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Abstract

Accurate phylogenies are fundamental to
our understanding of the pattern and pro-
cess of evolution. Yet, phylogenies at deep
evolutionary timescales, with correspond-
ingly long branches, have been fraught with
controversy resulting from conflicting esti-
mates from models with varying complex-
ity and goodness of fit. Analyses of histor-
ical as well as current empirical datasets,
such as alignments including Microsporidia,
Nematoda or Platyhelminthes, have demon-
strated that inadequate modeling of across-
site compositional heterogeneity, which is
the result of biochemical constraints that
lead to varying patterns of accepted amino
acids along sequences, can lead to erroneous
topologies that are strongly supported. Un-
fortunately, models that adequately ac-
count for across-site compositional hetero-
geneity remain computationally challeng-
ing or intractable for an increasing frac-
tion of contemporary datasets. Here, we
introduce “compositional constraint anal-
ysis”, a method to investigate the effect
of site-specific constraints on amino acid
composition on phylogenetic inference. We
show that more constrained sites with lower
diversity and less constrained sites with
higher diversity exhibit ostensibly conflict-
ing signal under models ignoring across-
site compositional heterogeneity that lead
to long branch attraction artifacts and
demonstrate that more complex models ac-
counting for across-site compositional het-
erogeneity can ameliorate this bias. We
present CAT-PMSF, a pipeline for diagnos-
ing and resolving phylogenetic bias result-
ing from inadequate modeling of across-site
compositional heterogeneity based on the
CAT model. CAT-PMSF is robust against

long branch attraction in all alignments we
have examined. We suggest using CAT-
PMSF when convergence of the CAT model
cannot be assured. We find evidence that
compositionally constrained sites are driv-
ing long branch attraction in two metazoan
datasets and recover evidence for Porifera
as the sister group to all other animals.

Keywords: phylogenomics, long branch
attraction, cross-site heterogeneity, animal
phylogeny

Understanding the biological foundations of
contemporary life on Earth requires detailed
knowledge of evolutionary history. The history
of speciation events informs us about the appear-
ance of advantageous innovations and the loss of
dispensable traits in a continuously changing en-
vironment. Consequently, development of phylo-
genetic models inferring the history of speciation
events has continued at an impressive pace during
the past decades.

Models of sequence evolution are inevitably
simplifications of the complex processes that
generate real-life biological sequences. Unfor-
tunately, overly-simplistic models can lead to
model misspecification and long branch attrac-
tion (LBA; e.g., Felsenstein, 1978; Hendy and
Penny, 1989; Zharkikh and Li, 1993; Tateno et al.,
1994; Bruno and Halpern, 1999; Ho and Jermiin,
2004; Bergsten, 2005; Brinkmann et al., 2005;
Philippe et al., 2011b). LBA is a systematic bias
where distantly related lineages are incorrectly in-
ferred to be closely related in reconstructed phy-
logenies. LBA arises when two lineages appear
similar (thus closely related) to one another be-
cause they have both undergone a large amount
of change, rather than because they are closely re-
lated by descent. Probabilistic substitution mod-
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els (e.g., Jukes and Cantor, 1969) can account for
multiple substitutions per site and as a result re-
duce LBA (Felsenstein, 1973; but see Farris, 1999)
compared to methods that do not correct for mul-
tiple substitutions.

However, probabilistic substitution models may
still yield biased estimates if they do not ade-
quately describe the evolutionary processes. For
example, model violation may occur due to im-
proper description of the heterogeneity of the sub-
stitution process across sites (Yang, 1993), across
branches (Tuffley and Steel, 1998), or more fine-
grained modulations through time (heterotachy
and heteropecilly: Philippe and Lopez, 2001;
Roure and Philippe, 2011), all of which have mo-
tivated a lot of work (e.g., Galtier, 2001; Huelsen-
beck, 2002; Lopez et al., 2002; Kolaczkowski and
Thornton, 2004; Philippe et al., 2005b; Lockhart
et al., 2006; Zhou et al., 2007; Lartillot et al., 2009;
Jayaswal et al., 2011; Crotty et al., 2020). In the
present work, the focus is on heterogeneity across
sites.

Historically, the dichotomy between invariable
and variable sites was the first to be considered:
inference with models ignoring invariant sites can
be severely biased, and conversely, just account-
ing for a proportion of invariable sites leads to
substantial improvement (Shoemaker and Fitch,
1989; Adachi and Hasegawa, 1995a; Lockhart
et al., 1996). In a more quantitative spirit, mod-
els accounting for rate heterogeneity across sites
(i.e., allowing for slower or faster evolution at dif-
ferent sites) ameliorate LBA in some cases (Kuh-
ner and Felsenstein, 1994; Philippe et al., 2011b).
Heterogeneity of the process is not restricted to
rates, however. Empirically (e.g. Jayaswal et al.,
2014), amino acid and nucleotide composition can
vary both across sites (i.e., columns of an align-
ment) and across lineages or taxa (i.e., rows of an
alignment).

The interaction between sites in a protein se-
quence is sometimes referred to as “intramolecu-
lar epistasis” (Noor et al., 2012). In particular, we
will consider preferences for specific types of nu-
cleotides or amino acids at homologous positions
in alignments of such data, reflected in composi-
tional variation between columns of an alignment.
Such “compositional heterogeneity across sites” is
a result of site specific selection constraints, for
example, deeply buried positions in folded pro-
teins tend to have more interactions and are cor-
respondingly more constrained compared to posi-
tions on the surface, which have fewer interactions
and are less constrained (Koshi and Goldstein,
1995; Yeh et al., 2014; Jimenez et al., 2018).

Compositional constraints at a site reflect se-
lection on multiple timescales. Interactions be-
tween sites induced by structural and functional

constraints maintained by natural selection con-
strain the site-specific amino acid composition
over long evolutionary timescales. Compositional
constraints may also result from short term fluc-
tuations in site-specific amino acid preferences re-
sulting from changes at integrating sites, which
are relaxed as compensatory substitutions oc-
cur (Pollock et al., 2012).

