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Abstract
Short tandem repeats (STRs) are a class of rapidly mutating genetic elements characterized by
repeated units of 1 or more nucleotides. We leveraged whole genome sequencing data for 152
recombinant inbred (RI) strains from the BXD family derived from C57BL/6J and DBA/2J mice to
study the effects of genetic background on genome-wide patterns of new mutations at STRs.
We defined quantitative phenotypes describing the numbers and types of germline STR
mutations in each strain and identified a locus on chromosome 13 associated with the
propensity of STRs to expand. Several dozen genes lie in the QTL region, including Msh3, a
known modifier of STR stability at pathogenic repeat expansions in mice and humans. Detailed
analysis of the locus revealed a cluster of variants near the 5’ end of Msh3, including multiple
protein-coding variants within the DNA mismatch recognition domain of MSH3, and a
retrotransposon insertion overlapping an annotated exon. Additionally, gene expression analysis
demonstrates co-localization of this QTL with expression QTLs for multiple nearby genes,
including Msh3. Our results suggest a novel role for Msh3 in regulating genome-wide patterns of
germline STR mutations and demonstrate that inherited genetic variation can contribute to
variability in accumulation of new mutations across individuals.
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Introduction
Studies of germline and somatic mutations have demonstrated considerable variation across

individuals and species in both the rate and patterns by which mutations occur1. In some cases,

this variation may be controlled by heritable factors influencing the function or expression of

proteins involved in maintaining genome integrity. Indeed, genetic variants have been identified

that disrupt DNA repair proteins2,3 and lead to “mutator” phenotypes in which affected individuals

or cells accumulate specific types of mutations at a faster rate. While some of these phenotypes

are highly deleterious, such as in cancer, common genetic variation can also result in more

moderate mutator phenotypes that are only identified upon molecular interrogation4. Identifying

genetic factors controlling this variation can give insight into mutation processes and DNA repair

mechanisms.

Short tandem repeats (STRs), consisting of repeated sequence motifs of 1 or more bp, exhibit

rapid mutation rates that are orders of magnitude greater than those for single nucleotide

variants (SNVs)5. STR mutations typically result in expansions or contractions of one or more

copies of the repeat unit. Expansion mutations are well known to cause a variety of disorders,

including Huntginton’s Disease, hereditary ataxias, and myotonic dystrophy6. Further, we and

others have recently implicated both small and large expansions and contractions at STRs in

autism spectrum disorder7,8. Finally, somatic mutations at STRs, referred to as microsatellite

instability (MSI), are a hallmark of certain cancer types9.

A large number of disease-focused studies have implicated proteins involved in mismatch repair

(MMR) in regulating STR stability. For example, Lynch Syndrome, which results in predisposition

to colon and other cancer types characterized by MSI, is caused by mutations that disrupt a

variety of MMR proteins10. On the other hand, genome-wide association studies (GWAS) for age

of onset of Huntington’s Disease have identified mutations in MLH111 and MSH312 that lead to

increased somatic instability of the pathogenic trinucleotide expansion at HTT. Taken together,

these studies suggest a critical role of MMR in regulating patterns of STR mutation.

The majority of studies of STR mutator phenotypes to date have focused on somatic repeat

instability. However, studies of de novo STR and other mutation types have also demonstrated

considerable variation in germline mutation rates across individuals7,13. While this variation is

also potentially genetically controlled, this phenomenon is difficult to study in humans. Germline

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.02.482700doi: bioRxiv preprint 

https://paperpile.com/c/SbnH53/OsrDf
https://paperpile.com/c/SbnH53/Ddlio+4zJT9
https://paperpile.com/c/SbnH53/jehO6
https://paperpile.com/c/SbnH53/ITVxI
https://paperpile.com/c/SbnH53/zt1tN
https://paperpile.com/c/SbnH53/hoJVc+yREJo
https://paperpile.com/c/SbnH53/yalQD
https://paperpile.com/c/SbnH53/4txBl
https://paperpile.com/c/SbnH53/TvQZL
https://paperpile.com/c/SbnH53/HAT1P
https://paperpile.com/c/SbnH53/hoJVc+W5DE1
https://doi.org/10.1101/2022.03.02.482700
http://creativecommons.org/licenses/by-nc/4.0/


mutation rates are strongly confounded by parental age14, and mutation spectra may be

influenced by environmental exposures15. Further, observed mutation patterns in children result

from a mixture of mutation processes in the maternal and paternal germline. Thus, the relevant

genetic variation controlling germline mutations could be harbored by either of the parents and

is challenging to study in a typical GWAS setting.

Inbred mouse strains offer a unique opportunity to determine regulators of mutation processes

because they can be used to study mutations that have accumulated over many generations

under controlled settings. Further, within each strain offspring and both parents share essentially

identical genomes, and thus we do not need to consider offspring and parental genotypes

separately. We focused here on the BXD family16, which consists of more than 150 recombinant

inbred (RI) strains that were generated by repeated inbreeding of the progeny of F2 crosses

between inbred C57BL/6J and DBA/2J mice. We leveraged whole genome sequencing (WGS)

for 152 BXD RI strains17 to perform quantitative trait loci (QTL) mapping for STR mutation

phenotypes. This analysis revealed a novel QTL associated with the propensity of STRs to

expand, and demonstrates how inherited genetic variation can affect the accumulation of new

mutations across the genome.

