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Abstract.  
Background and Objective: Cryo-electron tomography (cryo-ET) is an imaging technique that enables 3D visualization of the native 
cellular environment at sub-nanometer resolution, providing unpreceded insights into the molecular organization of cells. 
However, cryo-electron tomograms suffer from low signal-to-noise ratios and anisotropic resolution, which makes subsequent 
image analysis challenging. In particular, the automated detection of membrane-embedded proteins is a problem still lacking 
satisfactory solutions. 
Methods: We present MemBrain – a new deep learning-based pipeline that automatically detects membrane-bound protein 
complexes in cryo-electron tomograms. After subvolumes are sampled along a segmented membrane, each subvolume is assigned 
a score using a convolutional neural network (CNN), and protein positions are extracted by a clustering algorithm. Incorporating 
rotational subvolume normalization and using a tiny receptive field simplify the task of protein detection and thus facilitate the 
network training. 
Results: MemBrain requires only a small quantity of training labels and achieves excellent performance with only a single 
annotated membrane (F1 score: 0.88). A detailed evaluation shows that our fully trained pipeline outperforms existing classical 
computer vision-based and CNN-based approaches by a large margin (F1 score: 0.92 vs. max. 0.63). Furthermore, in addition to 
protein center positions, MemBrain can determine protein orientations, which has not been implemented by any existing CNN-
based method to date. We also show that a pre-trained MemBrain program generalizes to tomograms acquired using different 
cryo-ET methods and depicting different types of cells. 
Conclusions: MemBrain is a powerful and label-efficient tool for the detection of membrane protein complexes in cryo-ET data, 
with the potential to be used in a wide range of biological studies. It is generalizable to various kinds of tomograms, making it 
possible to use pretrained models for different tasks. Its efficiency in terms of required annotations also allows rapid training 
and fine-tuning of models. The corresponding code, pretrained models, and instructions for operating the MemBrain program 
can be found at: https://github.com/CellArchLab/MemBrain 
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1 Introduction 

Cryo-electron tomography (cryo-ET) is performed by acquiring projection images of a frozen sample at numerous 
different angles using an electron microscope. Combining the information from all these images yields high-
resolution 3D volumes. These molecular views provide a striking new perspective on cellular functions and can reveal 
important insights into both general biological phenomena [1] as well as human diseases including 
neurodegeneration and cancer [2,3]. About one third of human proteins are associated with membranes [4], which 
compartmentalize the cell. Membranes organize proteins into microdomains to direct cellular processes, including 
the bioenergetic reactions in mitochondria and chloroplasts that produce the energy of life. It is thus an important 
challenge to identify protein complexes within their native membrane environment.  

In cryo-ET, particle picking is commonly performed using template matching [5], i.e., a low-pass filtered model of 
the macromolecular complex of interest is fit to the entire tomogram by computing cross-correlation scores. Since 
this has to be done for all possible positions and orientations, this approach is computationally expensive and yields 
a noisy output that requires manual post-processing. For membrane-bound proteins, template matching is 
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particularly challenging, as these complexes are often small, and large portions of their structures are buried within 
the membranes, which can reduce their correlation scores with the template. 

Besides template matching, PySeg [6] is a template-free procedure for the detection of membrane-bound 
proteins. It uses discrete Morse theory to trace densities protruding from the membrane surface. These densities are 
then clustered using 2D rotational averages, followed by manual selection of reasonable classes. However, the use 
of PySeg is complicated by difficult parameter tuning and the requirement for human intervention. 

Recently, several deep learning-based approaches have also been proposed for the detection of macromolecular 
complexes. EMAN [7] detects various kinds of densities by creating segmentations based on a 2D CNN architecture 
that utilizes large convolutional kernels of size 15x15. Therefore, it requires large image patches for training, where 
all present objects of interest must be annotated. This is also the case for DeepFinder [8], which requires even more 
annotations, since it utilizes 3D convolutions with a large receptive field. Another approach is implemented in crYOLO 
[9], which was initially developed for detecting single particles in 2D cryo-EM micrographs, but has since added the 
option to pick in 3D tomograms. It is based on the popular object detection framework YOLO [10]. Instead of creating 
a segmentation mask first, crYOLO predicts the bounding boxes of the particles directly. An advantage of crYOLO is 
that it requires only positive labels and uses adjustable penalty weights for false negatives and false positives to 
account for incompletely annotated regions. Nevertheless, we experienced that crYOLO fails to perform reliable 
predictions when trained with sparse annotations. 