Amino acid and nucleotide composition, how-
ever, varies not only across sites, but also across
branches and time, reflected in compositional
variation between rows of an alignment. Such
shifts in compositional preference are often driven
by environmental changes and life history traits,
for example by differences in temperature driv-
ing proteome-wide amino acid composition across
prokaryotes (Boussau et al., 2008). Accounting
for across branch and across time changes in com-
position requires using nonstationary substitution
models (Foster et al., 1997; Jermiin et al., 2004).
In this paper, we assume stationarity of the evo-
lutionary process across the branches of the tree
and focus on modeling compositional heterogene-
ity across sites in the alignment.

Our primary motivation is that models ignoring
across-site compositional heterogeneity are prone
to LBA because they underestimate the probabil-
ity of convergent substitutions at compositionally
constrained sites (Lartillot and Philippe, 2004).
The probability of independent substitutions to
the same state depends on the number of ac-
ceptable amino acids, which differs across sites.
Models ignoring across-site compositional hetero-
geneity pool all sites, and ignore the variation
of the evolutionary process across sites. Indeed,
analyses of a series of datasets exhibiting previ-
ously contentious evolutionary relationships pro-
vide evidence that ignoring across-site composi-
tional heterogeneity can lead to LBA (Phillips
et al., 2004; Brinkmann et al., 2005; Philippe
et al., 2005b,a; Delsuc et al., 2006; Lartillot et al.,
2007; Philippe et al., 2009, 2011a; Brown et al.,
2013; Ryan et al., 2013; Cannon et al., 2016;
Simion et al., 2017).

There is accumulating evidence that account-
ing for across-site heterogeneities is key to an
accurate reconstruction of deep evolutionary re-
lationships. The classic approach to modeling
such heterogeneities in the phylogenetic inference
process are mixture models that combine substi-
tution models specifically tailored to the evolu-
tionary processes observed in the data. In or-
der to model across-site rate heterogeneity, we
use a mixture of substitution models with the
same relative but different absolute substitution
rates (e.g., Yang, 1993; Kalyaanamoorthy et al.,
2017).

Modeling across-site compositional heterogene-
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ity, however, requires constructing a process de-
scribing the evolution of sites subject to differ-
ent compositional constraints. To do so for time-
reversible substitution models, we can leverage
the separation of substitution rates into the prod-
uct of (1) symmetric exchangeabilities, describing
differences in rates of exchange between pairs of
states, and (2) stationary frequencies of the target
states (e.g., Whelan and Goldman, 2001). Fig-
uratively, the stationary frequencies of the tar-
get states correspond to the probabilities of sam-
pling the target states after waiting for an in-
finitely long time. Any time-reversible substi-
tution model is fully specified by a set of sym-
metric exchangeabilities and the set of station-
ary frequencies (sometimes also referred to as a
profile or a stationary distribution, e.g., Lartillot
and Philippe (2004)). Assuming biochemical con-
straints primarily affect site-specific amino acid
preferences in the long term, across-site composi-
tional heterogeneity can be accounted for by com-
posing a number of substitution models sharing
a single set of exchangeabilities but differing in
their stationary distributions (distribution mix-
ture models, sometimes also referred to as pro-
file mixture models; Quang et al., 2008; Schrempf
et al., 2020). We note that distribution mixture
models are usually augmented with a model ac-
counting for across-site rate heterogeneity (e.g.,
Yang, 1993). Thus, distribution mixture models
should be an adequate choice even when the evo-
lutionary rate correlates with amino acid compo-
sition (Gowri-Shankar and Rattray, 2005).

We can distinguish between general distri-
bution mixture models estimated from curated
training databases, and distribution mixture
models directly estimated from the datasets at
hand. For example, Wang et al. (2008) directly
estimate mixture model components using princi-
pal component analysis. Susko et al. (2018) use
a composite likelihood approach and additional
methods such as taxon weighing. In contrast, the
rationale behind providing and using general mix-
ture models is the assumption that the under-
lying evolutionary processes share universal fea-
tures. Quang et al. (2008) use the expectation
maximization algorithm to infer general mixture
models consisting of 10, 20, . . . , 60 components
(C10, C20, . . . , C60, collectively CXX models).
Schrempf et al. (2020) used a clustering approach
together with different compositional transforma-
tions to provide a set of general mixture models,
termed universal distribution mixtures (UDM),
with the number of components ranging from
four up to several thousand. They also provide
the clustering method EDCluster to infer dataset-
specific distribution mixture models.

Finite mixtures can be used in the context of

maximum likelihood (ML) phylogenetic inference.
However, statistical analyses of model fit and in-
vestigation of known cases of LBA indicate that
a large number of components are necessary for
robustness against LBA (Schrempf et al., 2020)
which is computationally expensive especially in
terms of random-access memory.

Bayesian approaches can more easily accommo-
date richer mixtures. Nonparametric Bayesian
methods do not require explicit specification of
the number of mixture components nor their sta-
tionary distributions. In particular, the CAT
model (Lartillot and Philippe, 2004) uses a
Dirichlet process prior to approximate an arbi-
trary mixture of stationary distributions across
sites. The CAT model was shown to be
better fitting and less prone to LBA than
site-homogeneous models for a series of clas-
sic datasets including Nematoda and Platy-
helminthes (Lartillot et al., 2007) as well as in
phylogenomic analyses of the tree of life (Williams
et al., 2020). The impediment of nonparamet-
ric Bayesian methods, and specifically the CAT
model, is that it compounds two computation-
ally challenging, but separately tractable prob-
lems, the nonparametric inference of the under-
lying distribution across sites and the exploration
of tree space. The combination of these two prob-
lems is challenging and can lead to convergence
problems.

In all cases, mixture modeling approaches ac-
counting for across-site compositional heterogene-
ity are complex and require considerable compu-
tational resources (e.g., Whelan and Halanych,
2016). In order to reduce computational cost,
Wang et al. (2018) proposed a two-step approx-
imation. First, site-specific stationary distribu-
tions are estimated using a reference mixture
model and a fixed guide topology. We note that
the choice of the guide topology affects the esti-
mation of the stationary distributions, and that
a suboptimal guide topology may bias the re-
sults. Second, a tree is inferred using the fixed
stationary distributions obtained in the first step.
Thereby, runtime is reduced while robustness
against LBA is improved compared to using the
reference mixture model alone. In particular, the
site-specific stationary distributions are set to the
posterior mean site frequencies (PMSF) of the ref-
erence mixture model. As a result, the phyloge-
netic accuracy of the PMSF approach is inher-
ently limited by how well the reference mixture
model captures across-site compositional hetero-
geneity. There is no reason to restrict the use of
the PMSF approach to empirical mixture models:
any random-effect model meant to account for
pattern heterogeneity could in principle be used
here as a reference mixture model for computing
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the posterior means of the site-specific stationary
distributions.

