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ABSTRACT 
Neurodegenerative disorders are characterized by phenotypic changes and hallmark 

proteopathies. Quantifying these in archival human brain tissues remains indispensable for 

validating animal models and understanding disease mechanisms.  We present a framework for 

nanometer-scale, spatial proteomics with multiplex ion beam imaging (MIBI) for capturing 

neuropathological features.  MIBI facilitated simultaneous, quantitative imaging of 36 proteins on 

archival human hippocampus from individuals spanning cognitively normal to dementia.  

Customized analysis strategies identified cell types and proteopathies in the hippocampus 

across stages of Alzheimer’s disease (AD) neuropathologic change. We show microglia-

pathologic tau interactions in hippocampal CA1 subfield, in AD dementia. Data driven, sample 

independent creation of spatial proteomic regions identified persistent neurons in pathologic tau 

neighborhoods expressing mitochondrial protein MFN2, regardless of cognitive status, 

suggesting a survival advantage. Our study revealed unique insights from multiplexed imaging 

and data-driven approaches for neuropathologic analysis and serves as a baseline for 

mechanistic and interventional understanding in human neurodegeneration. 
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INTRODUCTION 
Neurodegenerative diseases are a heterogeneous group of disorders characterized by 

progressive dysfunction and loss of neurons, usually alongside aberrant protein accumulation. 

These proteopathies are accompanied by microglia (Keren-Shaul et al., 2017; Mrdjen et al., 

2018) and astrocyte (Acioglu et al., 2021) stress responses and neurovascular dysfunction, and 

occur in characteristic brain regions that underlie clinical symptoms of disease. Alzheimer’s 

Disease (AD), the most common neurodegenerative disease, portrays these features. In AD, 

aggregation of amyloid-β (Aβ) peptides in parenchymal space as plaques and 

hyperphosphorylated, paired-helical filament (PHF) tau as intraneuronal neurofibrillary tangles 

(NFTs) and neuropil threads (NTs) form region-specific niches of neurodegeneration. Pathologic 

aggregates of PHF tau accumulate first in the entorhinal cortex and hippocampus; Aβ plaques 

deposit first across neocortical regions (Braak and Braak, 1991; Hyman et al., 2012).  

Our understanding of the underlying phenotypic, regional, and cellular heterogeneity in 

neurodegenerative niches of these vulnerable brain regions remains limited(Mrdjen et al., 2019). 

Quantitative, multiplexed, subcellular imaging of cells and biochemical components may 

connect these various domains. Capturing discrete cellular and proteopathy features could be 

used to calculate local and regional tissue neighborhoods and their relationship to 

neurodegenerative disease progression. However, efforts to acquire highly multiplexed 

fluorescence-based images have been confounded by the variable auto-fluorescent matrix 

common to aged human brain formalin fixed paraffin embedded (FFPE) samples (Gilissen and 

Staneva-Dobrovski, 2013; Guardo, 2015). Furthermore, the ramified morphology of glia and 

neurons present significant analytical challenges to conventional methods for image 

segmentation and interpretation (Keren et al., 2019). Partitioning disjointed, unusually shaped or 

sized cellular features, acellular protein aggregates, and unclear tissue boundaries requires a 

specific set of analytical tools (Dora et al., 2017).  

Here, we present a new generation of single-cell, spatial proteomic imaging, and 

analytical tools to capture the underlying cellular and phenotypic diversity in intricate neural 

tissues. In place of fluorophores and lasers, we employed multiplex ion beam imaging by time of 

flight (MIBI-TOF) mass spectrometry (MS) that has been used previously to study various 

archival human tissue types from tumors to placenta and granulomas in infectious disease 

(Greenbaum et al., 2021; Keren et al., 2018; Liu et al., 2021; McCaffrey et al., 2022; Risom et 

al., 2022). Based on secondary ion mass spectrometry (SIMS), MIBI-TOF images antigens 
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targeted by antibodies labelled with elemental isotopic mass reporters that are spatially 

quantified with nanometer resolution.  This MS-based strategy bypasses the light-based 

imaging matrix effects and autofluorescence that dominate in adult human CNS.  Through 

verification against traditional IHC, we validated antibodies for 39 brain-specific targets (Table 

S1) and demonstrate these could be simultaneously stained and imaged with MIBI-TOF without 

the need for cyclic or serial approaches (see for comprehensive review of (Hickey et al., 2021). 

With these quantitative, multiplexed, spatial proteomic profiles across different brain regions, we 

were able to employ data-driven approaches to organize brain regions independently of local 

anatomy and disease status.  

Finally, as a proof-of-utility for this methodological resource, we used archival human 

hippocampus from individuals covering a spectrum of cognitive impairment and AD 

neuropathologic changes.   Adapting tools for automated feature identification, we extracted and 

classified a wide range of brain cellular features and protein aggregates. These were then 

combined to create tailored spatial analysis approaches, identifying organization within 

hippocampal subfields (Keren et al., 2018; Stoltzfus et al., 2020). Traditional single-cell data 

clustering, spatial correlation, and dimensionality reduction were used to reveal salient features. 

Top-down analysis, (leveraging prior knowledge of neuroanatomy), as well as bottom-up 

(completely data driven) approaches established complex spatial phenotypes across 275,808 

cells and anatomical objects. Top-down analysis demonstrated changes in cellular composition 

across pathological stages related to AD progression, such as active microglia phenotypes in 

hippocampal subfield CA1 as evidenced by relatively high levels of IBA1, CD45, APOE, and 

CD33. Bottom-up analysis identified novel cellular neighborhoods with unique neuronal 

populations.  Most interestingly, a pathologic Tau region present in the hippocampus of all 

individuals, regardless of cognitive status, showed a subset of persistent, pathologic protein 

free, neurons expressing increased levels of the mitochondrial protein MFN2.   These insights 

were uniquely revealed by our multiplexed imaging and data-driving approaches tailored here 

for neuropathology research.  Taken together, we provide a resource for acquisition, 

processing, and interpretation of highly multiplexed imaging of archival human brain tissue that 

should be extensible to platforms beyond MIBI-TOF presented here.  
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RESULTS 
A framework for quantitative multiplexed imaging and feature selection in human brain 

Archival, formalin fixed paraffin embedded (FFPE) brain regions are predominantly used 

for human neurodegenerative disease research. Fluorescence imaging on adult brain FFPE is 

confounded by endogenous tissue autofluorescence that can overwhelm signals originating 

from antibody bound fluorophores (Figure S1A) (Gilissen and Staneva-Dobrovski, 2013; 

Guardo, 2015; Schnell et al., 1999).  With this in mind, we created a framework for high 

resolution, quantitative, multiplexed imaging of archival brain regions (Figure 1A) using MIBI-

TOF.  Because antibodies are detected using elemental mass tags, MIBI-TOF images possess 

no equivalent endogenous signal from the biological matrix (i.e., no equivalent 

‘autofluorescence’).  Brain tissue sections were stained with a cocktail of primary antibodies (36-

plex panel), where each antibody is labelled with a unique elemental mass tag (Figure 1A, 

Figure 1SB, Table S1). Stained brain sections were imaged using an ion beam, which liberates 

these mass reporters as secondary ions (Figure 1A). The spatial distribution of elemental 

reporters is converted into N-dimensional image where each channel of this image corresponds 

to one of the primary antibodies (Figure 1A). Quantitative pixel-level information was extracted 

to produce global expression summaries and fed into downstream pipelines for data-driven 

analysis of cell phenotypes and disease objects classification (see Methods: Global expression 

pattern) (Keren et al., 2018). Ultimately, these data were used to construct tabular summaries of 

molecular features describing overall tissue architecture, as well as the spatial distribution of 

cells and proteopathies (Figure 1A).  

To capture salient neuropathologic changes, the antibody staining panel targeted 

proteins for delineating major neuronal cell lineages, proteopathies, and vascular structures 

(Figure S1B, Table S1).  Antibody specificities were validated against multiple brain regions by 

standard IHC (Figure S1C), benchmarking optimal titers of chromogenic IHC against MIBI-TOF. 

