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Abstract 
 
The molecular machinery of ovarian aging and female age-related pathway remain 
unclear. Here, we utilized single-cell RNA-seq to profile over 9815 cells from both young 
and old female mouse and identified age-related alterations in the female somatic 
microenvironment. Interestingly, by aging-related signature calculation, we examined 
HIF1A in mouse ovarian cell aging regulated roles which effect pathways included 
glycolysis, TCA, OXPHOS and fatty acid metabolism. Additionally, inactivated HIF1A, 
decreased glycolysis was observed. Comparison analysis reveals the aging related 
regulon; metabolic and nutrient absorption changes provides a comprehensive 
understanding of the cell-type-specific mechanisms underlying mouse ovarian aging at 
single-cell resolution. This study, revealing new potential candidate biomarkers for the 
diagnosis of aging-associated ovary pathology. 
 
Main 
 
Female reproductive system, the ovary, serves as a powerful model to study related 
between aging and metabolism1. Despite recent evidence that mammalian females 
supplied new oocytes during adult life, the role of ovarian aging is still problem which is 
poorly understood2-4. During parental age increased, aging-associated problems are 
related to multiple risk factors including reduced fertility and higher miscarriage rates5.  
Aging adversely affects genome integrity, epigenetic status and endocrine disorder in 
both male and female6. Thus, the ovary and testis are indispensable for the 
maintenance fertility and endocrine homeostasis7-9. An in-depth understanding of the 
mechanism, which drive ovarian aging is critical important. Although many studies have 
revealed aging-related alters in both male and female, it is still poorly unknown how 
aging impacts the mouse ovary at the molecular and genomic level by single cell 
resolution10-12. 
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Hypoxia inducible factor 1a (HIF1a), which belongs to the bHLH-PAS family of 
transcription factors, a factor adapts to hypoxic microenvironments functionally. 
However, it is puzzling that, although recent study demonstrated that HIF-1a activate 
gene pathways that minimize oxygen consumption, reduce reactive oxygen species 
(ROS), and restore oxygen delivery in heart, the role of HIF1a in ovary aging13. HIF1a is 
expressed in mouse ovary. Interestingly, this gene was observed impact preovulatory 
follicles function, inhibition of the HIF transcriptional activity blocked ovulation by 
preventing the rupture of the preovulatory follicles14. Now, much studies are focused on 
understanding the oxygen regulated function of HIF1a in the ovary. However, the other 
effect by HIF1a and the relationship between HIF1a and aging have not to be evident 
yet. In normal physiologically ovary, low oxygen concentration is beneficial for 
reproductive, cells prefer hypoxic environments and use glycolysis to produce ATP. 
Therefore, focusing on aging ovary metabolism, especially under low oxygen conditions, 
glycolysis may contribute to a good direction for study HIF1a role in aging ovary15.  
 
In early studies, conventional bulk RNA-seq protocol have more flaws in accurately 
demonstrating changes from heterogeneous organ, such as ovary, in gene expression 
level and cell types alteration. By using advances single cell RNA sequencing (scRNA-
seq) approach it is possible to accurately analyze alterations at the molecular and 
genomic level by single cell resolution within highly heterogeneous tissues. For our 
study, we used aging mouse combine with mouse organ scRNA-seq database to survey 
the first comprehensive single cell transcriptomic landscape of mouse ovarian aging. 
Overlap with aging-related signature calculation, we identified seven transcriptional 
factors in mouse ovarian cell aging regulated roles. Moreover, one of these aging-
associated transcriptional factors changes (HIF1a) revealed that glycolysis was an 
essential factor of ovarian aging. To identified how HIF1a effect glycolysis, a multiple 
analysis with developmental mouse ovary RNA-seq data and a Hif1a knockout ChIP-
seq and RNA-seq data revealed similar aging-associated downregulation of HIF1a and 
glycolysis genes. Our data provide potential biomarkers for the clinical diagnosis of 
ovarian aging. Single cell transcriptional profiling reveals a key role for the HIF1a-
glycolysis axis in mediating ovarian aging, which provides a target for therapy aging-
associated ovarian disorders and female infertility. 
 
Methods 
Animals 
All animal experiments were conducted according to the approved protocol by the 
Institutional Animal Care and Use Committee at the University of Kansas Medical 
Center in strict accordance with its regulatory and ethical guidelines. All animals were 
housed in a specified pathogen-free facility with a 12�h light/dark cycle. All animals had 
access to food and water ad libitum. CD1 and DBA/2 mice were raised under specific-
pathogen-free (SPF) condition. 
 
RNA isolation and qPCR 
Total RNA was isolated from collected cells using TRIzol™ (Invitrogen,15596018). The 
RT reaction was carried out with SuperScript II First-Strand Synthesis Kit 
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(Invitrogen,18080-051). qPCR was performed with gene specific primers that were 
listed in Supplementary Table 3. qPCR with amplified cDNAs was performed using the 
Power SYBR Green Master Mix (Applied Biosystems) on Applied Biosystems Quant 
Studio 5. 
 
