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Abstract 

Making a decision is invariably accompanied by a sense of confidence in that decision. Across subjects and 
tasks, there is widespread variability in the exact level of confidence, even for tasks that do not differ in 
objective difficulty. Such expressions of under- and overconfidence are of vital importance, as they relate 
to fundamental life outcomes. Yet, a computational account specifying the mechanisms underlying under- 
and overconfidence is currently missing. Here, we propose that prior beliefs in the ability to perform a task, 
based on prior experience with this or a similar task, explain why confidence can differ dramatically across 
subjects and tasks, despite similar performance. In two experiments, we provide evidence for this 
hypothesis by showing that manipulating prior beliefs about task performance in a training phase causally 
influences reported levels of confidence in a test phase, while leaving objective performance in the test 
phase unaffected. This is true both when prior beliefs are induced via manipulated comparative feedback 
and via manipulating task difficulty during the training phase. We account for these results within an 
accumulation-to-bound model by explicitly modeling prior beliefs based on earlier exposure to the task. 
Decision confidence is then quantified as the probability of being correct conditional on these prior beliefs, 
leading to under- or overconfidence depending on the task context. Our results provide a fundamental 
mechanistic insight into the computations underlying under- and overconfidence. 
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Introduction 

Human decision making is accompanied by a sense of confidence regarding the accuracy of those decisions. 
In experimental work, decision confidence usually correlates with objective accuracy, with participants 
reporting high confidence for correct choices and low confidence for incorrect choices (1). This tight link 
between confidence and accuracy is captured in the theoretical proposal that confidence for binary choices 
reflects the probability of a choice being correct given the available data (2, 3). It follows from this proposal 
that humans should be rather stable in how they compute and report confidence. However, while decision 
confidence is on average well explained by such probabilistic models, there exist vast differences between 
individuals and between tasks concerning the actual reported level of confidence (4). This is clearly visible 
in simple, low-level perceptual decision-making tasks, where some subjects systematically underestimate 
and others overestimate their choice accuracy. This phenomenon is often referred to as under- and 
overconfidence, respectively. Although expressions of under- and overconfidence may not have important 
consequences in the context of a laboratory task, such biases have far-reaching implications in real life. For 
example, overconfidence has been related to increased sharing of fake news (5) and diagnostic inaccuracies 
in physicians (6), while underconfidence has been related to low self-esteem (7). Moreover, impaired 
insight into the accuracy of one’s decisions (i.e., impaired metacognition) has been linked to holding radical 
beliefs (8) and a variety of psychiatric symptoms (9).   

Despite the clear evidence for individual as well as task differences in confidence, with potentially far-
reaching consequences, the origin of these differences is ill understood. Although some researchers have 
proposed explanations in terms of impression management (10, 11) or exposure to feedback (12, 13), these 
accounts do not offer a fundamental understanding of the underlying mechanism of biases in confidence. 
Instead, in the current work we investigated whether biases in confidence can be accounted for within a 
probabilistic framework. To explain the computational dynamics behind under- and overconfidence, we 
leveraged an under-appreciated aspect about probabilistic models of confidence: The probability of being 
correct depends on the task context. Everything else being equal, the probability of a correct choice is higher 
in an easy than in a difficult task context, simply because correct choices appear more often in easy tasks. 
Thus, even an agent who simply believes to be operating in a difficult task context, will report lower 
confidence than one who believes to be operating in an easy task context (see Figure 1). Although we are 
not the first to highlight a potential role of prior beliefs in the computation of confidence (14–16), a 
principled approach describing how prior beliefs should influence the computation of confidence is 
currently still lacking. In the present work, we provide exactly this and propose a modeling framework in 
which beliefs about performance can dissociate from actual performance. We introduce the concept of a 
subjective drift rate representing prior beliefs, which controls the mapping between the available data and 
the probability of being correct. Apart from theoretical considerations, direct empirical support for the 
involvement of prior beliefs in the computation of confidence is equally lacking. Our study aimed to provide 
direct evidence that prior beliefs underlie under- and overconfidence by explicitly manipulating prior beliefs 
about task performance. In two experiments, we manipulated prior beliefs during the training phase and 
looked at the influence of this manipulation on confidence ratings during a subsequent test phase. Our 
results showed that an alteration of prior beliefs, either by means of fake comparative feedback 
(Experiment 1) or by means of training on tasks with differential difficulty (Experiment 2), selectively 
affected subsequent (test phase) confidence ratings while leaving performance unaffected. These effects 
of prior beliefs on decision confidence were accounted for by a probabilistic model of confidence that 
represented prior beliefs about its ability to perform the task at hand, leading to a different mapping 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.03.01.482511doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482511
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

4 
 

between the accumulated evidence and confidence (see Figure 1). After exposure to the same type of 
feedback as human participants in Experiment 1 and 2, our model successfully mimicked the influence of 
prior beliefs on confidence judgments seen in human participants.   