We used the resulting 36-plex panel to reveal the cytoarchitecture of an entire coronal section of 

human hippocampus (Figure 1B-E). Hippocampus consists of anatomically distinct regions with 

structural boundaries that are evident from pseudo-colored overlays. Figure 1B-E illustrates a 

31mm2 hippocampal region from a person with AD dementia (ADD). The granule cell layer of 

dentate gyrus (DG) is highlighted by MAP2 and HH3 (Figure 1B, DG white arrow), while the 

boundary between white and gray matter can be delineated based on expression of MBP and 

CD56 (Figure 1B).  In line with previous work, glutamatergic terminals within the hilus, Cornu 

Ammonis (CA), and molecular layers (Lmol) are marked by the presynaptic vesicular proteins 

VGLUT1 and VGLUT2 (Figure 1B) (Herzog et al., 2006; Liguz-Lecznar and Skangiel-Kramska, 
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2007; Vigneault et al., 2015).  Calbindin (CB), calretinin (CR), and parvalbumin (PV) appear as 

contiguous parcels in the hippocampus (Figure 1D).  As seen in rat hippocampus, our human 

data showed that CB borders the DG and hilus, CR structures the Lmol, and PV is within CA 

(Rivera et al., 2014). As expected, NFTs and NTs are highlighted by PHF1-TAU 

immunoreactivity in the CA subfield, while Aβ plaques depicted by Aβ42-immunoreactivity 

predominantly in hilus and Lmol of the ADD hippocampus (Figure 1E).  Spectral images of all 

simultaneously acquired markers are illustrated in Figure S4I.  Taken together, this 

comprehensive survey of brain phenotypes highlights the capability of our approach to visualize 

multiplexed signatures that reveal salient structural hallmarks and proteopathies in human 

hippocampus.  
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Figure 1. Workflow and Features Extracted from MIBI-TOF Spectral Images. 
(A) MIBI-TOF experimental workflow begins with the staining of FFPE brain regions (e.g., 
hippocampus, substantia nigra, striatum, locus coeruleus, medulla oblongata, cerebellum) on 
conductive gold sides, and imaging with a panel of 36 antibodies, each labelled with a unique 
elemental mass tag. Stained tissue sections were rasterized and resulted in a 36-dimensional 
image revealing protein expression at unique spatial coordinates in a selected field of view 
(FOV). MIBI-TOF generates data to quantify and visualize tissue architecture, which allows 
analysis of global protein expression and distribution, discretization into biological units for 
exploring marker relationships within the biological units, and investigation of distance 
relationships and neighborhoods among these biological units. (B-E) Montage of 196 tiled FOVs 
MIBI-TOF image from a post-mortem FFPE archival human hippocampus from an individual 
with AD dementia (ADD). Each tile is a 500μm2 spectral image acquired at low-resolution scan 
resolving ~1μm2/ pixel. Representative 11 out or 36 spectral images were pseudo-colored and 
overlaid to show the spatial distribution and expression of structural and molecular markers. 
Abbreviations: DG, Dentate Gyrus; CA, Conus Ammonis; Lmol, molecular layer. 
 
 
Multiplex imaging protein signatures organize anatomical structures.  

Given the multiplexed signatures that demarcated known subfields within the 

hippocampus, we sought to determine how they might quantitatively organize brain 

cytoarchitecture across a broader set of regions (Figure 2). We used our 36-plex panel to 

analyze a tissue microarray (TMA) containing six different brain regions from cognitively normal 

individuals (Figure 2B). Many of these markers exhibited noticeable gradients that were 

concordant with canonical multicellular structures. For example, calcium-binding proteins (PV, 

CB and CR) show laminar distributions and densities that are consistent with previously 

reported protein and gene expression in mouse and human, within and across these brain 

regions (Figure 2B, Figure 2C)  (Bjerke et al., 2021; Hawrylycz et al., 2012; Hof et al., 1999).  

With the exception of the medulla oblongata (MO), unsupervised clustering of extracted 

cytoarchitectural features alone organized images separated based on their respective brain 

regions (Figure 2B). We also used this approach to delineate features from individuals with 

cognitive impairment (Figure S2B). Taken together, much like multiplexed analysis of the 

immune system and other tissues (Glass et al., 2019; Hartmann and Bendall, 2020; Hartmann 

et al., 2021; Keren et al., 2018; Liu et al., 2021; McCaffrey et al., 2022; Moore et al., 2021), 

combinatorial protein expression patterns provided a snapshot of functional organization or 

proteopathy within brain regions. This low-level analysis of multiplexed proteomic data could 

serve as a guide for ‘fingerprinting' human brain and be used to model progression in 

neurodegeneration. 
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Figure 2. Global phenotypic expression organizes CNS sub-regions in a data driven 
manner.  
(A) Schematic of brain regions used in construction of TMA; circle highlights 3mm cores isolated 
from FFPE tissues. (B) Heatmaps showing the z-score distribution of pixel expression of 
proteins per FOV. Columns and rows are hierarchically clustered (Euclidean distance). Variance 
between and among FOVs are stratified in an unsupervised manner into similar anatomical 
regions. (C) Spectral image pseudo-colored to show distribution of calcium-binding protein PV, 
CB and CR. Abbreviations: STR, Striatum; LC, Locus Coeruleus; MO, Medulla Oblongata; SN, 
Substantia Nigra; CA1, Cornu Ammonis 1; CBL, Cerebellum; CB; CALBINDIN; CR, 
CALRETININ; PV, PARVALBUMIN. 
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Discretized cellular and pathological features identify lineage and disease pathology-
specific subclusters  

We next discretized cells and proteopathies as biological units: neurons, astrocytes, 

microglia, vasculature, NFTs-NTs, and Aβ plaques. Segmentation of planar brain tissue 

sections has inherent problems due to shape, texture, the disjointed features from neuronal and 

glial processes in the tissue section, but distant from their cell bodies, and from nonconforming 

shapes from protein aggregates.  As shown in Figure 3A (dashed lines), we observed these 

various facets of planar imaging by both standard IHC and MIBI-TOF. To capture these 

attributes, two segmentation methods were used to partition neuronal perikaryons, microglia, 

astrocytes, and their processes, endothelial and their vascular-boundaries, Aβ plaques, and 

NFTs-NTs (Figure 3B). An adapted version of DeepCell was used for nuclear segmentation 

(Figure 3B) (Greenwald et al., 2021; Moen et al., 2019; Valen et al., 2016). For features not 

associated with nuclei, a pixel intensity thresholding-based method was used to partition cell 

body microglial and astrocyte projections, larger vascular structures, amyloid plaques, and 

NFTs-NTs (Figure 3B, see Methods: Object segmentation). 

The same 36-plex stain of ADD hippocampus from Figure 1B was chosen for the 

discretization analysis to capture a greater breadth of morphological and pathological 

landscapes.  With nuclear segmentation, we identified 15,270 nuclei-associated cells across 85 

connected imaging FOVs which were classified using manual gating (Table S4, see Methods: 

Manual gating ADD hippocampus).  With the pixel-based approach, we identified 19,332 

features not associated with nuclei that included microglia, astrocytes, endothelial cells, Aβ 

plaques, and NFTs-NTs (Table S4).  Neuron masks identified by nuclear segmentation were 

integrated with masks of the object segmented data (microglia, astrocytes, vasculature, 

plaques, and NFTs-NTs) to obtain a comprehensive repertoire of neuronal and non-neuronal 

cell types as well as disease features. We then generated a UMAP (McInnes et al., 2018) plot 

organized by lineage and proteopathy markers to analyze the relationship between these 

features (see Methods:1024 x1024 ADD Images). Extracted cellular and proteopathy features 

mapped to four cell-type clusters (neurons, microglia, astrocytes, and vasculature) and two 

pathologic component clusters (Aβ plaques and NFTs-NTs) (Figure 3D, inset).  