Immunofluorescence (IF) analysis 
For the IF staining, cultured cells were fixed with 4% paraformaldehyde contained 0.1% 
Triton X-100 for 10�min at room temperature. Then cells were washed with PBS. 
Blocking was performed using 5% BSA for 1�h at room temperature. The primary 
antibodies were added and incubated for overnight at 4�°C. After washed in PBS, the 
secondary antibodies were added and incubated for 1�h at room temperature. Images 
were captured using Nikon A1R confocal microscope and were processed using Nikon 
NIS Elements and Adobe Photoshop. 
 
Antibodies for immunofluorescence 
Primary antibodies used were: GAPDH (CST, 5174) 1:200 dilution; HK2 (CST, 2867) 
1:200 dilution; LDHA (CST, 3582) 1:200 dilution; PKM (CST, 3190) 1:200 dilution; PFKP 
(CST, 8164) 1:200 dilution; HIF1A (CST, 36169) 1:200 dilution; P53 (CST, 5174) 1:200 
dilution. Secondary antibodies, donkey anti-mouse, donkey anti-rabbit, or donkey anti-
goat antibodies conjugated to AlexaFluor-488, AlexaFluor-546 or AlexaFluor-647, were 
purchased from Thermo Fisher and used at 1:500 dilution. 
 
Single-cell RNA-seq (scRNA-seq) 
Treated cells were digested by collagenase IV for 20�min at room temperature. The 
digestion was then stopped by media. The cells were pelleted by centrifugation at 
300�×�g for 5�min. And then, supernatant was removed, and the cell pellet was 
washed with PBS twice. Single cells were obtained by filtering through 40�µm strainers. 
Cell number was counted using Countess II FL automated cell counter (Invitrogen). The 

10× Genomics Single-Cell 3′ Expression library preparation is performed using the 10× 
Genomics Chromium Controller. The cells prepared from disassociated tissue or tissue 
culture are validated for viability and cell concentration using the Countess II FL 

Automated Cell Counter (Life Technologies) targeting ≥75% cell viability. If debris or cell 
clumping is present in the cell suspension, the preparation is filtered through a FLOWMI 
Cell Strainer, 40�µm (Thermo Fisher 50-136-7555) to yield a homogenous single-cell 
suspension. Cell counts are re-determined by using the Countess ll FL and adjusted to 
~1000�cells/µl by low speed centrifugation at 4�°C and re-suspended in 1× PBS 
without calcium or magnesium (Thermo Fisher MT21040CV) supplemented with 0.04% 
BSA to prepare cells for emulsification. The cell emulsification is performed with the 10× 

Chromium Controller using the Chromium Next GEM Single-Cell 3′ GEM Library & Gel 
Bead Kit v3.1 (10× Genomics 1000120) and Chromium Next GEM Chip G Single-Cell 
Kit (10× Genomics 1000127). Well 1 of Chip G is loaded with the RT Master Mix�+�cell 
suspension containing ~16,000 cells to target 10,000 emulsified cells at ~65% efficiency 
of emulsification. Well 2 of Chip G is filled with 50�µl of the Next GEM GEL Beads. Well 
3 of Chip G is filled with 45�µl Partitioning Oil. Any unused wells are filled with 50% 
glycerol at a volume designated for the well number. A gasket is applied to the Chip G 
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and the loading cassette and inserted into the Chromium Controller for GEM creation 
Using the Chromium Single-Cell G run program. Emulsified GEMs are recovered from 
each well and transferred to 200�µl strip tubes. The RT reaction to generate 10× 
barcoded single stranded cDNA, in the single-cell containing GEMs, is performed using 
an Eppendorf MasterCycler Pro thermal cycler. Post GEM-RT Cleanup is conducted by 
breaking the GEMS with 10X Recovery Agent to separate the aqueous phase from the 
Recovery Agent and Partitioning oil. A cleanup of the sscDNA containing aqueous 
phase is completed using Dynabeads MyOne Silane beads (Life Technologies 37002D). 
The second strand cDNA amplification is performed using the cDNA Amplification Mix 

on the Eppendorf MasterCycler Pro. The 3′ gene expression library construction is 
initiated with fragmentation, end repair and A-tailing of the dscDNA followed by adapter 
ligation and a sample index PCR using the Illumina compatible indexed adapters in the 
Chromium i7 Multiplex kit (10× Genomics 120262). Validation of the single-cell library is 
conducted using the Agilent Tapestation 4200 ScreenTape assay (Agilent 5067-5576). 
Single-cell library quantification is completed using a Roche LightCycle96 using 
FastStart Essential Green Master (Roche 06402712001) and KAPA Library Quant 
(Illumina) DNA Standards (KAPA KK4903). Library concentrations are adjusted to 
3�nm and pooled. The library pool is diluted to 1.00�nm for a final clustering 
concentration of 200pM on a NovaSeq6000. The sequencing was performed using a 
NovaSeq6000 100 cycle Reagent Kit (Illumina 20012865) with an asymmetrical 
sequencing profile (read 1—28 cycle: i7 index read—8 cycle: i5 index read—0 cycle: 
read 2—94 cycles). Bcl2fastq conversion and demultiplexing is performed using the 10X 
Genomics Cell Ranger and Loupe Browser software suite. 
 
