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Abstract 

The intratumoral accumulation of nanomedicine has been considered a passive process, 

referred to as the enhanced permeability and retention (EPR) effect. Recent studies have 

suggested that the tumor uptake of nanomedicines follows an energy-dependent pathway 

rather than being a passive process. Herein, to explore the factor candidates that are 

associated with nanomedicine tumor uptake, we developed a molecular marker identification 

platform by integrating microscopic fluorescence images of a nanomedicine distribution with 

spatial transcriptomics (ST) information. When this approach is applied to PEGylated 

liposomes, molecular markers related to hypoxia, glucose metabolism and apoptosis can be 

identified as being related to the intratumoral distribution of the nanomedicine. We expect 

that our method can be applied to explain the distribution of a wide range of nanomedicines 

and that the data obtained from this analysis can enhance the precise utilization of 

nanomedicines. 
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Introduction 

Nanomedicines hold great promise to improve disease diagnoses and treatments in those 

with various illnesses, including cancer 1, immunological diseases 2, and infectious diseases 3. 

Nanomedicine is developed based on nanotechnology and has several advantages over conventional 

drug platforms. First, it is capable of loading imaging contrast for enhanced diagnostic imaging. 

Second, surface modifications and decorations of targeting moieties for enhanced drug delivery are 

possible. Finally, it is relatively simple to load various types of treatment molecules to ensure better 

therapeutic efficacy 4. In 1995, Doxil, a doxorubicin-loaded PEGylated liposome, was approved by 

the FDA and became the first nanomedicine approved for clinical use 5. Currently, there are 

approximately two dozen FDA-approved nanomedicines, including lipid-based, polymer-based and 

iron-oxide-based nanoparticles 4.  

Generally, nanomedicines have a size range of 10-150 nm and demonstrate significantly 

different pharmacokinetics compared to conventional small-molecule drugs 6. Unlike small-molecule 

drugs, nanomedicines are not freely diffusible into tissues and tend to reside in the vascular space 

after intravenous administration. In most cases, nanomedicines are removed from circulation through 

opsonization by serum proteins followed by phagocytosis by the reticuloendothelial system (RES). 

Various surface modification methods, including PEGylation and the introduction of self-peptides, 

have been introduced to delay opsonization and thus prolong circulation times. By prolonging the 

circulation time of nanomedicines, the delivery efficiency can be enhanced. This enhanced delivery of 

nanomedicines realized by prolonged circulation times is clearly seen in diseased tissue, such as 

tumors or inflammatory regions but is not prominent in normal tissues 7, 8. This phenomenon is called 

Enhanced Permeability and Retention (EPR), and has become a major theory explaining the improved 

delivery efficiency of nanomedicines compared to conventional small-molecule drugs. The EPR effect 

was considered a passive process due to leaky neovascularization and limited lymphatic drainage in 

diseased tissues compared to normal tissues 9, 10.  
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Recently, the notion that, enhanced tumor accumulation of nanomedicines is a passive 

process has been challenged. An in vivo imaging study based biodistribution analysis using 

radiolabeled PEGylated liposomes showed that markers for blood and lymphatic vessel density were 

not significantly associated with the tumor accumulation levels, in contrast to the prior hypothesis 11. 

Furthermore, the quantified number of endothelial gaps in tumor vasculature is too low to explain the 

tumor accumulation of the nanoparticles and according to the simulation, 97% of the nanoparticles 

accumulate in the tumor via an active process 12. However, it is very challenging to identify markers 

that govern active process of the nanomedicine tumor accumulation. So far, only a few potential RNA 

or protein markers could be analyzed by IHC or reverse transcription polymerase chain reaction (RT-

PCR) 11, 13. The next-generation sequencing (NGS) technology now can provide an unbiased 

exploration of the molecular markers. Since tumor uptake of nanoparticles is heterogeneous within the 

tumor 14, it is difficult to find factors that determine nanoparticle uptake by conventional RNA 

sequencing method that obtains the average value of gene expression in the tissue without spatial 

information 15. 

