by considering a small sub-
set of possible locations, or a more optimized design when
training the model.

B. Alignment

Alignment in ST analysis refers to the process of map-
ping scRNAseq data to a physical domain while aiming to
match the geometry with the available spatial data. As pre-
viously stated, NGS-based technologies suffer from limited
capture rates and significant dropout173 (specially at higher
resolutions). Before the use of DL in ST analysis, many
computational approaches aimed to spatially reconstruct key
marker genes scRNAseq data by assuming continuity in the
gene space60, or by leveraging local alignment information59.
Moreover, most techniques for alignment or deconvolution of
spatial data either learned a program dictionary32 or estimated
a probabilistic distribution of the data64 for the cell-types at
each spot. However, such approaches are not generalizable to
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FIG. 4. An overview of DEEPsc training and inference. (A) Maseda et al. find the common genes in both spatial and scRNAseq data,
and perform dimensionality reduction on each data modality (with the final matrices having the same number of features). (B) During the
training, DEEPsc uses spatial expression to "simulate" single-cell gene expression vectors. More specifically, every feature vector from
the spatial expression is concatenated with all other vectors (labeled as "non-match") and also itself (labeled as "match") to form the input
data to the neural network. (C) During inference, the scRNAseq feature vectors are concatenated with all spatial feature vectors, where
the model should place a high probability for locations where the gene expression could have originated from. This figure was obtained
from Maseda et al.61.

all experimental settings, since finding the mapping of sparse
or sporadically distributed genes to the spots is difficult, and
is error-prone due to dropouts34.

DL frameworks have the potential of providing robust mod-
els that can adapt to the specific species or technologies, while
being generalizable to other datasets and platforms. The po-
tential application of DL in alignment of spatially-resolved
transcriptomics came to fruition recently through the work of
Biancalani et al. , called Tangram34. Tangram is a frame-
work that, among many of its capabilities, can align scR-
NAseq or single-nucleus(sn) RNAseq profiles to spatial data;
for the sake of simplicity, we refer to both data types as scR-
NAseq, although there are differences between the two meth-
ods (see reference174 for a systematic comparison of scR-
NAseq and snRNAseq approaches). Tangram aims to: (i)
learn the transcriptome-wide spatial gene expression map at
a single-resolution, and (ii) relate the spatial information back
to histological and anatomical data obtained from the same
samples. Tangram’s general workflow is to learn a mapping
between the data modalities, and then to construct specific
models for the downsteam tasks (such as deconvolution, cor-
recting low-quality data, etcetera). We first summarize Tan-
gram’s alignment algorithm, and then provide the applications
in which DL models are utilized.

Tangram’s general objective is to learn a spatial matrix

S∈Rncells×ngenes describing the spatial alignments for the cells,
with ncells,ngenes denoting the number of single-cells and
number of genes, respectively. Let the expression of gene
k in cell i be denoted by Sik ∈ R[0,∞), a non-negative value.
Next, Tangram partitions ("voxelizes") the spatial volume at
the finest possible resolution (depending on the spatial tech-
nology) as a one-dimensional array. This allows Tangram to
construct (1) a matrix G ∈ Rnvoxels×ngenes

[0,∞)
where G jk is a non-

negative value denoting the expression of gene k in voxel j,
and (2) a cell-density vector v = {v1,v2, · · · ,vnvoxels}, where
0≤ v j ≤ 1 is the cell density in voxel j (with the total density
for each voxel summing to 1).

The learning of transcriptome-wide spatial gene expression
map at a single-resolution happens through learning a map-
ping operator M ∈ Rncells×nvoxels

[0,1] where Mi j denotes the proba-
bility of cell i being in voxel j. Moreover, given any matrix
M̃ ∈ Rncells×nvoxels , each element of the operator M is assigned
according Eq. (13)

Mi j =
eM̃i, j

∑
nvoxels
q=0 eM̃q, j

, (13)

ensuring that ∑
nvoxels
j=1 Mi j = 1, i.e. assigning a probability dis-

tribution along the voxels using the well-known so f tmax(·)
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FIG. 5. Tangram’s DL Framework for Aligning/Integrating Histology and Anatomical Data with Molecular Data. Tangram’s
model for this task is a combination of encoding (using a twin network) and segmentation modules. The twin network learns a similarity
metric for brain sections based on anatomical features in images, while the U-Net model is trained to segment five different classes on
mouse brain images. This figure was recreated for this manuscript using images from Biancalani et al.34.

function. Biancalani et al. define an additional quantity,
MT S, which denotes the spatial gene expression as predicted
by the operator M, and a vector m = {m1, · · · ,mncells} where
m j = ∑

nvoxels
i

Mi j
ncells

is the predicted cell density for each voxel
j.