Fig. 1. The MemBrain processing pipeline. A: An example 2D slice of a cryo-electron tomogram (denoised using Cryo-CARE [25] scale bar 
100nm) and corresponding membrane segmentations (3D view of all segmented membranes). B: Pre-processing step: Top: Points (white) 
are sampled and subvolumes (green) around each of them are extracted. Bottom: Subvolumes are aligned. C: Scoring step: CNN predicts the 
distance of each subvolume to the nearest particle center. D: Post-processing: particle centers and orientations are extracted using Mean 
Shift Clustering. 
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In current cryo-ET analysis workflows, manual particle picking is often performed to localize membrane-bound 

proteins. Even with the guidance of specialized software [11,12], the accurate annotation of particles in 3D remains 
a tedious task. Moreover, tomograms suffer from a low signal-to-noise ratio and anisotropic resolution from the 
missing wedge [13]. Thus, precisely localizing protein complexes remains a major challenge with existing methods, 
especially in large tomograms that involve thousands of proteins of interest. To enable new biological discoveries, it 
is necessary to develop automated tools that can be trained on a small number of high-quality annotations to reliably 
pick particles in extensive datasets of many tomograms. 

Here, we present MemBrain: a label-efficient, generalizable deep learning-based pipeline to detect membrane-
bound protein complexes in cryo-ET. In contrast to other approaches, MemBrain utilizes the membrane geometry to 
sample and align subvolumes and thereby achieve model invariance to unseen membrane orientations. Furthermore, 
instead of classifying each subvolume into binary classes – i.e., particle vs. non-particle – we show that score 
assignment based on the regression of distance to the nearest particle can cope better with imprecise ground-truth 
positions, which commonly occur in manual labelling. Additionally, MemBrain can extract protein orientations, as 
compared to common detection networks that only provide protein positions. To our knowledge, this is the first deep 
learning-based pipeline that is specialized for the detection of membrane-bound proteins. 
 

2 Methodology 
 

2.1 Overview of MemBrain 

Figure 1 illustrates the workflow of our pipeline. As an input, we use membrane segmentations from raw cryo-
electron tomograms (Fig. 1A). For example, these segmentations can be generated using TomoSegMemTV [14], 
followed by manual curation, as demonstrated in [12]. In the first step, we sample points uniformly on the segmented 
membrane and identify their corresponding membrane normal vectors. Subsequently, subvolumes are extracted 
around each sampled position and rotated so that the membrane is parallel to the x-y plane (pre-processing step, 
Fig. 1B). These aligned subvolumes are then fed into a CNN, which assigns each subvolume a score indicating its 
distance to a particle center (scoring step, Fig. 1C). Finally, particle center positions and orientations are extracted 
using Mean Shift clustering [15] (post-processing step, Fig. 1D). We provide a detailed explanation of each step below. 
 

2.2 Subvolume Sampling and Preprocessing 
Point Sampling and Normal Voting.  We first manually specify which side of the membrane should be picked. This is 
done by clicking on the desired side of the membrane segmentation (illustrated in Fig. S6 A). Next, MemBrain samples 
points all over the selected membrane surface (see sampled positions in Figure 1B). More specifically, we compute 
the distance of any voxel in the tomogram to the membrane and threshold this distance to mask the neighborhood 
of the segmentation (see Fig. S6 B; in all our experiments, we used a maximum distance of 15 voxels). Then, for each 
point in this neighborhood, we find its nearest voxel on the segmented membrane surface. These points on the 
surface represent our sampled points. The connection vector between them and the original points in the 
neighborhood serve as a membrane normal vector. 

However, points in the membrane neighborhood that are very close to the surface tend to have non-reliable 
normal vectors. On the other hand, only considering points with large distances leads to non-uniform point sampling 
on the membrane surface. Therefore, we apply Normal Voting [16,17], which is an algorithm that corrects normal 
vectors via weighted averaging, while also taking the membrane curvature into account. By giving a higher weight to 
the reliable normal vectors (from long-distance points), we achieve both a uniform sampling of points on the 
membrane surface and a reliable estimation of normal vectors. 

Subvolume Extraction and Rotation. For each sampled position on the membrane surface, we extract a small 
subvolume. The exact size of the subvolume should depend on the size of the protein complex we aim to detect. In 
our experiments, we use a subvolume size of 12×12×12. We experienced this size to be quite robust to different 
protein dimensions, but it can be adjusted if needed. Next, we rotate each subvolume using its corresponding normal 
vector so that the membrane contained in the subvolume is aligned to the x-y plane, i.e., the membrane normal 
vector is parallel to the z-axis (see rotated volume in Figure 1B). This rotation step is critical to guarantee that our 
detection is invariant to different membrane orientations, as we elaborate in Section 3. 
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2.3 Convolutional Neural Network 