Recent technological advances have established spatial transcriptomics (ST) that can 

systematically identify the expression levels of all genes throughout the tissue space 16, 17. Because ST 

data inherently possesses spatial information, it can be easily integrated with other types of imaging 

data and is considered most appropriate for analyzing spatially heterogeneous information within 

tissues 17. Meanwhile, it is possible easily to determine the distribution of the nanomedicine within the 

tumor by using fluorescently labeled nanomedicine 18, 19. Therefore, we hypothesized that molecular 

factors related to heterogeneous nanomedicine tumor uptake can be identified by the integration of ST 

data and fluorescent imaging in cancer tissue after the injection of a fluorescently labeled 

nanomedicine.  
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Results and Discussion 

In vivo and ex vivo fluorescence imaging of a mouse xenograft tumor 

 In this study, a PEGylated liposome was selected as a model nanomedicine, as these 

liposomes are undoubtedly among the most successful nanomedicine platforms. Also, factors 

determining the high uptake of PEGylated liposomes remain controversial, as noted in the previous 

study 20. TEM images of PEGylated liposomes showed a uniform and round shape, allowing the 

identification of a typical lipid bilayer of liposomes. The hydrodynamic sizes of the fluorescent 

liposomes were 128.05 ± 46.71 nm. The maximum absorbance wavelength and maximum emission 

wavelength at 550 nm excitation were 550 nm and 563 nm, respectively (Figure 1A). Fluorescent 

liposomes were injected intravenously into 4T1 tumor-bearing mice (n = 3) and in vivo imaging of the 

mice was obtained using an in vivo fluorescence imaging system (IVIS). We observed that fluorescent 

liposomes accumulated in the 4T1 tumor in all three mice tested here (Figure 1B). Also, ex vivo 

fluorescence imaging of normal organs and tumors were obtained 24 hours after the injection (Figure 

1C). Fluorescent signals were observed mainly in the tumors, livers, and spleens. Moreover, the 

biodistribution pattern of the fluorescent liposomes was similar to the previously reported 

biodistribution of PEGylated liposomes in tumor-bearing mice 21. 

 

H&E staining, spatial transcriptomics and fluorescence imaging of the tissue 

Among the three excised tumors, the tumor with the highest fluorescent signal was selected 

for further experiments. We obtained two consecutive sections from the tumor, and the one section 

was used for H&E staining and ST analysis (Figure 2A), and the other was used for fluorescence 

imaging (fluorescent liposome distribution map) (Figure 2B). Spatial mapping of RNA reads 

indicated a cancer-rich region that showed the highest gene expression, with the necrotic region, the 

lower and right part of the tissue, showed the lowest (Supplementary Figure 1). According to the 
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fluorescence image, the fluorescent signal was prominent in the tumor capsule area, with multiple foci 

of increased fluorescent signal found in the inner region of the tissue. Next, we obtained a binary map 

of the fluorescence image, and the map was matched with ST spots for further analyses (Figure 2B – 

Figure 2E). The pattern of the average fluorescence intensity according to the distance was different 

from the mathematical model for simple passive diffusion (Figure 2F). The numerical analysis results 

of Fick’s law were obtained to predict the passive process of fluorescent liposome distribution using 

the vascular marker Pecam1. The distribution did not concur with the actual florescent liposome 

distribution and especially could not explain the intra-tumoral uptake of nanoparticles. This was the 

same with another representative pan-endothelial marker, Cd34 (Figure 2B, G-H, Supplementary 

Figure 2). 

 

Hbb-bs was related to the fluorescence liposome distribution 

 Firstly, we derived differentially expressed genes (DEGs) related to the high accumulation of 

fluorescent liposomes in the tumor section by comparing high vs low uptake spots using binary 

fluorescence imagery. We found that there was one significant gene, Hbb-bs (Figure 3A, 

Supplementary Table 1). Hbb-bs encodes a beta polypeptide chain found in hemoglobin in red blood 

cells (RBC) and considered as one of the RBC markers 22. Consistently, we found that the expressions 

of vascular markers (e.g., Pecam1, Cd34) were similar to the distribution of Hbb-bs. This result 

implied that the fluorescent liposome distribution is associated with blood circulation (Figure 3A).  