Analysis of single-cell RNA-seq data 
Cell clustering was performed by Seurat (https://satijalab.org/seurat/, R package, v3.1). 
Seurat object was created first. Then, we discarded low-quality cells, in which less than 
200 genes were detected. Genes expressed in less than three cells were filtered out. 
We also filtered cells that have lower than 2000 genes and that contain mitochondrial 
genome higher than 10% of mapped reads. We then used LogNormalize, a global-
scaling normalization method, which normalized gene expression measurements by the 
total expression per cell, followed by multiplication of the result by a default scale factor 
(10,000) and subsequent log-transformation. After filtering and normalization, 9815 cells 
were selected for further analysis. Gene expression was calculated by centering 
expression across all cells in the cohort using the “ScaleData ()” function in Seurat. 
Identification of top 2000 variable genes, PCA16 (30 significant PCs determined by a 
scree plot) and SNN-Cliqinspired clustering were performed in Seurat to generate 
uniform manifold approximation and projection (UMAP) visualizations. Cluster definition 
was performed by specific marker genes and the “FindClusters ()” function in Seurat. 
Gene expression analysis for different clusters were performed by using the Monocle17 
(http://cole-trapnell-lab.github.io/monocle-release/, R package, v2.12) under the default 
settings. For the gene expression analysis, we used a published code from a published 
study with modifications. Pheatmap18 package was used for heatmap plotting and 
clustering. GO analysis of genes were analyzed by using the ClusterProfiler19 package. 
 
Statistical analysis 
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All experiments were replicated at least three times independently. Different mice, 
tissues or cells were used during each experimental replicate. Quantitative data from 
the experimental replicates were pooled and are presented as the mean�±�SEM or 
mean�±�SD as indicated in the figure legend. Compiled data were analyzed by 
Student’s t test and two-way ANOVA test. 
 
Data availability 
The authors declare that all data supporting the findings of this study are available 
within the article and its Supplementary Information files or from the corresponding 
author upon reasonable request. FastQ files of single-cell RNA-seq are available on 
Gene Expression Omnibus (GEO) database under accession code GSE???. Source 
data are provided with this paper. 
 
Code availability 
Source code of the analysis is publicly available on GitHub at this address: 
https://github.com/iamzhangxiaoyu/scRNA-seq and are available on Zenodo: 
https://doi.org/10.5281/zenodo.4535405. 
 
Results 
 
Single Cell Transcriptome Identified Cell Type, Distribution and Gene Expression 
of the Aging Mouse Ovary. 
Characterizing the diversity of the ovary, we obtained aging mouse ovary tissues from 
20 health female mouse of same age for 2 separated 10X genomic single cell RNA-seq 
assay. In addition, we integrated our aging mouse ovary 10X genomic data with 
published adult ovary data from mouse cell atlas20 by microwell-seq with the batch 
effect removed by harmony package21 in R. To further understand the aging and young 
mouse ovary, a total of 9815 cells were retained for further analysis after filtering by 
using stringent quality control (Extended Data Fig.1a). For the defining of each cell type, 
we processed the sequencing data by the DoubleFinder package22 firstly for the doublet 
remove and Seurat package23 for normalization, clustering and annotation of each cell 
type based on the expression of specific marker gene including granulosa cell (GC, 
Inha+), stroma cell (SC, Col1a2+), theca cell (TC, Cyp11a1+), ovary surface epithelium 
cell (OSE, Krt19+), immune cell (IC, Lyz2+) and endothelial cell (EC, Cldn5+) (Fig.1c,f). 
We have identified 6 major clusters, which visualized by uniform manifold approximation 
and projection (UMAP)24, and showed that the distribution in young and aging mouse 
ovary (Fig.1a, Extended Data Fig.1d,e). Histologically analysis (via PAS and Masson 
staining) revealed that thickness of the ovaries collected from aged mouse elevated 
compared to young (Fig.1d,e). To further investigate the proportion of cell, we 
calculated the average cell number and cell proportion in different cell types and stages 
(Fig.1b, Extended Data Fig.1b,c). Analysis of biological function of each cell cluster in 
mouse ovary surface by Gene Ontology (GO)25 using differentially expressed genes 
(DEGs) revealed the specific and enrichment function in different cell cluster (Extended 
Data Fig.2a,b,3a,b). For example, GO term enriched to SC include extracellular matrix 
organization and collagen fibril organization. GO term including T-cell activation and 
leukocyte proliferation were enriched for IC (Fig.1g). GSVA analysis26 showed that 
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different score in hallmark function among the different cell clusters. Most of hallmark 
function score were consistent with the GO term enrichment. Such as DNA repair 
function score was the highest in GC which was also enriched in GO term (Fig.1h).  
 