In this work we follow a multistep procedure
similar to the PMSF model and address two
points: First, on the computational side, we ex-
tend the PMSF approach by using the CAT model
instead of an empirical profile mixture model as
the reference model for computing the profiles.
Importantly, the CAT model is used under a fixed
guide topology. Thus, the problem of simultane-
ous inference of both the site-specific stationary
distributions and the tree is reduced to a search
of site-specific stationary distributions, and tree
branch lengths only. We termed our approach
CAT-PMSF.

Second, we investigate the contribution of
sites with different degrees of compositional con-
straints to LBA. In particular, we test to what
extent more severely constrained sites exhibit bias
towards LBA trees under models that do not ade-
quately account for across-site compositional het-
erogeneity. We employ “compositional constraint
analysis”, which examines phylogenetic signal for
alternative topologies as a function of per site
compositional diversity measured by the effective
number of amino acids (see Materials and Meth-
ods).

Examining simulated alignments as well
as classic empirical datasets including Mi-
crosporidia (Brinkmann et al., 2005), Nematoda,
and Platyhelminthes (Philippe et al., 2005a),
we find conflicting phylogenetic signal across
sites with different degrees of compositional con-
straints. Based on these results we apply compo-
sitional constraint analysis to datasets analyzed
previously by Ryan et al. (2013) and Simion et al.
(2017), aiming to resolve the early diversification
of animal lineages.

Materials and Methods

In the following, we use the terms site-homoge-
neous and site-heterogeneous when referring to
models ignoring and accounting for across-site
compositional heterogeneity, respectively. Fur-
ther, we use the term tree to denote a di-
rected acyclic graph with node labels and branch
lengths, in which exactly one branch connects any
two nodes. We use the term topology to denote
a tree without information about branch lengths
but with node labels. We specify an evolution-
ary model with exchangeabilities, EX, and across-
site compositional heterogeneity model, ASCH
as EX+ASCH. All discussed evolutionary models
used for simulations as well as inferences implic-
itly use discrete gamma rate heterogeneity with
four components. We add a flag +PMSF to de-
note usage of the posterior mean site frequency

model (Wang et al., 2018).

Effective Number of Amino Acids. – Given a
distribution π = (πA, πR, . . . , πV ) of amino acid
frequencies, we seek a simpler measure Keff(π) in
the closed interval [1, 20] that indicates the effec-
tive number of different amino acids used. We
refer to this number as the “effective number of
amino acids”, and denote it as Keff (Schrempf
et al., 2020). Lartillot et al. (2007) and Pollock
et al. (2012) refer to the same concept, calling it
the “effective size of the amino acid alphabet” or
the “biochemical diversity”.

There are at least two conceptual platforms to
compute Keff: (1) Homoplasy, that is, the proba-
bility of sampling the same amino acid twice, and
(2) the Shannon entropy. Lartillot et al. (2007)
and Pollock et al. (2012) use the Shannon entropy.
Schrempf et al. (2020) examine both concepts and
did not observe significant differences between the
two definitions of Keff. Here, we prefer to com-
pute Keff using homoplasy because the probabil-
ity of LBA directly depends on the probability of
homoplasy. Briefly, if the phylogenetic model un-
derestimates the probability of homoplasy in the
alignment, sequence similarities may be wrongly
attributed to a potential “close evolutionary dis-
tance”, and not to potential “random similarity
because of homoplasy”.

In particular, the probability of homoplasy is

G(π) =
∑

i∈{A,R,...V }

π2
i , (1)

and the effective number of amino acids is the
inverse

Keff(π) = G(π)
−1
. (2)

Keff is a convenient measure because it ranges
from 1.0, when one amino is used exclusively, to
20.0 for a uniform distribution. Further, we can
apply Keff to the distribution of amino acid fre-
quencies at a given site. In this case, Keff denotes
the “number of amino acids used at a given site”.
Finally, we note that Wright (1990) also uses the
concept of homoplasy (which population geneti-
cists call “homozygosity”) to define a more elab-
orate measure of the “effective number of codons
used in a gene” (see also Fuglsang, 2006).

CAT-PMSF. – Figure 1 shows an overview
of the CAT-PMSF pipeline. The input to CAT-
PMSF is an alignment. The output of the CAT-
PMSF pipeline is a tree robust to LBA.

Step 1: Use a site-homogeneous model to infer
a ML tree with IQ-TREE 2 (Minh et al., 2020).
Specifically, we used LG exchangeabilities (Le and
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Alignment

Step 1
Site-homogeneous

ML inference

Step 2
Site-heterogeneous
Bayesian inference

Step 3
Site-heterogeneous

ML inference

Fixed topology
(LBA prone)

Site-specific profiles

Final tree
(robust to LBA)

Figure 1: The CAT-PMSF pipeline. (1)
Apply a site-homogeneous maximum likelihood
(ML) model (LG+G4; Yang, 1993; Le and Gas-
cuel, 2008) with IQ-TREE 2 (Minh et al., 2020).
The obtained tree may still suffer from long
branch attraction. (2) Fix the topology of this
tree in a site-heterogeneous inference with the
Bayesian CAT model (Lartillot and Philippe,
2004) and extract the posterior mean site-specific
stationary distributions of amino acids. (3) Esti-
mate a tree robust to long branch attraction with
the obtained site-specific stationary distributions
in IQ-TREE 2.

Gascuel, 2008), the empirical stationary distribu-
tion of amino acids, and a discrete gamma rate
model (Yang, 1993) with 4 categories (LG+F+G4
in IQ-TREE 2 terminology).