 We determined the principal components (PC1, PC2, and PC3) in the fluorescent image of 

the tumor tissue using spatial gene expression patterns by deep learning of tissue images (SPADE) 

algorithm 23. The most variable latent feature of the fluorescence image (i.e., PC1) showed a pattern 

similar to that of the distribution of fluorescent liposomes (Figure 3B). We obtained PC1-associated 

genes (SPADE genes) and demonstrated them using enhanced volcano plots (Figure 3C). Among the 

SPADE genes, it is noteworthy that Ctsk, Lbp, Sparcl1, and Apod were high-ranked and up-regulated 
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genes, which are abundant in the extracellular matrices (ECMs) of the stromal region (Figure 3D, 

Supplementary Table 2). This finding is in line with the previous observation that nanoparticle tumor 

uptake is associated with capillary wall collagen 13. Also, it is well known that Apod can be found in 

the early stage of tumor development among the apolipoproteins, consistent with the present 

experimental condition 24. The SPADE genes were associated with regulation of smooth muscle cell 

proliferation and fibronectin binding according to the gene ontology analysis (Figure 3E). To further 

investigate the association between the expression of Hbb-bs and the nanomedicine distribution, we 

conducted a correlation analysis of the fluorescent signal intensity and expression level of Hbb-bs 

within high-uptake spots. There was no statistically significant correlation between Hbb-bs expression 

level and fluorescence intensity (r= 0.073, p-value = 0.188). 

 

Division of uptake pattern clusters and cell type analysis 

HBB-bs and SPADE genes were found to be related to the fluorescent distribution of 

nanomedicines in the tissue. However, the expression pattern of the genes did not match the inner 

uptake clusters of the tumor (Figure 2B vs. Figure 3A, and 3D). We speculated that the NP uptake 

mechanisms on the surface and in the inner area of the tumor could differ, therefore the uptake 

patterns were analyzed using image feature-based clusters. The regions of fluorescent image were 

clustered using a CNN-based features based on tiles of the image and K-means clustering. K was set 

to 4 as the minimum requirement for the division of the peripheral area from the inner area 

(Supplementary Figure 3). Also, we obtained two clusters of high-uptake spots (cluster 1: surface 

cluster, cluster 2: inner cluster) by matching the regions with the binary map (Figure 4A). Through 

the unsupervised hierarchical clustering of spots in clusters 1 and 2, and outliers were eliminated 

(Supplementary Figure 4) 

We then analyzed the cell distribution of the clusters using three different types of cell-type 

prediction methods, in this case multimodal intersection analysis (MIA) 25, robust cell type 
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decomposition (RCTD) 26, and single-cell and spatial transcriptomic data (CellDART) 27. Using MIA, 

fibroblasts and endothelial cells were preferentially discovered in cluster 1 while cancer cells were 

found to be predominant in cluster 2 (Figure 4B). In the RCTD analysis, cancer cells were dominant 

in both clusters and endothelial cells and fibroblasts were the major cell types in cluster 1. We could 

confirm the relatively dominant distributions of endothelial cells and fibroblasts in cluster 1 compared 

to cluster 2, an outcome similar to the results of the MIA analysis (Figure 4C). Results of CellDART 

verified the observations from the MIA analysis and RCTD assessment (Figure 4D). Cancer cells are 

dominant in the tumor tissue while endothelial cells and fibroblasts are clearly observed in the surface 

region of the tumor according to CellDART. Also, the presence of inflammatory macrophages from 

the MIA assay and the dominance of cancer cells in the RCTD assay could be reconciled by the 

CellDART results.  

 

Identification of DEGs and uptake-associated genes in cluster 1 and 2 

We conducted a DEG analysis of clusters 1 and 2 by comparing cluster 0 vs 1 and 0 vs 2. 

Volcano plots of DEGs showed different genetic profiles between clusters 1 and 2 (Figures 5A and B 

and Supplementary Tables 3-4). In addition, a dot plot representing the top 20 genes for each cluster 

verified the uniqueness of clusters 1 and 2 (Figure 5C). DEGs of cluster 1 were similar to the result of 

the previous analysis using the entire tissue slide. For example, we could observe RBC marker such as 

Hbb-bs, Hba-a1, and Hba-a2 and stromal genes such as Apod, Aqp1, Col3a1, Gpx3, Apoe, and 

Sparcl1 among the top 20 DEGs in cluster 1 (Supplementary Table 3)  

 The DEGs in cluster 1 showed no significant correlation with fluorescent signal (Figure 5D). 