NFT-NT masks (cyan) mostly interrelated with the neuron (dark red) cloud (Figure 3D, 

Figure S3K). This is consistent with known accrual of NFTs-NTs in intraneuronal compartments 

(Mrdjen et al., 2019; Uchihara, 2014). Aβ plaques shared the UMAP space mainly with astrocyte 

(dark green, Figure 3D, Figure S3L) and neuronal populations (Figure 3D, Figure S3M) as well 

as scattered with microglia (dark yellow) and vascular groups (Figure 3D). In accordance with 
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previous reports, both astrocytes and neurons highly express Aβ, and GFAP+ reactive 

astrocytes accumulate Aβ in the process of clearance in AD (Calhoun et al., 1999; Wang et al., 

2020; Zhou et al., 2017) .  

By mapping the masks of these gated objects back onto the coordinates of the original 

segmented images (Figure 3E), we created a cell phenotype map (CPM) that illustrated a more 

even distribution of hippocampal microglia relative to astrocytes (Figure 3E, Figure 3F1, Figure 

S3A).  Astrocytes were enriched in hippocampal white matter and vascular regions (Figure 3E, 

Figure 3F2, Figure S3B) as they are integral parts of CNS white matter and blood-brain-barrier 

(BBB) architecture (Heithoff et al., 2020; Liedtke et al., 1996) . Vascular CPM charts large and 

micro vessel boundaries (Figure 3E, Figure 3F3, Figure S3C). In the neuron CPM, masks are 

enriched in the granule cell layer of DG band, and are scattered throughout the image (Figure 

3E, Figure 3F4, Figure S3D).  These data highlight the utility of the combined segmentation 

approaches, enabling analyses analogous to those achieved in other tissue where spatial 

organization, expression, and molecular identities of single cells and proteopathy can now be 

determined and organized for human CNS. 
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Figure 3. Spatial Organization and Molecular Identities of Cells and Proteopathy in ADD 
hippocampus is Revealed with Single-Cell and Object Segmentation. 
(A) Cartoons show examples of cells (astrocytes, microglia, vessels, neurons, and immune 
cells) and possible planar views in CNS tissue (dashed lines numbered 1 through 4). The 
representative photomicrograph (IHC-DAB) and MIBI-TOF (pseudo-colored spectral images) 
visually exemplify the corresponding focal planes (numbered 1 through 4) for the different cells, 
which are identified by their pan-markers (GFAP: astrocytes, IBA1-CD45: microglia, CD31-
CD105-MCT1: vasculature, MAP2: neurons, CD45: immune cells). (B) Conceptual overview of 
nuclear and object segmentation approaches. With cellular segmentation, nuclear associated 
features (nuclei interiors, nuclei borders) are obtained using a pixel-based convolution neural 
network (DeepCell neural network) and custom pixel expansion around the nuclei, to generate 
cell segmentation masks for cell lineage assignments. Object segmentation was used to capture 
microglia and astrocytic processes, vascular boundaries, Aβ plaques, and PHF1-TAU NFTs and 
NTs. Masks for both discretized biological units are integrated to reveal their relationships in 
silico. (C) Photomicrograph (on the conductive gold slide, left panel) and corresponding MIBI-
TOF spectral image (HH3 for nuclei, right panel) of human ADD hippocampus.  White box 
highlights the re-rastered region that was used for analysis. (D) UMAP visualization of all 
segmented objects across all hippocampal FOVs, colored by lineage and proteopathy identities. 
Inset shows only amyloid plaques, and tangles and threads overlaid on the UMAP. (E) Cell 
Phenotype Maps (CPM) of nuclear and object segmented masks labelled by their phenotype. 
(F) Composite CPM of all segmented masks with six inserts for a zoomed in view of cell identity 
overlaid onto segmentation masks for the hippocampal region. Regions 1-6 represent zoomed 
in images representative areas of CPM’s in E. 
 
 
Top-down spatial organization of cellular and proteopathy composition distinguishes 
hippocampal subregions and disease status 

We combined our discretization strategies with prior knowledge of human hippocampal 

anatomy (i.e., top-down) to identify neuropathologic changes across stages of AD. Coronal 

hippocampal sections from three individuals were imaged, focusing on the DG to CA4 through 

CA1 subregions, and expanding outward (Figure 4).  Samples from cognitively normal (CN), 

cognitively impaired with no dementia (CIND), and ADD subjects were used to capture a wide 

spectrum of pathologic changes (Figure 4A). Single-plex spectral images of CN (Figure S4A-C), 

CIND (Figure S4D-F) and ADD (Figure S4G-I) hippocampus demonstrated larger, qualitative 

structures that can be captured by tiling numerous imaged fields together. For instance, 

VGLUT1 and VGLUT2 positivity demarking the CA and DG borders, respectively.  

Given the known differences and progression of disease within AD hippocampal 

subregions (Braak and Braak, 1991), we first segregated all cells and disease objects into DG, 

CA4, CA3, CA2, and CA1 associations (Figure 4B). We determined these boundaries for the 

subregions based on prior knowledge of morphological characteristics (Lorente-de-Nó, 1934; 

RamonYCajal, 1902)  and expression of neuronal makers including CALBINDIN, CALRETININ, 
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MAP2, CD56, SYNAPTOPHYSIN (SYP), VGLUT1, and VGLUT2 (Figure 4A, Figure S4) that 

have previously been shown to highlight boundaries (Eriksson et al., 1998; Herzog et al., 2006; 

Rivera et al., 2014). Spectral images of CALBINDIN, CALRETININ, and MAP2, specifically 

showed anatomical delineation between the inner regions of DG and CA regions (CALBINDIN) 

and distal regions (CALRETININ), joined by neuronal cytoarchitecture (MAP2) (Figure 4A, 

bottom panel). We then assigned cells and protein aggregates to their respective structures 

(Figure 4B). (Table S5A). To assign cell identities, we applied a combination of FlowSOM 

(Gassen et al., 2015) and manual meta-clustering strategies to parse out the objects into six 

distinct categories: neurons, microglia, endothelial cells, and non-immune glia which included 

both astrocytes and oligodendrocytes (Figure 4B, lower panel). 

Comparing the proportion of each cell type within each distinct anatomical region, we 

observed a higher proportion of protein aggregates in the CA1 subfield relative to other regions 

within the same sample, regardless of cognitive status (Figure 4C). In addition, the total number 

of disease objects increased in the tissue prom cognitively impaired individuals (Figure S4J).  

We then considered whether proteopathies tended to lay in proximity to cell somas bound by 

our cellular segmentation. For each cell subtype, we counted the number of cells in direct 

proximity (i.e., overlapping pixels) to each proteopathy and divided this value by the number of 

cells with no proteopathy overlap (Figure 4D). Most cells did not exhibit direct proximity to Aβ 

plaque objects, particularly in the CN and CIND conditions. In the ADD individual, more cells lay 

in proximity to Aβ plaques, particularly for neurons in the CA1 and CA2 subfields. For PHF1-

TAU labeled NFTs-NTs, a similar trend was found, though interestingly ADD CA1 showed 

increasing proximity for all cell types. In particular, microglia with Tau aggregates were found 

twice as much as microglia without Tau aggregates in the ADD CA1 subfield (Figure 4D, 

green circle). 

Building upon this observation, we contrasted those microglia that were NFTs-NTs 

associated (positive) or not (negative) (Figure 4E). Microglia markers associated with reactivity, 

APOE, IBA1, CD33, and CD45, were consistently higher in tangle-positive relative to tangle-

negative CA1 microglia, across all samples, with the highest expression in ADD (Figure 4E). 