Results

Identifying new mutations in BXD recombinant inbred mice
We previously built a reference set of autosomal 1,176,016 STRs with repeat units 2-20bp

identified from the mm10 (C57BL/6J) reference assembly, and applied GangSTR18 to genotype

these STRs using whole genome sequencing of 152 RI strains from the BXD cohort17. We used

these genotypes to identify new STR mutations, which have presumably arisen over

generations of breeding, by comparing the genotype at each RI strain to that expected based on

the founder haplotype at that region. Heterozygous genotypes were removed since we

determined these are likely enriched for STR genotyping errors. After filtering (Methods), we

identified 18,135 STRs (1.5% of all STRs analyzed) for which at least one RI strain is

homozygous for an STR length that does not match either of the founder genotypes, indicating

a candidate new mutation (Fig. 1a). These mutations may occur at STRs that were previously

fixed, or may occur at an STR that was already polymorphic in the founders. Tetranucleotide

STRs represent the largest group of mutated loci, consistent with their abundance among the

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.02.482700doi: bioRxiv preprint 

https://paperpile.com/c/SbnH53/DYcl4
https://paperpile.com/c/SbnH53/bXOo3
https://paperpile.com/c/SbnH53/Ed8MX
https://paperpile.com/c/SbnH53/xWVQq
https://paperpile.com/c/SbnH53/vlMaV
https://paperpile.com/c/SbnH53/xWVQq
https://doi.org/10.1101/2022.03.02.482700
http://creativecommons.org/licenses/by-nc/4.0/


set of successfully genotyped loci (Supplementary Fig. 1a). Dinucleotide STRs, which are

uniquely abundant in rodent genomes19, are under-represented in our dataset as a

consequence of filtering due to low genotyping quality.

We used SNP genotypes surrounding each STR to determine whether the mutation occurred on

the haplotype originating from the “B” (C57BL/6J) vs. “D” (DBA/2J) founder, which enabled us to

accurately determine the size of each mutation. We observed a slight excess of new mutations

originating from the "B" founder (52.1%; Supplementary Fig. 1b), consistent with an overall

slight excess of “B” haplotypes within BXD. The majority of mutations result in expansions or

contractions of a single repeat unit compared to the founder with a bias toward expansion

mutations (Fig. 1b). Mutations of two or more repeat units are slightly more prevalent among

dinucleotide and trinucleotide repeats than among tetranucleotide repeats (Supplementary Fig.
1c). Both of these trends are consistent with those seen in human de novo STR mutations7.

Nearly all mutations identified result in expansion or contraction by at most 5 repeat units,

although our pipeline is not optimized to identify larger expansions.

Observed STR mutations are consistent with the known history of generation of the BXD

strains. The BXD family is divided into epochs corresponding to various rounds of strain

generation occurring over several decades and generated by multiple groups16. Assuming a

constant mutation rate, the number of candidate STR mutations is expected to increase with the

number of generations of breeding (Fig. 1c). While 54% of mutations identified are private to a

single strain, the remainder are found in two or more strains (Supplementary Fig. 2). Principal

components analysis based on genotypes at STRs for which we observe new mutations clearly

separated strains by epoch (Fig. 1d), indicating many of these mutations are epoch-specific and

likely arose in an individual ancestral to one or more epochs.
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Figure 1: Characterizing new mutations in the BXD family.
a. Schematic of new mutation discovery in the BXD. Each RI strain’s genome is a homozygous
patchwork of segments derived from the founders, C57BL/6J (“B”, red) and DBA/2J (“D”, blue). Our STR
mutation discovery pipeline considers a fixed set of STRs discovered in the mm10 reference panel (in the
example shown, “B” has 6 copies and “D” has 7 copies of a particular STR). We identify new mutations as
STRs with repeat lengths differing from the length of the founder inferred at that genome segment. In the
example, strain BXD3 has a mutation to 8 copies that occurred on a haplotype inherited from the “D”
founder.
b. Distribution of mutation sizes for each BXD epoch. The x-axis shows mutation sizes in terms of the
difference in number of repeat units from the founder allele. Positive sizes indicate expansions and
negative sizes indicate contractions. Distributions are calculated separately for strains belonging to
different epochs, indicated by bar color.
c. Percentage of genotyped STRs with a new variant for each RI strain. New variants refer to any
STR for which the observed allele does not match the expected founder allele. The average number of
generations of breeding for strains in each epoch is annotated at the bottom of each panel. Strains are
sorted by decreasing number of inbreeding generations within each epoch.
d. Principal component analysis (PCA) of new mutations. PCA was performed on a binary matrix
indicating whether each strain does or does not carry the new allele at each STR. The first two principal
components separate strains by epoch indicating combinations of new mutations are shared among
strains in each group.
For b-d, colors denote BXD epochs.

Mapping quantitative trait loci for STR mutation phenotypes
We wondered whether observed differences in the number and size of mutations across strains

could be driven by genetic variation affecting DNA repair or other pathways. To this end, we
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defined several quantitative phenotypes to summarize STR mutation patterns in each strain. We

focused on three basic characteristics: Mutation count was computed as the fraction of

genotyped STRs with a new mutation in each strain. Notably, this does not truly represent a

germline de novo mutation rate, since observed mutations were homozygous and therefore

must have occurred in ancestors to present-day individuals used for sequencing. Mutation size

was calculated as the average change in repeat unit count, computed separately for expanded

vs. contracted mutations in each strain. Expansion propensity was calculated as the fraction of

new mutations in each strain for which the new allele is longer than the founder allele. For all

phenotypes, we filtered new mutations seen in more than 10 strains, since those have likely

been segregating within BXD on a variety of genetic backgrounds that differ from that of the

individual where the mutation initially arose. These common mutations may also represent

cases where the founder was incorrectly genotyped leading to false positive mutation calls. Due

to their high mutation rates, recurrent mutations are expected, and so we did not restrict our

analysis to mutations seen only once in our cohort. For mutation size and expansion propensity,

we further restricted analysis to strains with at least 10 observed mutations since those

phenotype values are unreliable when computed over a small number of mutations.