On the other hand, a total of 31 genes that showed upregulated in the cluster 2 and positively 

correlated with fluorescence intensity in the cluster were identified (Figure 5D, Supplementary 

Figure 5, Supplementary Table 5). These genes were associated with three representative 

physiological functions in gene ontology: hypoxia, glucose metabolism, and apoptosis (Figure 5E, 
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Supplementary Table 5). When plotting the scores of hypoxia, glucose metabolism, and apoptosis, 

the spatial distribution of the scores were all colocalized (Figure 5F), and the distribution was similar 

to the internal distribution of the nanoparticles (Figure 2B).  

The DEGs from the clusters may simply be region-associated genes because the spots in the 

clusters are spatially close. However, we speculated that the DEGs with statistically significant 

correlations with fluorescence intensity within the cluster are associated with nanomedicine uptake 

process. Several previous studies have reported that a hypoxic condition can enhance NP uptake in 

cancer cells 28, 29, 30. According to our unbiased methods, markers related to hypoxia can be identified 

to be associated with the PEGylated liposome tumor distribution. We found that the most important 

glycolysis mediator gene, Pfkp, appeared to be an uptake-associated gene in cluster 2, as well 

(Supplementary Tables 4 and 5). It is well known that a hypoxic condition in cancer tissue enhances 

the glycolysis of cancer cells 31. Also, a previous study showed that a significant correlation existed 

between the degree of hypoxia and glucose metabolism as assessed by in vivo positron emission 

tomography (PET) in patients’ tumors 32. Because a lack of energy generation is prevalent in cancer 

cells due to the low efficiency of hypoxic metabolism, starvation-induced apoptosis can be triggered 33. 

Also, molecular markers related to lipid metabolism were found to be uptake-driving genes. Hypoxia 

can reprogram a number of genes related to energy metabolism. In recent years, a link between 

hypoxia and lipid metabolism was also revealed. In particular, endocytosis of lipoproteins is enhanced 

by the upregulation of lipoprotein receptor-related protein (LRP1) 34 and very-low-density lipoprotein 

receptor (VLDLR) 35. Thus, we speculated that several hypoxia-induced metabolism-related genes, 

such as Ndrg1, which participates in lipid metabolism, including LDL receptor trafficking, play an 

important role in the uptake of PEGylated liposomes. In addition, Plin2, one of the DEGs in cluster 2 

(FC = 0.311197, adjusted p val = 0.034946, cor = 0.177015, p val for cor = 0.073657), may be linked 

to this speculation, as the gene is involved in the hypoxia-inducible lipid droplet-associated protein 

with Hif-1α. Finally, we conducted a correlation analysis of the uptake-driving genes to find an 

association between the genes (Supplementary Figure 6). Most of the genes were clustered as sets 
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A1, A2, and A3, which are correspondingly related to ‘hypoxia + glycolysis’, ‘hypoxia + apoptosis’, 

and ‘apoptosis only’. Also, a heatmap indicated that most genes showed strong connectivity, possibly 

due to a common biological context, except for the three genes in cluster B.  

Heterogeneity in EPR-mediated nanomedicine delivery is considered to be a cause of 

heterogeneous outcomes in clinical trials of nanomedicines. To improve clinical outcomes, predictive 

biomarkers for the EPR effect should be established. Therefore, molecular markers to predict the 

efficiency of EPR are urgently needed to design successful clinical trials. Currently, several methods 

are suggested as EPR markers, including companion imaging biomarkers using radiolabeled 

nanoparticles and serum markers related to tumor stroma 36, 37. We believe that the molecular markers 

found by our platform can be used as precise EPR markers after validation in other types of cancer 

models. Also, the molecular markers found in this study can be utilized to enhance the EPR effect 

using a gene-drug interaction database. For example, the iLINCS database 

(http://www.ilincs.org/ilincs/) provides a list of small-molecule drugs that enhance or inhibit the 

molecular process when the molecular markers are provided. The enhancer identified by the database 

can be used to enhance the EPR effect of the nanomedicine. Taken together, the molecular markers 

found by the platform here can optimize the precise utilization of nanomedicines by predicting the 

EPR effect and finding EPR enhancers for the nanomedicines.  