DEGs and regulons in Aged Mouse Ovary. 
Initially, we identified aging-associated DEGs expression in mouse ovary surface in old 
versus young cell types GC, SC, TC, OSE, IC and EC, respectively (Fig.2a). Further 
analysis of DEGs expression, we calculated 387 downregulated and 1619 upregulated 
DEGs in Young vs Old group by function ‘FindAllMarkers’ (|avg-logFC|>0.25 and 
p_val_adj<0.05) in Seurat package (Fig.2b and Supplementary Table 1). Next, to study 
aging genes function in mouse ovary, we defined an aging-associated signature to 
distinguish young and old accounting for cell types from mouse ovary. To test 
enrichment of an aging-associated gene-set, we curated based on the hotspot genes 
which annotated in GenAge dataset of aging-related genes (Supplementary Table 2). 
92 out of 388 aging-associated genes have been identified which represented in the 
single cell RNA-seq datasets to be aging associated genes. 85 out of 92 upregulated 
and 7 out of 92 downregulated genes in Young vs Old represented significant enriched 
upregulated and downregulated aging-associated genes in mouse ovary (Fig.2b). To 
summarized analysis these aging-associated genes in mouse ovary surface single cell 
RNA-seq datasets, we used ssGSEA27 (single sample Gene Set Enrichment Analysis) 
scores. After calculating both upregulated and downregulated aging scores, we showed 
broad variation from different cell types in mouse ovary (Fig.2c), suggesting that the 
variant in aging-associated genes that we observed is also cell type relevant. 
Transcription factors play critical roles in regulatory of gene expression. To identify 
regulons in young and old mouse ovarian cells, we used pySCENIC28 to calculate the 
regulatory activity of the GRNs. For characterizing of the regulatory patterns, we 
compared the difference of RAS scores of each regulon by the Connection Specificity 
Index29 (CSI) (Extended Data Fig.4a-f). Interesting, 209 regulons and 263 regulons are 
organized into 9 major modules, respectively in young and old mouse ovarian cells. 
(Fig.2d). For each module in young and old mouse ovary, we calculate the average 
activity scores by module and represented enriched cell types in modules. We found 
that some module specific enriched in cell types. In young ovary, module M1 and M2 
contains regulons Nr5a2, Gata6, Nfya and Klf5, which are enriched in granulosa cells. 
M3, M4 and M7 contain regulons that are associated with metabolism and apoptosis, 
such as Fos, Jun, Jund, Junb and Cebpb, which are represented in ovary surface 
epithelial cells. Regulons Clock, Nfyb, Stat3 and Zbtb17 in M5 and M6 are associated 
with immune function enriched in immune cells. M8 and M9 are represented in 
endothelial cells and theca cells, respectively. In old ovary, regulons in M6 and M8 are 
highly associated with the nervous system. The activity of M6 and M8 including Pparg, 
Six2, Foxo3 and Rest is specifically high in granulosa cells. Module M2 and M3 are 
related to ovary surface epithelial cells and they are very specifically enriched regulons 
Erg, Rxra, Ddit3 and Plag1. Modules M1, M5 and M9 contains regulons that are 
activated in immune cells, such as Elk1, Nrf1, Arnt, Hoxc10, Nfatc4 and Pax8. Regulons, 
E2f1, Thap1, Nr1h4 and Usf1, are represented in theca cells (Extended Data Fig.5a,b). 
To further examine the difference in regulons between young ovary and old, we merged 
the regulons in young and old ovary. 73 out of 209 regulons enriched gene ontology 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.03.01.481557doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.481557
http://creativecommons.org/licenses/by-nc-nd/4.0/


(GO) functional terms and Kyoto encyclopedia of genes and genomes (KEGG) related 
to response to hypoxia and longevity regulating pathway in young ovary specifically. To 
compared with old ovary those regulons are 127 out of 263 which are associated with 
rhythmic process and cellular senescence (Fig.2e). A closer examination of these 
regulons with age associated DEGs, we represented a heatmap of 7 vital regulons in 
mouse ovary including Cebpb, Myc, Trp53, Hif1a, Clock, Jund and Nfkb1. We further list 
enriched DNA-binding motifs specific in mouse ovary surface (Fig.2f,g). For validation, 
we stained Hif1a, which are expressed by GC and EC. And, we found both its 
expression level and signal elevated in Young compare to Old. Number and 
fluorescence intensity of these two TFs were decreased in aged GCs in comparison 
with GCs from young ovaries (Fig.2h). 
 
Metabolic and Nutrient Absorptive Target Identification 
To identified metabolic genes, we did pseudo-bulk analysis of single cell RNA-seq data 
by group young and old mouse ovarian cells.  We performed the metabolic pathway 
genes were commonly activated in young mouse ovary, including glycolysis, TCA, 
OXPHOS, fatty acid metabolism, and others (Fig.3a). To further analysis metabolic 
pathway in mouse ovary, we defined 4 gene set expression involve in glycolysis (n=63), 
TCA (n=31), OXPHOS (n=108) and fatty acid metabolism (n=42) as score for glycolysis 
signature, TCA signature, OXPHOS signature and fatty acid metabolism signature, 
respectively. The distribution of these 4 metabolic signatures was represented in Fig.3b. 
Meanwhile, we found these metabolic signature genes show broad variation across 
different cell types in mouse ovary surface, glycolysis signature, TCA signature, 
OXPHOS signature and fatty acid metabolism signature scores were significantly 
elevated in GC, TC and OSE compare to other cell types (Fig.3c). Due to impaired in 
nutrient absorption lead to multiple diseases in aging have been reported30,31. To map 
the distinct expression patterns of genes associated with nutrient absorption in aging, 
we calculated the ssGSEA scores relate to major nutrient transporters genes range 
from glucose, amino acids, vitamins, lipid, ions and inorganic solutes. As Fig.3d,e 
shown, genes related to vitamin were enriched in the SC, and genes involved in 
inorganic solute and bile salt were significantly elevated in TC. Genes contained water, 
amino acid and glucose were highly expression in the EC. There were no significantly 
changes in the genes involved in organic solute and ion. To compare young and old 
mouse ovary nutrient patterns, a dot plot was represented that genes related to nutrient 
absorption were significantly elevated in young mouse ovary which consistent with the 
expression patterns in metabolic pathway genes. Although there was no significantly 
fluctuation in the expression of organic solute and ion, some genes showed highly 
expression pattern in the young TC and OSE such as Slc31a1 and Kctd14. In general, 
our data indicated that both metabolic pathway and nutrient absorption functional 
activated in young mouse ovary surface compare with old mouse. 
 