Projecting an equal subset of microglia from all three samples onto an 2D-UMAP embedding, 

shows subsets of these reactive microglia associated with PHF1-TAU, particularly high IBA1(+) 

and APOE(+) in CA1 ADD cells (Figure 4F, green circle); and that while these cells exist across 

all individuals, they are most prominent in ADD (Figure 4F, S4K, L). This differential state of 
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expression further reflects the possibility that immune cell reactivity may play a central role in 

AD severity, particularly an association with PHF1-TAU formation in CA1 subregion. 
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Figure 4. Cellular and proteopathy composition of hippocampal neuroanatomy. 
(A) Representation of the three imaged hippocampi to identify differences in AD pathological 
changes. Included are samples from people who were diagnosed as cognitively normal (CN), 
cognitively impaired, no dementia (CIND), or Alzheimer’s Disease dementia (ADD). LFB & H&E 
histochemical staining of a serial section of each hippocampal slice imaged (Top). Pseudo-color 
overlay of CALRETININ (CR), CALBINDIN (CB), MAP2, and Histone H3 (HH3) acquired in each 
sample representing high-level neuronal morphology (Bottom). (B) Mask overlays of the cells 
and proteopathies collected by the segmentation methods described in Figure 2, broken down 
by hippocampal neuroanatomy (Top) and cell or proteopathy subtype (Bottom). (C) Relative 
composition of each cell and proteopathy subtype within each anatomical subregion of each 
individual. (D) Ratio of proteopathy-associated cells to proteopathy-free cells in each anatomical 
region of each individual. Ratio of 1 indicates an equal number of proteopathy-associated cells 
to proteopathy-free cells, where PHF1-TAU tangle-thread cell associations are shown in the top-
panel and Aβ plaque cell associations in the bottom-panel. Callout indicates ADD, CA1 
microglia with a high number of tangle-thread-associated microglia (green circle). (E) 
Normalized mean expression of microglia phenotyping channels in CA1 region of each 
individual, broken down by microglia with tangle-thread association or those without.  (F) UMAP 
projections of CA1 microglia phenotyping channels in ADD. Gray represents CA1 microglia from 
CN, CIND samples (S4K-L for CN, CIND expression maps). Projection was calculated using 
phenotypic markers. CIND and ADD are subsampled so that all conditions are represented by 
447 microglia, the total number of CA1 microglia in the CN condition. (G) Image representation 
of tau-tangle associated phenotypes described in E and F found in ADD CA1 microglia. Masks 
of microglia (yellow), tau tangles (cyan), and amyloid plaques (pink) (Left). Inset of microglia 
expressing tau-tangle associated phenotypic markers (Right). 
 
 
Bottom-up, data driven neighborhood analysis identifies common regions of 
neuropathology across individuals and severity 

Given the level of neuropathological organization identified using previously defined 

hippocampal subregions, we investigated what other levels of spatial order could be revealed 

with a more data-driven approach to our multiplexed images.  To this end, we employed a 

bottom-up workflow to isolate common signatures of hippocampal spatial identities, independent 

of previously known neuroanatomy or cognitive status. Using CytoMAP (Stoltzfus et al., 2020), 

we grouped local neighborhoods of similar protein aggregates and cell types across the three 

samples. After neighborhoods were calculated, a minimum number of common regions into 

which they could be grouped into was determined (see Methods: Object co-proximity analysis). 

Identified cells and protein aggregates were then assigned to these regions across each 

sample. A voronoi expansion from cell and object bearing areas was then used to cluster the 

surrounding neuropil (i.e., cell projections and extracellular matrix) into one of the regional 

groups (Figure 5A). The final five regions determined across all samples were annotated as 

neuronal dominant (N), glial dominant (G), mixed disease (M), Aβ plaque dominant (AP), or 

PHF1-TAU NFTs-NTs dominant (TT) (Figure 5B). The three proteopathy associated regions: M, 
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AP, and TT were increased in representation with increasing cognitive impairment, while the 

relatively protein aggregate-free neuronal (N) and glial (G) cell regions decreased with 

increasing cognitive impairment, making up less than a quarter of the total ADD tissue (Figure 

5C). As has been described extensively, even the cognitively normal hippocampus contained 

AP and TT regions (Figure 5B, left purple and blue), consistent with the high prevalence of pre-

clinical AD in older people. Moreover, due to the data-driven nature of their identification we saw 

similar compositions of cells and disease objects within a given region and across samples, 

regardless of cognitive diagnosis (Figure 5D).  

To integrate these regions and pathologic changes into a single model, we applied 

UMAP (McInnes et al., 2018) dimensionality reduction to all cells and protein aggregates, 

comparing how they overlapped in disease severity or data-driven regions (Figure 5E). While 

like cells or protein aggregates clustered tightly, there was some divergence with de novo 

region, suggesting unique combinations of protein expression with both anatomical location and 

spatially associated pathologic features. For example, a subset of neurons, non-immune glia, 

and microglia clustered with the TT region, separate from those in the N or G regions (Figure 

5E, black circle). Given the influence of de novo identified regions on cell and object embedding 

(Figure 5E), we also quantified how cell-protein aggregate proximity itself compared between 

the top-down anatomical (Figure 4D) and data-driven regions (Figure 5F). Regardless of sample 

staging, cells within the N- or G-regions showed very little proximity to pathologic objects, as 

expected. In the AP-region, nonimmune glia and neurons showed high proximity to neurons and 

nonimmune glia (Figure 5F). The same trend held for PHF1-TAU NFTs-NTs in proximity to cells 

in the TT-region. As pathologic changes increased, microglia once again stood out with the 

highest ratio of cells with NFTs-NTs proximity. These physical associations increased as 

severity worsened whether the nuclear associated cell body or protein aggregates were used as 

the basis for the proximity calculation (Figure S5A). In summary, while NFTs-NTs development 

started in neuronal peripheries before accumulating in soma (Brunello et al., 2020; Tai et al., 

2014; Uchihara, 2014)  our data suggests soma involvement continues as disease progresses. 

With the connection between proteopathy formation and synaptic density, we further 

investigated the mean pixel expression of these markers across all identified data-driven 

regions in the hippocampus and how coincidence changed. Focusing on synaptic density, we 

calculated synaptic positive pixels by either excitatory (SYP+, PSD95+, and either VGLUT1+ or 

VGLUT2+) or inhibitory (SYP+, VGAT+, GAD+) synaptic pixels. We then looked at the 

coincidence with PHF1-TAU and observed that while the highest percentage of PHF1-TAU 
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formation in synapses occurred in ADD, all samples that contained the TT-region showed 

synaptic protein/PHF1-TAU localization (Figure 5G), similar to what we have recently reported 

in synaptosomes (Phongpreecha et al., 2021).  Similar results were seen for Αβ plaque 

proximity to synaptic pixels in the AP region (Figure 5G). This approach, as summarized in 

Figure 5A, shows the ability to identify common pathological changes and neighborhoods 

across tissues representing a diversity of neuropathologic changes.  Moreover, completely data-

driven, bottom-up approaches, like the ones employed here, captured, and organized 

neuropathological features beyond the bounds of conventional anatomical subregions 

potentially increasing the sensitivity to detect and classify dysfunction.   
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Figure 5. Common de novo regions of cell and proteopathy composition are identified 
across different individuals.  
(A) Computational workflow used to isolate common regions of pathology (de novo regions) 
across CN, CIND, and ADD hippocampi independent of patient diagnosis. (B) De novo regions 
displayed across the entire tissue of each sample, CN, CIND, and ADD. N=Neuronal dominant 
region, G=glial (astrocyte/oligodendrocyte) dominant region, M=Mixed proteopathy region, 
AP=Amyloid Plaque dominant region, TT=Tau Tangle-Thread dominant region. (C) Relative 
composition of each de novo region across each individual hippocampus. (D) Relative 
composition of each cell and proteopathy subtype within each de novo region of each individual. 
(E) UMAP projection of all cells and proteopathies, calculated using much of the full panel (list in 
methods). De novo regions (left), cell and proteopathy classification (middle) and individual 
(right). Black ellipse denotes area of clustered cell lineages associated with TT region. (F) Ratio 
of proteopathy-associated cells to proteopathy-free cells in each de novo region of each 
individual. Ratio of 1 indicates an equal number of proteopathy cells to proteopathy-free cells. 
Tau tangle cell associations (Top) and amyloid plaque cell associations (Bottom). Top callout 
indicates high levels of tau tangle overlap in TT region; bottom callout indicates high amyloid 
plaque overlap in AP region. (G) Synaptic proteopathy presence. For each de novo region, all 
positive synaptic pixels with positive proteopathy signal (Top: tau, Bottom: amyloid) relative to 
all positive synaptic pixels. Excitatory synaptic channels (SYP+, PSD95+, and either VGLUT1+ 
or VGLUT2+) and inhibitory synaptic channels (SYP+, VGAT+, GAD+) considered. 
 