We performed genome-wide QTL mapping separately for each of these mutation phenotypes

using R/qtl220 and a set of 7,107 LD-pruned SNPs (Fig. 2). To account for population structure,

R/qtl2 uses a linear mixed model with a kinship matrix generated using the

leave-one-chromosome-out (LOCO) approach. The number of generations of inbreeding for

each strain was used as a covariate. We determined genome-wide significance thresholds

based on permutation analysis. QTL analysis did not identify any genome-wide significant loci

for mutation size and found only a modestly significant signal on chromosome 7 for mutation

count. However we identified a strong signal on chromosome 13 (max logarithm of the odds

[LOD] = 8.7) associated with expansion propensity. Strains with the “B” haplotype at this locus

tend to have higher expansion propensity than those with the “D” haplotype (Fig. 2b). This effect

is consistent across most epochs (Fig. 2c), with the exception of later epochs for which a

smaller number of mutations have accumulated. The QTL is centered around 90.4 Mb, but the

1.5-LOD support interval spans from 83.8-93.4 Mb, a region that encompasses several dozen

genes (Fig. 2d).

To investigate whether the expansion propensity signal might be driven by specific types of

STRs, we repeated QTL mapping separately for each repeat unit length. The signal is strongest
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by far for tetranucleotide STRs (Supplementary Fig. 3), which are the most abundant STR type

in our dataset. Notably, all but tetranucleotide STRs have overall low mutation counts, resulting

in unreliable estimates of expansion propensity for those categories (Supplementary Fig. 4).

STRs with other repeat unit lengths show suggestive signals, but may be underpowered

compared to tetranucleotides due to either low mutation counts or genotyping errors.

To test whether the chromosome 13 signal is influenced by our choice of filtering parameters,

we repeated QTL mapping using a range of thresholds for the minimum number of mutations

observed per strain and the maximum frequency of new mutations (Supplementary Fig. 3).

Overall, the signal is robust to these filters and increases as we restrict analysis to successively

rarer mutations. However, the signal is weaker when considering only private variants, which

could be due to a combination of reduced power from lower mutation counts and enrichment of

genotyping errors at private mutations.

Finally, we tested whether the observed signal replicates across BXD epochs, which were

generated at separate times and locations, and could potentially have different environmental

exposures or epoch-specific variants driving mutator phenotypes. The chromosome 13 signal is

strongest in Epoch 3b (Supplementary Fig. 5), which has the most strains and therefore is the

best-powered. However, other epochs show suggestive signals, and the signal is strongest

when including all epochs. Thus, we concluded the causal variant(s) for this QTL are likely

segregating within the entire BXD cohort and the QTL is unlikely to be due to an epoch-specific

mutation or environmental phenomenon.
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Figure 2: Discovery of QTLs for STR mutation phenotypes.
a. QTL mapping results Panels show results for mutation count (top), mutation size (middle), and
expansion propensity (bottom). The x-axis shows the genomic location, and the y-axis shows the LOD
score of each SNP. For mutation size, red traces and blue traces represent contraction and expansion
mutations, respectively. Dashed horizontal lines show genome-wide significance thresholds based on
permutation analyses.
b-c. Increased expansion propensity is associated with the “B” haplotype at the chromosome 13
QTL. Each point represents one strain. We used SNP haplotype blocks to assign each strain as harboring
either the “B” (red) or “D” (blue) haplotype at this locus, shown separately for strains in each epoch. The
y-axis denotes expansion propensity. Panel b shows the trend across all BXD strains, and panel c shows
the trend separately for each epoch. Horizontal lines show median values, boxes span from the 25th
percentile (Q1) to the 75th percentile (Q3). Whiskers extend to Q1-1.5*IQR (bottom) and Q3+1.5*IQR
(top), where IQR gives the interquartile range (Q3-Q1).
d. Genes located in or near the QTL peak. The y-axis shows the QTL signal (LOD score) for expansion
propensity at chromosome 13 megabases 80-97. Black line=all strains, colored lines=QTL signal
computed separately for strains in each BXD epoch. Horizontal bars denote a subset of genes near the
center of the QTL peak. Genes known to be involved in DNA repair are highlighted.

Analysis of candidate variants disrupting protein-coding genes
We next sought to characterize the QTL on chromosome 13 for expansion propensity identified

above. We first searched for variants in the region predicted to impact gene function. We

identified 9,103 SNPs/indels and 160 STRs overlapping protein-coding genes. We additionally
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performed pangenome analysis to identify 3,698 large structural variants (SVs)

(50bp<SV<10kbp; Supplementary Fig. 6). To reduce the search space, we removed rare

variants (non-major allele fraction<0.15) and variants only weakly associated with the expansion

propensity phenotype (model p-value <5e-4). We used the Ensembl Variant Effect Predictor

(VEP)21 to annotate the predicted impact (modifier, low, moderate, or high) of the 8,213 variants

that remained after filtering (Supplementary Table 1; Supplementary Fig. 7).

Based on previous studies of STR instability in cancer10 or modifiers of repeat expansion

disorders22, we hypothesized that the observed STR mutator phenotype might be driven by

variation in DNA repair genes. Of the genes in the QTL region, five are known to be involved in

processes related to DNA repair: Xrcc4 (non-homologous end joining to repair double strand

breaks), Ssbp2 (DNA damage response), Ccnh (nucleotide excision repair via the TFIIH

complex23), Atg10 (autophagy mediated effect24), and Msh3 (involved in mismatch repair).