 

Figure 1. Illustration of how prior beliefs can influence decision confidence. We hypothesized that 
participants exposed to feedback indicating that they are performing well vs. badly, will hold the prior belief 
that they are good vs. bad at this task. In our computational framework (visualized at the top), a change in 
prior belief is implemented by changing the mapping between the amount of evidence (y-axis) and the 
perceived probability of responding correctly in this task, i.e. decision confidence (colored heatmap). Within 
this evidence accumulation framework, noisy sensory evidence (y-axis) accumulates over time (x-axis) until 
one of the two bounds (a or -a) is hit and a choice is made, after which (post-decisional) evidence continues 
to accumulate and informs decision confidence. In the figure, it can be appreciated that for the exact same 
trial, the final amount of accumulated evidence (red circle) leads to different levels of confidence depending 
on the prior belief about task performance. 

 

Results 

To unravel the influence of prior beliefs on decision confidence, we carried out two experiments that aimed 
to causally influence participants’ prior beliefs about their ability to accurately perform the task. In both 
experiments, participants performed three similar perceptual decision-making tasks. Each task started with 
a training phase where we manipulated participants’ prior beliefs in their ability to accurately perform the 
task. This was done by providing them with feedback indicating that their performance was good, average 
or poor. In the subsequent test phase of each task (without comparative feedback in Experiment 1; without 
task differences in Experiment 2), we tested the influence of the manipulation on trial-by-trial confidence 
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ratings. To account for the influence of prior beliefs on confidence, we fitted a computational model to the 
data which holds a belief about its ability to perform the task based on earlier task experience, which can 
dissociate from its actual performance.  

Experiment 1: Manipulating prior beliefs via comparative feedback causally induces under- and 
overconfidence.  

In Experiment 1 (N=48), we used comparative feedback to influence prior beliefs about task performance. 
Participants were told that they would receive feedback every 24 training trials about their performance on 
the task, relative to a group of participants who had performed the same task at an earlier time. 
Unbeknownst to participants, feedback was manipulated so that for one task feedback indicated that the 
participant’s performance was better than most participants’ performance; that it was on average for the 
second task; and worse than most participants for the third task (see Figure 2). Because the feedback was 
not about performance per se but rather about participants’ supposed relative performance, we assumed 
that the insincerity of the feedback would be noticed less easily. More importantly, we suspected 
comparative feedback to have a more profound impact on participant’s beliefs about their task 
performance than direct performance feedback. Afterwards, participants took part in a test phase during 
which they no longer received feedback but instead rated their perceived level of confidence on each trial. 
Both during the training and the test phase each task comprised three levels of task difficulty (see Methods). 
In line with our main hypothesis, confidence ratings during the test phase depended on the feedback that 
participants received during the training phase, F(2,47) = 16.65, p < .001 (see Figure 3C). Participants 
reported a higher level of choice confidence after exposure to feedback indicating they performed better 
(M = 4.79), average (M = 4.64) or worse (M = 4.41) compared to the reference group. In addition, there was 
an effect of trial difficulty on confidence ratings, F(2,47) = 159.71, p < .001. There was also a small 
interaction between feedback condition and trial difficulty F(4,30744) = 2.60, p = .034, reflecting that the 
influence of feedback on confidence slightly depended on trial difficulty. However, as can be seen on Figure 
3C, the main effect of feedback condition was still notably visible for all difficulties. Importantly, the 
induction of prior beliefs selectively affected decision confidence, but left objective performance 
unaffected. During the test phase, both accuracy and reaction times were affected by trial difficulty 
(accuracy: χ2(2) = 2438.88, p < .001; RTs: F(2,31430) = 315.03, p < .001), but not by feedback condition 
(accuracy: χ2(2) = 1.4, p = .05; RTs: F(2,48) = 1.97, p = .15; see Figure 3A). 

Interestingly, the effect of prior beliefs on confidence was quite persistent throughout the test phase. Each 
test phase comprised three blocks of 72 trials, separated by a break of one minute. Analyzing the data of 
each block separately, the effect was remarkably consistent within each of the three blocks (block 1: F(2,48) 
= 21.79, p < .001, M(positive, average, negative feedback) = 4.79, 4.60, 4.34; block 2: F(2,48) = 14.20, p < 
.001, M(positive, average, negative feedback) = 4.81, 4.67, 4.44; block 3: F(2,48) = 9.51, p < .001, M(positive, 
average, negative feedback) = 4.76, 4.65, 4.46). However, there was a subtle decrease in the effect across 
time: When adding the factor “block” to the main model including the data from all three blocks (see 
above), there was a significant interaction between block and feedback condition, F(4,31412) = 4.98, p < 
.001. 
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Figure 2. Experimental design. In both experiments, participants performed three different perceptual 
decision-making tasks (only one shown here). Each task started with a training phase during which a 
different prior belief was induced. In Experiment 1, participants received comparative feedback after each 
training block, indicating that their performance was better, similar or worse than the performance of a 
reference group. In reality, feedback was unrelated to their performance. In Experiment 2, during the 
training phase participants encountered only easy, average or difficult trials. In this experiment, trial-by-trial 
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feedback reflected their actual performance. For both experiments, these manipulations aimed to install the 
belief that participants were very good, average or very bad at performing this task, respectively. Each 
participant was subjected to each of these three manipulations once (i.e., a different manipulation each 
task). After each training phase, participants completed a test phase during which they no longer received 
feedback but instead rated their decision confidence after each decision. 
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Figure 3. Manipulating prior beliefs causally induces under- and overconfidence. A. In Experiment 1 (left 
column; panels A, C, and E), providing participants with comparative feedback during the training phase 
indicating that they were performing better, equal or worse than a reference group, left objective 
performance during the test phase unaffected (A), but induced under- and overconfidence, respectively (C). 
This effect was captured by our computational model (E). B. These results were replicated in Experiment 2 
(right column; panels B,D and E), where prior beliefs were manipulated by differential difficulty levels during 
the training phase. Note: shaded bars in A-B reflect model fits, error bars reflect standard error of the mean, 
small dots in C-D reflect individual participants. 
 