Given the preliminary quantities, we can now write Tan-
gram’s generic objective function as shown in Eq. (14)

L (S,M) =
ngenes

∑
k=1

cossim
(
(MT S)[:],k,G[:],k

)
, (14)

where "[:]" denotes the matrix slicing and cossim is the cosine
similarity, defined as Eq. (15)

cossim(a,b),
a ·b
‖a‖‖b‖

. (15)

The objective function, Eq. (14), learns a proportional map-
ping of the genes to the voxels. Additionally, this loss func-
tion can be further modified to incorporate prior knowledge.
Indeed, Biancalani et al. modify this to regularize for the
learned density distributions and the cells contained within
each voxel, as shown in Eq. (16)
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(16)
L (S,M) = KL(m,v)−

ngenes

∑
k=1

cossim
(
(MT S)[:],k,G[:],k

)
−

nvoxels

∑
j=1

cossim
(
(MT S) j,[:],G j,[:]

)
,

where minimizing the divergence (first term) enforces that the
learned density distribution and the expected distribution are
similar, and the additional loss over the voxels (third term)
penalize the model if predicted gene expression is not pro-
portional to the expected gene expression. Biancalani et al.
minimize the objective shown in Eq. (16) through gradient-
based optimizers implemented in PyTorch175,176. After opti-
mizing Eq. (16), Tangram is able to map all scRNAseq pro-
files onto the physical space, thus performing alignment. It
worthy to note that although Tangram learns a linear operator
M, this mapping could be replaced with a deep neural network
as well.

Tangram utilizes DL to integrate anatomical and molecu-
lar features, specifically for mouse brain images. To do so,
the authors use an image segmentation network (U-Net177) in
combination with a "Twin" network178 to produce segmen-
tation masks of anatomical images, with both networks be-
ing CNNs. We present a general overview of these architec-
tures in Fig. 5. The twin network uses DenseNet179: a deep
NNs which concatenate the outputs at each layer to propa-
gate salient information to deeper layers in the network (refer
to section III D for the motivation behind such approaches).
More specifically, Tangram uses a pre-trained DenseNet en-
coder (trained on ImageNet) to encode images and remove
technical noise and artifacts. Biancalani et al. also add two
additional layers to the pre-trained encoder, which map the
outputs to a smaller latent space. The encoder of the twin net-
work is fine-tuned on learning the prediction of spatial depth
difference between two images: Two random images are in-
putted to the twin network with their spatial difference depth
being the desired target output, dtrue. The network then tries
to predict the depth, dpred , for all N inputs, ultimately com-
paring them against the corresponding true depth differences,
dtrue(as shown in Eq. (17))

MSE(dpred ,dtrue) =
1
N

N

∑
i=1

(
dpred

i −dtrue
i

)2
. (17)

The segmentation model of Tangram generates five custom
segmentation masks (background, cortex, cerebellum, white
matter, and other gray matter) which are compatible with ex-
isting Allen ontology atlas. The segmentation model is a U-
Net, which uses a pre-trained ResNet50155 as its core. Fi-
nally for each pixel in input images, the model’s last layer (a
softmax function) assign a probability of belonging to one of
the five segmentation classes. Tangram’s segmentation model
aims to optimize the superposition of the cross entropy and
Jaccard index, as presented in Eq. (18)

L (g, p) =−g · log(p)− p∩g
p∪g

, (18)

with p denoting the model prediction and g referring to the
ground truth image.

Biancalani et al. demonstrate that Tangram learns an accu-
rate mapping between the spatial data and scRNAseq gene ex-
pression when applied to fine or coarse grained spatial atlases.
The authors show that their approach works well across differ-
ent technologies (namely ISH, smFISH, Visium , STARmap
and MERFISH) at different resolutions and gene coverage,
and is able to learn a robust and accurate alignment mapping
for the isocortex of the adult healthy mouse brain34. While
Tangram can offer different advantages based on the spatial
technology, it can produce consistent spatial mappings and
overcoming limitations in resolution or throughput, which is
beneficial in many ST experiments and studies.

C. Spot Deconvolution

One downside of using NGS-based technologies remains to
be their resolution: Despite the recent technological advance-
ments, most ST platforms (e.g. Spatial Transcriptomics, Vi-
sium, DBiT-seq180, Nanostring GeoMx181 and SlideSeq) do
not have a single-cell resolution. The number of cells cap-
tured in each spot still varies based on the tissues (about 1-
10182) and the technology used. On the other hand, we can
not assume that all cells within a spot are the same, due to
the heterogeneity of the cells. Therefore, it is necessary to
use computational approaches for inferring the cell types in
each spot or voxel. Such estimations would be possible if
there were a complementary scRNAseq dataset. The process
of inferring the cellular composition of each spot is known
as cell-type deconvolution. Deconvolution has been at the
forefront of computational efforts and it is important in build-
ing oragan atlases20,183,184. In fact, cell-type deconvolution
is an existing procedure for inferring cell-type composition in
RNAseq data using scRNAseq. However, methods developed
for bulk RNAseq do not account for the spatial components
of ST datasets, and are therefore generally inadequate. Given
that deconvolution is an existing practice in RNAseq studies,
we will refer to spatial deconvolution problem as spot decon-
volution to distinguish between the traditional methods and
the ones developed for ST analysis.