Notably, Msh3 has been widely implicated in STR stability. In humans, mutations disrupting

Msh3 function are known to contribute to MSI at tetranucleotide repeats in cancer25. On the

other hand, Msh3 is required for repeat expansions to occur26,27 and is a known modifier gene

for STR stability in repeat expansion disorders22.

Of DNA repair genes in this region, Ssbp2 and Ccnh contain only variants marked as modifiers

by VEP which are unlikely to impact protein function directly, and Xrcc4 contains multiple

variants predicted to have low or moderate impact (Supplementary Table 2). Atg10 has a more

extensive variant profile with two moderate impact missense variants predicted as tolerated by

SIFT28, one low impact synonymous variant and a multi-allelic coding sequence insertion

(Supplementary Table 2) with a common allele resulting in an in-frame insertion (rs230013535)

and a rarer allele causing a frameshift. Closer inspection of the frameshift allele revealed that all

four strains carrying the allele are heterozygous and have lower genotype quality scores than

other strains at the locus, suggesting this allele is a variant calling artifact and unlikely to explain

the QTL signal.

Msh3 contains the most variants with effects predicted by VEP, including one splice, four

missense, and three synonymous mutations within protein-coding exons. Most of these are

located within a variant-dense region in the 5’ end of the gene overlapping the mismatch

recognition domain (Supplementary Fig. 8, Supplementary Table 2, Fig. 3a). One of the

missense variants (rs48140189) is predicted by SIFT to be deleterious within a truncated
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transcript but is tolerated within both canonical transcripts. In addition to impactful variants

within protein coding transcripts, we also identified three variants of interest mapping to a

nonsense mediated decay (NMD) transcript of Msh3 (ENSMUST00000190393). One of these is

a structural variant corresponding to a 387bp insertion in C57BL/6J compared to DBA/2J

(Supplementary Fig. 6). This type of insertion results from a long-terminal repeat (LTR)

sequence left behind after an insertion of an IAPLTR2a retrotransposon into C57BL/6J and the

subsequent deletion of its internal sequence following a recombination event29. The LTR spans

nearly the entirety of exon 5 of an NMD transcript and falls between exons 4 and 5 of the

canonical transcript (Supplementary Figure 8b; Fig. 3b). Additionally, a pair of SNPs

(rs49933543; rs48930870) are predicted to reside within the 3’ splice acceptor site of this 4th

intron of the NMD transcript and are well correlated with the mutator phenotype. We further

examined other SVs within each gene that passed the association and allele frequency criteria

regardless of their impact predicted by VEP (Supplementary Table 3). While Atg10, Ssbp2 and

Xrcc4 harbor several large (>50bp) structural variants, neither of these is predicted to overlap

with any meaningful feature. Moreover, with the exception of a 215bp deletion within Atg10, the

Msh3 LTR variant is most strongly associated with the mutator phenotype. Overall, given its

known role in STR stability and the high density of variants with predicted impact overlapping its

mismatch recognition domain, our results suggest Msh3 as a strong candidate gene for this

QTL.

Figure 3: Variants predicted to impact Msh3.
a. Summary of variants overlapping Msh3. The top panel shows the canonical protein-coding transcript
of Msh3 (purple) and protein domains (orange rectangles) obtained from Pfam30. The bottom panel shows
the location (mm10; x-axis) of variants and their association with the expansion propensity phenotype
(-log10 p-values; y-axis). Variants are colored by their impact predicted by VEP (high=red;
moderate=blue; low=green; modifier=gray).
b. Summary of variants in the variant-dense 5’ region of Msh3. Top and bottom panels are the same
as in a. The middle panel shows a histogram of read coverage as visualized using the Integrative
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Genomics Viewer31. Gray bars denote positions that match the reference genome, which is based on
C57BL/6J. Colored bars denote mismatches from the reference.

Expansion propensity QTL co-localizes with multiple cis-eQTLs

We next wondered if the QTL for expansion propensity might also be mediated through

cis-regulatory variants affecting expression of genes in this region. To this end, we compiled 54

publicly available gene expression microarray datasets encompassing 30 tissues

(Supplementary Table 4) with sample sizes ranging from 11-79 strains. While the datasets

were acquired using multiple microarray platforms, under different experimental conditions, and

across a range of tissues, we find overall that Ccnh and Ssbp2 are among the most highly

expressed genes within the QTL region, Msh3 has average expression, while Atg10 and Xrcc4

are expressed slightly below average (Supplementary Fig. 9). For downstream analyses, we

restricted to 40 expression datasets with at least 30 strains (Supplementary Fig. 10).

For each remaining dataset, we performed a separate expression QTL (eQTL) analysis for 26

protein coding genes for which expression levels are available in at least half of the datasets

(Supplementary Fig. 11). We considered only probes not overlapping SNPs for comparing

gene expression levels and used the number of variants per probe as a covariate in eQTL

mapping to avoid confounding the true variability with differences in probe hybridization

efficiency. Notably, this excluded a large number of probes for Msh3 since many overlap

multiple SNPs in the highly variable 5’ end of the gene (Supplementary Fig. 12). We then

ranked genes by the proportion of datasets where the maximum eQTL LOD exceeded the

permutation-based threshold for significance (Supplementary Fig. 13). We observed robust

eQTL signals for Ssbp2, Ag10 and Ccnh in 29, 18 and 14 datasets respectively. We also found

eQTL signals for Xrcc4 and Msh3, albeit in a smaller number of datasets: 6 and 4 respectively

(Fig. 4a, Supplementary Fig. 14a). The eQTL for Atg10 shows the most consistent

colocalization with the QTL peak across datasets (Supplementary Fig. 14a). However, eQTLs

for most genes in the region are strongly co-localized with the QTL (Fig. 4a), making it difficult to

prioritize a single causal gene based on the eQTL signal alone.