Architecture. The preprocessing steps of MemBrain reduce the task of protein detection in the entire tomogram to 
the detection of densities protruding from the membrane. Since the context, i.e., the location of the membrane, is 
already given by the membrane segmentation, our network does not need to learn it. Therefore, we can neglect 
large-scale features and use a small network architecture, resulting in a tiny receptive field of the convolutional 
layers. In our experiments, we only used four consecutive 3D convolutional layers, followed by a single fully 
connected layer. The network outputs a single value to indicate the distance of the subvolume to the nearest protein 
center. For the detailed network architecture, see Table S4. 
Label Assignment. For training, we assigned labels to each input subvolume based on its center point’s distance to 
the closest protein complex center. However, protein structures are generally not spherical. Therefore, instead of 
using the Euclidean distance to assign the distance values, we use the Mahalanobis distance [18], which weights 
distances in each direction based on a covariance matrix, thus taking protein shape into account (visualized in 
Figure S8). This covariance matrix can be extracted from a low-pass filtered structure of respective protein. 
Optimization Details. Even with substantial effort in manual annotation, our ground-truth labels are not perfectly 
accurate, as manually picked positions always deviate slightly from the exact particle locations. Moreover, it is almost 
unavoidable to miss some protein complexes. Therefore, we choose to optimize the smooth L1 loss function [19], 
which is more robust with respect to outliers compared to the commonly used mean squared error (MSE).  We use 
the Adam [20] optimizer to minimize the loss function. To improve training stability, we incorporate several batch 
normalization layers [21]. Finally, as regularization techniques, we use a combination of weight decay and data 
augmentation. In particular, we use random rotations around the z-axis, random flipping along the x- and y-axes to 
artificially increase the number of samples, as well as adding Gaussian noise to the subvolumes  [22]. 
 

2.4 Post-processing 

Mean Shift Clustering. We utilize the distance heatmap that results from our network predictions to extract particle 
positions. For this, we use only the points with a predicted distance less than a threshold (depending on the protein 
complex size) to perform our adapted version of Mean Shift clustering, where we have added a hierarchical cluster 
separation step. Mean Shift [15] is an iterative approach that refines cluster centers based on a moving weighted 

Fig. 2. The three cryo-ET datasets examined in this study. For each panel, Top: Example 2D tomogram slices (scale bars 100nm), Bottom: 
Membranogram view of one membrane. The visualized membrane is highlighted in yellow. A: Dataset 1 – Chloroplasts isolated from Spinacia 
oleracea, acquired using defocus imaging and denoised with Cryo-CARE [25]. B: Dataset 2 [12] – Chloroplasts inside Chlamydomonas 
reinhardtii cells, acquired using Volta phase plate imaging [31], not denoised. C: Dataset 3 [26] – Rod outer segments isolated from wild-
type mice, acquired using defocus imaging and denoised with Cryo-CARE. 
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average in each iteration. The only required parameter is the bandwidth, which specifies the radius considered for 
the weighted average. Using a large bandwidth leads to particle clusters that are merged, whereas a small bandwidth 
can cause one particle to split into two clusters. To avoid both of these errors, we implemented a refined version of 
Mean Shift: first, we choose a large bandwidth parameter, leading to relatively large clusters. If one of these clusters 
exceeds a certain size (depending on the protein complex size), we reprocess it using a lower bandwidth. Thereby, 
we split merged protein clusters hierarchically. Our version of Mean Shift also weights single points using the inverse 
network-assigned scores to guide the clustering algorithm towards the correct particle centers, since points close to 
them tend to have stronger (i.e., lower) distance values. 
 
Orientation Estimation. Besides the cluster center, Mean Shift also identifies each point that has converged to the 
respective cluster center. We assume that these points resemble the rough shapes of the protein complexes. Thus, 
in case of non-spherical proteins, we can use the cluster points to compute orientations of the detected protein 
complexes within the membrane. We perform Principal Component Analysis [23] to find the vector that best 
describes the cluster, i.e., minimizes the Euclidean distances between the cluster points and the line described by 

Fig. 3. Visual analysis of predicted positions. For the ground truth panel, Top: 2D slice of a test set tomogram with annotated membranes 
highlighted in white (scale bar 100nm). Yellow boxes show PSII positions, orange boxes represent unknown density (UK) positions. Bottom: 
Membranogram views of two membranes from the test set. Mapped in are PSII protein structures (yellow) and UK positions (orange cubes). 
The five other panels show the analysis of predicted positions for all compared methods. True positives are highlighted in white, false 
negatives in magenta, and false positives in cyan.  
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the vector. In combination with the previously extracted normal vector, we can compute all three Euler angles 
describing the protein’s orientation in space.  These Euler angles can be used to initialize downstream tasks, such as 
subtomogram averaging [13].  