Experiment 2: Manipulating prior beliefs via differences in task difficulty during training.  

In Experiment 2 (N=47), we altered prior beliefs about task performance by varying the difficulty of the task 
during the training phase. Participants were only trained on easy trials on one task, on trials of average 
difficulty on another task and on difficult trials on a third task (Figure 2B). Contrary to Experiment 1, 
participants received genuine feedback about their choice accuracy (“wrong” or “false”) on every trial. 
Critically, because of this difference in difficulty between tasks, we achieved a similar feedback pattern as 
in Experiment 1: On average, participants saw positive feedback on 95% of the trials (near perfect 
performance), on 79% of the trials (average performance), or on 60% of the trials (slightly above chance 
performance) for the easy, average, and hard tasks, respectively. After the training phase, participants took 
part in a test phase that was identical to Experiment 1 (i.e., three levels of difficulty per task, occurring in 
equal proportions). Despite the different approach in altering prior beliefs, the results fully replicated those 
of Experiment 1: Confidence ratings during the test phase depended on the difficulty level of the preceding 
training phase, F(2,46) = 8.19, p < .001. Participants reported higher levels of confidence after previous 
training on an easy task (M = 4.88), versus a task of average difficulty level (M = 4.86) versus a difficult task 
(M = 4.64; see Figure 3D). As expected, trial difficulty during the test phase had an effect on confidence 
ratings, F(2,30109) = 2122.11, p < .001, with no interaction between both, F(4,30109) = 1.64, p = .16. Again, 
our manipulation left task performance unaffected. Accuracy and RTs were significantly influenced by 
testing phase trial difficulty (accuracy: χ2(2) = 3089.45, p < .001; RTs: F(2, 30109) = 563.52, p < .001), but not 
by the training phase difficulty conditions (accuracy: χ2(2) = 2.35, p = .31; RTs: F(2,46) = 0.01, p = 0.99), with 
no interaction between both (accuracy: χ2(2) = 1.6, p = .81; RTs: F(2, 30109) = 1.52, p = .19; see Figure 3B). 

Similar to Experiment 1, the influence of prior beliefs on confidence persisted across time. When adding 
block to the analysis on confidence reported earlier, there was no significant interaction between training 
condition and block, F(4,30091) =  2.3, p = 0.056, and the effect was remarkably consistent across all three 
blocks (block 1: F(2,80) = 15.97, p < .001, M(easy, medium, difficult training) = 4.88, 4.87, 4.60; block 2: 
F(2,81) = 9.83, p < .001, M(easy, medium, difficult training) = 4.87, 4.84, 4.65; block 3: F(2,82) = 10.69, p < 
.001, M(easy, medium, difficult training) = 4.9, 4.87, 4.67). 

Introducing prior beliefs into probabilistic confidence models.  

To address the underlying mechanisms by which prior beliefs influence the reported level of confidence, 
we turned towards computational models of decision confidence. We focused on accumulation-to-bound 
models, a family of models that have successfully accounted for choices, reaction time and confidence (3, 
17, 18). Accumulation-to-bound models describe decision making as the noisy accumulation of evidence 
that terminates whenever a decision boundary is reached, at which point a response is triggered. The rate 
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of evidence accumulation is controlled by the drift rate (v), representing the efficiency of information 
extraction from the stimulus. To account for decision confidence within such a model, it has been argued 
that confidence reflects the probability of a choice being correct, conditional on the state of the 
accumulator (i.e., the amount of evidence accumulated), the decision time and the choice (14, 18, 19). In 
Figure 1, this is represented by the heatmaps that visualize how different combinations of evidence (y-axis) 
and time (x-axis) are associated with different levels of confidence (darker colors are associated with lower 
confidence). Importantly, when the perceived probability of being correct matches the actual probability of 
being correct, such a model cannot account for biases in confidence that are independent from objective 
performance (e.g., such as under- and overconfidence). Intuitively, this occurs because the model’s beliefs 
about its performance match its actual performance. In a typical evidence accumulation model, task 
performance is controlled by the drift rate parameter. Importantly, the drift rate also controls the shape of 
the 2-dimensional heatmap representing probability correct for any given evidence level, time and choice 
(see Figure 1). Thus, higher drift rates will generate heatmaps with a higher probability of being correct 
than lower drift rates, because high drift rates are associated with higher accuracy and vice versa. To allow 
for dissociations between actual and perceived performance, we propose that participants have an 
imperfect approximation of the probability of being correct (which can be manipulated via comparative 
feedback or differential training difficulty). Thus, we differentiate between beliefs about performance and 
actual performance. Formally, we propose to parameterize the computation of the probability of being 
correct and thereby provide a solution as to how individuals integrate previous experience with the current 
task to form prior beliefs about current performance. To achieve this, we propose a dissociation between 
the drift rate controlling objective task performance, and the subjective drift rate controlling the shape of 
the heatmap (i.e., representing probability correct). This subjective drift rate can be thought of as a 
formalization of prior beliefs (inverting the heatmap into a single parameter), reflecting how good 
participants think they perform at a task rather than how they actually perform (see Methods for full 
details). Thus, different values for the subjective drift rate will give rise to different, unique probability 
maps, corresponding to different, unique prior beliefs. By assigning different values to the subjective drift 
rate while leaving the other parameters of the model unaffected, this proposal can in principle explain how 
conditions with identical objective task performance (i.e., same drift rates) but different prior beliefs (i.e., 
different subjective drift rates) can lead to differences in subjective confidence. That is precisely the pattern 
of behavior observed in both experiments: In Experiment 1, participants were faced with false comparative 
feedback in the training phase, in the sense that it misinformed them about the positioning of their task 
performance relative to the performance of others. In Experiment 2, since participants were exposed in the 
training phase to only one of the three difficulty levels subsequently experienced in the test phase, they 
received an accurate, yet necessarily biased sample of the heatmap.  