In this study, we tested only one example nanomedicine in one tumor model, PEGylated 

liposome and the 4T1 tumor model, respectively. The tissue distribution of a nanomedicine can be 

affected by materials, surface modifications and possibly by internal drug loads. Therefore, the result 

from this study cannot be generalized to other types of nanomedicine. However, if there is a target 

nanomedicine and target cancer tissue, this new method can then be used to optimize the component 

and surface chemistry of the nanomedicine to obtain a better tissue distribution pattern. In addition, a 

three-dimensional or temporal approach should be investigated later for more accurate conclusions. 
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Conclusion 

Herein, we developed a molecular marker identification platform for nanomedicine 

distributions by integrating ST data and fluorescence nanomedicine distribution imagery. The 

molecular markers related to hypoxia, glucose metabolism, lipid metabolism and apoptosis are 

associated with the intratumoral distribution of PEGylated liposome. An interdisciplinary approach 

including image processing, an AI-algorithm-based gene analysis, biological annotations, and flexible 

interpretations of complicated mass transfer events were all involved in the development of the 

marker identification platform. We believe that this platform can be applied to a variety of tissues and 

other types of drugs, such as peptides, antibodies, and antibody drug conjugates, for the exploration of 

novel molecular markers related to drug distributions. Moreover, the use of molecular markers can 

enhance the precise utilization of drug candidates.  
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Materials and Methods 

Materials 

1,2-Distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol, 1,1’-dioctadecyl-3,3,3’,3’-

tetramethylindocarbocyanine perchlorate were purchased from Sigma-Aldrich, Korea. 1,2-Distearoyl-

sn-glycero-3-phosphoethanolamine conjugated polyethylene glycol (DSPE-PEG) was purchased from 

Creative PEGworks. Avanti Mini Extruder was purchased from Avanti Polar Lipids.  

 

Synthesis and characterization of DiI-loaded liposomes 

 Liposomes were synthesized by extrusion method with Avanti mini extruder. The liposomes 

were composed of DSPC, DSPE-PEG, cholesterol, and DiI fluorescent dye (λ�� = 553 nm, λ�� = 

570 nm). Thin-film lipids were prepared by vaporizing organic solvents and hydrated by distilled 

water. Hydrated fluorescent liposome layers were extruded using 400 nm and 200 nm pore size 

membrane filter in order. The hydrodynamic size of DiI-loaded liposomes was about 130 nm in a 

dynamic light scattering instrument (DLS). 

 

4T1 breast cancer model and fluorescence imaging 

To prepare a 4T1 allograft tumor model, 4T1 breast cancer cells (106 cells/0.02 mL) were 

injected subcutaneously into the BALB/c mice at the right thigh region. After 10 days, DiI-loaded 

liposomes were injected intravenously. In vivo fluorescence imaging was performed at 0, 4, and 24 

hours after injection using in vivo imaging system. For the verification of liposome distribution in 

organs, mice were sacrificed 24 hours after injection. The main organs (heart, lung, kidney, liver, 

spleen, muscle, and tumor) were collected and observed by in vivo imaging system for fluorescence 

imaging. 
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Acquisition of spatial transcriptomics (ST) library, H&E staining image, and fluorescence image. 

 Fresh tumor samples were embedded in the mold with optimal cutting temperature (OCT) 

compound for cryo-sectioning. ST library was acquired by several steps: cryo-sectioning, fixation, 

permeabilization, cDNA synthesis, and RNA sequencing. All the methods were carried out in the way 

that 10x Genomics visium protocol recommended. The fresh tissue samples were embedded in OCT 

compound (25608-930, VWR, USA). We prepared consecutive tissue slices were used for H&E 

staining, spatial transcriptomics library, and fluorescence imaging. The slices were acquired by thin 

blades used in cryotome so that the fluorescence pattern affected by gene expression could be 

explored thoroughly. The tissue section for ST were placed on Visum slides (both Visium Tissue 

Optimization Slides, 1000193, 10X Genomics, USA and Visium Spatial Gene Expression Slides, 

1000184, 10X Genomics). The fixation was performed under the recommended protocol using chilled 

methanol. cDNA libraries were prepared and were sequenced on a NovaSeq 6000 System S1200 

(Illumina, USA) at a sequencing depth up to 250M read-pairs. 