We divide spot deconvolution methods into three cate-
gories: (i) Statistical methods, (ii) Machine Learning and (iii)
Deep Learning, with many of the current models falling into
the first two categories. We now dive deeper into the two exist-
ing models which use DL for performing spot deconvolution.

D. DestVI

DestVI (DEconvolution of Spatial Transcriptomics profiles
using Variation Inference) is a Baysian model for spot de-
convolution. DestVI employs a conditional deep generative
model (similar to scVI185, a popular model for scRNAseq
analysis) to learn cell-type profiles and continuous sub-cell-
type variations, aiming to recover the cell-type frequency and
the average transcriptions state of cell-types at each spot. To
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FIG. 6. Visualization of DestVI’s Computation Workflow for Spot Deconvolution. DestVI uses information from both data modalities
of ST data (shown in A). DestVI defines two latent variable models (LVMs) for each data modality: an LVM for modeling scRNAseq
data ( B) and one that aims to model the ST data ( C). We describe each one in section IV C. This image is re-used from Lopez et al.69
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do so, DestVI takes a pair of transcriptomics datasets as in-
puts: (i) a reference scRNA-seq data and (ii) a query spatial
transcriptomics data (from the same samples). DestVI then
outputs the expected proportion of cell types for every spot
and a continuous estimation of cell-state for the cell types
present in each spots, which can be viewed as the average
state the cell-types in each spot, which Lopez et al. suggest as
useful for downstream analysis and formulation of biological
hypotheses69.

DestVI uses two different latent variable models (LVMs)
for distinguishing cell-type proportions and delineating cell-
type-specific sub-states (shown in Fig. 6). The first LVM is for
single-cell data (therefore named scLVM) which assumes the
counts follow a negative binomial (NB) distribution, which
has shown to model RNAseq count data well185–187. Specifi-
cally, Lopez et al. assume that for each gene g and cell n, the
count of observed transcripts, xng, follows a NB distribution
paramaterized with (rng, pg): rng = ln · f (γn,cn;θ) is a param-
eter which depends on the type assigned to the cell cn, the total
number of detected molecules ln, and a low-dimensional latent
vector γn (which lopez et al. set γn = 5) that describes the vari-
ability of cell-type assignment to cell cn, and a neural network
f parameters θ (in this case, a two layer NN). The second pa-
rameter of the NB, pg, is optimized using variational Bayesian
inference. We can summarize the assumptions for scLVM as
shown in Eq. (19):

xng ∼ NB(ln f (cn,γn), pg), (19)

with the latent variable γn ∼ N (0, I). Each cn (the annota-
tions) are represented by a one-hot encoded vector, which is
concatenated with γ to serve as the input of the NN f . Lopez
et al. use a VAE to optimize for the marginal conditional like-
lihood log pθ (xn|ln,cn).

Finally for scLVM, a mean-field Gaussian distribution
qφ (γ|cn,xn), parametrized by another two-layer NN g, is in-
ferred for each cell which quantifies the cell state and the as-
sociated uncertainty. The NN g takes a concatenation of (i) the
gene expression vector xn and (ii) the one-hot encoded cell an-
notations as its inputs. The network g outputs the mean and
variance of the variational distribution for γn, obtained through
optimizing Eq. (20)

Eqφ(γn|xn,cn) log pθ(xn,γn|ln,cn)−KL(qφ(γn|xn,cn)||pθ(γn))

≤ log pθ(xn|ln,cn),

where pθ(γn) is the prior likelihood for γn. Similar to training
any other VAE, the observations are split in mini-batches and
sampling from the variational distribution is done using the
reparameterization trick described in Kingma et al.160. The
computational workflow for scLVM is visualized in Fig. 6(B).

The second LVM aims to model the spatial transcrip-
tomics data (hence called stLVM) with the assumption that
the number of observed transcripts xsg at each spot s for
each gene g follow a NB distribution. Additionally, Lopez
et al. also assume that each spot has C(s) cells, with each
cell n in spot s being generated from the latent variables
(cns,γns). For stLVM’s NB distribution, the rate parameter
rsg = αgls fg(cns,γns;θg), where αg is a correction factor for

the gene-specific bias between spatial and scRNAseq data, lg
is the overall number of molecules observed in each spot, and
fg is a NN network with parameters θg. These assumptions
and quantities allow Lopez et al. formulate the total gene ex-
pression xsg as shown in Eq. (21)

xst ∼ NB(lsαg fg(cns,γns), pg). (21)