In all tissues with a significant eQTL for Msh3, we observed a consistent direction of effect, with

higher Msh3 expression for strains carrying the “B” haplotype associated with increased

expansion propensity (Fig. 4b, Supplementary Fig. 14b). Detailed analysis of the Msh3 eQTL

shows that the signal is strongest when considering probes and variants in the 5’ end, even
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after adjusting for hybridization efficiency due to SNPs in this region (Methods; Supplementary
Fig. 15). This result is consistent with previous studies in humans, in which increased Msh3

expression driven by polymorphism in the 5’ end of the gene was associated with increased

somatic instability at the trinucleotide repeat involved in Huntington’s disease12.

Finally, we examined tissue-specific expression of each of the candidate DNA repair genes

using the Bgee32 database (Supplementary Table 5). Msh3 is most highly expressed in

oocytes, where de novo mutations are known to arise33. On the other hand, Ssbp2 and Atg10,

which are closest to the QTL center, are most highly expressed in brain and heart structures,

respectively, which are unlikely to be relevant for germline mutations. Ccnh is expressed in a

variety of tissues including female gonads, and Xrcc4 is expressed in spermatocytes and

oocytes. However, variants overlapping those genes have lower LOD scores for association

with expansion propensity than variants overlapping Msh3 or Atg10 (Fig. 2d, Supplementary
Fig. 7).

Figure 4: A QTL for expansion propensity on chromosome 13 colocalizes with eQTLs for
multiple DNA repair genes.
a. Co-localization of expansion propensity and eQTL signals. Colored traces denote eQTL
LOD scores. Each line shows the expression dataset with the strongest eQTL for that gene.
eQTL LOD scores were adjusted for multiple hypothesis testing for each gene based on the
number of probes tested. The gray shaded box shows the 1.5-LOD support interval for the
expansion propensity QTL.
b. Distribution of gene expression for strains with “B” vs. “D” haplotypes. Panels show
gene expression for each gene for strains assigned the “B” (red) vs. “D” (blue) haplotypes at the
QTL locus. Data shown is aggregated across all GeneNetwork datasets with a significant eQTL
for each gene. Distributions per dataset are shown in Supplementary Fig. 14b.
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Figure 5: Schematic overview of proposed mechanisms for the expansion propensity
QTL. BXD mice carrying the “B” haplotype at the chromosome 13 QTL locus tend to have higher Msh3
expression than those carrying the “D” haplotype. Msh3 and Msh2 form the heterodimer MutSβ which
recognizes strand misalignments, such as those formed by STRs (repeat units shown in green), across
the genome during DNA replication. A cluster of sequence variants at the 5’ end of Msh3 overlapping the
DNA binding domain may alter how the heterodimer to recognizes and corrects misalignments at STRs,

leading to a bias in expansion vs. contraction mutations in mice carrying the “B” haplotype at this locus.

Discussion

Genetic variation impacting proteins involved in DNA repair processes have the potential to

drive genome-wide variation in mutation rates and patterns across individuals of a species, both

in the context of disease but also across healthy individuals. Identifying these determinants may

give insights into disease risk or progression and could improve population-genetic models of

mutations. Recombinant inbred (RI) strains such as those in the BXD cohort have accumulated

mutations over dozens of generations of inbreeding, offering a unique opportunity to map

genetic determinants of these “mutator phenotypes”. Here, we performed QTL mapping for

three quantitative STR mutator phenotypes, and identified a robust QTL on chromosome 13 for

expansion propensity in mice. The QTL region encompasses 30 protein-coding genes, including

Msh3, an important component of the DNA mismatch repair (MMR) machinery3.

Msh3 is well-known to be involved in regulating STR stability. Msh3 is one of six homologs of

the E. coli MutS MMR protein, and heterodimerizes with Msh2 to recognize and repair long

insertion or deletion loops that arise during DNA replication34, often due to misalignment of

strands at STR regions. Model organism studies have demonstrated that Msh3 is required for

the formation of pathogenic repeat expansions26,27. Further, inherited variants in Msh3 have

been reported to modify age of onset and severity of Huntington’s Disease22, and a
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polymorphism in the 5’ end of Msh3 has been associated with increased Msh3 expression and

somatic instability of the trinucleotide repeat implicated in Huntington’s Disease12. Finally,

mutations disrupting Msh3 are often found in cancers exhibiting microsatellite instability25.

Here, we report a novel role for Msh3 in altering genome-wide germline mutation patterns at

STRs. Previous studies have focused either on Msh3’s role as a modifier gene for the stability of

large repeat expansions at a small number of well-studied loci, or on its connection with somatic

STR instability in cancer. Our results suggest that in addition to these roles in disease, common

mutations affecting Msh3 may contribute to biases in mutation sizes in the germline at the

hundreds of thousands of short STRs across the genome. Similar to previous findings in inbred

mice26, we find evidence that both protein-coding sequence variants overlapping the DNA

mismatch recognition domain, as well as Msh3 expression levels, could collectively contribute to

the increased expansion propensity in mice harboring the “B” vs. “D” haplotypes at this locus

(Fig. 5). Notably, we found that these haplotypes are shared with other inbred strains commonly

used in mouse genetics (Supplementary Fig. 16), suggesting they could drive variation in STR

mutation profiles in other mouse cohorts.