3 Results 

3.1. Data Collection and Annotation.  

We evaluated MemBrain using three cryo-ET datasets of different biological samples that were vitrified on EM grids 
and then thinned with focused ion beam (FIB) milling [24]. Dataset 1 consists of nine tomograms of isolated Spinacia 
oleracea chloroplasts, acquired with defocus imaging and denoised with the deep learning-based Cryo-CARE 
program [25]. Dataset 2 [12] contains four tomograms of Chlamydomonas reinhardtii chloroplasts inside native cells, 
acquired with Volta phase plate (VPP) imaging and not denoised. Dataset 3 [26] is composed of five tomograms of 
isolated rod outer segments from wild-type mice, acquired without VPP and denoised with Cryo-CARE. Figure 2 shows 
example 2D slices of all three datasets, as well as Membranogram views that display the different distributions of 
protein complexes within the membranes. More detailed information about acquisition of the dataset can be found 
in the supplementary S.1.1. In all tomograms, membranes were segmented using TomoSegMemTV [14], followed by 
manual curation. For Datasets 1 and 2, particle positions and orientations were manually annotated using 
Membranorama [11,12] , whereas for Dataset 3, particle positions were generated semiautomatically by an expert 
using PySeg (see supplementary S.1.2). For Dataset 1, a total of 455 membrane segmentations have been created, 
45 of which are annotated with protein complex locations and orientations for 1641 Photosystem II (PSII), 
471 Cytochrome b6f (b6f) proteins, and 757 unknown densities (UK).  Dataset 2 contains a total of 31 segmented and 
annotated membranes, including 730 PSII positions, 379 b6f positions and 273 UK positions. For training and 
validation sets, we used 35 membranes from seven Dataset 1 tomograms. We trained and evaluated with PSII 
complexes, as the b6f complexes are so small that they are hard to visually identify in some tomograms, and therefore 
will require further adjustments to reliably detect. The remaining two tomograms from Dataset 1, as well as all 
tomograms from Datasets 2 and 3, were reserved as test sets. 

 
3.2. Analysis of MemBrain’s Performance  
Evaluation Metric. 

For evaluating MemBrain’s performance with respect to ground truth particle positions, we compute precision (𝑃), 
recall (𝑅), and F1 score (𝐹1) of our predicted particle coordinates. For the calculation of recall, we define a true 
positive (𝑇𝑃𝑅) as a ground truth (GT) PSII position that has been hit, i.e., a predicted position is within a certain radius 
(in this case, 4.5 voxels). Correspondingly, a false negative (𝐹𝑁𝑅) is a GT position that is not hit by a predicted position. 
For precision, a true positive (𝑇𝑃𝑃) is a predicted position that hits a GT position (either PSII or unknown densities), 
and a false positive (𝐹𝑃𝑃) is a predicted position that does not hit a GT position. The F1 score is computed as the 
harmonic mean of recall and precision: 

 

𝑅 =
𝑇𝑃𝑅

𝑇𝑃𝑅+𝐹𝑁𝑅
,   𝑃 =

𝑇𝑃𝑃

𝑇𝑃𝑃+𝐹𝑃𝑃
,   𝐹1 =

2∙𝑅∙𝑃

𝑅+𝑃
 

 
 

 
 

 0.39 0.56 0.46 0.40 0.47 0.43 
crYOLO [17] 0.22 0.18 0.20 0.25 0.04 0.07 
DF [10]           0.54 0.61 0.57 0.28 0.55 0.37 
EMAN[3]            0.63 0.64 0.63 0.47 0.39 0.42 

 0.90 0.94 0.92 0.73 0.83 0.78 

 

                          F1 Score 
Method            1 mb        8 mbs       28 mbs 

 
 
 
 

 
  

Table 1. Benchmarking results on the test sets of 
Datasets 1 and 2 for Template Matching (TM) [29], 

crYOLO [9], DeepFinder [8], EMAN [7], and MemBrain. 

Table 2. Ablation study: Effects of using a regression target (as 
compared to classification), denoised data, and the rotational 
normalization module for 1, 8, and 28 membranes, respectively. 
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Quantitative Analysis. Table 1 shows the performance of MemBrain in comparison with other state-of-the-art deep 
learning protein picking algorithms, as well as the commonly used template matching approach (for more details 
about the generation of comparison positions, see supplementary S1.3). In addition, Figure 3 shows how well the 
methods performed with respect to ground truth on a 2D slice (top views), as well as two membranes (bottom views). 
All deep learning-methods were trained using 28 membranes from Dataset 1 as the training set (7 membranes were 
used for the validation set), while template matching was performed using a native structure of PSII embedded in a 
membrane density as the reference template. For evaluation, we only considered those predictions that were close 
to an annotated membrane in order to enable comparison to the corresponding ground truth. MemBrain 
outperformed the other methods on the test set of Dataset 1 and even generalized well to Dataset 2, despite a 
considerable domain shift between these samples. In particular, we emphasize that the recall for MemBrain far 
exceeded the level of the other methods, which is a critical advance to prevent missing ground-truth particles. In 
comparison, precision is less important, as there are mature techniques to clean up false-positive picks, e.g., via 
subtomogram classification [27]. Although DeepFinder picks well in some regions, it misses proteins in other regions 
completely (Figure 3, membrane views), conceivably because the training data does not cover all possible membrane 
orientations. EMAN already has a mechanism to compensate for the lack of particle orientations by performing 
random rotations on the training data. Nonetheless, it did not perform as well as MemBrain, demonstrating the 
importance of the subvolume rotation module and the focused detection in our pipeline. We conclude that all other 
methods have limitations in this very specific context of membrane proteins, as all of them require regions in the 
tomograms that are richly annotated, and expectedly have problems in this setting of very sparse labels. Compared 
to deep learning-based methods, template matching is even more difficult to tune, because the peaks in the 
detection are mostly triggered by the strong membrane signal and often do not correspond to actual protein 
complexes. As a result, template matching leads to low recall and precision. Besides particle detection, MemBrain 
can additionally extract particle orientations, which is beyond the capacities of other deep learning-based methods. 