Metabolic profiling identifies the role of glycolysis in Aged Mouse Ovary. 
Metabolic and nutrient absorptive target analysis revealed the differential function in 
young and aged ovaries, including glycolysis, TCA, OXPHOS and fatty acid metabolism. 
We next sought to identify glycolysis-associated changes in protein expression in 
ovarian cells. Glycolysis are essential for ovarian development and homeostasis provide 
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nutrients and mechanical support for oocytes via physical interactions32. Due to 
glycolysis-related apoptosis of GCs often causes follicular atresia and ovarian aging33, 
we focused on the glycolysis-associated changes of gene expression in ovarian. 
Expression and protein levels of these glycolysis-associated genes were also 
decreased in aging ovarian cells in comparison with ovarian cells from young ovaries 
(Fig.4a-e). Immunostaining confirmed a significant reduction of HK2, LDHA, PKM, 
PFKP and GAPDH positive cells detected in young ovaries. qRT-PCR analysis showed 
a significant reduction of glycolysis-associated genes in in aging ovary compare young 
group (Fig.4f). Combined analysis of scRNA-seq with gene expression revealed 
glycolysis-associated genes decreased during ovary aging. Consistent with this 
observation of staining, the data suggest that glycolysis function may influence 
development in ovary function with aging. 
 
HIF1a signaling controls glycolysis 
To determine whether HIF1a signaling controls glycolysis in ovary function with aging, 
we combined analysis transcript profiles of 3-mo, 6-mo, 9-mo, and 12-mo ovary with 
Hif1a knockout RNA-seq and ChIP-seq data. Initiation of the ovarian transcriptomic 
profile analysis from 3-month to 12-month age groups, RNA sequencing data were 
reanalysis (n =5/group. A heatmap shown of samples using all expressed genes 
demonstrated a separation of 3-mo, 6-mo, 9-mo and 12-mo ovary samples (Extended 
Data Fig.6a). All expressed genes were shown in three clusters through a K-mean 
clustering and a separation of 3-mo and 6-mo samples from 9-mo and 12-mo samples 
indicating a shift in transcriptomic patterns between young and aging ovary samples 
with both increases and decreases in expression observed. A line plot was 
demonstrated steadily linear increases or decreases with growing age across the 4 
timepoints (Extended Data Fig.6b). To further annotated this set of genes, GO term 
function analysis was performed to identify Glycolysis, TCA, Oxidative phosphorylation 
and HIF-1 signaling pathway affected with aging. Among these pathways and 
processes were decreased broadly (Extended Data Fig.6c). Consistent with scRNA-seq, 
downregulated regulons found in aging (Hif1a, Trp53 and Cebpb) were shift down to the 
bottom by peak plot using RNA-seq data cross 3-mo to 12-mo ovary samples (Extended 
Data Fig.6d). To further identified the relationship between hif1a and glycolysis pathway, 
we analysis Hif1a knockout RNA-seq and ChIP-seq data13. Hif1a knockout RNA-seq 
show that Hif1a knockout exhibited comparable transcriptomic changes including shut 
down of essential glycolysis genes, such as Gapdh, Ldha, Pfkp, Pkm and Hk2, in 
response to Hif1a regulation (Fig.5a). GSVA analysis demonstrated that metabolic 
pathway concludes Glycolysis and Oxidative phosphorylation decreased in HIF1a 
knockout samples from GO term, KEGG, Hallmark and Reactome enrichment (Fig.5b). 
We also performed Gene Set Enrichment Analysis (GSEA) and found significant 
enrichment of genes associated with HIF-1signaling pathway and glycolysis in hif1a 
knockout mouse dataset (Fig.5c). Meanwhile we examined the region around Hk2, Ldha, 
Eno1, Gapdh, Pkm and Pfkl in Hif1a knockout RNA-seq and ChIP-seq data combine 
with growing aging ovary RNA-seq data (Fig.5d,e, Extended Data Fig.7a-c)34. 
Interestingly, the promoter specific bound peak demonstrated a strong binding region by 
Hif1a. Consistently, by examine Hif1a knockout RNA-seq data, we observed Hk2, Ldha, 
Eno1, Gapdh, Pkm and Pfkl expression level decreased at thses locus in Hif1a 
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knockout samples. We also detected Hk2, Ldha, Eno1, Gapdh, Pkm and Pfkl gene 
expression decreased as well in aging ovary samples. This is consistent with these 
finding indicated that HIF1a signaling controls glycolysis in aging ovary. 
 