Moreover, using a parameter to designate the abundance of
every cell type in every spot, βsc, and NB’s rate-shape param-
eterization property (see Aragón et al.188), Eq. (21) can be
rewritten as in Eq. (22)

xst ∼ NB(lsαg

C(s)

∑
n=1

βsc fg(cns,γns), pg), (22)

supposing that cells from a given cell type c in a spot s must
come from the same covariate γc

s .
The covariate γc

s in DestVI allows for the model to account
for ST technology discrepancies by assuming various empiri-
cal priors (refer to Fig. 6). Lopez et al. simplify the problem
of identifying every cell type in each spot to determining the
density cell-types, i.e. assuming that there cannot be signifi-
cantly different cell states of the same cell types within a spot.
Lopez et al. use a penalized likelihood method to infer point
estimates for γc, α , and β . With the addition two strategies to
stablize the training of DestVI, the final objective function for
stLVM consists of (i) the negative binomial likelihood (ii) the
likelihood of the empirical prior and (iii) the variance penal-
ization for α .

Lopez et al. use simulations to present DestVI’s ability to
provide higher resolution compared to the existing methods
and estimate gene expression by every cell type in all spots.
Furthermore, they show that DestVI is able to accurately
deconvolute spatial organization when applied mouse tumor
model. In the cases tested, Lopez et al. demonstrate that
DestVI is capable of identifying important cell-type-specific
changes in gene expression between different tissue regions or
between conditions, and that it can provide a high resolution
and accurate spatial characterization of the cellular organiza-
tion of tissues.

E. DSTG

Deconvoluting spatial transcriptomics data through graph-
based convolutional network (DSTG)65 is a recent semi-
supervised model which employs graph convolutional net-
works (GCN)134 for spot deconvolution. DSTG utilizes scR-
NAseq to construct a pseudo-ST data, and then building a link
graph which represents the similarity between all spots in both
real and pseudo ST data. The pseudo-ST is generated by com-
bining scRNAseq transcriptomics of multiple cells to mimic
the expression profiles at each spot; while the real ST data
is unlabeled, the pseudo-ST has labels. To construct the link
graph, DSTG first reduces the dimensionality of both real and
pseudo data using canonical correlation analysis189, and then
identifies mutual nearest neighbors190. Next, a GCN is used
on the link graph to propagate the real and pseudo ST data
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into a latent space that is turned into a probability distribution
of the cell compositions for each spot.

Song et al. form the link graph by taking the number of
spots as the number of vertices, resulting in a graph G=(V,E)
where |V | denotes the number of spots and E represents the
edges between them. DSTG takes two inputs: (i) the adja-
cency matrix of graph G, represented by A, and (ii) a combi-
nation of both real and pseudo datasets X = [xpseudo;xreal ] ∈
Rm×N where m is the number of variable genes, and N =
Spseudo+Sreal (the total number of spots in both datasets) with
Spseudo and Sreal indicating the number of spots in the pseudo
and real ST datasets, respectively. Next, Song et al. normal-
ize the adjacency matrix (for efficient training of DSTG) using
the diagonal degree of A, denoted by D, as shown in Eq. (23)

Â = D−
1
2 AID−

1
2 , (23)

where AI = A+ I (with I denoting the identity matrix). Given
the two inputs, DSTG’s graph convolution layers take the fol-
lowing form:

h(i+1) =

{
σ(ÂXTW (i)) , i = 0
σ(Âh(i)W (i)) , i > 0

(24)

with h(i) denoting the i-th hidden layer of DSTG, and σ(·)
being a non-linear activation function (in this case σ(·) =
ReLU(·)). The output of DSTG is denoted by ys,t , the pro-
portion of cell type t = {0, · · · ,T} at each each spot s =
{0, · · · ,N}. Song et al. design DSTG’s architecture as shown
in (25):

Ypred = so f tmax(Âσ(· · ·(Âσ(ÂXTW (0))W (1)) · · ·W (k)),
(25)

where k is the last layer, and Y pred = [Y pred
pseudo;Y pred

real ] ∈ RN×T

is the predicted proportions at each spot in the pseudo and real
data, denoted by Ypseudo and Yreal , respectively. It is important
to note that Song et al. chose a GCN with three layers after
performing an ablation study on the number of layers. Finally,
DSTG is trained by optimizing the cross entropy loss:

L (Y pred
pseudo,Y

true
pseudo) =−

Spseudo

∑
s=0

T

∑
t=1

ytrue
s,t log(ypred

s,t ), (26)

with y{true,pred}
s,t denoting the label for true/predicted cell type t

at spot s. Note that this constitutes a semi-supervised training
for DSTG, since only labels for the pseudo ST are used in
training, but the model will also learn to predict labels for the
real dataset as well (refer to Eq. (25)).