Modeling the effect of prior beliefs on decision confidence.  

To demonstrate that our accumulation-to-bound model can explain under- and overconfidence as the 
result of differences in prior beliefs and thus, subjective drift rate, we tested whether our model could 
capture the observed patterns of under- and overconfidence after exposure to the same training conditions 
as participants. First, we used data from the training phases to estimate, per participant, the subjective drift 
rate capturing their prior belief about their performance. To do so, we estimated drift diffusion model (20) 
parameters based on the training phase data and generated simulations based on these parameters. Then, 
we estimated which subjective drift rate parameter provides confidence predictions that are in line with 
the feedback presented to participants. As expected, when the model was exposed to negative feedback, 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 16, 2022. ; https://doi.org/10.1101/2022.03.01.482511doi: bioRxiv preprint 

https://doi.org/10.1101/2022.03.01.482511
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

11 
 

the estimated subjective drift rate was lower compared to when it was exposed to positive feedback, 
F(2,94) = 450.1, p < .001 (Experiment 1, Figure 4A). Likewise, when the model was trained on an easy task, 
the estimated subjective drift rate was lower compared to when the model was trained on a difficult task, 
F(2,92) = 38.04, p < .001 (Experiment 2, Figure 4E). Second, to demonstrate that our feedback- and training 
manipulations selectively influenced subjective drift rate but left objective performance unaffected, we 
next estimated the parameters of our accumulation-to-bound model based on the test phase data as well. 
The estimated parameters did not vary with the feedback conditions in Experiment 1 (all ps > .36, Figure 
4B-D), nor were they influenced by the differential training difficulty in Experiment 2 (all ps > .31, Figure 4F-
H). Thus, our model was able to generate different levels of prior beliefs about task performance after 
seeing fake comparative feedback (Experiment 1) or performing tasks of differential training difficulty 
(Experiment 2).  

Third, we finally tested whether this difference in prior belief induced during the training phase was 
sufficient to capture under- and overconfidence in the test phase. To do so, we queried model predictions 
based on the DDM parameters obtained from the fit to the data of the test phase, but using the subjective 
drift rate which was estimated from the data of the training phase. It is important to stress that using this 
approach, instead of fitting our model to empirically observed confidence data, we instead generated 
model predictions from a model that was merely exposed to the same feedback as the participants. Thus, 
our model was effectively blind to the empirical confidence judgments. As expected, for both Experiment 
1 and Experiment 2 (Figure 3E) the model predicted increases of confidence with increasingly positive 
feedback (F(2,47) = 274.48, p < .001, Experiment 1), and lower task difficulty during the training phase 
(F(2,46) = 98.54, p < .001, Experiment 2). Additionally, the model also predicted the expected increase of 
confidence with lower testing trial difficulty, (Experiment 1: F(2,282) = 344.91, p < .001; Experiment 2: 
F(2,276) = 472.20, p < .001). Finally, for both experiments there was an interaction between both factors, p 
< .001, reflecting that the model predicted the effect to be slightly smaller with difficult trials. In sum, we 
successfully accounted for expressions of under- and overconfidence within accumulation-to-bound 
models by taking into account prior beliefs.   
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Figure 4. Manipulating prior beliefs selectively influences subjective drift rate. A. In Experiment 1, the 
subjective drift rate (reflecting the prior belief about performance) increased when the model was exposed 
to increasingly positive feedback. B-D. The feedback conditions in the training phase did not influence the 
other parameters of the evidence accumulation model. E-H. Similarly, in Experiment 2, only the subjective 
drift rate was sensitive to the differential training difficulty. Note: grey, dotted lines reflect individual 
participants, solid black lines represent the mean, error bars reflect standard error of the mean. 

 
Discussion 

The level of confidence expressed in choices differs greatly between humans and between tasks. These 
differences in the overall level of confidence are often referred to as under- and overconfidence. Here, we 
provide direct evidence that these differences arise from prior beliefs about the ability to perform a task. 
In two experiments, we have shown that a manipulation of prior beliefs causally influences the reported 
level of decision confidence. Furthermore, we demonstrate that this finding can be accounted for by 
extending probabilistic models of confidence with a subjective drift rate, explicitly representing prior beliefs 
about task performance within these models. Our behavioral manipulation of prior beliefs selectively 
influenced the model’s prior belief, which in turn accounted for under -and overconfidence as seen in the 
data.  