Raw FASTQ files and H&E images were processed by sample with the Space Ranger v1.1.0 

software. The process uses STAR v.2.5.1b (Dobin et al., 2013) for genome alignment, against the Cell 

Ranger (mouse mm10 reference package). The process was performed by ‘spaceranger count’ 

commend. Notably, to avoid confusion in terms, “pixel” was used only in the fluorescence image and 

“spot” was used only in the spatial transcriptomics profile. Also, all the following data analysis 

methods were summarized. (Table 1) 

 

Image registration 

 To fit the shape of the acquired fluorescence image to the spatial transcriptomics spots, the 

image registration process based on symmetric diffeomorphic registration 38 implemented by Python-
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based open-source DiPY package (Supplementary Material 1). The fluorescence image was 

changed to gray-scale using opencv2 package. For the registration, linear rigid transformation was 

performed after the matching center of masses of both images. The rigid and affine transformation 

processes were optimized using mutual information between two gray-scale images. After the linear 

transformation, nonlinear warping process based on symmetric diffeomorphic registration algorithm 

was performed using function ‘SymmetricDiffeomorphicRegistration’ with ‘CCMetric’ for 

optimization. The transformed image was visually evaluated.  

 

Annotation of distance in spatial transcriptomics spots 

We came up with the distance from the surface of the tumor and defined the distance of spots 

in the left-boundary region as 0. As we raised the distance one by one, we immediately marked the 

next layer. And then, the map was colored by the annotated distance. Meanwhile, the fluorescence 

intensity value for each spot was averaged from the corresponding area in the registered fluorescence 

image. The fluorescence intensity values were averaged according to the distance and a plot showing 

the relationship between the annotated distance and the average fluorescence intensity was created. 

 

Mathematical simulation of diffusion  

When illustrating dynamics of diffusion, Fick’s law is used typically as follows:  

��
�� � � ��

�� � � ��
�	 � 
 ��

�� �  ����
��� � ���

�	� � ���
���� � � 

where � is concentration vector, ��, �, 
� is velocity vector,  is diffusivity and � is source or 

sink term. We put two assumptions to simulate the result of the formula. At first, we anticipated the 

number of gaps of blood vessels is proportional to the expression level of Pecam1 gene. And we 

thought the tissue sample was close to the median plane of the whole tumor, so we got 
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 � 0, ��
�� � 0. 

We regarded ��, �, 
� as null vector according to the literature 12. Briefly, when dealing 

with cylindrical blood vessels perpendicular to the median plane, the maximum fluid velocity in 

vicinity to the vessels could be drawn with the experimentally estimated value: 

 �Diameter  of  blood  vessel� � 10 µm 

' �Spot to spot  distance� � 100 µm 

, �Spot  height� � unknown 

2 �Surface  area  of  blood  vessels  per  unit  volume  of  tissue � � 0.0034 µm� µm�⁄
 

6 �Number  of  gaps  per  unit  area  of  blood vessel� � 500 gaps mm�⁄
 

9 �Experimentally  estimated  =luid velocity� � 0.065µm� /s · gap 

9��� �Maximum =luid velocity� � unknown 

B  π D   D  , D  9��� � π
4 D '� D , D 2 D 10	
 D 6 D 9 

The result of 9��� � 27.625 pm/s indicated that the flow rate could not even explain the movement 

of nanoparticles over tens of millimeters over 24 hours. 

Thus, we used a numerical approach to comprehend the effects of the concentration gradient 

in the absence of the flow rate:  

������, 	� G  ����, 	�
∆� �  ����� � ∆�,  	� � ���� G ∆�,  	� G 2����, 	�

�∆��� �
 

                                            �  �����,  	 � ∆	� � ����,  	 G ∆	� G 2����, 	�
�∆	�� � � I D  Expression 

where ∆� and ∆	 were set to be the same. And various simulation results of Fick’s diffusion 

annotated by � I⁄  with different  ∆��⁄  values and numbers of replications were explored. 

(Supplementary Material 2) 
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Differentially expressed genes based on fluorescence intensity 

Image binarization was performed to analyze the fluorescence image pixels combined with 

the spots with transcriptomic data. Spots with high fluorescence (high-uptake spots) were 

distinguished from spots with low fluorescence (low-uptake spots) by dichotomy. When making a 

binary image, only pixels with a brightness greater than 25% of the maximum fluorescence intensity 

were selected as high pixels. The fluorescence intensity was measured and analyzed by ImageJ (ver 

1.8; https://imagej.nih.gov/ij/download.html). Once the binary image was acquired, the binary map 

was then created in search of the pixel values (i.e., 0 or 1) corresponding to the center of the spots.  