Song et al. note that, compared to traditional approaches,
DSTG provides three key advantages: (i) Given that DSTG
uses variable genes and a non-linear GCN, it allows for learn-
ing complex deconvolution mappings from ST data. (ii) The
weights assigned to the different cell types in the pseudo-ST
and the semi-supervised scheme allow DSTG identify key fea-
tures which allow the model to learn the cellular composition
in real data. (iii) DSTG’s scalability and adaptability will be
beneficial in ST analysis, given that the sequence depth of ST

data is expected to increase. Song et al. show that DSTG con-
sistently outperforms the benchmarked state-of-the-art model
(SPOTlight) on both synthetic data and real data. More specif-
ically, DSTG is evaluated on simulated data generated from
PBMC where it shows high accuracy between the predicted
cell compositions and the true proportions. Song et al. also
find that DSTG’s deconvolution of ST data from complex tis-
sues including mouse cortex, hippocampus, and human pan-
creatic tumor slices is consistent with the underlying cellular
mixtures65.

F. Spatial Clustering

Clustering allows the aggregation of data into subpopula-
tions based on some shared metric of distance or "closeness".
In RNA sequencing studies, clustering is the first step of
identifying cell clusters, often followed by laborious manual
annotation (e.g. through identifying differentially expressed
genes) or some automated workflows191. Clustering has been
a crucial step in many scRNAseq studies, often performed
using graph-based community detection algorithms (such as
Louvain192 or Leiden193) or more traditional methods (such
as K-Means118). Although the scRNAseq techniques can be
used in some ST studies (e.g. for multiplexed FISH data
where single-cell resolution is available), the result may be
discontiguous or erroneous since the spatial coordinates have
not been taken into account74. Therefore, there is a need for
ST-specific methods that can utilize both gene expression and
histology data to produce clusters that are coherent, both in
gene expression and physical space.

Recently, new frameworks for spatial clustering of ST data
have emerged which utilize both spatial and expression infor-
mation available. Zhu et al.71 introduced a Hidden-Markov
Random Field (HMRF)-based method to model the spatial de-
pendency of gene expression using both the sequencing and
imaging-based single-cell transcriptomic profiling technolo-
gies. HMRF is a graph-based model used to model the spatial
distribution of signals. Using the ST data, Zhu et al. create
a grid where neighboring nodes are connected to each other.
However, the spatial pattern can not be observed directly
(since it is "hidden"), and it must be inferred through observa-
tions that depend on the hidden states probabilisticly. Similar
to Zhu et al. , BayesSpace73 employs a Bayesian formulation
of HMRF, and uses the Markov chain Monte Carlo (MCMC)
algorithm to estimate the model parameters. Despite the abil-
ity of these methods to cluster voxels (or cells) into distinct
subpopulations, these approaches suffer from the lack of ver-
satility required to handle different modalities present in ST
data74.

With the emergence of newer technologies, the scale and
variability within datasets are increasing, requiring more gen-
eral and flexible models for accurate and robust analysis of
these studies. A few ML-based approaches have been pro-
posed to combat some of these mentioned challenges. Be-
low, we review the ML-based methods which offer scalability
and are generally more applicable to various experimental set-
tings.
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G. SpaCell

SpaCell72 is a double-stream DL framework which utilizes
both histology images and the associated spot gene counts.
For the histology data, Tan et al. first preprocess the im-
ages (removing low-quality images, stain normalization, nor-
malizing the pixels using a z-transform and removing back-
ground noise). Next, they split each histology image into tiles
that contain one spot each (sub-images of 299 × 299 pixels).
For the preprocessing of the count matrix (which contains the
reads at each spot), Tan et al. follow traditional scRNAseq
preprocessing workflows, including count normalization, re-
moval of outlier genes and cells with too few genes. After
the preprocessing stage, each tile (containing the image of a
spot) corresponds to a column in the count matrix (reads from
the same spot). At this point, each image Xi ∈ R299×299 and
the count matrix M will be in a Rnspots×ngenes space. However,
Tan et al. reduce the count matrix to only contain 2048 most
variable genes at each spot, therefore resulting in a new count
matrix M̂ ∈ Rnspots×2048. Let us denote the ith spot of M̂ as
m̂i ∈ R2048, which has a corresponding image xi.

In order to spatially cluster cells of the same type, both im-
age and count data must be used. The first step in SpaCell
is to pass on the spot images, xi, to a pre-trained ResNet50
(trained on ImageNet data) in order to output feature vec-
tors, x̂i ∈ R2048 (each having the same dimensionality as
columns of M̂). Next, to extract features from both modal-
ities, SpaCell uses two separate AEs for the image feature
vectors, X̂ ∈ Rnspots×2048, and the most-variable-genes counts,
M̂, with both AEs having the same latent dimension (we dis-
cuss the reason behind this later). Let us denote the AE for
images as AEI(·) = DecI(EncI(·)), and the gene counts AE
as AEG(·) =DecG(EncG(·)), with Enc{I,G}(·) and Dec{I,G}(·)
indicating the encoder and decoders, respectively.