HIF1A interacts with glycolysis pathway 
In order to identify essential proteins of the HIF1A interaction with glycolysis, we ranked 
proteins by their average functional similarity relationships among proteins within the 
interactome35. PFKL, PFKP and PKM were the three top-ranked proteins potentially 
playing central roles in the HIF1A interactome. PFKL, PFKP, PKM, TRP53, HK2 and 
LDHA protein with a cutoff value > 0.6 (Fig.6a). We further identified high confidence 
interactions (annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) or 
validated by low-throughput assays) more efficiently than co-expression based method. 
Interestingly, three glycolysis-associated interactors identified (PKM, HK2 and LDHA) 
were supported by KEGG or low-throughput experiments (Fig.6b). Then, we 
investigated HIF1A correlation with glycolysis pathway and HIF1A regulated glycolysis 
gene expression in the Genotype-Tissue Expression database (GTEx) (Fig.6c). Using 
HK2, ENO1, GAPDH, LDHA, PKM and PFKP as six representative glycolysis pathway 
genes, we found that HIF1A show strong (Pearson correlation�>�0.6) or moderate 
correlation (Pearson correlation�>�0.4) with glycolysis pathway genes (Fig.6d). We 
further confirmed that HIF1A show high correlation with glycolysis pathway in our 
ovarian single cell RNA-seq dataset as well (Fig.6e).  
 
Discussion 
Due to fertility rates decline in aging mammalian, the cellular and molecular 
mechanisms are still challenging in ovarian aging. To understand the cellular and 
molecular mechanisms associated with ovarian aging, we representative scRNA-seq 
profiling of aging mouse ovary samples combine with young mouse ovary organ 
scRNA-seq database. In addition, we show similar genetic profiles in developmental 
mouse ovary RNA-seq data and a Hif1a knockout ChIP-seq and RNA-seq data which 
providing insights into the mechanisms. Our findings on alterations in ovary during aging 
are consistent with previous studies on developmental aging mouse ovary. Moreover, 
our study provided deep through scRNA-seq on the mouse ovary revealing key point of 
the HIF1a-glycolysis axis alterations at the molecular and genomic level in highly 
heterogeneous ovarian aging. Specifically, the downregulation of transcriptional factor 
Hif1a and downregulation of glycolysis pathways related to ovarian aging were two 
novel characters of aging ovary. Therefore, these observations provide novel insights in 
ovarian aging and identify target for the diagnosis and therapy of aging-associated 
ovarian disorders and female infertility. 
 
Considering the cellular composited complication of the mouse ovary, we identified six 
ovarian somatic compartments based on their unique molecular marker. Previous 
studies have representative possible mechanisms aging-associated transcriptional 
changes, which largely involved the disturbance of antioxidant signaling and the 
induction of oxidative damage as a crucial factor in ovarian functional reduction with 
aging36. However, how ovarian functional decline and aging synergist effect on ovarian 
fertility is largely unknown, especially at the single cell level with such complicated 
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heterogenetic composition. Here, we representative that each type of the soma 
compartment has extremely different aging related transcriptional switch relay on their 
specific aging related regulon, that are associated with ovarian functional impairment. 
To confirm these specific regulon, we show that ovarian metabolic function is linked to 
the specific cell-type-related downregulation of age-related regulons and metabolic 
signature. Correlation of metabolic changes with specific age-related regulons 
confirmed the robustness of the scRNA-seq strategy and reliability of our data. 
Consistently, bulk RNA-seq has revealed age-related metabolic dysfunction in mouse 
ovarian cells collected from 3mo to 12mo34. 
 
According to scRNA-seq analysis, aging ovarian cells congruently downregulated 
the expression of metabolic marker genes, as well as metabolic genes involved in 
OXPHOS, glycolysis, TCA cycle, nucleotide biosynthesis, and mRNA metabolism. 
Hence, metabolic related cells seem to similarity enriched in GCs, OSEs and TCs. 
Nonetheless, tissue-specific differences in metabolic transcriptome profiles were 
observed, likely in part due to differences in micro-environmental conditions37. Our data 
also unveiled the differential expression of nutrient absorption–related genes in aging 
ovary across different cell types. High expression of the genes related to transport of 
lipid and sugar in the GCs and OSEs indicates that the absorption and application of 
these nutrients is mainly accomplished in GCs and OSEs, which is consistent with an 
earlier report38. Based on our scRNA-seq analysis, we representative that in mouse, the 
inactivation of the glycolysis occurs in aged ovarian somatic cells by 7 different 
regulatory mechanisms, evidenced by the transcriptional regulatory regulons involving 
aging related gene set. In a meanwhile, our single-cell transcriptomic atlas of mouse 
ovarian aging was mapped on samples collected from mouse ovaries with a wider 
sample numbers (n=20) which undoubtedly provides invaluable in-depth information to 
ovarian aging biology. Furthermore, the expression levels of glycolysis genes were 
positively correlated with aging related regulons in mouse ovarian cells, and Hif1a 
knockout responses metabolic change, highlighting Hif1a as biomarkers or targets for 
diagnose aging in clinic. 
 