Identifying a single causal gene or variant in the QTL locus identified is challenging in the BXD

family, which harbors long unbroken haplotypes spanning several megabases16. The abundance

of literature evidence regarding the role of Msh3 in STR stability in other contexts, and the high

density of variants in the key region of the protein important for recognizing mismatched DNA,

strongly suggests it as a causal gene for this locus. However, we could not definitively rule out a

role for other genes in this region. In particular, Atg10 falls closest to the center of the QTL peak,

and eQTL signals for Atg10 are most consistently co-localized with the QTL. We additionally

identified multiple protein-coding variants and an SV overlapping this gene. However, Atg10 has

only been indirectly connected with DNA repair through the autophagy system35. Further,

whereas Msh3 is most highly expressed in oocytes where germline mutations are likely to arise,

Atg10 is most highly expressed in heart and other structures less likely to be related to a

mutator phenotype.

In addition to multiple protein-coding variants that have been previously reported26, our analyses

revealed a 387bp indel, near the 5’ end of the gene and falling between exons 4 and 5 which

encode the DNA mismatch recognition domain. This indel is due to an IAP LTR insertion on the

“B” (C57BL6/J) which is missing in “D” (DBA/2J) and many other classic mouse strains
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(Supplementary Fig. 16), and forms an exon of a non-canonical transcript of Msh3. IAP LTRs

are one of the few active retrotransposon families in the mouse genome36. Two of the most

well-studied variants in mice have arisen through IAP LTR insertion: Agouti Viable Yellow37 and

Axin fusion38. While IAP LTR elements are typically heavily methylated39, the element at this

locus is a member of the IAPLTR2a group, which are overrepresented among hypomethylated

LTRs40, harbor transcription factor binding sites which can potentially contribute to regulation of

nearby genes41, and have been shown to induce alternative splicing of nearby exons36. Further,

retrotransposons including IAP elements, have been shown to regulate transcription of their

host genes in oocytes42, where Msh3 is most highly expressed.

Our study faced multiple limitations. First, our pipeline is not optimized to identify mutations

resulting in large repeat expansions, such as those implicated in Huntington’s Disease.

Additionally, available WGS data was generated using PCR+ protocols, and many STRs, in

particular error-prone dinucleotide repeats, had to be filtered from our analysis due to

low-quality calls. Second, while we analyzed gene expression data for dozens of tissues

collected for BXD samples, we did not have access to expression data for tissues most relevant

for germline mutation processes. In future studies, data from tissues such as oocytes or sperm

might give further insights into gene regulatory mechanisms driving this signal. Finally,

experimental validation of individual causal genes or variants for this phenotype is challenging:

the STR mutation phenotypes measured here are based on mutations that have arisen over

decades of inbreeding, and would not be evident in genome-edited cell lines or animals

observed for a small number of generations.

In summary, our study reveals a novel QTL for STR mutation patterns, providing a striking

example of the influence of inherited variants on germline mutation properties. Additional

modifiers for both STR and other mutator phenotypes are likely to exist in humans or in other

model organism datasets. We anticipate that further investigation of these mutation modifiers

will provide new insights into mutation processes both in health and disease.
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Methods

Whole genome sequencing of the BXD cohort
Genome-wide STR and SNP genotypes for 152 RI strains and the two BXD founders, C57BL/6J

(“B”) and DBA/2J (“D”), were previously generated from whole genome sequencing data from

the BXD Sequencing Consortium17. Epoch labels were obtained from Ashbrook, et al.16.

SNP marker maps for founder inference and interval mapping
We prepared a marker-by-strain matrix of founder labels (“B” vs. “D”) for BXD RI strains using

SNP genotypes at 7,124 autosomal LD-pruned markers published on GeneNetwork (URLs).

For SNPs not directly genotyped from WGS in the BXD, we chose the next closest SNP based

on genomic distance that was less than 500 Kbp away. In a small number of cases, the closest

SNP was the same for multiple markers, in which case a single marker/snp combination was

retained producing a final list of 7,107 markers. R/qtl220 version 0.24 was used to calculate

founder genotype probabilities suitable for QTL mapping using the `calc_genoprob` function

with default parameters. We then generated a complete list of SNP founder labels with

maximum marginal probabilities using the `maxmarg` function with `minprob` parameter set to

0.5. Founder labels at individual markers were used to find start and stop positions of haplotype

blocks using a connected components clustering approach (R tidygraph).

Identifying and phasing new STR mutations
We identified candidate STR mutations as STR genotypes in RI strains not matching genotypes

in either of the two founder strains. In cases where one or both founders were not directly

genotyped, we first inferred missing STR calls in founders (below). We intersected each

candidate new mutation with haplotype blocks inferred from SNPs to assign each mutation as

occurring on the “B” vs. “D” haplotype. STRs falling in a gap between blocks were assigned to

the nearest block. We excluded new variants where either the RI or founder strain were

heterozygous, which likely indicates either poor quality STR genotypes or incomplete inbreeding

at that locus. Finally, we excluded strain BXD194, in which we found an outlier number of new

mutations (>2-fold higher than other strains in the same epoch), from downstream analyses.
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Inferring missing founder STR genotypes
We used R/qtl2 to infer missing founder STR genotypes from genotypes observed in RI strains.