Given N spots, each AE in spaCell aims to minimize three
objective functions for their respective inputs [i.e. x̂i for
AEI(·) and m̂i for AEG(·)]: (i) the mean squared error (MSE)
between the input and output (shown in Eq. (27)), (ii) the
KL divergence between the probability distributions for input
and constructed output of all N spots (denoted by p and q in
Eq. (28) respectively) and (iii) Binary Cross Entropy (BCE),
shown in Eq. (29):

MSE{I,G}(vi, ṽi) =
1
N

N

∑
i=1

(vi−AE{I,G}(vi))
2 (27)

KL(p||q) =
N

∑
i=1

p(vi)
log p(vi)

logq(vi)
(28)

BCE(q) =− 1
N

N

∑
i=1

[vi log(p)+(1− vi) log(1− p)] . (29)

Once training has concluded, spaCell encodes both images
and gene counts, i.e. EncI(x̂i) and EncG(m̂i), to be used for
clustering. More specifically, clustering is performed on a ma-
trix that is the concatenation of the latent vectors produced by

each AE, C = [EncI(x̂i);EncG(m̂i)]. This is why the latent
spaces of AEI,G(·) have the same dimension. After obtain-
ing the concatenated matrix, the downstream clustering is per-
formed using K-Means (which can be substituted for other al-
gorithms as well). Through this procedure, spaCell uses both
data modalities and can produce clusters that are highly accu-
rate when compared to the true clusters (annotated by pathol-
ogists).

H. SpaGCN

SpaGCN74 is a graph convolution network (GCN) that in-
tegrates both spatial information and histology images to per-
form spatial clustering. Using each spot as vertices, Hu et
al. create a weighted undirected graph, G = (V,E), where
|V | is the total number of spots and E is the set of edges
with prescribed weights representing the similarity between
the nodes. The weight of each of these edges is determined
by (i) the distance between the two spots (nodes) that the edge
connects, and (ii) the associated histology information (in this
case, pixel intensity). This means that two spots are deemed
similar if they are physically close to one another and they
seem similar in the histology image.

In order to attribute the pixel information to each spot, Hu
et al. use mean RGB pixel intensity of each spot within a
window of size 50 × 50 pixels. That is, given a spot s with
physical coordinates (xs,ys) and pixel coordinates (xps,yps),
SpaGCN calculates the mean and variance of all the pixels
present within a 50 × 50 pixels centered at (xps,yps). Let psr,
psg, psb denote the means, and varr(ps), varg(ps), varb(ps)
refer to the variance for the red, green and blue channels,
respectively. SpaGAN then summarizes the pixel mean and
variance information as a unified value, as shown in Eq. (30)

zs =
(psr · varr(ps))+(psg · varg(ps))+(psb · varb(ps))

varr(ps)+ varg(ps)+ varb(ps)
.

(30)
Furthermore, zs is rescaled using the mean and standard devi-
ation of each coordinate (including the newly-created z axis),
with an additional scaling factor which can put more emphasis
on histology data when needed. Let µz denote the mean of zs,
and let σx,y,z be the standard deviation of xs,ys,zs with s ∈ V ,
then we can formulate the rescaling as the following:

z̃s = α
(zs−µz)(max{σx,σy})

σz
, (31)

where α denotes the scaling factor described previously (α =
1 by default).

Using the rescaled value in Eq. (31), the weight of each
edge between two vertices s and k is calculated as shown in
Eq. (32)

w(s,k) = e−d(s,k)2/(2l2) (32)

where l denotes the characteristic length scale and d(s,k) is
the traditional Euclidean distance, as shown in (33)

d(s,k) =
(
(xs− xk)

2 +(ys− yk)
2 +(z̃s− z̃k)

2) 1
2 . (33)
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SpaGCN’s network construction (and backpropogation) is
similar to other GCNs, inspired by Kipf et al.134 (for an
overview of GCNs, refer to section IV E). The network in-
takes the adjacency matrix A to represent the graph G, and a
reduced-dimension representation of the gene expression ma-
trix, which Hu et al. achieve using PCA with 50 principal
components. The outputs of the GCN network is matrix which
includes combined information on histology, gene expression,
spatial position. SpaGCN then uses the output of the GCN to
perform unsupervised clustering of the spatial data.