The mechanism behind under- and overconfidence 

The last decade has seen an increase in studies investigating how the sense of confidence can be explained 
within models of decision making. However, while most prior work has focused on measures that quantify 
the sensitivity of decision confidence (21–23), much less attention has been devoted to the computational 
mechanisms underlying confidence biases. For example, in signal detection theory (24, 25), biases in 
confidence can easily be modeled by changing the criteria that dissociate high from low confidence (26). 
However, this is merely descriptive and does not provide us with fundamental insight into the 
computational mechanisms underlying under -and overconfidence. To answer this question, in the current 
work we relied on accumulation-to-bound models that explain confidence as the posterior probability of 
being correct given available data. Specifically, we consider both time and evidence as relevant data to 
compute this probability (3, 17). Although it has been suggested previously that prior experience might be 
an important factor to understand deviations in the computation of confidence (14–16), empirical evidence 
for this claim has been lacking so far. Here, we provide the first empirical demonstration that inducing 
under- and overconfidence by means of changes in prior beliefs can be readily accounted for within dynamic 
probabilistic models (see (27) for an explanation in terms of expected precision). Although our prior belief 
induction is necessarily lab-based and thus slightly artificial, it is not hard to imagine how this process might 
operate in real life. Spontaneous differential exposure to comparative feedback (cf. Experiment 1) or mostly 
engaging in difficult versus easy tasks (cf. Experiment 2) will result in differences in prior beliefs about task 
ability and hence confidence ratings. 

An important aspect of our modeling approach is that rather than fitting our model to the empirically 
observed confidence judgments, we only exposed the model to the same feedback that participants were 
presented with. Thus, our model was effectively blind to the empirical confidence judgments. Nevertheless, 
it captured the empirical findings that the reported level of decision confidence not only depends on task 
difficulty, but also on the comparative feedback (Experiment 1) and the differential training difficulty 
(Experiment 2) participants were exposed to. Although the effect in the empirical data is weaker than in 
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the model, an important consideration here is that our model starts from a blank slate (i.e., without any 
prior knowledge or preconceptions) and then builds its prior beliefs entirely based on the feedback. Real 
participants, however, likely come to the experiment with pre-existing prior beliefs about their abilities, and 
our experimental manipulations ride on top of these preconceptions. As such, a fruitful approach for future 
work will be to unravel how our experimental manipulations interact with earlier prior beliefs about task 
performance. As a second note, our model assumed perfect integration of the feedback. This might be 
different from real humans, who likely display leaky integration of feedback. Nevertheless, despite these 
simplifications, the predictions of our dynamic probabilistic model were in line with the empirical data. 

The interplay between local and global confidence 

The findings reported in the current work are closely linked to the formation of so-called global decision 
confidence, and the way in which this global confidence can influence the computation of local confidence 
judgments. In recent years, there is growing interest in the computation of global decision confidence, that 
is confidence at the task level (28, 29). Global confidence is the general, subjective feeling that subjects 
have about their ability to perform a task, spanning a broader timescale than trial-specific local confidence. 
From this description, it becomes clear that global confidence bears close resemblance to the concept of 
prior beliefs and the task-general subjective drift rate discussed in the current work. Following this logic, 
our findings thus suggest a direct influence of prior beliefs about task performance (global confidence) on 
how we actually believe we are doing on individual trials (local confidence). Interestingly, it has been shown 
that in the absence of trial-by-trial feedback, subjects compute global confidence by integrating local 
confidence judgments (28). Thus, there also seems to be a direct influence of local confidence on global 
confidence, revealing an intriguing interplay between both. Therefore, it could be that causally inducing 
prior beliefs might have a long-lasting, self-sustaining effect on local confidence by means of a self-
sustaining loop between local and global confidence. Our current data already suggest that the effect of 
the prior beliefs manipulation is not limited to the first few test trials only: Even in the third, final test block 
(72 trials), the effect was still visible, suggesting a long-lasting effect on confidence instead of a mere 
temporary boost or lapse in self-confidence specific to the training phase only. Future work might address 
whether the persistent nature of prior beliefs on local decision confidence is indeed mediated by global 
confidence. As impaired confidence has been linked to a variety of psychiatric symptoms (9), uncovering 
the mechanisms behind these persistent biases could provide important new insights for clinical practice. 
For example, the self-sustaining nature of our prior beliefs manipulation could potentially provide a new 
tool to aid in restoring impaired confidence estimation in individuals with psychiatric disorders. 