First, we imputed founder labels (“B” or “D”) for each STR genotype in the RI strains. For the

subset of loci at which both founder strains were genotyped and did not share a common allele,

we could unambiguously assign “B” or “D” genotype labels to each genotyped RI strain. RI

strains with genotypes not matching either founder were assigned missing labels. For the

remaining polymorphic loci missing at least one founder genotype, we could not directly infer the

founder label and initially set all genotypes at those loci to missing values. We used the R/qtl2

`interp_map` function to interpolate linkage distances between STRs from physical and genetic

SNP marker maps at the 7,107 LD-independent markers described above. We then used R/qtl2

functions `calc_genoprob` followed by `maxmarg` to impute missing founder labels. Then, for

each STR with a missing founder genotype, we determined the distribution of repeat lengths in

strains inferred to have the corresponding founder label at that locus. If at most one RI strain

had a genotype differing from the modal repeat length, the founder was inferred to have the

modal allele. Otherwise, the locus was removed from downstream analysis.

Characterization of new STR mutations
We performed principal components analysis (PCA) to characterize sharing of new mutations

across strains. We constructed a strain-by-locus matrix of indicator values indicating the

presence (1) or absence (0) of a new STR genotype in each strain at each locus. We then

performed PCA using the builtin ‘prcomp’ function in R with centering but without scaling.

Computing STR mutator phenotypes
We calculated three separate mutator phenotypes for each strain. Mutation count was

calculated as the number of STRs with new mutations divided by the number of successfully

genotyped loci in that strain. Mutation size was calculated as the average difference in repeat

count between the new genotype and the founder genotype at each mutation. Mutation size was

computed separately for expansion and contraction mutations. Expansion propensity was

calculated as the fraction of new mutations in each strain for which the RI genotype was longer

than the founder genotype. Unless otherwise noted, we removed STR mutations seen in 10 or

more strains, as those likely do not represent new mutations.
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QTL mapping for STR mutator phenotypes
QTL mapping for each mutator phenotype was performed based on the set of LD-pruned SNPs

described above using a linear mixed model approach implemented in R/qtl2. Each phenotype

was analyzed separately. We used the “calc_kinship” function to prepare a strain relatedness

matrix using the leave-one-chromosome-out (LOCO) method. In addition to supplying a vector

of phenotype values, genotype probability and kinship matrices, we also input a vector of the

number of inbreeding generations as a covariate. We used ‘scan1perm’ to calculate

permutation-based genome-wide significance thresholds based on 100 permutations. For each

QTL analysis performed, strains with fewer than 10 total new mutations were excluded from

analysis since they produce noisy mutator phenotype values.

Variant annotation
The initial set of variants for annotation analysis contained 166,681 SNPs and 2,355 STRs

genotyped previously in the BXD cohort17 and located between the boundaries of the confidence

interval for the QTL on chromosome 13. We additionally obtained structural variants (SVs)

based on pangenome analysis (see below). After filtering for variants within protein coding

genes in the QTL region based on the GENCODE M25 release gene annotations, 46,320

SNPs, 736 STRs and 7,623 SVs remained. SVs smaller than 50bp were removed leaving 983

SVs. After filtering for only segregating variants and removing variants where more than half the

strains had a missing value, 9,103 SNPs, 160 STRs and 983 SVs remained. Non-major allele

frequency was calculated for each variant as the proportion of alleles at the locus that were not

the most abundant allele after removing strains with missing genotypes. We used VEP21 v103.1

with the Ensembl cache v102 to predict the impact of each variant. VEP assigns one of four

IMPACT ranks (high, moderate, low and modifier) along with predicted consequences to each

variant overlapping a transcript or a regulatory feature. The strength of association between the

genotype at each variant and the expansion propensity phenotype was taken as the one-sided

p-value of the F statistic for an ANOVA model with genotype as categorical predictor variable

using R. 24 SV loci were filtered out due to not returning an association value for a final count of

9,103 SNPs, 160 STRs and 959 SVs. There were an average of 4.9 transcripts and 9.7

regulatory features per gene for a total of 398 features and 44,493 variant feature pairs. The

variant-feature pair with the most severe impact and consequence was selected among variants

predicted to have multiple consequences and/or impacts on protein features.

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 2, 2022. ; https://doi.org/10.1101/2022.03.02.482700doi: bioRxiv preprint 

https://paperpile.com/c/SbnH53/xWVQq
https://paperpile.com/c/SbnH53/plYxB
https://doi.org/10.1101/2022.03.02.482700
http://creativecommons.org/licenses/by-nc/4.0/


Pangenome analysis of structural variants
The BXD pangenome for chromosome 13 was built from data of 148 strains (four strains were

excluded due to poor assembly quality) using haploid assemblies of 10X reads obtained by

Supernova43. To restrict the analysis to chromosome 13, haploid assemblies were mapped

against the GRCm38/mm10.fa reference genome using wfmash65 v.0.6.044. Only assemblies

mapping to chromosome 13 were used to build the the pangenome with pggb45 v0.2.0 using the

following combination of parameters: pggb-0.2.0 -i chr13.pan+ref.fa.gz -o

chr19.pan+ref -t 48 -p 98 -s 100000 -n 140 -k 229 -O 0.03 -T 20 -U -v

-L -Z.

Regions of the pangenome with depth<10x were removed using odgi46. Variant calling from the

pangenome was done with vg47 (v1.35.0-59-ge5be425c6) using the following combination of

parameters: vg-e5be425 deconstruct -t 16 -P REF -e -a -H '#' graph.gfa >

graph.vcf.