To visualize the spots according to gene features, t-distributed stochastic neighbor 

embedding (t-SNE) was employed using the Seurat package (version 4.0.5) in R. Spots with RNA 

reads less than 500 were excluded for the following analysis. The perplexity of RunTSNE was set to 

30. Differentially expressed genes (DEGs) between high-uptake spots and low-uptake spots were 

explored by Wilcoxon rank sum test on FindAllMarkers in Seurat package with min.pct and 

logfc.threshold set to 0.25 both. Lastly, DEGs were sorted by fold change (FC). (Supplementary 

Material 3) 

 

Identification of genes associated with image features 

 In addition to the overall DEG analysis, another approach, spatial gene expression patterns 

by deep learning of tissue images (SPADE), was used. (Supplementary Material 4) 23. A pre-trained 

VGG16 model extracted 512 features per patch around each spot and principal component analysis 

(PCA) was performed to reduce the dimensions of the features. We selected top three principal 

components (PCs) to identify SPADE genes. SPADE genes in each PC were discovered on empirical 

Bayes algorithm and linear regression analysis. Genes were then sorted by FC. 

For visualizing image feature-associated genes, EnhancedVolcano function was used with 
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pCutoff of 0.05 and FCcutoff of 0.3. Top 1000 genes with FDRs below 0.05 were selected, and spatial 

feature plots of top 8 genes with highest FC were represented. For GO analysis, enrichGO function 

was used. GO analysis was performed according to biological process (BP), cellular component (CC), 

and molecular function (MF) using top 30 up-regulated or down-regulated genes. When specifying 

biological annotations, g:Profiler (https://biit.cs.ut.ee/gprofiler/gost) was used instead of GO analysis. 

 

Subgroup fluorescence analysis 

We split the fluorescence image into 394 x 384 patches of 5 x 5 patch size and extracted 512 

features per each patch by using the VGG16 model. And then patches were classified by K means 

clustering according to the features with K of 4. (Supplementary Material 5) As a result, the 

fluorescence image was separated into 4 regions of interest (ROIs) according to the texture. Then, the 

binary map was merged into 2 notable ROIs out of 4. As a result, high-uptake spots were separated 

into 2 clusters and the other spots were allocated to default 0. In conclusion, 3 clusters were formed 

totally. Outliers of each uptake cluster were eliminated by using unsupervised hierarchical clustering 

of spots in cluster 1 or 2. (Supplementary Material 6) DEGs representing each uptake clusters were 

generated by comparison to the default cluster using FindAllMarkers in R.  

 

Analysis of cell types associated with fluorescence distribution 

Multimodal intersection analysis (MIA) was performed to comprehend which cell type was 

relevant to each uptake cluster 25. Single-cell RNA sequencing (scRNA-seq) dataset was obtained 

from the previous research of 4T1 tumor model 39. Marker genes in each cell type were determined 

with adjusted p-value < 1E-05 in Wilcoxon rank-sum test from FindAllMarkers. Also, marker genes 

in each uptake cluster were determined similarly, except for adjusted p-value < 0.01 instead of 

adjusted p-value < 1×10-5. Afterward, each common set of genes in a specific cell type and a specific 
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spatial region was calculated, and enrichment or depletion was determined by comparison with 

randomized output. Finally, all the common sets of genes were analyzed using Fisher’s exact test to 

figure out which cell type was significantly characteristic to which spatial region. (Supplementary 

Material 7) 

 Other cell-type matching algorithms were addressed for verification. Robust cell type 

decomposition (RCTD) was used to determine the distribution of each cell type through supervised 

maximum likelihood estimation as a representative alternative method for MIA analysis 26. All the 

parameters were set to the default settings including doublet_mode of ‘doublet’ in run.RCTD  

(Supplementary Material 8). Another algorithm, CellDART 27, which used adversarial domain 

adaptation classification from single-cell data with pre-labeled cell types was additionally performed 

to find cell types related to the distribution of fluorescence (Supplementary Material 9). 