Dissociations between accuracy and confidence 

Although confidence generally tracks objective accuracy (30), an increasing number of recent studies have 
reported dissociations between confidence and accuracy (26, 31). For example, it has been shown that 
whereas choices are equally informed by choice-relevant and choice-irrelevant information, decision 
confidence has been found to mostly reflect variation in choice-relevant information (32–35). In a similar 
vein, it has been reported that variance has a more profound effect on confidence than it has on decisions 
(36–39). Importantly, these observations are often treated as evidence for the existence of a metacognitive 
module existing separately from the decision-making circuitry (23, 40). In the current work, we reported a 
clear dissociation between accuracy and confidence, with only the latter being influenced by our 
manipulations of prior beliefs. Importantly, different from earlier work, our interpretation of these findings 
does not require a separate metacognitive processing stream during the computation of confidence. 
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Instead, we were able to explain decision confidence within the decision circuitry by simply changing the 
prior beliefs within this framework (16). One could argue, still, that the process of forming (and updating) 
prior beliefs about task performance as described in our model is the work of a metacognitive module. 
However, in contrast with those modules described in earlier works (23, 40), our module is rooted within 
the decision-making process. In other words, our model does not assume processing of metacognitive 
evidence independent and parallel to the processing of sensory evidence. All in all, our findings add to the 
ongoing debate about the need for a separate metacognitive module to explain dissociations between 
accuracy and confidence, demonstrating that both can in fact operate on the same stream of data. 

Counterfactual confidence 

One interesting discussion point is the extent to which participants were aware that they were reporting 
different levels of confidence for the same levels of evidence. Especially in Experiment 1, 18 out of the 49 
participants indicated in the post-experiment debriefing that they were aware of the influence the 
comparative feedback had on their confidence ratings. These participants explicitly stated that positive 
feedback made them feel more confident about their answers, while negative feedback had the opposite 
effect. Notably, an additional analysis showed no difference between these and the other participants in 
terms of our manipulation’s effect on confidence. This raises an intriguing question about whether 
participants immediately computed the level of confidence that they eventually reported (i.e., modulated 
by prior beliefs), or rather whether they initially computed the “unbiased” probability of being correct and 
strategically lowered or increased this rating depending on the feedback seen earlier. The latter option 
would imply that participants have an unbiased representation of confidence at their disposal, which could 
be used for alternative purposes. Just like the representation of confidence based on external feedback that 
we described with our model, this unbiased representation could be formed in a similar way from an 
unbiased internal feedback signal. Although such a dissociation between a biased and unbiased confidence 
estimate might sound unlikely, previous work has shown evidence that participants compute so-called 
“counterfactual” confidence which they use to update their response bias (41). Moreover, in social contexts 
it is known that people can sometimes feel (not) very confident but for social reasons decide to report a 
(higher) lower level of confidence (42). Such modulations of reported confidence could be accounted for by 
our model by considering the decision-maker holds a more explicitly aware bias between the actual 
computation and the reporting of confidence. 

Conclusion 

We demonstrated that a manipulation of prior beliefs in task performance, either via comparative feedback 
or via changes in task difficulty, causally influences subsequent ratings of decision confidence. These 
findings were well accounted for within a dynamic probabilistic model of decision confidence by changing 
the model’s prior belief. Our findings provide a mechanistic understanding of under- and overconfidence. 
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Materials and Methods 

Participants  

Fifty participants (eight men, one third gender, age: M = 19, SD = 4.9, range 17–52) took part in Experiment 
1. Fifty participants (five men, age: M = 18.5, SD = 1, range 17–22) took part in Experiment 2. Due to chance 
level performance in at least one of the tasks, we removed two participants from Experiment 1 and three 
from Experiment 2. All participants participated in return for course credit and read and signed a written 
informed consent at the start of the experiment. All procedures were approved by the local ethics 
committee.  

Stimuli and apparatus 

Both experiments were conducted on a 22-inch DELL monitor with a 60 Hz refresh rate, using PsychoPy3 
(43). All stimuli were presented on a black background centered around the middle of the screen (radius 
2.49° visual arc). Stimuli for the dot number task (white dots) were presented in two equally sized boxes 
(height 20°, width 18°) at an equal distance from the center of the screen. Stimuli for the letter 
discrimination task (white X’s and O’s) and dot color task (red and blue dots) were presented in one box 
(height 22°, width 22°), centered around the fixation point. 

Procedure 

General  

In both experiments, participants completed three decision-making tasks: a dot color task, a dot number 
task and a letter discrimination task (see Figure 2). Each task started with 120 training trials. In Experiment 
1, participants were presented performance feedback every 24 trials, while in Experiment 2, feedback was 
given on every trial. After the training phase of a task, a test phase of 216 trials followed during which no 
feedback was provided, but instead participants indicated their level of confidence after each choice. For 
all tasks, a trial started with a fixation cross that was presented for 500 ms, after which the stimulus 
appeared for 200 ms or until a response was given. Participants indicated their choice using the C or N key 
using the thumbs of both hands. There was no time limit for responding. On test trials, participants 
additionally rated their confidence after each choice on a 6-point scale, labeled ‘certainly wrong’, ‘probably 
wrong’, ‘maybe wrong’, ‘maybe correct’, ‘probably correct’, and ‘certainly correct’ (reversed order for half 
the participants). Confidence was indicated using the 1, 2, 3, 8, 9 and 0 keys with the ring, middle and index 
fingers of both hands. There was no response limit for indicating confidence.  