The variant call set was processed to remove missing data, sites where alleles are stretches of

Ns, homozygous reference genotypes and variants smaller than 50bp and >10kbp before

normalization and decomposition using bcftools48 under standard parameters. The resulting

VCF file was visualized using bandage v. 0.8.149.

Reference and alternate allele sequences for structural variants were extracted from the

resulting variant call file using `bcftools query`. Each alternate sequence was then aligned to the

reference using the Needleman-Wunsch global pairwise alignment implemented in the

`pairwiseAlignment` function from the Biostrings v2.60.1 R package. This allowed for splitting

complex structural variant sequences spanning multiple kilobases into smaller individual

insertions/deletions for variant effect analysis. We removed singleton variants and those less

than 50bp in length.

eQTL analysis
We generated a list of 264 expression dataset files available from GeneNetwork’s Interplanetary

File System (IPFS) node (URLs) using the “lftp” tool. Of these, 242 datasets contained BXD

strain data. A number of GeneNetwork datasets do not reflect the nomenclature change of the

BXD24/BXD24_Cep sister strains. To avoid ambiguity and standardize strain names with newer
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datasets, BXD24 and BXD24a were relabeled as BXD24_Cep and BXD24 respectively in

datasets GN267, GN373, GN385, GN410 and GN414, which contained expression values for

both of these strains. Similarly, BXD24a was relabeled as BXD24 in datasets GN274, GN275,

GN302, GN308, GN325, GN374, GN375, GN387 and GN702. Probe information and per-strain

gene expression values were extracted into separate tables of an sqlite3 database to facilitate

querying. Probes with missing genomic location information were removed. Finally, probe

coordinates were converted from the mm9 to the mm10 reference using the UCSC Genome

Browser liftOver tool and probes that failed remapping to the new reference were discarded.

Each GeneNetwork dataset represents a distinct processing configuration of data generated

from an experimental study. Processing steps include: signal intensity normalization, strain and

probe filtering, rescaling and correction of batch effects. Multiple datasets may be available for

studies where both gene- and exon-level data has been collected. Further, study data may be

split up into multiple datasets according to the sex of the animals or by treatment group such as

diet or drug exposure. To avoid overcounting, we selected a single representative dataset by

using a heuristic approach to make the selection based on strength of signal and processing

conditions. Exon level data was preferred to gene level data due to increased probe density.

More recently reprocessed datasets were preferred to older ones. Data from control groups was

preferred to data from experimentally treated groups. Combined male and female data was

preferred to sex-specific data. Datasets with more strains were preferred to datasets with fewer

strains. A summary of selected and available datasets for each study is available in

Supplementary Table 4.

We then queried expression values for all probes falling within the 83.8-93.4 Mb region on

chromosome 13 in each dataset. GN227 lacked probe data in this region and was excluded.

Probe mapping information was either taken directly from the GeneNetwork dataset or queried

from Ensembl’s BioMart data mining tool release 102 using the biomaRt50 R package.

Unmapped probes were removed from analysis. We then checked whether probe coordinates

were contained within the start and stop positions of each probe’s corresponding gene and

removed those that did not. For each Affymetrix ProbeSet representing a collection of probes,

we used the UCSC51 BLAT tool (https://genome.ucsc.edu/goldenpath/help/blatSpec.html) to find

the matching genomic location of individual probe sequences. We discarded probe sets where

any contained probe did not match within the coordinates of its assigned gene. We then used

probe coordinates to calculate the number of segregating variants that each probe overlapped
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using the `bedtools intersect` command available from the BEDTools52 package. Additionally for

each probe, we calculated the number of variants at which each strain differed from the mm10

reference, which represents the number of mismatches an array probe would be expected to

have when hybridizing with a DNA library sample from a given strain. We then performed eQTL

mapping on chromosome 13 using the same set of LD-independent loci and kinship matrix. The

covariate vector from the QTL mapping was supplemented with the number of expected

hybridization mismatches for each probe/strain combination to account for expected differences

in hybridization efficiency. The number of strains per dataset ranged from 11 to 79. For

comparison, we remapped the mutation propensity phenotype using only strains available in

each of the gene expression datasets. Mono-allelic markers conditioned on the subset of strains

available in each expression dataset were removed.

Notably, it is common for multiple microarray probes (probesets) to target the same gene,

especially for exon based microarrays. We observed high variability for gene expression

measurements between probes targeting the same gene in a given dataset. To limit the rate of

false eQTL signal discovery, we applied the Benjamini Hochberg

(https://www.jstor.org/stable/2346101) multiple hypothesis testing correction to the vector of

peak LOD values for each gene-dataset pair. We selected a representative probe for each gene

having the highest adjusted peak LOD value within the expansion phenotype QTL region on

chr13 for gene-level analysis. For visualization of eQTL traces, LOD values at each marker were

scaled by the ratio of the peak adjusted LOD to peak LOD for each gene

Genomic data for classic mouse strains
Read alignment bam files for the common laboratory mouse strains: 129S1/SvImJ, NZO/HILtJ,

NOD/ShiltJ, CAST/EiJ, PWK/PhJ, A/J and WSB/EiJ were downloaded from the Mouse

Genomes Project ftp server hosted at ftp://ftp-mouse.sanger.ac.uk/current_bams. Variant call

files for these strains were similarly queried from ftp://ftp-mouse.sanger.ac.uk/current_snps.

Tissue-specific expression of DNA repair genes
Tissue-specific expression of Msh3 and other DNA repair genes (Supplementary Table 5) was

obtained from the Bgee database32, accessed on February 26, 2022.
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Data availability
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