In summary, we profiled single cell transcriptomes of mouse ovarian cells from young 
and aging female mouse, which serves as a foundational dataset for the scientific 
community. Further comparison analysis reveals the aging related aging regulons, 
metabolic and nutrient absorption changes taking place during ovary aging, and 
provides potential candidate biomarkers for the diagnosis of aging-associated ovary 
pathology. In addition, the mechanistic insights arising from this study could establish 
new avenues for developing targeted metabolic interventions to protect against 
physiological ovarian aging and related diseases and for developing new guidelines to 
practice better lifestyle to improve fertility. 
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Figure Legends 
 
Figure 1. scRNA-seq analysis of young and old female ovary. (a) Uniform manifold 
approximation and projection (UMAP) plot of ovarian cells captured from young and old 
female ovary colored by cluster and sample identity. (b) Histograms showing the 
percentage of each sample and stages in each ovarian cell cluster. (c) Different stage 
germ cell marker expression shown as UMAP feature. (d) Picrosirius red (PSR) staining 
of mouse ovarian sections from young and old, respectively, demonstrating 
morphological changes during aging and variations among old mouse ovary. (e) PSR 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 1, 2022. ; https://doi.org/10.1101/2022.03.01.481557doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.481557
http://creativecommons.org/licenses/by-nc-nd/4.0/


staining data are presented for the young and old group. The blue box indicates the old 
thickness and the fibrosis area, the purple box indicates the young thickness and the 
fibrosis area. (f) Violin plot showing the expression of representative genes for each cell 
type. (g) Heatmap showing gene expression signatures of each cell type. Enriched GO 
terms annotation for each cell type are on the right. (h) Heatmap showing hallmark 
GSVA analysis results of each cell type. 
 
Figure 2. DEGs and regulons in young and aged mouse ovary. (a) Heatmaps showing 
common and unique upregulated and downregulated DEGs between young and old 
female ovary in each somatic niche cell type. (b) Volcano plot showing fold changes for 
genes differentially expressed between young and old pseudo-bulk samples. Age-
related genes are enriched in upregulated and downregulated genes. (c) Boxplots of 
Aging-related-up and down enrichment scores show variation across ovarian somatic 
cell types. (d) Identified regulon modules based on regulon connection specificity index 
(CSI) matrix, along with representative transcription factors, corresponding binding 
motifs, and associated cell types in each young and old female mouse ovarian cells. (e) 
Top GO enrichments with representative young and old regulons. (f) Overlay of scRNA-
seq regulons and aging related genes revealed 7 vital regulons in mouse ovary (g) 
Heatmap showing 7 vital regulons expression of each cell type. Binding site for each 
regulon are on the right. (h) Immunofluorescence analysis showing the downregulation 
of HIF1A in aged ovary in comparison to young counterparts. Scale bar, 50 μm. Box 
plots showing expression levels of Hif1a in young and old ovarian somatic cell. 
Quantification of HIF1A-positive cells and intensity were shown by box plots in mouse 
ovaries.  
 
Figure 3. Metabolic and nutrient absorptive target identification. (a) Map of upregulated 
central carbon metabolic pathways in young versus old mouse ovary. Red color 
indicates upregulated expression. (b) Different metabolic signature marker expression 
shown as UMAP feature. (c) Boxplots of metabolic signature scores show variation 
across ovarian somatic cell types. (d) Violin plots showing distributions of mean 
expression of transporter genes in each cell type in mouse ovary (e) Expression 
patterns of specific genes involved in nutrient absorption and transport in each cell type 
in mouse ovary. Each dot represents a gene, of which the color saturation indicates the 
average expression level, and the size indicates the percentage of cells expressing the 
gene. 
 
Figure 4. Metabolic profiling identifies the role of glycolysis in aged mouse ovary. (a) 
Immunofluorescence analysis showing the downregulation of HK2 in aged ovary in 
comparison to young counterparts. Scale bar, 50 μm. Box plots showing expression 
levels of Hk2 in young and old ovarian somatic cell. Quantification of HK2-positive cells 
and intensity were shown by box plots in mouse ovaries. (b) Immunofluorescence 
analysis showing the downregulation of PKM in aged ovary in comparison to young 
counterparts. Scale bar, 50 μm. Box plots showing expression levels of Pkm in young 
and old ovarian somatic cell. Quantification of PKM-positive cells and intensity were 
shown by box plots in mouse ovaries. (c) Immunofluorescence analysis showing the 
downregulation of PFKP in aged ovary in comparison to young counterparts. Scale bar, 
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50 μm. Box plots showing expression levels of Pfkp in young and old ovarian somatic 
cell. Quantification of PFKP-positive cells and intensity were shown by box plots in 
mouse ovaries. (d) Immunofluorescence analysis showing the downregulation of LDHA 
in aged ovary in comparison to young counterparts. Scale bar, 50 μm. Box plots 
showing expression levels of Ldha in young and old ovarian somatic cell. Quantification 
of LDHA-positive cells and intensity were shown by box plots in mouse ovaries. (e) 
Immunofluorescence analysis showing the downregulation of GAPDH in aged ovary in 
comparison to young counterparts. Scale bar, 50 μm. Box plots showing expression 
levels of Gapdh in young and old ovarian somatic cell. Quantification of GAPDH-positive 
cells and intensity were shown by box plots in mouse ovaries. (f) qRT-PCR analysis of 
glycolysis related genes in young and old mouse ovary normalized to β-actin. Data 
represent mean ± SD; n = 3 independent ovaries. P < 0.05 (two-way ANOVA test). Data 
are representative of three independent experiments. 
 