 
Clustering identifies mitochondrial MFN2 protein expression in persistent neurons 
associated with proteopathy-laden tissue regions 

Leveraging the 14 proteins simultaneously measured to capture neuron identity and 

putative function in situ, we clustered these extracted cells using FlowSOM to identify 11 meta 

clusters. The expression distributions across these groups (Figure 6A) and as seen by UMAP 

projection (Figure 6B-C) and physical mapping (Figure S6A) showed that neurons fell broadly 

into two categories: 1) proteopathy associated (clusters 1, 2, 6, 8, 10), and 2) non-proteopathy 

associated (clusters 3, 4, 7, 9, 11). While this analysis highlighted the previous trend of 

increased protein expression in proteopathy-associated cells (i.e., synaptic markers, Figure 6A, 

S5B) it revealed some functional neuronal subsets based on mitochondrial proteins and 

ubiquitination, e.g., MITOFUSION 2 (MFN2) (Figure 6A, clusters 1, 2, 3, 4, 10) and 

POLYUBIQUITIN K48 (Figure 6A, clusters 1, 2, 8). 

As with the broader analysis of all objects (Figure 5), neuron subclusters associated with 

protein aggregates grouped together in a UMAP of neurons alone (Figure 6C, left). As MFN2 

was variably expressed across multiple non-proteopathy associated (3, 4) and proteopathy-

associated neuronal clusters (1, 2, 10), we further investigated its expression and localization in 

the hippocampus.  Interestingly, recent single nucleus analysis of transposon accessible 

chromatin (ATAC-seq) indicates that MFN2 is epigenetically restricted to neuron-specific 
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lineages in human brain (Figure S6B) (Corces et al., 2020), re-enforcing its potentially unique 

role in neuronal function here. Neuronal MFN2 expression was positive primarily in non-

proteopathy associated neurons, with a clear overlap in proteopathy associated neurons. 

(Figure 6D, right, black arrow). These MFN2 positive neurons were more prevalent in 

proteopathy-associated regions (MD, AP, TT) relative to the non-proteopathy associated 

regions (ND, GD) (Figure 6D), suggesting that MFN2 expression may be associated with 

neuronal survival in the presence of stressors from proteopathy.   

To understand MFN2-related persistence in proteopathy-laden regions, we compared 

the single-cell relationship between proteopathy expression and MFN2. Filtering by de novo 

region shows high abundance of MFN2(+), PHF1-TAU(+) neurons in the TT region (~20%) 

compared to the N region (~1%) (Figure 6F, right, S6C). These PHF1-TAU(+), MFN2(+) 

neurons can be seen throughout the TT region of the hippocampus, even appearing adjacent to 

PHF1-TAU single positive, as well as MFN2 single positive expressing neurons, regardless of 

disease status (Figure 6F). Comparatively, the N region contained many more MFN2+ single-

positive neurons. This persistence of MFN2+ neurons in areas of high tauopathy potentially 

reflects a neuronal protective response to injury as has been studied in animal and in vitro 

models of neuronal degradation (Motori et al., 2020) . MFN2’s relationship with Aβ42 did not 

show this same L-shaped distribution, especially in the AP region (Figure 6F, left), suggesting 

that the presumed MFN2 response to injury may be specific to stressors that accompany 

pathologic Tau accumulation. Altogether, our study demonstrates both anatomical and data-

driven approaches can be used to identify deep spatial summaries of neuropathologic changes 

while identifying and subclassifying cells and features that compose them.  
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Figure 6. Neuronal sub-clustering reveals relationship between MFN2 and persistent 
neurons in AD.  
(A) Heatmap showing mean normalized expression of neuronal markers after FlowSOM 
clustering. 11 clusters are broadly broken down into proteopathy and non-proteopathy 
associated phenotypes. Red arrow denotes MFN2 cluster expression. (B-D) UMAP projection of 
neurons alone, calculated based on same markers used to perform FlowSOM clusters in A.  
(B) Overlay of neuronal subclusters. (C) Overlay of clusters associated with proteopathy or no-
proteopathy (D) Overlay of normalized neuron expression of MFN2. (E) Proportion of neurons 
positive for MFN2 vs neurons negative for MFN2 for each de novo region. (F) Expression profile 
of individual neurons for MFN2 and Ab42 in AP region (left) and MFN2 and PHF1-TAU in TT 
region (right). (G) Neurons in TT region of CA1, CN individual (top) and CA1, ADD individual 
(bottom). Black box represents areas of TT-associated tissue isolated for insets (left), zoomed in 
section of multiple neurons, colored by cluster ID’s in A (middle), single or small groups of 
neurons representing persistent, TT cells (right). [1] MFN2(-), PHF1-TAU(-) neuron – Cluster 5. 
[2] MFN2(-), PHF1-TAU(+) neurons – Cluster 8 [3] MFN2(+), PHF1-TAU(-) neurons – Cluster 4 
[4] MFN2(+), PHF1-TAU(+) neurons – Cluster 1. 

 
 

DISCUSSION 
In this study, we present an analytical framework leveraging MIBI-TOF spatial proteomic 

imaging as a resource for deep human neuropathology. We describe a workflow for the 36-plex 

image datasets generated from archival FFPE human brain tissues. We performed a broad IHC 

analysis that validated MIBI-TOF spectral images in multiple brain regions with neuropathologic 

changes spanning different stages of AD both clinically and pathologically.  Our imaging panel 

was designed to phenotype brain cellular, structural, and proteopathy features while displaying 

well-known brain topologies. Segmentation of single-cell and disease features were 

phenotypically profiled, and their spatial organization in relation to local and global 

neighborhoods were explored. Finally, to delineate the cellular and molecular configuration in 

different clinic-pathological states of human AD, we showed the effectiveness of complementary 

approaches: a ‘top down’ method, that relied on classically stratified hippocampus subregions 

(DG through CA4-CA1), and a bottom-up data driven method that defined proteopathy-free and 

proteopathy-burdened cellular neighborhoods within the human hippocampus. 

Notably, our study represents one of the most systematic, high-resolution analyses of 

spatial cellular and proteopathy composition in human brain. Age- (98.3 ± 1.5 yrs.), sex- 

(female), and APOE genotype- (epsilon3/epsilon3) matched samples were compared across 

carefully annotated clinico-pathologic samples from three research participants.  We primarily 

focused on changes in the hippocampus, due to its implication early in AD pathogenesis (Braak 
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and Braak, 1991) . We have configurations for the abundance of 34-plex proteins and their 

spatial distributions across 275,808 segmented cells, 25,130 Tau protein aggregates and 

15,174 amyloid protein aggregates throughout the hippocampus and subiculum (54.6 ± 20.2 

mm2).  