For each task, there were three levels of stimulus difficulty (easy, average or difficult). Stimulus properties 
for Experiment 1 were decided based on the results of a small pilot study (N=5). For Experiment 2, stimulus 
properties were revised based on the results of Experiment 1 to achieve a better matching of accuracy 
between tasks. Stimulus dependencies for each task can be found in Table 1. 
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  Dot color task 
Number of dominant 
color dots (80 dots in 

total). 

Dot number task 
Number of dots in the variable 

field (reference field contains 50). 

Letter discrimination task 
Number of dominant letters 

(80 letters in total) 

    EXP 1 EXP 2 EXP 1 EXP 2 EXP 1 EXP 2 

Di
ffi

cu
lty

 Easy 61 – 65 61 – 65 + or - 21 – 25 + or - 21 – 25 70 – 75 70 – 74 

Average 51 – 55 46 – 50 + or - 11 – 15 + or - 11 – 15 51 – 55 53 – 57 

Difficult 41 – 45 41 – 45 + or - 1 – 5 + or - 1 – 5 41 – 45 42 – 46 

Table 1. Stimulus properties for each difficulty level, task and experiment. 

Dot color task 

On each trial, participants decided whether a field contained more (static) blue or red dots. The total 
number of dots was always 80, with differing proportions of red or blue dots depending on the difficulty 
condition. The position of dots was randomly generated on each trial.  

Dot number task  

On each trial, two fields were presented, one of which contained 50 dots and the other more or less than 
50 dots. Participants decided which of the two fields contained the largest number of dots. The exact 
number of dots in the variable field differed depending on the difficulty condition. The position of dots was 
randomly generated on each trial.  

Letter discrimination task  

On each trial, participants decided whether a field contained more X’s or O’s. The total number of X’s and 
O’s was always 80, with differing proportions of X’s or O’s depending on the difficulty condition. The position 
of the letters was randomly generated on each trial.  

Experiment 1: Prior belief induction in the comparative feedback experiment 

In Experiment 1, prior beliefs about the ability to correctly perform the task were manipulated by means of 
fake comparative feedback during the training phase. Participants were told that their feedback score was 
indicative of their performance (accuracy and reaction time) on the preceding trials relative to the 
performance of other participants who took part previously. Unknown to participants, feedback was 
predetermined to be either good, average or bad for a specific task, and feedback scores were randomly 
sampled according to the feedback condition. Each participant received good feedback on one task 
(inducing prior beliefs of low task performance), average feedback on another task, and bad feedback on a 
third task (inducing prior beliefs of high task performance; order and mapping with tasks counterbalanced 
between participants). For each task, participants received feedback after every 24 training trials, 
amounting to 5 feedback presentations per task. Feedback scores were pseudo-randomly generated on 
each feedback presentation and ranged between 5 and 30% in the negative feedback condition, between 
37 and 62% in the average feedback condition and between 70 and 95% in the positive feedback condition. 
To increase credibility of the negative feedback, the second out of the five feedback screens showed 
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average feedback (ranging between 32% and 36%, labeled as average). Likewise, the second out of five 
feedback screens in the positive feedback condition showed average feedback (ranging between 63% and 
67%, labeled as average). 

At the top of feedback screens, a verbal indication of the participant’s score was presented: depending on 
the score, “Good performance:” in green, “Average performance:” in white or “Bad performance:” in red. 
After the colon, the score itself was presented in the same color as the verbal indication. In the middle of 
the feedback screen, the participant’s score was indicated in a visual way. A vertically oriented rectangle 
with no fill color was presented, with the bottom line marked “worst performance”, the top line marked 
“best performance” and a midline marked “average performance”. The participant’s score was used to color 
the same percentage of the rectangle’s total surface (starting at the bottom) in red (bad performance), 
white (average performance) or green (good performance) (see Figure 2). 

Experiment 2: Prior belief induction via task difficulty 

In Experiment 2, prior beliefs about the ability to correctly perform the task were induced by manipulating 
the difficulty of the task during the training phase in three levels. Contrary to Experiment 1, participants 
received genuine feedback on every trial: Each correct choice was followed by the word “Correct!” and each 
incorrect choice by “Wrong!”. Each participant completed one task with a training phase consisting of only 
easy trials (inducing positive prior beliefs about task ability), another with a training phase of all average 
trials (inducing average prior beliefs), and another with a training phase of all difficult trials (inducing 
negative prior beliefs).  

Statistical analyses 

Data from the test phase were analyzed using mixed effects models. We started from models including the 
fixed factors and their interaction(s), as well as a random intercept for each participant. These models were 
then extended by adding random slopes, only when this significantly improved model fit. Confidence ratings 
and reaction times were analyzed with linear mixed effects models, for which we report F statistics and the 
degrees of freedom as estimated by Satterthwaite’s approximation. Accuracy was analyzed using a 
generalized linear mixed model, for which we report Х2 statistics. All model fit analyses were done using 
the lmerTest package (44) in RStudio (45). 