Step 2: Use the topology of the obtained tree,
which may be biased by LBA, in a subsequent
Bayesian analysis with the CAT model (Lar-
tillot and Philippe, 2004) in PhyloBayes (Lar-
tillot et al., 2013). Analogous to the PMSF
approach, call this the “guide topology”. Fix
the guide topology during this step of the CAT-
PMSF pipeline to reduce the computational re-
quirements of the CAT model. Then, extract
the posterior mean site-specific stationary distri-
butions of amino acids. In our analyses, we ei-
ther used Poisson (Felsenstein, 1973; Nei, 1987),
LG (Le and Gascuel, 2008) or GTR (Tavaré,
1986) exchangeabilities, and a discrete gamma
rate model with 4 categories. We ran two Markov
chains until either the effective sample size of
all parameters was above 100, or after visual in-
spection with Tracer (Rambaut et al., 2018) in-
dicated convergence. Due to computational con-
straints the Markov chains involving the Simion
et al. (2017) and Ryan et al. (2013) alignments
do not reach an estimated sample size of 100 for
each parameters, for detail see Tables from S16
to S28. For the GTR model, we also extracted
the posterior mean exchangeabilities from the re-
sults of PhyloBayes. All scripts are available
in the Dryad Digital Repository: https://doi.

org/10.5061/dryad.g79cnp5rh and at https:

//github.com/drenal/cat-pmsf-paper.

Step 3: Use the custom site-specific stationary
distributions in IQ-TREE 2. To this end, use
capabilities of IQ-TREE 2 implemented as part
of the PMSF method (Wang et al., 2018). The
PMSF method has two steps. First, infer the site-
specific stationary distributions. Second, use the
inferred site-specific stationary distributions for
phylogenetic inference. Here, we use the second
step of the PMSF method together with the cus-
tom site-specific stationary distributions obtained
in Step 2 of the CAT-PMSF pipeline.

Simulations. – In order to assess the accu-
racy of CAT-PMSF, we simulated alignments of
10000 amino acids under a distribution mixture
model (Schrempf et al., 2020). We used Poisson
exchangeabilities (Felsenstein, 1973; Nei, 1987)
and a discrete gamma rate model (Yang, 1993)
with 4 categories with shape parameter α = 0.78.
The distribution mixture model has site-specific
stationary distributions. For each site, we sam-
pled a random distribution from a universal set
of distributions (Schrempf et al., 2020) obtained
from the HOGENOM (Dufayard et al., 2005) and
HSSP (Schneider et al., 1997) databases.
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We used Felsenstein-type trees with four
leaves (insets in top row of Figure 2; Felsenstein,
1978). Felsenstein-type trees exhibit two long
branches separated by a short internal branch.
The quartet trees had different branch length pro-
portions between short (q) and long (p) branches.
We fixed q to 0.1, and changed p between 0.1 and
2.0. We stored the randomly sampled site-spe-
cific stationary distributions used for the simu-
lation. For the simulations we used the ELynx
suite (https://github.com/dschrempf/elynx).
The scripts and the simulated data are available
in the Dryad Digital Repository: https://doi.

org/10.5061/dryad.g79cnp5rh and at https:

//github.com/drenal/cat-pmsf-paper.

Compositional Constraint Analysis. – We cal-
culated the site-specific likelihood differences be-
tween two analyses constrained to two different
topologies (-g flag in IQ-TREE 2), let us denote
them topology A, and B, respectively. For exam-
ple, in the simulation study, we chose topology B
such that the inferred tree was of the Felsenstein-
type (insets in top row of Figure 2). Felsenstein-
type trees exhibit a short internal branch sepa-
rating two long extant branches. We chose topol-
ogy A such that the inferred tree was of the
Farris-type (inset in bottom row of Figure 2(b)).
Farris-type trees have two long extant branches
that merge before joining a short internal branch.
For a comparison of Felsenstein-type and Farris-
type trees, see for example Leuchtenberger et al.
(2020). For each site i, we calculated the log-
likelihood difference as

∆ logLi = logLB
i − logLA

i . (3)

A positive value of ∆ logLi indicates that site i
supports topology B. A negative value indicates
support for topology A.

We ordered and binned the sites according to
their Keff values and summed the site-specific log-
likelihood differences within each bin. We chose
20 bins because there are 20 amino acids, but
different bin sizes may be used (Fig. S13, S14,
and S15 available in the Supplementary Mate-
rial which can be found in the Dryad Digital
Repository: https://doi.org/10.5061/dryad.

g79cnp5rh). For the simulation study, we used
the actual Keff values of the sampled amino acid
profiles during the simulation. For the analyses of
empirical datasets, we used the Keff values calcu-
lated from the site-specific stationary distribution
obtained in Step 2 of the CAT-PMSF pipeline.
Taxa in the insets of Figure 3 and Figure 4 are
represented using Phylopic (http://phylopic.
org/), the silhouette for Microsporidia is based
on Tosoni et al. (2002, Figure 7).

Dataset involving Platyhelminthes and Nema-
toda. – Philippe et al. (2005a) address a well-
known LBA artifact concerning the placement of
Platyhelminthes and Nematoda on the tree of Bi-
lateria. Lartillot et al. (2007) revisit the same
dataset and provide two reduced, and overlapping
alignments which contain 37 species for Nema-
toda and 32 species for Platyhelminthes, respec-
tively. Both alignments have a length of 35371
amino acids. Figure 3 (a) and (b), S1 and S2
show simplified and complete species trees, re-
spectively.

Dataset involving Microsporidia. – The
dataset provided by Brinkmann et al. (2005)
comprises 40 species with 24294 amino acids.
It contains an archaean outgroup and eukary-
otic taxa. Of particular interest are the Mi-
crosporidia, a group of unicellular parasites which
lack mitochondria and instead possess mitosomes.
Microsporidia evolve fast, and site-homogeneous
methods fail to correctly classify them. Ap-
plication of site-heterogeneous methods confirms
that Microsporidia are the closest sister species
of Fungi (Brinkmann et al., 2005). For these rea-
sons, the dataset containing Microsporidia is ideal
as a proof of concept for CAT-PMSF. Figure 3 (c)
and S3 show simplified and complete species trees,
respectively.