Fig. 4. Analysis of particle orientations estimated by MemBrain. Comparison of MemBrain’s 120 true positive picks to the ground truth 
annotations in the Dataset 1 test set. A: Circular heatmap showing differences between ground truth in-plane angles and estimated angles.  
The long axis of the mapped PSII structure (0°) is plotted in orange. Note that due to PSII’s two-fold symmetry, the deviation cannot exceed 
90°. B: Histogram of absolute differences between ground truth in-plane angles and estimated angles. The mean absolute error (MAE) is 
indicated in red.  

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.03.01.480844doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.480844
http://creativecommons.org/licenses/by/4.0/


 

Figure 4 shows the distribution of MemBrain’s predicted orientations with respect to the ground truth. We achieved 
a mean absolute error of 24.4 degrees (maximum possible deviation is 90 degrees due to PSII’s C2 symmetry) on our 
Dataset 1 test set, which can serve as a good initialization for subvolume alignment and make the subsequent 
subtomogram averaging [5,28,29] more efficient. 
 
Qualitative Evaluation on Dataset 3. For Dataset 3, we did not have ground truth protein positions to compute 
quantitative evaluation metrics. Instead, we assessed the picks from MemBrain and PySeg using subtomogram 
averaging (Figure 5; For details about the averaging procedure, see supplementary S.1.4). First, we trained a 
MemBrain model using the ground truth data from Dataset 1 (the same model as for the previous section), which 
reliably picked PSII complexes in this spinach dataset (Table 1; Figure 5A). Then, we applied this pre-trained 
MemBrain model to predict membrane-bound protein positions in the mouse rod outer segments of Dataset 3 
(Figure 5B). For comparison, we also predicted membrane-bound protein positions in Dataset 3 using PySeg (Figure 
5C). Subtomogram averaging of the MemBrain picks, PySeg picks, as well as intersection and difference sets between 
these picks revealed interesting differences between the two detection algorithms. In both Datasets 1 and 3, 
MemBrain consistently picks densities that are embedded in the membranes and appear as small bumps. In contrast, 
PySeg was configured to pick all densities over the membranes regardless their shape. This initial picking is refined 
after the first cleaning step, where the expert selected automatically generated 2D rotational average classes that 
indicated a density on the membrane (PySegclean, see supplementary S.1.2, and Figure S7). Thus, PySeg picks a wider 
variety of particles, resulting in a different average. Looking at the consensus analysis (Figure 5D), we can see that 
PySeg picks often coincide with MemBrain picks, and the average of this intersection subclass looks very similar to 
the pure MemBrain average. In the subclass of MemBrain picks that were missed by PySeg, we see a smaller bump 
on the membrane. On the other hand, the PySeg picks that MemBrain missed appear to be densities that are 
suspended above the membrane and not embedded within it. A further classification of this subclass can be seen in 

Fig. 5. Qualitative comparison of MemBrain and PySeg on Dataset 3. A: MemBrain is trained using the ground truth data from Dataset 1. The 
trained program is used to predict particle positions (green) in the test set of Dataset 1. B: The same MemBrain program (trained on Dataset 
1) is used to predict particle positions (green) in Dataset 3. C: PySeg is applied to generate particle positions (green) in Dataset 3. Visualized 
are the initial picks of PySeg (left) and the picks after cleaning using selection of 2D rotational averages of PySeg (right). Rotationally 
symmetrized subtomogram averages were generated from the picks of each pathway (right column). D: Consensus analysis using 
subtomogram averages to compare the MemBrain picks and the cleaned PySeg picks. MemBrain \ PySegclean = positions picked by MemBrain 
but not PySegclean. MemBrain ∩ PySegclean = positions picked by both MemBrain and PySegclean. PySegclean \ MemBrain = positions picked by 
PySegclean but not MemBrain. 
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Figure S9. It is worth noting that this behavior of MemBrain is often desirable, since it has been trained to find exactly 
these bumps on the membrane (see the PSII average in the top row of Figure 5), and one may not want to detect 
everything that is close to a membrane, but rather only specific membrane-embedded proteins. PySeg is a 
comprehensive data driven workflow, but a specialized pipeline like MemBrain can save a lot of time and effort when 
the membrane proteins are visually recognizable. 
 