 

Genes correlated with fluorescence intensity of subclusters defined by the image 

To acquire uptake-driving genes from uptake region-specific genes, the calculation of the 

Pearson correlation coefficient was performed. We correlated the expression of the gene and the 

fluorescence intensity within the cluster. As an effect size of the relationship between fluorescence 

intensity and gene expression, the slope of the regression curve was estimated. Only genes with p 

value less than 0.05 were sorted according to the correlation coefficient. The resultant uptake-driving 

genes were explored with gene ontology analysis (Supplementary Material 10). The uptake-driving 

genes were robustly calculated regardless of the criteria for obtaining fluorescence intensity (max, 

mean+2s.d., mean+1s.d., mean, median, min, etc.), so we decided to calculate it by averaging pixels 

in spot-size patches without further justification. We used two-step approach, DEG identification at 

first and correlation analysis later, because unreliable genes easily came up if only correlation analysis 

was performed. 
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Figures and tables 

  

 

Figure 1. Fluorescence imaging of DiI-loaded liposomes. (A) The characterization profile of DiI-

loaded liposome using transmission electron microscopy (TEM), dynamic light scattering instrument 

(DLS) and microplate reader. (B) In vivo fluorescence imaging of 0, 4, and 24 hours after intravenous 

injection in 4T1 breast tumor model. (C) Ex vivo fluorescence imaging of main organs (liver, spleen, 

kidneys, heart, lung, tumor and muscle).  
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Figure 2. Tumor Sections and Initial Exploration of Data. (A) H&E staining image representing 

the overall histological features. A serial process beginning from original fluorescence image included 

(B) fluorescence image normalization, (C) image registration, (D) image binarization, and ended with 

(E) acquiring binary map corresponded to the binary image. (F) A map colored by the annotated 

distance and the average fluorescence intensity according to the distance from left-most surface. (G) 

Spatial feature plots of Pecam1 and Cd34 and (H) Simulation results of Fick’s diffusion annotated by 

 with different  values and numbers of replications. 
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Figure 3. Results of overall fluorescence analysis. (A) A spatial feature plot of the only 

differentially expressed genes (DEG), Hbb-bs. (B) Image latent features generated by SPADE and 

PCA algorithm. PC1, PC2, and PC3 referred to principal component 1, and so on. (C) Enhanced 

volcano plot with top 1000 variable genes. (D) Spatial feature plots of top 8 SPADE genes with 

highest fold change (FC). (E) GO analysis for PC1 SPADE genes of top 30 up-regulated genes 
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according to biological process (BP), cellular component (CC), and molecular function (MF). Top 3 

positive and negative GO terms for each category was considered. 
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Figure 4. Results of subgroup fluorescence analysis. (A) A process determining uptake clusters 

beginning from registered fluorescence image. (B) MIA analysis for cluster 1 and 2. (C) Results of 

cell type population derived from RCTD algorithm. (D) Spatial feature plots representing each cell 

type occurrence acquired from the results of CellDART algorithm. 
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Figure 5. Discovery of uptake-driving genes. Volcano plots of uptake region-specific genes of 

clusters (A) 1 and (B) 2. (C) A dot plot representing expression of top 20 DEGs of clusters 1 and 2. (D) 

Volcano plots showing the relationship between correlation coefficient and p-value in clusters 1 and 2. 

(E) GO analysis for DEGs with significant correlation of cluster 2 according to biological process 

(BP), cellular component (CC), and molecular function (MF). (F) Spatial feature plots of scores 

derived from total genes, hypoxic genes, glycolytic genes, and apoptotic genes. The scores were 

calculated by AddModuleScore in Seurat package. 
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Table 1. Summary of the analysis procedures. 

 

Step 1. Modification of the fluorescence image 
Python-based open-source DiPY package 

 

Step 2. Modification of the spatial transcriptomics library 

All the spots with RNA reads less than 500 were neglected. 

In this condition, all the spots had the mitochondrial percent < 25% and the hemoglobin percent < 20%. 

 

Step 3. Acquisition of marker genes 

 DEG analysis SPADE algorithm 

# of steps 3; high-uptake spots configuration → DEG analysis → 

correlation analysis 

1; SPADE algorithm 

Spot value The average of fluorescence intensities of spot-size 

patches 

Principal components of features extracted from 

VGG16 

Correlation Pearson correlation coefficient Empirical Bayes algorithm and linear regression 

analysis 

P-value  Wilcoxon rank sum test for uptake region-specific 

genes; Linear regression analysis for uptake-driving 

genes 

Empirical Bayes algorithm and linear regression 

analysis for SPADE genes 

  

  

Step 4. Acquisition of uptake clusters 

 Combination of VGG16 and K means clustering 

Mechanism Texture recognition 

# of steps 3; high-uptake spots configuration → VGG16 & K means clustering → acquisition of uptake-clusters 
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