We first used a ‘top-down’ approach to determine alignment with previous observations 

of hippocampal changes in AD (Mrdjen et al., 2019). We found that the hippocampus from the 

CN participant held Aβ plaques and PHF1-TAU NFTs-NTs, albeit less than CIND and ADD 

hippocampus. Interestingly, proximity analysis showed that microglia interacted heavily with 

pathologic Tau, particularly in CA1 region. These microglia harbor increasing signatures of 

possible ‘disease-associated microglia’ (DAM) in ADD (Guo et al., 2020; Keren-Shaul et al., 

2017) . We found similar associations using bottom-up data-driven approach for microglial and 

pathologic Tau. Surprisingly, microglia interactions with Aβ immunoreactive structures were less 

frequent, potentially indicating microglia respond more to pathologic Tau. Our assessment of 

using the data-driven, bottom-up approach uncovered unique proteopathy and cellular spatial 

associations. The Aβ AP-region appeared more dominant in the CIND sample relative to the 

ADD sample, which is dominated by the pathologic Tau TT-region, perhaps a reflection of the 

established correlation of tauopathy with dementia in AD. The composition of N- and G-regions 

are particularly interesting as they represent regions of tissue that are mostly free from 

proteopathy and are found even in ADD. The exact relationship between proteopathy and glial 

lineages in the continuum of AD is unclear and could be regulated by several elements. For 

instance, immunogenicity towards Aβ or Tau oligomers in CN and CIND could vary from ADD 

samples (Brunello et al., 2020; Li and Selkoe, 2020; Thomas et al., 2012) , or ADD may have a 

more reactive microglial-dependent immune response relative to those present in the CN and 

CIND hippocampus (Sáez et al., 2006). 

The neuronal features that were imaged here are from those surviving neurons that have 

endured AD, including non-proteopathy bearing (PHF1-TAU and Aβ negative) and proteopathy-

bearing neurons (PHF1-TAU or Aβ positive). We identified several molecular signatures that 

could have contributed to neuron survival. First, as in many animal models and recently in 

human tissue, we found pathologic Tau to be localized (but not exclusive) to neuronal synapses 

(Lemke et al., 2020; Phongpreecha et al., 2021). Drosophila to mouse studies have shown that 

synaptic PHF1-TAU interferes with synaptic vesicles (Sahara et al., 2014; Tai et al., 2014; Zhou 

et al., 2017). Second, we observed Aβ accumulation proximal to synaptic signal of glutaminergic 

and GABAnergic neurons where others have suggested acute Aβ exposure can lead to 
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GABAnergic imbalance and altered neurotransmission (Li and Selkoe, 2020; Quevenco et al., 

2019; Wang et al., 2017) . 

 Interestingly, we also observe potential compensatory mechanisms, including ubiquitin 

proteosome system (UPS) and mitochondrial bioenergetics (i.e., MFN2, Figure 6) across all 

individuals, but most prominently in the person with ADD. Here, we detected K48-linked 

ubiquitin in proteopathy rich neurons, in particular preferential enrichment in NFTs-NTs. Similar 

enrichment of K48-linked ubiquitin has been reported in older AD brains (Nakayama et al., 

2019) . The role of preferential K48-ubiquitination on PHF1-TAU oligomers is still unclear; 

however, others have proposed a “soak-up” mechanism to sequester the toxic effect of protein 

aggregates and promote UPS mediated clearance (Arrasate et al., 2004; Mund et al., 2018) . 

Importantly, we also found a prevalence of MFN2 expression in proteopathy-burdened 

hippocampal regions, particularly in areas of pathologic Tau. Here MFN2, an outer membrane 

mitochondria fusion protein, could maximize the oxidative capacity of the disease-free neurons, 

a potential response to a stressor associated with accumulation of pathologic Tau. MFN2 also 

inhibits mitochondrial fission, preventing autophagy, and thus helping to maintain mitochondria 

for the surviving neurons (Han et al., 2020; Sita et al., 2020; Wang et al., 2009). Given the role 

of neuron-mitochondrial dysfunction found in multiple models of AD, MFN2 may represent an 

important target for maintaining survival in proteopathy-susceptible neuron populations. Taken 

together, our bottom-up data-driven approach of studying disease neighborhoods mapped out 

phenotypic changes as a function of proteopathy and identified potential coping mechanisms of 

hippocampal pyramidal neurons to withstand the stressors of proteopathy-associated AD 

pathogenesis. Although we focus on neuronal cell neighborhoods here, the unsupervised 

approach can be extended to map the response of proteostatic stress on glial and vascular 

cells. Targeted approaches for the other key homeostatic populations (microglia, astrocytes, 

and oligodendrocytes) are imperative in understanding the effect of cellular crosstalk (feedback 

and feedforward), heterogeneity in activity, population abundance, and localization to disease 

and cognitive status. The framework we have created here could be applied to investigate CNS 

cellular biology in all these scenarios. 

Like many neurodegenerative diseases, AD is phasic, undergoing biochemical changes 

that induce cellular stress and remodeling of anatomical neighborhoods. Detailed mapping of 

the biochemical, cellular, and architectural changes can help develop strategies for dynamic 

models of disease, potentially from a limited number of patient samples. Future studies on 

larger patient cohorts could order individuals, based on the spatial features we have derived 
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here, along disease pseudo-time as means to quantify disease progression as reflected in 

spatio-molecular changes. Pseudo-time ordering has been used for fate mapping, tumor 

progression, hematopoietic development, and to map the layered and cell-specific degeneration 

of hippocampal sclerosis (Bendall et al., 2014; Cid et al., 2021; Kimmey et al., 2019; Lang et al., 

2019; Loeffler-Wirth et al., 2018; Weinreb et al., 2020). Inferred disease staging can help sort 

the temporal function of biochemical and molecular regulators in AD clinical progress, identify 

founding factors in AD, and uncover disguising factors that potentially play roles for neurological 

resilience in ‘healthy’ individuals. Such modelling of multiplex imaged human brain tissue may 

help understand whether Aβ42 oligomers followed by PHF1-TAU oligomers are primers or 

followers to degeneration, or if other underlying bad molecular actors precedes proteopathy 

(e.g., aberrant immune activation). 

MIBI-TOF and our study also had limitations. First, because MIBI-TOF imaging scans 

physically sputter material off the imaged sample, it is thus destructive.  Still, thin sections can 

be re-scanned multiple times and serial sections can be used for further experimentation. 

Second, this is a probe-based technology that largely relies on antibody availability and 

specificity for detection of limited target antigens (~40), though the staining and integration of 

serial sections with different antibody panels can exponentially increase the N-dimensionality of 

probing factors. Still, probe-based technologies also tend to be more robust and quantitative 

compared to de novo techniques that offer a wider, albeit variable, array of multiplexing.  

Although unexplored here, as an elemental mass spectrometry method, MIBI-TOF can 

simultaneously quantify presence of essential and non-essential metals, such as Fe, Cu, Mn, 

Zn, and Al, along with the N-number proteins which can contribute to AD pathogenesis (Chen et 

al., 2016).  Third, findings are contingent upon the rigor of patient and postmortem tissue 

characterization (i.e., clinical diagnosis and neuropathological assessment), and tissue integrity. 

Dynamic measurement of postmortem human brain tissue is not trivial, requiring a large number 

of carefully annotated samples from people of varying ages. Nevertheless, inferences of AD 

progression can be made with limited postmortem sample via use of systematic characterized 

subjects, tissue, multiplex approaches, and data-driven modelling.  Compatibility, as we have 

shown here, with the archival (i.e., FFPE) format these tissues are typically stored in is critical 

for successful interrogation.   