Ablation Study. In our ablation study (Table 2), we show the results of MemBrain with varying experimental 
settings. First, we explored the minimum amount of training data that is required to train our model. Like for most 
biomedical images, data annotation requires human expertise and is generally difficult to obtain. In our 
experiment, we used 1, 8 or 28 annotated membranes in the training set, and we performed hyperparameter 
tuning using grid search for both learning rate (range 3×10-5 to 3×10-4) and weight decay parameters 
(range 0 to 1×10-3) although our pipeline was quite robust with respect to these parameters. The models were 
trained using a batch size of 1024 for up to 5000 epochs, with early termination in case the validation stopped 
decreasing. As shown in Table 2, even with only one annotated membrane, MemBrain still achieved an F1 score of 
0.88, which far exceeded EMAN, DeepFinder, and crYOLO (Table 1), even though these other deep learning 
networks were trained on the entire training dataset of 28 membranes. Furthermore, we explore the contribution 
of individual components in the MemBrain pipeline. We find that denoising the tomograms is vital to ensure a good 
performance, as it simplifies the task by removing the necessity for the model to learn to cope with noise. In 
addition, using a CNN for a regression task rather than more commonly-used classification also improves the 
overall performance of the entire pipeline, particularly when the training dataset is small. We reason that the 
induced label noise from inaccurate manual labeling of particle center positions has a larger influence on 
classification than on distance regression, where the score assignment is smoother. Finally, we explored the 
influence of our subvolume normalization module: The values for “no normalization” correspond to the results for 
MemBrain without normalized volumes, but trained with arbitrary subvolume rotations as data augmentation 
during training. Again, especially for the one membrane (1 mb) and eight membranes (8 mbs) settings, the results 
are worse than our fully trained MemBrain model. This corroborates the importance of our normalization module 
for simplifying the detection problem. 

4 Conclusion 
In this study, we present MemBrain, a deep learning-based pipeline that is specialized for automatic detection of 
membrane-bound proteins in cryo-electron tomograms. In the preprocessing step, MemBrain uses the membrane 
geometry and rotates tomographic subvolumes into a normalized orientation, which generalizes the trained CNN to 
membranes with different orientations than the training set. Moreover, this rotation step reduces the complexity of 
the protein detection task, and thus, our network can be efficiently trained with a small dataset consisting of only 
one annotated membrane. This is experimentally practical, as cryo-ET data is time-consuming to generate, and the 
manual annotation is laborious. We evaluated MemBrain on three different datasets and showed that our pipeline 
outperforms other state-of-the-art methods (both conventional and deep learning-based) for particle picking by a 
large margin (recall: MemBrain >0.9 vs. other methods <0.65). In Dataset 3, where no ground truth annotations were 
available, we showed qualitatively that MemBrain’s picks resemble membrane-embedded proteins. Furthermore, 
MemBrain is able to estimate protein orientations, which is beyond the current capacities of other deep learning 
methods. The particle positions and orientations extracted by MemBrain can be used to analyze the organization of 
protein complexes within membranes, revealing how they interact with each other to drive cellular processes. Since 
MemBrain is generalizable to unseen data domains, it will likely be applicable to investigating biological mechanisms 
in various kinds of membranes, ranging from protein production in the endoplasmic reticulum to the bioenergetic 
reactions in mitochondrial cristae and chloroplast thylakoids. 
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Supplementary information. 

 
1.1 Description of datasets. 

Datasets 1 and 2: Cells and chloroplasts were plunge frozen using a Vitrobot Mark 4 (FEI Thermo Fisher) and stored 
in liquid nitrogen. Cryo-FIB milling was performed using a Quanta dual-beam FIB/SEM (Chlamydomonas, Dataset 2) 
or Aquilos dual-beam FIB/SEM (Spinach, Dataset 1) instrument (FEI, Thermo Fisher Scientific), as previously 
described[24]. Tomographic data was acquired on a 300 kV Titan Krios microscope (FEI, Thermo Fisher Scientific), 
equipped with a post-column energy filter (Quantum, Gatan) and a direct detector camera (K2 Summit, Gatan). Dose-
symmetric (Dataset 1) or bidirectional tilt-series (Dataset 2) were acquired with SerialEM software [30] using 2° steps 
between -60° and +60°. Individual tilts were recorded in movie mode with 12 frames per second, at an image pixel 
size of 3.42Å (42000x magnification). The total accumulated dose for the tilt-series was kept around 100 e-/Å2. The 
Chlamydomonas tilt-series (Dataset 2) [12] were acquired with a Volta Phase Plate at -0.5 μm defocus [31], while the 
spinach tilt-series (Dataset 1) were acquired with a standard objective aperture and defocus values from -4 to -4,5 
μm. Using IMOD software [32], tilt-series were aligned with patch tracking and reconstructed with weighted back 
projection. Additionally, Dataset 1 was dose weighted with TOMOMAN software [33] and denoised with cryo-CARE 
[25]. 

 
Dataset 3: Rod outer segments were isolated, vitrified on EM grids, thinned by cryo-FIB milling, and imaged by cryo-
ET as described in [26]. Tilt-series were acquired on the same Titan Krios microscopeas Datasets 1 and 2. Bidirectional 
tilt-series were collected between +50° and -50°, starting at 20° with a tilt increment of 2° and a total dose of 100 e-

/Å2. The individual projection images were recorded at an image pixel size of 2.62 Å (53000x magnification) in movie 
mode with 6 frames per tilt at tilt angle α = 0°. The number of frames per tilt were increased at higher tilts according 
to the 1/cos(α) as implemented in SerialEM. Standard objective aperture imaging was used, with a target defocus of 
-3 μm. The acquired tilt-series were aligned using Platinum particles on the lamella surface as fiducial markers [26] 
and reconstructed in IMOD software. Furthermore, dose weighted was performed with TOMOMAN software and 
denoising with cryo-CARE similar to Dataset 1. 
 