SpaGCN uses the Louvain algorithm (an iterative unsuper-
vised clustering algorith) on the output of GCN to initialize
cluster centroids, with the number of clusters (controlled by
Louvain’s resolution parameter) being optimized on maximiz-
ing the Silhouette score194). The iterative updates are based
on optimizing a metric that defines the distance between each
spot and all cluster centroids using the t-distribution as a ker-
nel. For a centroid c j, a total of N clusters, and the embedded
point hi for spot i, this metric can be defined as the probability
of assigning cell i to cluster j, as shown in Eq. (34)

qi j =
(1+hi−µ2

j )
−1

∑
N
c=1(1+hi−µ2

c )
−1

. (34)

Hu et al. further refine the clusters using an auxiliary target
distribution (shown in Eq. (35)) which prefers spots assign-
ments with the highest confidence, and normalizes the cen-
troid contribution to the overall loss function as the following:

pi j =
q2

i j

∑
S
i qi j
·

(
N

∑
c=1

(
q2

ic

∑
S
i qic

))−1

. (35)

Lastly, spaGCN is trained by optimizing the KL divergence
between the p and q distributions, as shown in Eq. (36)

L =KL(P||Q) =
S

∑
i=1

N

∑
j=0

pi j log
pi j

qi j
. (36)

Hu et al. demonstrate that SpaGCN can accurately iden-
tify spatial clusters that are consistent with manual annota-
tions, since SpaGCN utilizes information from both gene ex-
pression and histology. The authors perform spatial cluster-
ing with SpaGCN on human dorsolateral prefrontal cortex,
and human primary pancreatic cancer and multiple mouse tis-
sue data, showing that SpaGCN performs consistently well,
outperforming other state-of-the-art models (stLearn, BayesS-
pace, and Louvain). These results show the feasibility and
potential of SpaGCN for clustering spatial-resolved transcrip-
tomics.

I. Cell-Cell Interactions

Multicellular organisms depend on intricate cell–cell inter-
actions (CCIs) which dictate cellular development, homeosta-
sis, and single-cell functions195. Unravelling such interaction
within tissues can present unique insights on complex biolog-
ical processes and disease pathogenesis195–198. CCI has been

investigated using both scRNAseq and RNAseq, wherein most
approaches test for enrichment in ligand-receptor profiles in
the expression data199–201. However, ST data can offer a more
comprehensive view of CCI, since the distance traveled by
ligand signal is crucial in determining the type of cell–cell
signaling182. Given the importance of CCI and the advantages
that ST data provides, several computational approaches for
inferring cellular interactions using ST data have been devel-
oped, such as SpaOTsc78, Giotto81, MISTy80.

SpaOTsc is a model that can be used in integrating scR-
NAseq data with spatial measurements, and in inferring
cellular interactions in spatial-resolved transcriptomics data.
SpaOTsc aims to estimate cellular interactions by analyz-
ing the relationships between ligand-receptor pairs and their
downstream genes. SpaOTsc formulates a spatial metric us-
ing the optimal transport algorithm, returning a mapping that
contains the probability distribution of each scRNA-seq cell
over a spatial region. SpaOTsc also utilizes a random for-
est in order to infer the spatial range of ligand-receptor sig-
naling and subsequently removing the long-distance connec-
tions. Another approach is Giotto81: Giotto is an extended
and comprehensive toolbox designed for ST analysis and vi-
sualization, which includes a CCI model which calculates an
enrichment score (the weighted mean expression of a ligand
and the corresponding receptor in the two neighboring cells).
Giotto then constructs an empirical null distribution by mov-
ing the locations for each cell-type, subsequently calculating
corresponding statistical significance (P-value), and ordering
the ligand-receptors pair-wise for all neighboring cells.

Although the mentioned models have shown to discover
simple cellular interactions, such approaches often fail to de-
tect complex gene-gene interactions, which is essential in un-
derstanding many diseases. DL models learn such compli-
cated interactions from raw data, further utilizing ST data in
studying CCI. For this purpose, StLearn79 is a recent DL
model that, among many of its capabilities, can learn CCI
from spatially-resolved transcriptomics. StLearn’s DL com-
ponents lies within its Spatial Morphological gene Expression
(SME) normalization. The SME normalization aims to com-
bine critical information from Hematoxylin and Eosin stained
(H&E) tissue images and transcriptome-wide gene expression
profile to then take advantage of in downstream analysis, such
as clustering, spatial trajectory inference, and CCI.

The SME normalization procedure includes (i) spatial loca-
tion: In order to use the spatial positions for selecting neigh-
boring spot pairs, Pham et al. consider two spots si and s j as
neighbors if the center-to-center euclidean distance between
two spots,|C(si)−C(s j)|, is less than a specified distance r,
i.e. |C(si)−C(s j)|< r. Pham et al. include all paired spots
si and s j as input to adjust for the gene expression of the
center spot si. The next step in SME normalization is (ii)
Morphological similarity: stLearn calculates the morpholog-
ical similarity between spots using feature vectors produces
by an ImageNet-pre-trained ResNet50. More specifically,
all H&E images corresponding to each spot si is inputted to
the ResNet50 model, which then produces a feature vector
xi ∈ R2048. Subsequently, stLearn performs PCA on each fea-
ture vector xi, resulting in reduced-dimension feature vectors
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x̂i ∈ R50. To calculate the morphological distance (MD) be-
tween two neighboring spots si and s j (according to criterion
defined in (i)), Pham et al. measure the cosine similarity be-
tween two reduced feature vectors (refer to Eq. (15) for defi-
nition of Cosine Similarity); this MD is shown in Eq. (37),

(37)MD(si,s j) , cossim(x̂i, x̂ j),

As a last step in SME normalization, the gene expression at
each spot si is normalized using the MD distance, as shown in
Eq.(38)

ĜE i = GEi +
∑

n
j=1 (GE j ·MD(si,s j))

n
, (38)

where GEi denotes raw gene expression counts at spot si, and
n is the total number of neighbors identified for spot si.