Our work paves the way for the development of novel approaches for quantitative, 

simultaneous, multiplexed imaging in human neuropathology. Utilizing the wealth of RNA 

sequencing data, potential disease mechanisms driving cell-cell and cell-proteopathy 
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interactions can be isolated and now imaged at the proteomic level in their native tissue with our 

multiple, high-resolution MIBI-TOF platform. Combining multiple spatial biomolecular 

technologies (e.g., MALDI, RNA-ISH, super-resolution microscopy) will enable even deeper 

understanding of biomolecular interplay in neurodegeneration. Integration of this spatially 

multiplexed data with further clinical histories will drive insights on possible cellular mechanisms 

underlying symptomatic disease progression or resilience in CNS disease.   
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STAR METHODS 

KEY RESOURCE TABLE 

CONTACT FOR REAGENTS AND RESOURCE SHARING 
Further information and request for reagents and resource should be directed to and will 

be fulfilled by the Lead Contact, Sean Curtis Bendall (bendall@stanford.edu). 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 
Human sample acquisition and patient consent 

Human brain samples were obtained from Stanford Pathology Department. Average 

post-mortem interval of tissues ranges between 2.9-15 hours. Clinical diagnosis and 

neuropathological scores were generated by Stanford clinicians and pathologist. The clinical 

diagnosis was based on DSM-IV criteria. AD neuropathologic change and severity scores were 

evaluated by NIA-AA guidelines (Hyman et al., 2012; Montine et al., 2011). All three cases (CN, 

CIND and ADD) also were evaluated for neuropathologic evidence of vascular brain injury, 

Lewy body disease, or hippocampal sclerosis by NIA-AA guidelines and those with any 

evidence of these three neuropathologic changes were excluded. Neuropsychological test 

battery results for CN participants within 1 year of death were in the upper three quartiles for the 

research cohort. 

REAGENT OR RESOURCE SOURCE IDENTIFIER

Antibodies
A complete list of antibodies is provided in Table S1 This paper Table S1
Biological Samples
Human brain tissues were compiled by the Stanford Pathology Department This paper Table S2
Chemicals, Peptides, and Recombinant Proteins
A complete list of reagent is provided in the published protocol io protocol.io Bosse et al 2021  dx.doi.org/10.17504/protocols.io.bt9tnr6n
Alcohol ethyl ETHANOL 200 PROOF  Gold Shield cat# 412811
Alcohol ethyl ETHANOL 190 PROOF  Gold Shield cat# 412602
TBS IHC Wash Buffer with Tween 20 Cell Marque cat#  935B-09  
PBS IHC Wash Buffer with Tween 20 Cell Marque cat# 934B-09  
Target Retrieval Solution, pH 9, (3:1) Agilent (Dako) cat#  S2375  
UltraPure water Invitrogen  cat#  10977-015  
Avidin/Biotin Blocking Kit Biolegend  cat#  927301
Hydrogen peroxide Sigma cat#  216763
Gelatin (cold water fish skin) Sigma-Aldrich  cat#  G7765-250
Xylene HISTOLOGICAL GRADE Sigma-Aldrich  cat#  534056-500  
Glutaraldehyde 8% Aqueous Solution EM Grade EMS  cat#  16020
Bovine Albumin (BSA), heat shock treated Fisher  cat#  BP1600-100
Centrifugal filters (0.1µm) Millipore  cat#  UFC30VV00  
ImmEdge hybrophobic barrier pen Vector lab cat#  H-4000
MIBI slides IonPath cat#  567001
Levamisole Vector Labs cat#  SP-5000
Horse serum Vector Labs cat#  S-2000
VectaMount Permanent Mounting Medium Vector Labs cat#  H-5000
Critical Commercial Assay
A complete list of reagent is provided in the published protocol io protocol.io Bosse et al 2021 dx.doi.org/10.17504/protocols.io.bhyej7te
MIBItag Conjugation Kit Ionpath cat#  600XXX
ImmPRESS UNIVERSAL (Anti-Mouse/Anti-Rabbit) IgG KIT (HRP) Vector Laboratories cat#  MP-7500-15
ImmPACT DAB (For HRP Substrate) Vector Laboratories cat#  SK-4105
Deposited Data
All images of this study This paper  https://doi.org/10.25740/tx581jb1992
Software and Algorithms
Data analysis were done using MATLAB 2020 and R Studio Mathworks and R N/A
Analysis code This paper https://github.com/bryjcannon/MIBI_Brain_Analysis

Segmentation code This paper, Van Valen D et al 
2016, Keren L et al 2019 https://github.com/angelolab/MAUI; https://github.com/angelolab/ark-analysis

Image Processing This paper https://github.com/angelolab/MAUI; https://github.com/ionpath/mibilib
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MIBI-TOF EXPERIMENTAL DETAILS 
Antibody conjugation 

Primary antibodies, reporter isotopes, and titers can be found in Table S1. Metal 

conjugation of primary antibodies were prepared as described previously (Bendall et al., 2013) 

and is detail in dx.doi.org/10.17504/protocols.io.bhyej7te (Bosse et al., 2021a). Post conjugation 

antibodies were diluted in Candor PBS Antibody Stabilization solution (Candor Bioscience 

GmbH, Wangen, Germany) to 0.1 mg/ml, and stored at 4oC for short-term use and for long-term 

used were lyophilized using the following protocol dx.doi.org/10.17504/protocols.io.bhmgj43w 

(Camacho et al., 2021). 

MIBI staining 
FFPE tissue blocks of whole hippocampus or brain TMA were sectioned using a 

microtome. The 5μm thick tissue sections were mounted onto silanized-gold slides for MIBI-TOF 

staining. Gold slides containing tissue were baked at 70oC overnight. Tissue sections were then 

processed and stained with a cocktail of antibodies is as detailed in 

dx.doi.org/10.17504/protocols.io.byzrpx56  (Bosse et al., 2021b). Stained tissue slides were 

preserved under vacuum until required for MIBI-TOF scan. 

IHC staining 
For IHC validation of primary antibody target specificity, FFPE human hippocampus or 

brain TMA, of 5μm thickness, were sectioned onto standard glass slide. Slides containing tissue 

were baked at 70oC overnight. Tissue sections were then processed and stained using the 

Sequenza method with single post-metal conjugated primary antibody. Staining method is 

detailed in dx.doi.org/10.17504/protocols.io.bf6ajrae (Bosse et al., 2021c) 

MIBI-TOF image acquisition 
Spectral images of stained hippocampus or brain TMA tissue were obtained using the 

MIBI-TOF mass spectrometer equipped with a Hyperion ion source. Xenon primary ions were 

used to sputter the stained tissue sample at doses ranging from average 17.9nAmp ms 

pixel2/μm2 for 500μm2 to 52.3nAmp ms pixel2/μm2 for 400μm2 FOVs. MIBI-TOF parameters 

used in acquiring all imaging data is detailed in Table S3. 

TOF calibration and spectral image generation 
Post-acquisition, time of flight was calibrated using sodium (Na+ 22.99 amu) and gold 

(Au+ 196.97amu). Counts for each mass were determined by the start and end of their 

respective spectral peaks. For instance, in CD56 antibody conjugate to Nd145, the counts for 
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masses between 144.7 to145.2 were used and so on. Spectral images for each FOV were 

generated by converting the mass-spec pixel data to multidimensional tiffs.  

Image processing (background subtraction and denoising) 
After extracting raw data, images were background removed, noise corrected, and tiled 

to form a composite image of the entire issue section. Background (Bg) signal and noise were 

removed using a streamline in house developed graphic user interface(gui) in Matlab 

(https://github.com/angelolab/MAUI). Bg signal highly correlate with Au channel from the slide, 

on the edges and holes in the tissue. The Bg signal (T=0.1-0.2, gaussian kernel with R =1 pixel) 

were removed from all channels.  High frequency signal was considered noise from MIBI-TOF 

brain spectral data. Also, many signals from brain tissue, especially those from synaptic 

markers (SYN, PSD95, VGLUT1/2, VGAT), CD56, and CD47 are dense signals. These dense 

signals were used as the high frequency cut-offs for our Fast Fourier transform (FFT) approach 

to filter noise from all brain spectral images.  Furthermore, signal spill over due to adducts and 

oxides, were compensated for the following conjugates: pASyn to Abeta, IBA1 to PSD95, GFAP 

to CD105, MBP to MCT1, MCT1 to CD33, TAU to MFN2, TH, MAP2, pTDP43, 8OHG and Ab. 

Processed data were stored as image Tiff files and .mat files for data processing and analysis.  