Fig. 6. SUPPLEMENTARY FIGURE. Graphical assistance for using MemBrain. White segmentations represent given membrane 
segmentations. A: Membrane selection interface. The user should click on the side of the membrane where they want to detect 
proteins. B: Membrane segmentation and resulting selected side of the membrane (grey: thresholded neighborhood used to 
estimate normal vectors), visualized using MemBrain’s membrane side inspection script, which can be used to verify that the 
correct sides were picked. 
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1.2 PySeg protein picking 

Protein picking in PySeg was performed using the default parameters. Only the vertex density during the 
calculation of the graphs was set to 0.01 per nm, a value much higher than expected, to assure that all possible 
densities are picked. The minimum allowed distance between adjacent proteins was set to 4 nm refinement of the 
membrane normal vectors and the alignment of the membranes was done in STOPGAP (v.0.7.1) [29]. The star-file 
as output of PySeg protein picking was converted into a STOPGAP motivelist, subvolumes were extracted from 4x 
binned non-CTF-corrected tomograms (box size = 64 voxel, voxel size = 1.048 nm) and aligned with shifts only 
allowed perpendicular to the membrane. Subvolume were re-extracted at the refined positions with a smaller box 
size of 32 voxels and the refined motivelist converted into a star-file for PySeg. Afterwards, PySeg’s 
plane_align_class.py script was used for two successive rounds of 2D classification (Affinity propagation, preference 
= -10, pp 3D = False). Here, a mollified cylinder mask (radius = 10 voxel, height = 10 voxel) focused the classification 
on the cytosol adjacent to the membrane without including the membrane signal itself. In the first round (referred 
to as PySegclean in the manuscript), all picked proteins were processed in batches of 30k subvolumes and those 
classes that indicated a density in contact with the membrane irrespective of its size were selected (see Figure S7). 
In a second round, all selected proteins were classified together and only those classes with reasonably large 
density were selected (these picks were not used for the evaluation in this paper). 

 
1.3 Configurations of comparison methods 
 DeepFinder: 
 Ground truth protein positions and orientations were used to map a thresholded volumetric model of PSII into the 

tomograms. This gave us an accurate segmentation mask, where, for all training protein positions, all voxels that 
are occupied by a protein density are labeled as 1. The remaining voxels are labeled as background (i.e., 0). We 
trained DeepFinder using the same data split as we did for MemBrain (28 membranes training set, 7 validation set). 
In addition to DeepFinder’s default settings, we also performed hyper-parameter tuning for learning rate and 
random shifts range, and found the best performance on the validation set for a learning rate of 1 × 10-4, and 
random shifts in the range of 11.  
As preprocessing for our tomograms, we used the default preprocessing suggested in EMAN: low- and high-pass 
filtering, followed by normalization (to mean 0 with standard deviation 1) of the tomogram. Finally, values are 
clamped between -3 and 3 to remove outliers. 
 

 EMAN (v.2.91): 
We used the same ground truth segmentation masks from DeepFinder to generate the ground truth for EMAN. 

Fig. S7. SUPPLEMENTARY FIGURE. Selection of 2D rotational average classes. 270k particles were extracted, split into batches 
of 30k particles each, and clustered into several classes using PySeg’s 2D rotational average clustering. From the resulting 
classes, those with a density in contact with the membrane were selected (green). 
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Because EMAN required annotated 2D slices, we extracted 2D slices (size 64 x 64) from the 3D annotated volumes, 
each centered around a protein position to ensure that the patches contain proteins. We performed the default 
preprocessing (as described in the DeepFinder section), and also did hyperparameter tuning. EMAN’s architecture is 
very shallow, which can avoid overfitting on the training data. Nevertheless, we wanted to rely on more information 
than only the training loss. So, we trained several models to the end, and then performed tuning of the extraction 
parameters on the validation set to find the best models and setting: we trained models for varying numbers of 
epochs, and different learning rates. Then, for each model, we tuned the protein extraction parameters for the 
density threshold, and the mass threshold (size of an object to be considered a true object). Here, we found the best 
model with a learning rate of 1 × 10-5, trained for 5000 epochs, and, for the extraction, used a mass threshold of 2.0, 
and a density threshold of 0.5. 

 
 crYOLO (v.1.8.0): 
 Instead of volumetric segmentation masks, crYOLO requires only the positions of the ground truth particles. 