After SME normalization, stLearn can perform multiple
downstream tasks, including the identification of tissue re-
gions with high CCI activities79. StLearn’s CCI algorithm
finds ligand–receptor (L-R) co-expression between neighbor-
ing spots, and tests for the enrichment of L-R pairs between
two cell types, which are compared to a random null distribu-
tion using CellPhoneDB200. After this initial testing, signifi-
cant L-R pairs are selected to calculate cell-cell interactions.
These interactions are measured using the nearest neighbors
for a spot, and are queried to the cKDTree algorithm202 to
validate that the neighboring cells express ligand or receptor
genes that are above a pre-defined threshold. Next, Pham et
al. form a matrix where significant L-R pairs represent the
features (columns) for each spot coordinates (the rows). Us-
ing this matrix, stLearn can cluster the spatial regions with the
most similar L-R co-expression values, which combined with
the CCI measures, can identify tissue regions that have high L-
R co-expression, indicating areas that have a high likelihood
of active CCI. This approach consitutes stLearn as one of the
the first methods which combines both spatial cell populations
(identified through clustering) and L-R interactions to detect
tissue region with a high likelihood of CCI. Pham et al. apply
stLearn’s CCI method to breast cancer tissue and identify spa-
tial regions and L-R pairs in cancer-immune cell interactions,
indicating a great potentials for shedding light on CCI using
ST data.

V. CONCLUSIONS AND OUTLOOK

The ST field is rapidly growing, with new datasets and anal-
ysis pipelines released weekly. The innovations in biological
methods will continue to spur the creativity in algorithm de-
velopment, with an emphasis on ML-based frameworks. Al-
though the space of DL models for ST analysis is currently
small, we anticipate the field to experience a paradigm shift
towards deep-learned models. In this review, our goal was to
provide readers with the necessary biological, mathematical,
and computational background for understanding the existing
approaches, and expanding upon the current models to address
the challenges posed by the ST domain.

In this manuscript, we provided an overview of current DL-
based techniques for alignment and integration of ST data,

spatial clustering, spot deconvolution, inferring cell-cell com-
munication, and approaches for reconstructing spatial coordi-
nates using scRNAseq data (with limited or no spatial refer-
ence atlas). The DL methods we presented, in comparison
to their conventional counterparts, offer accuracy and scala-
bility advantages. However, DL methods are not always the
preferred choice as they are computationally expensive and
may lack biological interpretability. As more methods for ST
analysis are developed, we believe that standard datasets for
benchmarking new models as well as comprehensive accu-
racy and efficiency analysis of existing techniques will be of
significant value to the field. Though the existing methods set
the new state-of-the-art in their respective categories, room
for improvements remains large. Among the ST downstream
analyses, applications of DL algorithms for studying cell-cell
communication and identification of spatially-variable genes
remain mostly underexplored. Given DL models’ ability to
extract sophisticated patterns from raw data, we anticipate that
DL approaches will prove useful in unraveling complex bio-
logical processes, aiding the efforts in identifying cellular in-
teractions and highly variable genes in a spatial context.

Recent technological advancements have enabled re-
searchers to utilize various single-cell omics sources to con-
struct multi-omics datasets, providing comprehensive view of
many diseases (e.g. COVID19203,204 and cancer205), and de-
velopmental processes206,207. As the single-cell analysis en-
ters the multi-omics age, the need for integrating ST data with
other single-cell sources will increase. Therefore, we expect
an increase in ML-based frameworks for data integration and
alignment, spearheaded by DL-based approaches. Addition-
ally, due to the noise and multi-modality of ST data, there ex-
ists an unmet need for methods that account for batch effects
in spatial and gene expression data. Given the success of DL
techniques for batch effect removal in scRNAseq, we foresee
DL models being widely used for batch effect correction of
spatially-resolved transcriptomics data.

Despite the recentness of ST technologies, researchers have
successfully used these technologies to generate spatially-
resolved cell atlases, providing new insights on a wide range
of biological processes and organs208–212. Such studies show
the tremendous potential that ST technologies hold, but also
highlight the need for scalable and efficient analyses tools.
The application of DL to ST analysis remains a rapidly evolv-
ing nascent domain, demonstrating promising great prospects
in advancing the field of ST, and the integration of ST datasets
with other omics data.
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