Metazoan Datasets. – The placement of
Ctenophora on the tree of Metazoa is still a mat-
ter of debate. We apply CAT-PMSF to two
datasets. First, the alignment provided by Ryan
et al. (2013) contains 61 species with 88384 amino
acids. Second, the alignment provided by Simion
et al. (2017) contains 97 species with 401632
amino acids. The complete set of outgroups
comprises 2 Filasterea, 5 Ichthyosporea, and 18
Choanoflagellatea. The Choanoflagellatea are the
closest outgroup. Figure 4 shows results obtained
from a reduced alignment in which we retained
only the Choanoflagellatea. The reduced align-
ment yields 90 species. Figure 4, and Figure S4
show simplified and complete species trees, re-
spectively.

Compositional Heterogeneity across Branches.
– CAT-PMSF assumes homogeneity of the evo-
lutionary process across the branches of the tree.
The matched-pairs test of symmetry (Ababneh
et al., 2006) tests for compositional heterogene-
ity between two sequences. Homo v2.1 (https:
//github.com/lsjermiin/Homo.v2.1) performs
this test for all pairs of sequences in an alignment.
We applied Homo v2.1 to the simulated as well as
empirical alignments.
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Results

In brief, CAT-PMSF comprises three steps:
(1) estimate a guide topology using a site-homo-
geneous model, (2) estimate site-specific station-
ary distributions with the CAT model in Phy-
loBayes (Lartillot and Philippe, 2004) using the
guide topology, and (3) phylogenetic inference in a
ML framework with a distribution mixture model
sharing one set of exchangeabilities, and using
the obtained site-specific stationary distributions
(see Materials and Methods).

Simulation Study. – We assessed and com-
pared the accuracy of CAT-PMSF with other
site-homogeneous and site-heterogeneous models.
To this end, we simulated amino acid sequence
alignments with a length of 10 000 sites along
Felsenstein-type quartet trees (insets in top row
of Figure 2; Felsenstein, 1978). We used uniform
exchangeabilities (Poisson; Felsenstein, 1973) and
an across-site compositional heterogeneity model
with site-specific stationary distributions based
on a UDM model (see Material and Methods;
Schrempf et al., 2020). We set the branch length
of the short branch q to 0.1, and varied the length
of the long branch p between 0.1 and 2.0. As ex-
pected, using Homo v2.1, we did not detect ev-
idence for compositional heterogeneity across se-
quences in the simulated alignments (Supplemen-
tary Section Compositional heterogeneity across
sequences).

The true topology was not recovered with
site-homogeneous models when p ≥ 0.8. In-
stead, a Farris-type (or LBA) tree is recovered
(Fig. S7, S8, and Tables S1, S2). Figure 2 shows
the results of the compositional constraint anal-
ysis for different values of p = 0.2, 0.8 and
1.2, contrasting the site-wise log-likelihood dif-
ferences between the ML trees constrained to
the true (Felsenstein-type) and incorrect (Farris-
type) topologies exhibiting LBA (see Materials
and Methods). Figures S7, and S8 show results
for other values of p. We binned sites according to
the effective number of amino acids (Keff, see Ma-
terials and Methods) used by the respective site
profiles. Lower values of Keff correspond to sites
under stronger compositional constraints. Com-
positional constraint analysis compares per site
phylogenetic signal for two alternative topologies
as a function of Keff. Here, positive log-likelihood
differences indicate support for the true topology.
Conversely, negative values indicate support for
the alternative topology exhibiting LBA. In the
absence of model misspecification, we expect con-
sistent phylogenetic signal (i.e., support for either
one or the other topology) across sites, and inde-
pendent of the true value of Keff.

At odds with this expectation, site-homo-
geneous evolutionary models exhibit conflicting
phylogenetic signal between sites with lower and
higher Keff values (Fig. 2, S7 and S8). For
site-homogeneous evolutionary models, more con-
strained sites with a lower value of Keff ex-
hibit bias towards the incorrect topology exhibit-
ing LBA. For p ≥ 0.8, the bias outweighs
the correct signal of less constrained sites with
high values of Keff, and the incorrect topology
has higher support than the true topology. In
contrast, the site-heterogeneous LG+C60+PMSF
and Poisson+CAT-PMSF models show consistent
support for the true topology.

To ascertain the statistical significance of
the compositional constraint analysis we calcu-
lated Pearson’s correlation coefficients, as well as
Spearman’s and Kendall’s rank correlation coef-
ficients and associated p-values between the log-
likelihood differences and the site-specificKeff val-
ues (Supplementary Section Measuring correla-
tion between Keff and site-specific log-likelihood
difference; Tables S3, S5 and S7). For the Pear-
son’s correlation coefficient, site-homogeneous
models exhibit large and significant correlation for
p ≥ 0.8, whereas the log-likelihood differences and
Keff values of site-heterogeneous models are not
correlated.

Approximately unbiased (AU) tests (Shi-
modaira, 2002) of ML trees inferred by the
GTR+CAT-PMSF model constrained to the two
alternative topologies reject the incorrect topol-
ogy exhibiting LBA in favor of the true topol-
ogy for p < 1.5 (Table S9). AU tests of the
Poisson+CAT-PMSF model show similar results
in that the topology exhibiting LBA is rejected
for p < 1.6 (Table S10). The LG+CAT-PMSF
model only rejects the topology exhibiting LBA
for p < 0.8, and favors the incorrect topology for
p > 1.0 (Table S10).