Therefore, we converted our manually picked positions into the required format. crYOLO requires the user to label a 
protein in a 2D slice, even if only a small portion of it can be seen. Therefore, we experimented with transferring 
ground truth positions also to adjacent slices, but did not find an improvement in performance. Again, we performed 
hyper-parameter tuning. For training the neural network, we tuned the parameter “object_scale”, determining the 
weight of true positive samples in the loss function (compared to the weight of false positives). Furthermore, we 
tuned parameters for the extraction of protein positions: The threshold for the network-assigned scores, the 
minimum distance between boxes, and the minimum number of boxes in one trace to be considered a protein. For 
us, an object scale of 50 (very high, probably necessary due to the sparse annotations), a score threshold of 0.05, a 
minimum distance of 5, and a minimum number of boxes in a trace of 2, were the best settings.  

 
 Template matching: 

Template matching experiments were performed in STOPGAP [29]. A previously obtained average of PSII [12] was 
used as template for detection of this protein in Datasets 1 and 2 using an angular search step of 20 degrees in bin4 
tomograms (pixel size: 13.68 Å). Wedge lists containing information on electron exposure, defocus and tilt angle of 
the tilt series were obtained from the IMOD reconstruction metadata [32] for each tomogram. This information is 
used to properly weight the Fourier transform of the template rotated in each orientation and constrain the cross-
correlation only to the areas where information is present. To avoid overfitting, the template was low-pass filtered 
to ~40 Å during search. For performance analysis, we visually tuned the number of extracted picks, as well as the 
minimum distance between two picks. We arrived at values of 400 picks per tomogram, and a minimum distance of 
13 voxels, giving the best performance on the test tomograms. 

 
1.4 Subtomogram averaging for Dataset 3.  

To create the averages in Figure 5 and Figure S9, we utilized the following procedure: We extracted protein positions 
using MemBrain and compared them to the ones obtained by PySeg (see section S.1.2). We subdivided the picks into 
six subsets, as can be seen in Table S3. For subsets 1, 3, 4, and 5, we used the normal voting procedure described in 
Section 2.2. to receive membrane normal vectors for each position. Then, from the normal vectors, we computed 
the Euler angles that describe the rotation to align the membrane horizontally. For subsets 2 and 6, we used the Euler 
angles that are computed by PySeg. Then, we used STOPGAP [29] to create averages of the picked positions in bin4 
(pixel size: 10.48Å). First, we created an initial average. Afterwards, we refined this average in 3 rounds of 
subtomogram alignment, with the goal of refining the membrane alignment. For this, we used a cylindrical mask to 
focus the alignment only on the current membrane and the density on top of it. We allowed only small shifts in x-, y, 
and z-direction (2 bin4 voxels in each direction), and used a strong symmetry constraint (C20). For subset 6, we 
further performed subtomogram classification into 3 classes using STOPGAP’s “ali_multiref” function. We performed 
this classification step for 10 rounds in order to investigate if there is a class corresponding mainly to membrane-
embedded proteins.  

 
 

Subset name Description # positions 
MemBrainrod_outer All MemBrain picks 27906 
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PySegclean All PySeg picks after round 1 65614 

MemBrain \ PySegall MemBrain picks, missed by PySeg before round 1 2163 

MemBrain \ PySegclean MemBrain picks, missed by PySeg after round 1 15899 
MemBrain ∩ PySegclean MemBrain picks, coinciding with PySeg picks after round 1 12007 

PySegclean \ MemBrain PySeg picks after round 1, missed by MemBrain 49562 

PySegclean \ MemBrain 
Class 1 

Classified using subtomogram classification in STOPGAP 9665 

PySegclean \ MemBrain 
Class 2 

Classified using subtomogram classification in STOPGAP 21678 

PySegclean \ MemBrain 
Class 3 

Classified using subtomogram classification in STOPGAP 18219 

 
 
 

  

Table S3. Overview of different subsets of Dataset 3 picks for averaging comparison. “Round 1” corresponds to the first PySeg pick 
cleaning step, where only averages containing membranes with densities were selected. 
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Layer Type # Filters Size 
1 Conv (valid) 32 3x3x3 

 BN   
 ReLU   

2 Conv (same) 32 3x3x3 

 BN   

 ReLU   
3 Conv (valid) 32 3x3x3 

 BN   

 ReLU   
4 Conv (same) 32 3x3x3 

 BN   

 ReLU   

5 Linear 1  (box_size – 4)3 * 32 

Table S4. Overview of our network architecture. Conv=Convolutional layer; BN=Batch normalization 
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Fig. S8. SUPPLEMENTARY FIGURE. Visualization of the score assignment using the Mahalanobis distance. The white density 
represents a PSII particle, mapped into its ground truth position and orientation. Distance values are represented by colors: 
blue points correspond to points with low distances. Red points have a higher assigned distance. A: Visualization of the 
Euclidean distance. B: Visualization of the Mahalanobis distance. 

 

Fig. S9. SUPPLEMENTARY FIGURE. Rotationally symmetrized subtomogram averages generated from different subset 
of picked positions from Dataset 3. A: MemBrain positions that were missed by PySeg (before cleaning steps). B-C: 
Subtomogram classification results of (PySegclean \ MemBrain) into 3 classes. For more details on how the averages 
were created, see S.1.4. and Table S3. 
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