Figure 5. HIF1a signaling controls glycolysis. (a) Scatter plot representations of DEGs 
between Hif1a wildtype and Hif1a knockout. The up or down-regulated genes (fold 
change > 2 or < -2) in each group are plotted in red and blue, respectively. (b) GSVA 
analyses reveal distinct enriched gene sets between Hif1a wildtype and Hif1a knockout. 
In the heatmap, rows are defined by the selected gene sets, and columns by consensus 
scores for each group. (c) Gene Set Enrichment Analysis (GSEA) of the Hif1a wildtype 
and Hif1a knockout RNA-seq data. (d) ChIP-seq analysis of HIF1A bound. (e) Hk2, 
Ldha, Eno1, Gapdh, Pkm and Pfkl genome accessibility tracks for ChIP-seq and RNA-
seq data. 
 
Figure 6. HIF1A interacts with glycolysis pathway. (a) The distributions of glycolysis 
related similarities were summarized as boxplots. The boxes represent the middle 50 
percent of the similarities. Proteins with a higher average functional similarity (cutoff > 
0.6) were defined as party proteins, which are considered as the central proteins 
within the HIF1A interactome. (b) The dashed line represents the cutoff value. The 
interactions predicted with high-confident interactions. (c) GTEx database showing 
correlation of representative HIF1A with glycolysis pathway.  (d) GTEx database 
showing correlation of representative HIF1A with selected glycolysis related genes (HK2, 
ENO1, GAPDH, LDHA, PKM and PFKP) in 88 human ovary samples. The linear 
regression curve is demonstrated. 95% confidence interval (shaded area) is shown in 
each panel. Two tailed t-statistic P value and coefficient (R) of Pearson’s correlation is 
shown on the top. (e) scRNA-seq database showing correlation of representative HIF1A 
with glycolysis pathway in each cell type in female mouse ovary. 
 
Extended Data Fig. 1 10X genomics quality control in scRNA-seq. (a) A workflow 
showing relationship between HIF1A with glycolysis. (b,c) Histograms showing the 
aveage number of each sample and stages in each ovarian cell cluster. (d,e) Uniform 
manifold approximation and projection (UMAP) plot of ovarian cells captured from 
young and old female ovary colored by assay method and sample identity. 
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Extended Data Fig. 2 GO function and KEGG analysis for each cell type in scRNA-seq. 
(a) The bubble plots show GO biological process enrichment analysis for each cell type. 
(b) The bubble plots show GO molecular function enrichment analysis for each cell type. 
 
Extended Data Fig. 3 GO function and KEGG analysis for each cell type in scRNA-seq. 
(a) The bubble plots show GO cellular component enrichment analysis for each cell type. 
(b) The bubble plots show KEGG enrichment analysis for each cell type. 
 
Extended Data Fig. 4 Cell-Type-Specific Regulon Activity Analysis. (a) Rank for 
regulons in granulosa cell based on regulon specificity score (RSS). Granulosa cells are 
highlighted in the UMAP (red dots). Binarized regulon activity scores (RAS) for top rank 
regulon Foxo1 on UMAP (dark green dots). (b) Rank for regulons in endothelial cell 
based on regulon specificity score (RSS). Endothelial cells are highlighted in the UMAP 
(red dots). Binarized regulon activity scores (RAS) for top rank regulon Sox18 on UMAP 
(dark green dots). (c) Rank for regulons in OSE cell based on regulon specificity score 
(RSS). OSE cells are highlighted in the UMAP (red dots). Binarized regulon activity 
scores (RAS) for top rank regulon Grhl2 on UMAP (dark green dots). (d) Rank for 
regulons in theca cell based on regulon specificity score (RSS). Theca cells are 
highlighted in the UMAP (red dots). Binarized regulon activity scores (RAS) for top rank 
regulon Rora on UMAP (dark green dots). (e) Rank for regulons in immune cell based 
on regulon specificity score (RSS). Immune cells are highlighted in the UMAP (red dots). 
Binarized regulon activity scores (RAS) for top rank regulon Tbx21 on UMAP (dark 
green dots). (f) Rank for regulons in stroma cell based on regulon specificity score 
(RSS). Stroma cells are highlighted in the UMAP (red dots). Binarized regulon activity 
scores (RAS) for top rank regulon Prdm6 on UMAP (dark green dots). 
 
Extended Data Fig. 5 Activation of regulon modules in differnet cell types from young 
and old female mouse ovary. (a) Average module activity score in each cell type from 
young mouse ovary and enriched regulon binding sites. (b) Average module activity 
score in each cell type from old mouse ovary and enriched regulon binding sites. 
 
Extended Data Fig. 6 Bulk RNA-seq analysis of aging ovary. (a) A heatmap shown of 
samples using all expressed genes demonstrated a separation of 3-mo, 6-mo, 9-mo 
and 12-mo ovary. (b) A line plot was demonstrated steadily linear increases or 
decreases with growing age across the 4 timepoints. (c) GO term function analysis was 
performed to identify Glycolysis, TCA, Oxidative phosphorylation and HIF-1 signaling 
pathway affected with aging. (d) Peak plot using RNA-seq data cross 3-mo to 12-mo 
ovary samples. 
 
Extended Data Fig. 7 Hif1a ChIP-seq analysis. (a) Global analysis of distribution of 
Hif1a ChIP-seq binding site. (b) Global analysis of genome location of Hif1a ChIP-seq 
binding site. (c) Level of peak frequency in genomic region. 
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