Finally, we note that site-heterogeneous mod-
els with GTR exchangeabilities perform well if
p ≤ 1.4. This is an interesting observation, be-
cause the simulations used the Poisson model with
uniform exchangeabilities, and both Phylobayes
and IQ-TREE 2 use LG exchangeabilities as start-
ing values when inferring GTR exchangeabilities
(e.g., see the results of the GTR+CAT-PMSF
model in Figure 2c). This indicates, that the
inference of exchangeabilities has converged well
if p ≤ 1.4. In contrast, model misspecification
by fixing the exchangeabilities to the ones of the
LG model indeed leads to inconsistent signal sim-
ilar to the one obtained with site-homogeneous
models when p ≥ 0.8 (e.g., see the results of
the LG+CAT-PMSF model in Figure 2c). The
Poisson+CAT-PMSF model is even more accu-
rate when using the true topology or the true
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Figure 2: Highly constrained sites drive long branch attraction artifacts in the Felsenstein
zone. We simulated amino acid alignments with 10 000 sites exhibiting across-site compositional
heterogeneity (Schrempf et al., 2020) along Felsenstein-type trees (insets in top row; Felsenstein,
1978) with different branch lengths q = 0.1, and p = 0.3, 0.8, and 1.2 from (a) to (c). We performed
analyses with CAT-PMSF, the Poisson (Felsenstein, 1973; Nei, 1987), the LG (Le and Gascuel, 2008)
and the GTR (Tavaré, 1986) models constrained to the correct topology as well as to an incorrect
topology (inset in bottom row; Farris, 1999) with IQ-TREE 2 (Minh et al., 2020). The site-specific log-
likelihood differences ∆logL between the maximum likelihood trees of the two competing topologies
binned according to the site-specific effective number of amino acids Keff are shown. A positive value
(blue background) indicates support for the true topology, a negative value (yellow background)
indicates support for the incorrect topology exhibiting long branch attraction. The LG, and GTR
models incorrectly infer Farris-type trees if p ≥ 0.8.
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Figure 3: Highly constrained sites explain classic examples of long branch attraction. We
analyzed three empirical datasets including (a) Platyhelminthes and (b) Nematoda (Philippe et al.,
2005a), and (c) Microsporidia (Brinkmann et al., 2005). We performed analyses with CAT-PMSF,
the LG (Le and Gascuel, 2008), the GTR (Tavaré, 1986), and the LG+C60+PMSF (Quang et al.,
2008; Wang et al., 2018) models constrained to either one of two competing topologies (insets in top
versus bottom rows) with IQ-TREE 2 (Minh et al., 2020). The site-specific log-likelihood differences
∆logL between the LBA-prone and non-LBA-prone topologies binned according to the site-specific
effective number of amino acids Keff estimated by PhyloBayes (Lartillot and Philippe, 2004) are
shown. A positive value (blue background) indicates support for the now accepted topology, a negative
value (yellow background) indicates support for the topology prone to long branch attraction. Site-
homogeneous models infer the wrong topology for all three datasets.
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site-specific stationary distributions (Fig. S7 and
S8). In all cases excluding the LG+CAT-PMSF
and GTR+CAT-PMSF models for large p, the
site-heterogeneous models infer the true topology
(Fig. S7 and S8).

Applications to empirical Data. – Similar to
the simulation study above, for empirical align-
ments the site-specific stationary distributions ob-
tained in Step 2 of the CAT-PMSF pipeline can
be used to quantify the strength of compositional
constraint measured by Keff and perform compo-
sitional constraint analysis. Figure 3 shows re-
sults for three datasets exhibiting classic LBA
artifacts when we use site-homogeneous models
for inference: The placement of Platyhelminthes
and Nematoda (Philippe et al., 2005a), as well
as the placement of Microsporidia (Brinkmann
et al., 2005; Lartillot et al., 2007). For all
three datasets, Homo v2.1 reported some level
of compositional heterogeneity across sequences
(see Materials and Methods and Supplementary
Section Compositional heterogeneity across se-
quences). Figures S9 and S11 show the cumu-
lative site-specific log-likelihood differences and
Figures S13, S14 and S15 provide results for al-
ternative bin sizes.

For site-homogeneous models, the site-specific
log-likelihood differences between the ML trees
constrained to the two competing topologies (in-
sets of Figure 3; top vs. bottom) show conflict-
ing phylogenetic signal between more or less con-
strained sites. The bias towards the topologies
exhibiting LBA artifacts of more constrained sites
outweighs the signal of less constrained sites in all
three datasets.

The site-heterogeneous LG+C60+PMSF
model shows reduced, but still apparent conflict
compared to site-homogeneous models and
the LG+C10+PMSF model (Fig. S9). For
Platyhelminthes, the bias is strong enough that
the total likelihood across all sites is higher
for the LBA topology, while for the datasets
involving Nematoda and Microsporidia, the
LG+C10+PMSF model recover the correct
topology, albeit with reduced support. In gen-
eral, the results of the LG+C10+PMSF and
LG+C60+PMSF models are consistent with the
observation (Schrempf et al., 2020) that increas-
ing the number of mixture model components of
the CXX models decreases the bias introduced
by more constrained sites. Pearson correlation
coefficients are greater for site-homogeneous
models than for models LG+C10+PMSF and
LG+C60+PMSF, but significant for each of
these (Tables S4, S6 and S8).

In contrast, CAT-PMSF exhibits consistent sig-
nal towards the assumed-to-be-correct topologies

across all sites and datasets with no significant
correlation between log-likelihood difference and
site-specific Keff value (Table S4). The ML trees
inferred by CAT-PMSF are consistent with the
accepted phylogenetic relationships and AU tests
confirm the rejection of trees with LBA topologies
(Tables S12-S14).

The phylogenetic Position of Ctenophora. –
Finally, we used CAT-PMSF on two metazoan
datasets (Ryan et al., 2013; Simion et al., 2017)
to investigate early evolutionary relationships on
the animal tree of life. It is currently a matter
of debate whether sponges (Porifera) or comb jel-
lies (Ctenophora) are the sister group to all other
animals (e.g., Kapli and Telford, 2020; Li et al.,
2021). We refer to the competing hypotheses
as Porifera-sister and Ctenophora-sister, respec-
tively.

Compositional constraint analysis under site-
homogeneous models, as well as combinations
of PMSF and site-heterogeneous mixture mod-
els with 20 and 60 components exhibit patterns
of conflicting phylogenetic signal for sites with
different degrees of compositional constraints
(Fig. 4, S10 and S12) for both the alignments from
Simion et al. (2017) and Ryan et al. (2013). The
conflicting signal is consistent with LBA driving
the placement of Ctenophora as the first animal
group to emerge (Table S4).