Image stitching and normalization for visualization 
Image stitching for visualization purposes was performed using custom jython scripts 

within the Fiji/ImageJ image processing environment and utilizing existing plugins. Individual 

tiles first underwent a flat-field correction (FCC) within tissue masked areas.  Specifically, tissue 

masks were generated using the thresholded C12 channel, as well as the inverse of 

thresholded Au197 and Empty139 channels.  The FCC reduces the effects of mass dependent 

aberrations within the fields of view.  The FCC is performed by summing, down sampling, and 

smoothing each channel from each field of view.  This smoothly varying intensity map was then 

used to normalize each individual field of view channel. Additionally, to correct for spatially 

uneven detection, each tile was cropped by 1% on each side to eliminate edge effects, followed 

by an additional FCC.  This second FCC generates an intensity map for each tile by averaging, 

down sampling, and smoothing all channels, the result of which should average out biologically 

distinct distributions, leaving only an intensity response map. These maps are then respectively 

used to normalize each field of view’s channels. The “Grid stitching” plugin then stitched these 

tiles together, with overlaps specified by the acquisition parameters.  Each channel was then 

smoothed using a 2-pixel median filter, and linearly auto scaled to maximize the visual contrast 

for each channel. For visualization with MIBItracker, each image was down sampled to have the 
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largest dimension equal to 2048 pixels. For many channels it was possible to reduce the 

gridded pattern artifact via bandpass filtering in Fourier space.  This is acceptable as biological 

information is typically not aligned in this way. However, channels whose signal varied 

significantly over a low frequency across the imaged area were not bandpass filtered, as these 

components would also be removed. Related to this work, tiling functionalities are now available 

through the Ionpath’s github repository https://github.com/ionpath/mibilib. 

Additional stitching was done via a custom Matlab tiling script linking start and end 

coordinates of each scanned images. 

DATA PROCESSING AND DISCRETIZATION ANALYSIS 
Global expression pattern 

Background removed and denoised image TIFs (one file per marker) containing the pixel 

intensities were used to determine the global expression levels per TIF file. Each pixel 

represents marker expression intensity in a 500 or 400 μm2 area and where the variances of 

marker co-expression between different areas of the human brain. 

Cellular segmentation 
Nuclei segmentation was carried out using an adapted version of DeepCell (Keren et al., 

2018; Moen et al., 2019; Valen et al., 2016). Training data. Epithelial cell nuclei stained with 

dsDNA or HH3 were used as core training data as described previously (Keren et al., 2018). 

Segmentation of brain images. All images (841 TIFs of HH3) were subjected to the trained 

network and were normalized in the same fashion as the training images, by subtracting an 

averaging filter and dividing by the std of the whole image. Post processing. Probability map for 

the ‘nuclear interior’ were thresholded and separated to generate nuclear masks as described 

before (Keren et al., 2018). Cell border expansion on these nuclear masks were performed to 

partially capture cell bodies. Nuclear morphology information including, area, circularity, 

eccentricity, major and minor axis lengths (regionprops, MATLAB 2019b) were used to infer cell 

type between neuronal and glial cells due to their large differences in cell versus nucleus sizes. 

To calculate mean marker expression values for each segmented cell, the TIFs containing the 

pixel expression values were combined with the expanded nuclear segmentation masks. A data 

frame containing information of each segmented cell, with an allocated cellular ID (row), is 

populated with the corresponding values of each marker expression (column). In addition, 

supporting overlay files that track the spatial information for each cell in each FOV were created. 

To linearize the data and deal with extreme outliers, all mass channels were log-transformed in 

addition to 99th quantile normalization in in RStudio (Version 2.1) 
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Object segmentation 
Thus far, we have used nuclear segmentation and blanket marker expression data in our 

analysis. To enable the use of object structures, such as plaques and tangles, we had to employ 

EZSegmenter – a MATLAB regionprops thresholding-based segmentation GUI developed in-

house and available as a part of the MIBI image processing toolkit here: 

https://github.com/angelolab/MAUI. Multiplexed TIF images from multiple FOVs are loaded into 

the GUI. Channel select displays signal intensities of MIBI images and are used to determine 

object masks. Additional settings (e.g. Gaussian Blur, minimum and maximum object pixel size) 

are fixed across FOVs. Masks are then used to extract pixel – level signal intensities across 

each channel and then cell size normalized before import into an output cell table csv file. In 

addition to segmenting plaques, tangles, and vessels, we were able to improve cell 

segmentation by including parts of cells that had their nuclei mechanically destroyed by the 

tissue preparation process or were not scanned by the MIBI. All parameters for each objects 

segmented can be found in Table S3B. This new data underwent similar normalization steps as 

the original segmented cell data.  

Manual Gating ADD hippocampus (1024 x 1024 images) 
Akin to classical single cell analysis in cytometry, stepwise manual gating strategy 

starting from the lowest to highest mean pixel levels was carried out. We first gated on CD31+, 

CD105+ and MCT1+ to label the endothelial fraction, the remaining fraction were gated for 

IBA1+ and CD45+ to classify microglia, and subsequently GFAP+ was used to label the 

astrocytes. The final remaining meta fraction was labeled as neurons and oligodendrocytes. 

Gated populations were overlayed back onto the spectral images and incorrect labels were 

curated using a multi-channel imaging platform (Mantis viewer, Parker Institute, 

https://mantis.parkerici.org/). 

Single object clustering & phenotyping 
512 x 512 CN, CID, & ADD Images: 

 Initial gating was performed using common marker panels. Endothelial CD31, MCT1, 

CD105: endothelial cells; CD45 and IBA1: microglia; GFAP: astrocytes 

1024 x 1024 ADD Images: 
To assign a lineage for each segmented cell, a sequential gating strategy was performed 

on the transformed marker expression, starting with CD31, MCT1, CD105 for endothelial cells; 

then CD45 and IBA1 for microglia; then GFAP for astrocytes. Remaining ungated cells were 

then assigned as neurons. The accuracy of manual gating was curated by a multichannel 
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imaging application MantisViewer. The curated expression data was imported back into R for 

UMAP analysis, heatmaps and object co-proximity analysis. Masks of neurons identified by 

cellular segmentation were merged with masks of the object segmented data (microglia, 

astrocytes, endothelia, plaques, and tangle-threads) to obtain a comprehensive repertoire of 

neuronal and non-neuronal cell types, and proteopathy features.  

Object co-proximity analysis 
Thresholds for the co-proximity analysis were empirically determined by calculating the 

shortest physical distance of the periphery of a cell to another cell or proteopathy feature in a 

pairwise manner, and in a predefined pixel-radius. A distance interaction matrix was calculated 

for each pixel-radius, for 25(≈10μm), 50(≈20μm), 100(≈39μm), 150(≈59μm), 200(≈78μm), 

250(≈98μm) and 300(≈117μm) pixel-radius, and the optimal distance used for thresholding was 

based on counts and frequencies of object pairwise interaction. The threshold of t = 25-pixel-

radius for NVU, t = 50-pixel radius for tangle-threads and t = 100-pixel radius for amyloid 

plaques. The null hypothesis (Ho): all objects do not interact with each other and are 

equidistantly dispersed throughout each FOV. The baseline object interaction (Ho) frequencies 

were calculated via the number of objects that would appear within threshold radius (t) by 

chance. The random chance was estimated by taking a proportion of objects appearing within 

the area of the thresholded radius and the entire FOV. Since this analysis was performed on 

individual FOVs, the ratio of the observed neighbor counts versus their estimated counterparts 

were used to normalize the values between FOVs. 

Software, data & code availability 
Software for running the MIBI-TOF equipment was developed by SAI (MiniSIMS 2 Data 

Systems Version 5.5.4.0).  All the data described in this work, including channel images, 

segmentation masks and cellular and object identities can be accessed through a web interface 

and downloaded at https://mibi-share.ionpath.com. The code for the analysis can be 

downloaded at https://github.com/bryjcannon/MIBI_Brain_Analysis. All the information required 

for cell segmentation including the manual training data, trained neural networks, and code for 

training and running DeepCell (now incorporated into a cell segmentation known as MESMER) 

are available at Ark-Analysis https://github.com/angelolab/ark-analysis. 
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