Computational model 

Bounded evidence accumulation 

We modeled the data using the drift diffusion model (DDM), a popular variant of the wider class of 
accumulation-to-bound models. In the DDM, noisy evidence is accumulated, the strength of which is 
controlled by a drift rate v, until one of two boundaries a or -a is reached. Non-decision components are 
captured by a non-decision time ter parameter. To simulate data from the model, random walks were used 
as a discrete approximation of the continuous diffusion process of the drift diffusion model (46). Each 
simulated random walk process started at z*a (here, z was an unbiased starting point of 0) which 
terminated once the accumulated evidence reached either a or -a. At each time step τ, accumulated 
evidence changed by Δ with Δ given in Eq. (1): 
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𝛥	 = 	𝑣 ∗ 𝜏	 + 	𝜎 ∗ 	√𝜏 	∗ 𝒩(0,1)		 (1) 

Within-trial variability is given by σ. In all simulations, τ was set to 1 ms, and σ was fixed to .1.  

Accounting for prior beliefs  

Within this model, confidence is given by mapping accumulated evidence, reaction time and the choice on 
a 2-dimensional heatmap (as shown in Figure 1) representing the probability of being correct for any given 
evidence level, time and choice. Since confidence judgments were given after the choices in both 
experiments, we allowed for additional post-decision evidence accumulation following boundary crossing 
before quantifying confidence (47). The duration of the post-decision evidence accumulation process was 
sampled from the full confidence reaction time distribution observed during the test phase for each subject. 
The heatmaps were constructed by computing the ratio between the probability densities of the amount 
of evidence accumulated with a given drift rate μ > 0 and its opposite -μ at each time step (the inverse ratio 
is computed depending on the choice). An important aspect is that these heatmaps depend on the actual 
drift rate that is used to generate them; when generating heatmaps with high versus low drift rates, the 
probability of being correct will be high versus low, respectively (because high drift rates are associated 
with a higher accuracy and vice versa). To model prior beliefs, we assumed that the drift rate parameter 
controlling the shape of the heatmap can be different from the drift rate parameter controlling objective 
performance. To avoid confusion, we refer to the former as the subjective drift rate (vs, formalizing the 
theoretical notion of prior beliefs) and the latter as the drift rate (v). 

We estimated vs for each participant and each prior belief condition by estimating which vs  provides 
predictions about confidence that best match the feedback received by participants in the training phase. 
Note that in Experiment 1, feedback was only given once at the end of each training block (24 trials), so we 
equally assigned the feedback value presented at the end of a block to every trial within that block. To have 
access to the amount of accumulated evidence, we first simulated predictions of the observed trials in the 
training phase from DDM parameters fitted to the training data. Confidence predictions for those simulated 
trials were then quantified as the probability correct given time and evidence for the heatmap generated 
by vs. The cost function was determined by the mean squared error (MSE) between observed feedback and 
predicted confidence Eq (2): 

𝑀𝑆𝐸	 = 	
1
𝑁4(𝑜𝐹𝐵! − 𝑝𝐶𝐽!)²

"

!#$

 
 

(2) 

with N the number of observed trials in the training phase for a given prior belief condition, oFBi the 
feedback received at trial i and pCJi the confidence predicted for trial i. Each observed trial’s feedback was 
compared 24 times to new predictions to account for the stochastic nature of the DDM. Since generating a 
heatmap is computationally costly, we generated 500 heatmaps from values of vs ranging from 0 to .5. The 
MSE was then computed for each of these generated heatmaps. Smoothing using the locally weighted 
scatterplot smoothing method (LOWESS; Cleveland, 1981) was performed over the computed MSE for all 
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vs to further reduce noise. The final estimated vs for each participant and prior belief condition was 
therefore equal to the one that generated the heatmap with the minimum smoothed MSE. 

DDM fitting 

For each task and participant in the training data of Experiment 1 as well as in the test data of both 
experiments, we fitted 5 DDM parameters to the accuracy and reaction time data: 3 drift rates (v; one for 
each trial difficulty level), the decision boundary (a) and the non-decision time (Ter). Since only one trial 
difficulty was presented per task in the training phase of Experiment 2, only one drift rate per task was 
fitted to the training data of Experiment 2, resulting in the estimation of 3 DDM parameters in this case. To 
estimate these parameters, we implemented quantile optimization. Specifically, we computed the 
proportion of trials in six groups formed by quantiles .1, .3, .5, .7 and .9 of reaction time, separately for 
corrects and errors. We then used a differential evolution algorithm, as implemented in the DEoptim R 
package (48), to estimate these parameters by minimizing the sum of squared error function shown in Eq 
(3): 

𝑆𝑆𝐸	 = 	4(𝑜%𝑅𝑇& 	−	𝑝%𝑅𝑇&)²	 +	(𝑜'𝑅𝑇& 	−	𝑝'𝑅𝑇&)²
"(

&#$

 
(3) 

with Nq the number of quantiles, 𝑜%𝑅𝑇& and 𝑝%𝑅𝑇& the proportion of observed and predicted correct 
responses in RT quantile j, respectively, and 𝑜'𝑅𝑇& and 𝑝'𝑅𝑇& the proportion of observed and predicted 
incorrect responses in RT quantile j. Model fitting was done separately for each participant, phase (training 
vs testing), and experimental manipulation. The population size for the differential evolution algorithm was 
set to 10 times the number of free parameters, as recommended in Price et al., 2006. Two termination 
criteria were set: (1) no new minimum of the SSE observed for the past 100 iterations or (2) a maximum of 
1000 iterations. The 1000 iterations criterion was never reached. Predictions from the model were 
generated by simulating 5000 random walk paths for each drift rate to be fitted. 
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