Under site-homogeneous models, sites with Keff

values up to approximately 10−12 exhibit strong
preference for Ctenophora-sister (Fig. 4 and S17).
Sites with higher Keff values, however, switch
their preference toward Porifera-sister. In con-
trast, under the CAT-PMSF models the Simion
et al. (2017) dataset exhibits consistent phyloge-
netic signal (Table S3) favoring a Porifera-sister
topology and rejecting the Ctenophora-sister
topology (AU test p-values between 3.1 × 10−4

and 7.7 × 10−4; Table S15) with the closest out-
group, Choanoflagellatea (Fig. S4a, Figure S10).
For the alignment published by Ryan et al. (2013),
the total log-likelihood difference of CAT-PMSF
between the two hypotheses is marginal at only
0.8, suggesting a lack of resolution in this dataset.
None of the models we investigated exhibit consis-
tent phylogenetic signal across sites with different
degrees of compositional constraints.

Discussion

We introduce CAT-PMSF, a method for phy-
logenetic inference from alignments exhibiting
across-site compositional heterogeneity. The
CAT-PMSF pipeline uses the site-specific amino
acid preferences estimated by a nonparametric
Bayesian approach in the context of a downstream
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Figure 4: CAT-PMSF shows consistent sig-
nal for Porifera as the sister group to
all other animals on the alignment from
Simion et al. (2017). We performed anal-
yses with CAT-PMSF, the LG (Le and Gas-
cuel, 2008), the GTR (Tavaré, 1986), and the
LG+C20+PMSF (Quang et al., 2008; Wang
et al., 2018) models constrained to either one
of two competing topologies (insets in top ver-
sus bottom rows) with IQ-TREE 2 (Minh et al.,
2020) on the alignment from Simion et al. (2017).
The site-specific log-likelihood differences ∆logL
between the maximum likelihood trees of the
two competing topologies binned according to the
site-specific effective number of amino acids Keff

estimated by PhyloBayes (Lartillot and Philippe,
2004) are shown. Site-homogeneous models and
the site-heterogeneous LG+C20+PMSF model
show inconsistent signal between more versus less
constrained sites and favor Ctenophora at the an-
imal root. CAT-PMSF favors Porifera at the an-
imal root, although this result is only significant
when using the closest outgroup exclusively.

ML analysis. Doing so combines the benefits of
both approaches: a more accurate inference of
the patterns across sites with a computationally
more efficient and more reproducible inference of
the tree topology. In addition to phylogenetic
inference, the CAT-PMSF pipeline can also be
used to investigate the consistency of phylogenetic
signal for sites under different degrees of com-
positional constraints. Compositional constraint
analyses on both simulated and empirical datasets
exhibiting across-site compositional heterogeneity
show that site-homogeneous and some site-hetero-
geneous mixture models indeed have inconsistent
signal which contributes to topological bias and
LBA artifacts.

In the simulation study (Fig. 2), site-homoge-
neous models favored the incorrect topology when
the length p of the terminal branches was long
enough. By separating the contribution of sites as
a function of compositional constraint, we demon-
strated that more constrained sites drive the bias
leading to LBA.

The threshold Keff values separating sites sup-
porting the correct topology and sites supporting
the LBA topology depended on the length p of
the terminal branches: The longer the terminal
branches, the higher the threshold Keff value. We
expect this observation holds more generally.

In our simulations, support of site-homoge-
neous models shifted from the true topology to-
wards the incorrect topology when increasing p to
and above 0.8. In this case, sites with Keff values
above that threshold failed to compensate for the
bias introduced by sites with Keff values below
the threshold. We observed no bias when using
site-heterogeneous models such as Poisson+CAT-
PMSF (Fig. 2). Although we expect such a result,
it is satisfying that inferences of Poisson+CAT-
PMSF lack bias even for large values of p ≥ 1.2
(Fig. S7 and S8).

We discovered bias towards one of the topolo-
gies in simulation studies because we know the
true parameters and trees. Bias is harder to de-
tect in analyses of empirical data. Compositional
constraint analysis detects conflicting signal be-
tween more and less constrained sites. Detection
of such inconsistencies is a strong indicator for
bias: Knowing the stationary distribution of a
site alone should not provide us with information
about the favored evolutionary history. In math-
ematical terms, the log-likelihood difference of a
site between two hypotheses should be condition-
ally independent given the stationary distribution
of that site. In contrast, we expect the signal ob-
tained from more and less constrained sites be
consistent up to random statistical error.

In our analyses of empirical data we observed
strong inconsistencies between more and less
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constrained sites for site-homogeneous models
and hardly any inconsistencies when using CAT-
PMSF (Fig. 3). Pearson correlation coefficients
and p-values confirm this observation across a
wide range of simulated and empirical datasets
(Tables S3, and S4).

The results are more nuanced for the align-
ments involving Ctenophora. In the case of site-
homogeneous models, we observe the value of
Keff correlates strongly with the log-likelihood
difference between the two competing topolo-
gies (Fig. 4). Moreover, for the dataset pro-
vided by Simion et al. (2017), CAT-PMSF sup-
ports Porifera-sister — similar to the results re-
ported by the original authors, who applied the
CAT model to sub-sampled alignments compris-
ing 100 000 sites. The support of CAT-PMSF
for Porifera-sister is significant when we use the
closest outgroups exclusively (Table S15). If we
add more distant outgroups, the results are less
conclusive (Table S15). LBA provides an expla-
nation for this observation: outgroups more dis-
tant to the ingroup (i.e., the species of interest)
attract outgroups closer to the ingroup (Hendy
and Penny, 1989; Adachi and Hasegawa, 1995b)
thereby increasing the distance between the in-
group and the whole outgroup. Consequently, the
longer basal branch increases bias due to LBA for
branches leading to the most recent common an-
cestor of the ingroup. In particular, the elongated
basal branch of animals increases bias due to LBA
for branches leading to the metazoan root.

We interpret these findings as a confirmation
for sponges being the sister group to all other an-
imals (dataset of Simion et al., 2017), and be-
lieve that the inconclusive results obtained from
the dataset of Ryan et al. (2013) reflect a lack of
phylogenetic resolution. Irrespective of the final
evolutionary history of Metazoa, our results add
important evidence that ignoring across-site com-
positional heterogeneity leads to LBA (Phillips
et al., 2004).

Compositional constraint analysis seeks to de-
compose the log likelihood contributions of more
and less constrained sites. We decided to mea-
sure how constrained sites are by computing the
effective number of amino acids per site based
on the concept of homoplasy, because it is in-
herently related to LBA: A model that under-
estimates the probability of homoplasy will in-
correctly attribute sequence similarities due to
homoplasy to a putative close evolutionary dis-
tance. Other measures of how constrained sites
are or any monotonic transformation of the func-
tion computing Keff could be used. For example,
the Shannon entropy can be used to calculate a
slightly different measure of the effective number
of amino acids, albeit with similar characteris-

tics (Schrempf et al., 2020). To reiterate, compo-
sitional constraint analysis is useful, because we
do not expect that the topological preference de-
pends on how constrained sites are. Indeed, if all
sites have been produced under the same evolu-
tionary history, then they should agree on the pre-
ferred topology (or, possibly, abstain, e.g., if they
are constant), and this, even if they otherwise dif-
fer in other aspects of the evolutionary process
(such as the biochemical constraints). In partic-
ular, we expect that the sign of the site-specific
log-likelihood difference does not change between
more or less constrained sites. However, this is
exactly what we observe for almost all inferences
when using site-homogeneous models and even for
some inferences with site-heterogeneous models
(e.g., Figures 2-4). More quantitatively, the cor-
relation coefficients between Keff and site-specific
log-likelihood difference tend to be stronger for
site-homogeneous models than for site-heteroge-
neous models (Tables S3, S5 and S7).

We also note that CAT-PMSF assumes ho-
mogeneity of the evolutionary process across
branches of the tree. The simulation study con-
forms to this assumption. Tests for across-branch
homogeneity were less conclusive for the empirical
datasets (Supplementary Section Compositional
heterogeneity across sequences) than for the sim-
ulation study. If the evolutionary process is sta-
tionary and homogeneous, the CAT model should
perform well in estimating site-specific amino acid
compositions. Even if the evolutionary process is
non-stationary or heterogeneous, the site-specific
amino acid compositions inferred by the CAT
model will capture the spectrum of compositions
attained at least somewhere on the tree. In this
case, the inferred compositions will not be sta-
tionary in the mathematical sense, but still should
have a positive impact on the detection of genuine
convergent evolution. Ideally, we should model
across-site and across-branch compositional het-
erogeneity for amino acid sequences in a combined
way. For example, there has been work in this
direction on nucleotide sequences (e.g. Jayaswal
et al., 2014). In the case of amino acids, one
could begin with a simulation study testing if
(dis)-similarity in amino acid composition influ-
ences evolutionary distances or even the topology
estimated by CAT-PMSF or other methods ac-
counting for across-site compositional heterogene-
ity.

The results of CAT-PMSF are conservative
because the CAT model estimates the site-spe-
cific stationary distributions using guide topolo-
gies prone to LBA artifacts. That is, the guide
topologies are obtained with site-homogeneous
models. Even so, CAT-PMSF correctly infers
the true trees in the simulation study (Table S1),
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and trees that we are convinced to be free from
LBA artifacts in the analyses comprising empir-
ical datasets (Fig. S3, S2, S1, S6, S5 and S4).
This observation justifies the usage of site-ho-
mogeneous models in Step 1 of the CAT-PMSF
pipeline.

In the simulation study, we observe bias to-
wards Farris-type trees when using site-homo-
geneous models, and no bias or reduced bias
when using Poisson+CAT-PMSF or GTR+CAT-
PMSF. However, the reduced bias comes at a
cost: the absolute values of the log-likelihood dif-
ferences are greater for site-homogeneous models
than for site-heterogeneous models, even though
site-heterogeneous models are more parameter
rich.

In general, site-homogeneous models show con-
flicting signal between more and less constrained
sites, but we observe hardly any such inconsisten-
cies when using CAT-PMSF. In any case, even
when the signal across sites is consistent, evidence
obtained from highly constrained sites should be
examined carefully, especially when highly con-
strained sites weigh more heavily than less con-
strained sites. We are convinced that inconsis-
tencies between more and less constrained sites
are a strong indicator for the presence of LBA.

Li et al. (2021) argue that only the most pa-
rameter rich models favor Porifera-sister, and so
Porifera-sister is not a likely scenario. In contrast,
Schrempf et al. (2020) report that statistical tests
favor models using more stationary distributions.
This point is confirmed here, where we see that
CXX models, in spite of being generally more ro-
bust against LBA than site-homogeneous models,
may still be insufficient and result in conflicting
signal (Fig. S8, S9 and S10). In practice, many
sites may have evolved under different conditions,
so we can not expect all sites to share a universal
stationary distribution. In fact, we do not even
expect stationarity. In our opinion, we should
analyze data using complex models and decide
about which parameters are necessary to grasp
the complexities of evolution. With CAT-PMSF
we further explored this path. The CAT-PMSF
method uses site-specific stationary distributions
and therefore is a parameter-rich model.

In comparison, the site-specific posterior mean
stationary distributions of the classical PMSF ap-
proach are a superposition of a finite set of sta-
tionary distributions of the underlying mixture
model. Consequently, the Keff values of the site-
specific stationary distributions of the classical
PMSF approach must be equal to or larger than
the lowest Keff value of the stationary distribu-
tions of the underlying mixture model. Further,
we expect even the richest distribution mixture
models do not offer adequate variability of com-

ponents with stationary distributions exhibiting
low Keff values. For example, there are twenty
different stationary distributions with Keff values
close to 1.0, 190 =

(
20
2

)
stationary distributions

with Keff values close to 2.0, and so on.
Finally, the speed benefit of CAT-PMSF

originates from fixing the topology during the
Bayesian analysis with the CAT model. Of
course, estimating the site-specific stationary dis-
tributions is still by far the most time-consuming
step. In the future, we aim to design improved
methods estimating site-specific stationary dis-
tributions. Specifically, we are thinking about
methods based on machine learning such as Al-
phaFold (Jumper et al., 2021).

In conclusion, compositional constraint anal-
yses show evidence for a potential LBA caused
by model misspecification, and an argument that
careful model choice as well as validation is impor-
tant in phylogenetic inference. We also propose a
method, CAT-PMSF, with the potential to pro-
duce more accurate phylogenetic estimates using
a site heterogeneous, but branch homogeneous,
substitution process.
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